51
|
Costa-Rodrigues J, Teixeira CA, Fernandes MH. Paracrine-mediated osteoclastogenesis by the osteosarcoma MG63 cell line: is RANKL/RANK signalling really important? Clin Exp Metastasis 2011; 28:505-14. [DOI: 10.1007/s10585-011-9387-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Accepted: 03/28/2011] [Indexed: 11/29/2022]
|
52
|
Wei J, Wu A, Kong LY, Wang Y, Fuller G, Fokt I, Melillo G, Priebe W, Heimberger AB. Hypoxia potentiates glioma-mediated immunosuppression. PLoS One 2011; 6:e16195. [PMID: 21283755 PMCID: PMC3024401 DOI: 10.1371/journal.pone.0016195] [Citation(s) in RCA: 160] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 12/14/2010] [Indexed: 12/19/2022] Open
Abstract
Glioblastoma multiforme (GBM) is a lethal cancer that exerts potent immune suppression. Hypoxia is a predominant feature of GBM, but it is unclear to the degree in which tumor hypoxia contributes to this tumor-mediated immunosuppression. Utilizing GBM associated cancer stem cells (gCSCs) as a treatment resistant population that has been shown to inhibit both innate and adaptive immune responses, we compared immunosuppressive properties under both normoxic and hypoxic conditions. Functional immunosuppression was characterized based on production of immunosuppressive cytokines and chemokines, the inhibition of T cell proliferation and effector responses, induction of FoxP3+ regulatory T cells, effect on macrophage phagocytosis, and skewing to the immunosuppressive M2 phenotype. We found that hypoxia potentiated the gCSC-mediated inhibition of T cell proliferation and activation and especially the induction of FoxP3+T cells, and further inhibited macrophage phagocytosis compared to normoxia condition. These immunosuppressive hypoxic effects were mediated by signal transducer and activator of transcription 3 (STAT3) and its transcriptionally regulated products such as hypoxia inducible factor (HIF)-1α and vascular endothelial growth factor (VEGF). Inhibitors of STAT3 and HIF-1α down modulated the gCSCs' hypoxia-induced immunosuppressive effects. Thus, hypoxia further enhances GBM-mediated immunosuppression, which can be reversed with therapeutic inhibition of STAT3 and HIF-1α and also helps to reconcile the disparate findings that immune therapeutic approaches can be used successfully in model systems but have yet to achieve generalized successful responses in the vast majority of GBM patients by demonstrating the importance of the tumor hypoxic environment.
Collapse
Affiliation(s)
- Jun Wei
- Department of Neurosurgery, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Adam Wu
- Department of Neurosurgery, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Ling-Yuan Kong
- Department of Neurosurgery, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Yongtao Wang
- Department of Neurosurgery, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Gregory Fuller
- Department of Pathology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Isabella Fokt
- Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Giovanni Melillo
- National Cancer Institute, Frederick, Maryland, United States of America
| | - Waldemar Priebe
- Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Amy B. Heimberger
- Department of Neurosurgery, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
53
|
Knowles HJ, Cleton-Jansen AM, Korsching E, Athanasou NA. Hypoxia-inducible factor regulates osteoclast-mediated bone resorption: role of angiopoietin-like 4. FASEB J 2010; 24:4648-59. [PMID: 20667978 PMCID: PMC2992372 DOI: 10.1096/fj.10-162230] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Accepted: 07/15/2010] [Indexed: 12/25/2022]
Abstract
Hypoxia and the hypoxia-inducible factor (HIF) transcription factor regulate angiogenic-osteogenic coupling and osteoclast-mediated bone resorption. To determine how HIF might coordinate osteoclast and osteoblast function, we studied angiopoietin-like 4 (ANGPTL4), the top HIF target gene in an Illumina HumanWG-6 v3.0 48k array of normoxic vs. hypoxic osteoclasts differentiated from human CD14(+) monocytes (14.3-fold induction, P<0.0004). ANGPTL4 mRNA and protein were induced by 24 h at 2% O(2) in human primary osteoclasts, monocytes, and osteoblasts. ANGPTL4 protein was observed by immunofluorescence in osteoclasts and osteoblasts in vivo. Normoxic inducers of HIF (CoCl(2), desferrioxamine, and l-mimosine) and 100 ng/ml ANGPTL4 stimulated osteoclastic resorption 2- to 3-fold in assays of lacunar dentine resorption, without affecting osteoclast viability. Isoform-specific HIF-1α small interfering RNA ablated hypoxic induction of ANGPTL4 and of resorption, which was rescued by addition of exogenous ANGPTL4 (P<0.001). In the osteoblastic Saos2 cell line, ANGPTL4 caused a dose-dependent increase in proliferation (P<0.01, 100 ng/ml) and, at lower doses (1-25 ng/ml), mineralization. These results demonstrate that HIF is sufficient to enhance osteoclast-mediated bone resorption and that ANGPTL4 can compensate for HIF-1α deficiency with respect to stimulation of osteoclast activity and also augments osteoblast proliferation and differentiation.
Collapse
Affiliation(s)
- Helen J Knowles
- Botnar Research Centre, University of Oxford, Nuffield Orthopaedic Centre, Headington, Oxford, OX3 7LD, UK.
| | | | | | | |
Collapse
|
54
|
Matsumoto Y, Okada Y, Fukushi JI, Kamura S, Fujiwara T, Iida K, Koga M, Matsuda S, Harimaya K, Sakamoto A, Iwamoto Y. Role of the VEGF-Flt-1-FAK pathway in the pathogenesis of osteoclastic bone destruction of giant cell tumors of bone. J Orthop Surg Res 2010; 5:85. [PMID: 21062426 PMCID: PMC2993664 DOI: 10.1186/1749-799x-5-85] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Accepted: 11/09/2010] [Indexed: 02/07/2023] Open
Abstract
Background Giant cell tumors (GCTs) of bone are primary benign bone tumors that are characterized by a high number of osteoclast-like multinuclear giant cells (MNCs). Recent studies suggest that the spindle-shaped stromal cells in GCTs are tumor cells, while monocyte-like cells and MNCs are reactive osteoclast precursor cells (OPCs) and osteoclasts (OCs), respectively. In this study, we investigated the pathogenesis of osteoclastic bone destruction in GCTs by focusing on the role of the vascular endothelial growth factor (VEGF)-Flt-1 (type-1 VEGF receptor)-focal adhesion kinase (FAK) pathway. Methods The motility of OPCs cells was assessed by a chemotaxis assay and the growth of OPCs was examined using a cell proliferation assay. The expression of VEGF and activation of Flt-1 and FAK in clinical GCT samples and in OPCs were detected by immunohistochemistry and immunoblotting. The correlation between the expression levels of activated Flt-1 and FAK and clinical stages of GCTs was investigated by immunohistochemistry. Results In GCT samples, CD68, a marker of OPCs and OCs, co-localized with Flt-1. Conditioned media from GCT tissue (GCT-CM) enhanced the chemotaxis and proliferation of OPCs. GCT-CM also stimulated FAK activation in OPCs in vitro. Moreover, there was a correlation between the clinical stage of GCTs and the expression of tyrosine-phosphorylated Flt-1 and FAK. Conclusions Our results suggest that the VEGF-Flt-1-FAK pathway is involved in the pathogenesis of bone destruction of GCTs.
Collapse
Affiliation(s)
- Yoshihiro Matsumoto
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Utting JC, Flanagan AM, Brandao-Burch A, Orriss IR, Arnett TR. Hypoxia stimulates osteoclast formation from human peripheral blood. Cell Biochem Funct 2010; 28:374-80. [PMID: 20556743 DOI: 10.1002/cbf.1660] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Active pathological bone destruction in humans often occurs in locations where oxygen tension (pO(2)) is likely to be low, for example, at the sites of tumours, inflammation, infections and fractures, or the poorly vascularized yellow fatty marrow of the elderly. We examined the effect of pO(2) on formation of osteoclasts, the cells responsible for bone resorption, in 14-day cultures of normal human peripheral blood mononuclear cells (hPBMCs) on ivory discs. Hypoxia (1-2% O(2)) caused threefold increases in the number of osteoclasts formed, compared with 20% O(2). Hypoxia also caused a twofold increase in the number of nuclei per osteoclast, leading to stimulations of resorption pit formation of up to 10-fold. Exposure to hypoxia led to stabilization of the hypoxia-inducible factors, HIF1alpha and HIF2alpha, and upregulation of vascular endothelial growth factor and interleukin-6 expression by hPBMCs. These findings help explain why extravasation of mononuclear precursors into relatively O(2)-deficient bone microenvironments could result in osteoclast formation and suggest a new mechanism for the bone loss associated with the pathophysiological conditions where hypoxia commonly occurs.
Collapse
Affiliation(s)
- Jennifer C Utting
- Department of Cell and Developmental Biology, University College London, London, UK
| | | | | | | | | |
Collapse
|
56
|
Trebec-Reynolds DP, Voronov I, Heersche JNM, Manolson MF. VEGF-A expression in osteoclasts is regulated by NF-kappaB induction of HIF-1alpha. J Cell Biochem 2010; 110:343-51. [PMID: 20432243 DOI: 10.1002/jcb.22542] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Large osteoclasts (10+ nuclei), predominant in rheumatoid arthritis and periodontal disease, have higher expression of proteases and activating receptors and also have increased resorptive activity when compared to small (2-5 nuclei) osteoclasts. We hypothesized that large and small osteoclasts activate different signaling pathways. A Signal Transduction Pathway Finder Array was used to compare gene expression of large and small osteoclasts in RAW 264.7-derived osteoclasts. Expression of vascular endothelial growth factor A (Vegfa) was higher in large osteoclasts and this result was confirmed by RT-PCR. RT-PCR further showed that RANKL treatment of RAW cells induced Vegfa expression in a time-dependent manner. Moreover, VEGF-A secretion in conditioned media was also increased in cultures with a higher proportion of large osteoclasts. To investigate the mechanism of Vegfa induction, specific inhibitors for the transcription factors NF-kappaB, AP-1, NFATc1, and HIF-1 were used. Dimethyl bisphenol A, the HIF-1alpha inhibitor, decreased Vegfa mRNA expression, whereas blocking NF-kappaB, AP-1, and NFATc1 had no effect. Furthermore, the NF-kappaB inhibitor gliotoxin inhibited Hif1alpha mRNA expression. In conclusion, VEGF-A gene and protein expression are elevated in large osteoclasts compared to small osteoclasts and this increase is regulated by HIF-1. In turn, Hif1alpha mRNA levels are induced by RANKL-mediated activation of NF-kappaB. These findings reveal further differences in signaling between large and small osteoclasts and thereby identify novel therapeutic targets for highly resorptive osteoclasts in inflammatory bone loss.
Collapse
Affiliation(s)
- Diana P Trebec-Reynolds
- Faculty of Medicine, Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada.
| | | | | | | |
Collapse
|
57
|
Knowles HJ, Cleton-Jansen A, Korsching E, Athanasou NA. Hypoxia‐inducible factor regulates osteoclast‐mediated bone resorption: role of angiopoietin‐like 4. FASEB J 2010. [DOI: 10.1096/fj.10.162230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Helen J. Knowles
- Botnar Research CentreNuffield Department of Orthopaedics Rheumatology Oxford UK
| | - Anne‐Marie Cleton-Jansen
- Department of PathologyNuffield Department of Rheumatology, and Musculoskeletal Sciences Rheumatology Oxford UK
- Institute of PathologyUniversity of Muenster Muenster Germany
| | - Eberhard Korsching
- Musculoskeletal SciencesUniversity of Oxford, Nuffield Orthopaedic Centre Rheumatology Oxford UK
- Institute of PathologyUniversity of Muenster Muenster Germany
| | | |
Collapse
|
58
|
Knowles HJ, Schaefer KL, Dirksen U, Athanasou NA. Hypoxia and hypoglycaemia in Ewing's sarcoma and osteosarcoma: regulation and phenotypic effects of Hypoxia-Inducible Factor. BMC Cancer 2010; 10:372. [PMID: 20637078 PMCID: PMC2918574 DOI: 10.1186/1471-2407-10-372] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Accepted: 07/16/2010] [Indexed: 11/15/2022] Open
Abstract
Background Hypoxia regulates gene expression via the transcription factor HIF (Hypoxia-Inducible Factor). Little is known regarding HIF expression and function in primary bone sarcomas. We describe HIF expression and phenotypic effects of hypoxia, hypoglycaemia and HIF in Ewing's sarcoma and osteosarcoma. Methods HIF-1α and HIF-2α immunohistochemistry was performed on a Ewing's tumour tissue array. Ewing's sarcoma and osteosarcoma cell lines were assessed for HIF pathway induction by Western blot, luciferase assay and ELISA. Effects of hypoxia, hypoglycaemia and isoform-specific HIF siRNA were assessed on proliferation, apoptosis and migration. Results 17/56 Ewing's tumours were HIF-1α-positive, 15 HIF-2α-positive and 10 positive for HIF-1α and HIF-2α. Expression of HIF-1α and cleaved caspase 3 localised to necrotic areas. Hypoxia induced HIF-1α and HIF-2α in Ewing's and osteosarcoma cell lines while hypoglycaemia specifically induced HIF-2α in Ewing's. Downstream transcription was HIF-1α-dependent in Ewing's sarcoma, but regulated by both isoforms in osteosarcoma. In both cell types hypoglycaemia reduced cellular proliferation by ≥ 45%, hypoxia increased apoptosis and HIF siRNA modulated hypoxic proliferation and migration. Conclusions Co-localisation of HIF-1α and necrosis in Ewing's sarcoma suggests a role for hypoxia and/or hypoglycaemia in in vivo induction of HIF. In vitro data implicates hypoxia as the primary HIF stimulus in both Ewing's and osteosarcoma, driving effects on proliferation and apoptosis. These results provide a foundation from which to advance understanding of HIF function in the pathobiology of primary bone sarcomas.
Collapse
Affiliation(s)
- Helen J Knowles
- Botnar Research Centre, University of Oxford, Nuffield Orthopaedic Centre, Oxford, OX3 7LD, UK.
| | | | | | | |
Collapse
|
59
|
Hypoxia and TGF-beta drive breast cancer bone metastases through parallel signaling pathways in tumor cells and the bone microenvironment. PLoS One 2009; 4:e6896. [PMID: 19727403 PMCID: PMC2731927 DOI: 10.1371/journal.pone.0006896] [Citation(s) in RCA: 165] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2009] [Accepted: 08/16/2009] [Indexed: 12/27/2022] Open
Abstract
Background Most patients with advanced breast cancer develop bone metastases, which cause pain, hypercalcemia, fractures, nerve compression and paralysis. Chemotherapy causes further bone loss, and bone-specific treatments are only palliative. Multiple tumor-secreted factors act on the bone microenvironment to drive a feed-forward cycle of tumor growth. Effective treatment requires inhibiting upstream regulators of groups of prometastatic factors. Two central regulators are hypoxia and transforming growth factor (TGF)- β. We asked whether hypoxia (via HIF-1α) and TGF-β signaling promote bone metastases independently or synergistically, and we tested molecular versus pharmacological inhibition strategies in an animal model. Methodology/Principal Findings We analyzed interactions between HIF-1α and TGF-β pathways in MDA-MB-231 breast cancer cells. Only vascular endothelial growth factor (VEGF) and the CXC chemokine receptor 4 (CXCR4), of 16 genes tested, were additively increased by both TGF-β and hypoxia, with effects on the proximal promoters. We inhibited HIF-1α and TGF-β pathways in tumor cells by shRNA and dominant negative receptor approaches. Inhibition of either pathway decreased bone metastasis, with no further effect of double blockade. We tested pharmacologic inhibitors of the pathways, which target both the tumor and the bone microenvironment. Unlike molecular blockade, combined drug treatment decreased bone metastases more than either alone, with effects on bone to decrease osteoclastic bone resorption and increase osteoblast activity, in addition to actions on tumor cells. Conclusions/Significance Hypoxia and TGF-β signaling in parallel drive tumor bone metastases and regulate a common set of tumor genes. In contrast, small molecule inhibitors, by acting on both tumor cells and the bone microenvironment, additively decrease tumor burden, while improving skeletal quality. Our studies suggest that inhibitors of HIF-1α and TGF-β may improve treatment of bone metastases and increase survival.
Collapse
|
60
|
Abstract
PURPOSE OF REVIEW Giant cell tumour of bone (GCT) is the most common benign bone tumour and afflicts a young population. Treatment options for patients with unresectable disease have remained fairly static for the past three decades. RECENT FINDINGS Recent discoveries have identified a key role for the osteoclast differentiation factor, receptor activator of nuclear factor kappa B (NF-kappaB) ligand (RANKL), in the genesis of GCT. The development of the fully human monoclonal antibody to RANKL, denosumab, has led to a clinical trial in unresectable GCT. This study demonstrated an 86% response rate, with comparable evidence of clinical benefit, and was well tolerated. Other pathways that may present targets for therapy include the hypoxia-angiogenesis axis and the colony stimulating factor 1 receptor. SUMMARY Denosumab presents a new treatment option for patients with previously untreatable GCT. The eventual role of denosumab and other targeted agents in the treatment of GCT and related disorders is currently the subject of active study.
Collapse
|
61
|
Knowles HJ, Athanasou NA. Acute hypoxia and osteoclast activity: a balance between enhanced resorption and increased apoptosis. J Pathol 2009; 218:256-64. [PMID: 19291710 DOI: 10.1002/path.2534] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Osteoclasts are the primary mediators of pathological bone resorption in many conditions in which micro-environmental hypoxia is associated with disease progression. However, effects of hypoxia on human osteoclast activity have not been reported. Mature human osteoclasts were differentiated from peripheral blood or obtained from giant cell tumour of bone. Osteoclasts were exposed to a constant hypoxic environment and then assessed for parameters including resorption (toluidine blue staining of dentine slices), membrane integrity (trypan blue exclusion), apoptosis (TUNEL, DAPI), and osteolysis-associated enzyme activity (TRAP, cathepsin K). 24 h exposure to 2% O(2) produced a 2.5-fold increase in resorption associated with increased TRAP and cathepsin K enzyme activity. Hypoxia-Inducible Factor-1alpha (HIF-1alpha) siRNA completely ablated the hypoxic increase in osteoclast resorption. 24 h at 2% O(2) also increased the number of osteoclasts with compromised membrane integrity from 6% to 21%, with no change in the total osteoclast number or the proportion of late-stage apoptotic cells. Transient reoxygenation returned the percentage of trypan blue-positive cells to normoxic levels, suggesting that osteoclasts can recover from the early stages of cell death. Repeated over an extended period, hypoxia/reoxygenation enhanced osteoclast differentiation at this pO(2). These data suggest that in diseased bone, where the pO(2) may fall to <or=2% O(2), a delicate balance between hypoxia-induced osteoclast activation and hypoxia-induced osteoclast apoptosis mediates pathological bone resorption.
Collapse
Affiliation(s)
- Helen J Knowles
- Botnar Research Centre, University of Oxford, Nuffield Orthopaedic Centre, Oxford, UK.
| | | |
Collapse
|
62
|
Moskovszky L, Szuhai K, Krenács T, Hogendoorn PCW, Szendrői M, Benassi MS, Kopper L, Füle T, Sápi Z. Genomic instability in giant cell tumor of bone. A study of 52 cases using DNA ploidy, relocalization FISH, and array-CGH analysis. Genes Chromosomes Cancer 2009; 48:468-79. [DOI: 10.1002/gcc.20656] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
63
|
Sun X, Wei Y. The role of hypoxia-inducible factor in osteogenesis and chondrogenesis. Cytotherapy 2009; 11:261-7. [DOI: 10.1080/14653240902824765] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
64
|
Chinnadurai G, Vijayalingam S, Gibson SB. BNIP3 subfamily BH3-only proteins: mitochondrial stress sensors in normal and pathological functions. Oncogene 2008; 27 Suppl 1:S114-27. [PMID: 19641497 PMCID: PMC2925272 DOI: 10.1038/onc.2009.49] [Citation(s) in RCA: 163] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The BNIP3 subfamily of BH3-only proteins consists of BNIP3 and BNIP3-like (BNIP3L) proteins. These proteins form stable homodimerization complexes that localize to the outer membrane of the mitochondria after cellular stress. This promotes either apoptotic or non-apoptotic cell death such as autophagic cell death. Although the mammalian cells contain both members of this subfamily, the genome of Caenorhabditis elegans codes for a single BNIP3 ortholog, ceBNIP3, which shares homology in the transmembrane (TM) domain and in a conserved region close to the BH3 domain of mammalian BNIP3 protein. The cell death activities of BNIP3 and BNIP3L are determined by either the BH3 domain or the C-terminal TM domain. The TM domain of BNIP3 is unique, as it is capable of autonomous stable dimerization and contributes to mitochondrial localization of BNIP3. In knockout mouse models, BNIP3L was shown to be essential for normal erythrocyte differentiation and hematopoietic homeostasis, whereas BNIP3 plays a role in cellular responses to ischemia/reperfusion injury in the heart. Both BNIP3 and BNIP3L play a role in cellular responses to stress. Under hypoxia, both BNIP3 and BNIP3L expression levels are elevated and contribute to hypoxia-induced cell death. In addition, these proteins play critical roles in disease states. In heart disease, both BNIP3 and BNIP3L play a critical role in cardiomyocyte cell death following ischemic and non-ischemic injuries. In cancer, expression of BNIP3 and BNIP3L is downregulated by promoter hypermethylation or by homozygous deletion of the gene locus in certain cancers, whereas their expression was increased in other cancers. In addition, BNIP3 expression has been correlated with poor prognosis in some cancers. The results reviewed here suggest that BNIP3 and BNIP3L may be novel therapeutic targets for intervention because of their pathological roles in regulating cell death in disease states.
Collapse
Affiliation(s)
- G Chinnadurai
- Institute for Molecular Virology, Doisy Research Center, Saint Louis University Medical Center, St Louis, MO 63104, USA.
| | | | | |
Collapse
|