51
|
Wang Y, Lu T, Wang Q, Liu J, Jiao W. Circular RNAs: Crucial regulators in the human body (Review). Oncol Rep 2018; 40:3119-3135. [PMID: 30272328 PMCID: PMC6196641 DOI: 10.3892/or.2018.6733] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 09/07/2018] [Indexed: 12/14/2022] Open
Abstract
Circular RNAs (circRNAs) belong to a new type of endogenous non‑coding RNAs (ncRNAs) that are derived from exons and/or introns, and are widely distributed in mammals. The majority of circRNAs have a specific expression profile in cells or tissues, as well as during different stages of development. CircRNAs were originally thought to be the products of mis‑splicing. However, with the assistance of bioinformatics tools and the rapid development of high‑throughput sequencing, an increasing body of evidence has suggested that circRNAs bind micro(mi)RNAs, and have a role as miRNA sponges, thereby regulating target mRNA splicing and transcription. Human diseases are closely associated with circRNAs, especially in cancer as their expression is typically altered during the progression of cancer; this may provide a novel type of biomarker for cancer diagnosis and prognosis. CircRNAs are becoming a key area of interest within the field of cancer research. In the present review, we summarize the known molecular mechanisms and biological origin of circRNAs, as well as their functions, especially those related to human tumors.
Collapse
Affiliation(s)
- Yuanyong Wang
- Department of Thoracic Surgery, Affiliated Hospital of Qingdao University, Qingdao 266003, P.R. China
| | - Tong Lu
- Department of Thoracic Surgery, Affiliated Hospital of Qingdao University, Qingdao 266003, P.R. China
| | - Qian Wang
- College of Nursing, Weifang Medical University, Weifang 261053, P.R. China
| | - Jia Liu
- School of Pharmacy, Qingdao University, Qingdao 266003, P.R. China
| | - Wenjie Jiao
- Department of Thoracic Surgery, Affiliated Hospital of Qingdao University, Qingdao 266003, P.R. China
| |
Collapse
|
52
|
Recurrent hotspot mutations in HRAS Q61 and PI3K-AKT pathway genes as drivers of breast adenomyoepitheliomas. Nat Commun 2018; 9:1816. [PMID: 29739933 PMCID: PMC5940840 DOI: 10.1038/s41467-018-04128-5] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 04/06/2018] [Indexed: 02/07/2023] Open
Abstract
Adenomyoepithelioma of the breast is a rare tumor characterized by epithelial−myoepithelial differentiation, whose genetic underpinning is largely unknown. Here we show through whole-exome and targeted massively parallel sequencing analysis that whilst estrogen receptor (ER)-positive adenomyoepitheliomas display PIK3CA or AKT1 activating mutations, ER-negative adenomyoepitheliomas harbor highly recurrent codon Q61 HRAS hotspot mutations, which co-occur with PIK3CA or PIK3R1 mutations. In two- and three-dimensional cell culture models, forced expression of HRASQ61R in non-malignant ER-negative breast epithelial cells with or without a PIK3CAH1047R somatic knock-in results in transformation and the acquisition of the cardinal features of adenomyoepitheliomas, including the expression of myoepithelial markers, a reduction in E-cadherin expression, and an increase in AKT signaling. Our results demonstrate that adenomyoepitheliomas are genetically heterogeneous, and qualify mutations in HRAS, a gene whose mutations are vanishingly rare in common-type breast cancers, as likely drivers of ER-negative adenomyoepitheliomas. Adenomyoepithelioma is a rare tumor of the breast with an unknown genetic basis. Here the authors perform a genomic analysis of adenomyoepitheliomas revealing that their repertoire of somatic mutations vary according to the estrogen receptor (ER) status, and that ER-negative tumors harbor recurrent mutations in HRAS and PI3K pathway genes.
Collapse
|
53
|
Volinia S, Bertagnolo V, Grassilli S, Brugnoli F, Manfrini M, Galasso M, Scatena C, Mazzanti CM, Lessi F, Naccarato G, Caligo A, Bianchini E, Piubello Q, Orvieto E, Rugge M, Natali C, Reale D, Vecchione A, Warner S, Croce CM, Capitani S. Levels of miR-126 and miR-218 are elevated in ductal carcinoma in situ (DCIS) and inhibit malignant potential of DCIS derived cells. Oncotarget 2018; 9:23543-23553. [PMID: 29805754 PMCID: PMC5955110 DOI: 10.18632/oncotarget.25261] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 04/06/2018] [Indexed: 12/21/2022] Open
Abstract
A substantial number of ductal carcinoma in situ (DCIS) detected by mammography never progress to invasive ductal carcinoma (IDC) and current approaches fail to identify low-risk patients not at need of adjuvant therapies. We aimed to identify the key miRNAs protecting DCIS from malignant evolution, that may constitute markers for non-invasive lesions. We studied 100 archived DCIS samples, including pure DCIS, DCIS with adjacent IDC and pure DCIS from patients with subsequent IDC in contralateral breast or no recurrence. A DCIS derived cell line was used for molecular and cellular studies. A genome wide study revealed that pure DCIS has higher miR-126 and miR-218 expression than DCIS with adjacent IDC lesions or than IDC. The down-regulation of miR-126 and miR-218 promoted invasiveness in vitro and, in patients with pure DCIS, was associated with later onset of IDC. Survival studies of independent cohorts indicated that both miRNAs play a protective role in IDC. The clinical findings are in agreement with the miRNAs' roles in cell adhesion, differentiation and proliferation. We propose that miR-126 and miR-218 have a protective role in DCIS and represent novel biomarkers for the risk assessment in women with early detection of breast cancer.
Collapse
Affiliation(s)
- Stefano Volinia
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara 44121, Italy.,LTTA Centre, University of Ferrara, Ferrara 44121, Italy
| | - Valeria Bertagnolo
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara 44121, Italy
| | - Silvia Grassilli
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara 44121, Italy
| | - Federica Brugnoli
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara 44121, Italy
| | - Marco Manfrini
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara 44121, Italy
| | - Marco Galasso
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara 44121, Italy
| | - Cristian Scatena
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa 56126, Italy
| | | | | | - Giuseppe Naccarato
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa 56126, Italy
| | - Adelaide Caligo
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa 56126, Italy
| | - Enzo Bianchini
- Pathology Division, S. Anna University Hospital, Ferrara 44124, Italy
| | - Quirino Piubello
- Department of Diagnostic and Pathology, Azienda Ospedaliera Universitaria Integrata di Verona, Verona 37126, Italy
| | - Enrico Orvieto
- Department of Medicine DIMED, University of Padova, Padova 35121, Italy
| | - Massimo Rugge
- Department of Medicine DIMED, University of Padova, Padova 35121, Italy
| | - Cristina Natali
- Pathology Division, Santa Maria della Misericordia Hospital, Rovigo 45100, Italy
| | - Domenico Reale
- Pathology Division, Santa Maria della Misericordia Hospital, Rovigo 45100, Italy
| | - Andrea Vecchione
- Department of Pathology, St. Andrea University Hospital, University of Rome, La Sapienza, Rome 00185, Italy
| | - Sarah Warner
- Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
| | - Carlo Maria Croce
- Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
| | - Silvano Capitani
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara 44121, Italy.,LTTA Centre, University of Ferrara, Ferrara 44121, Italy
| |
Collapse
|
54
|
Aleskandarany MA, Vandenberghe ME, Marchiò C, Ellis IO, Sapino A, Rakha EA. Tumour Heterogeneity of Breast Cancer: From Morphology to Personalised Medicine. Pathobiology 2018; 85:23-34. [DOI: 10.1159/000477851] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 05/30/2017] [Indexed: 12/11/2022] Open
|
55
|
Weigel S, Khil L, Hense HW, Decker T, Wellmann J, Heidrich J, Sommer A, Heidinger O, Heindel W. Detection Rates of Ductal Carcinoma in Situ with Biennial Digital Mammography Screening: Radiologic Findings Support Pathologic Model of Tumor Progression. Radiology 2018; 286:424-432. [DOI: 10.1148/radiol.2017170673] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
56
|
Casasent AK, Schalck A, Gao R, Sei E, Long A, Pangburn W, Casasent T, Meric-Bernstam F, Edgerton ME, Navin NE. Multiclonal Invasion in Breast Tumors Identified by Topographic Single Cell Sequencing. Cell 2018; 172:205-217.e12. [PMID: 29307488 PMCID: PMC5766405 DOI: 10.1016/j.cell.2017.12.007] [Citation(s) in RCA: 306] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/15/2017] [Accepted: 12/01/2017] [Indexed: 11/17/2022]
Abstract
Ductal carcinoma in situ (DCIS) is an early-stage breast cancer that infrequently progresses to invasive ductal carcinoma (IDC). Genomic evolution has been difficult to delineate during invasion due to intratumor heterogeneity and the low number of tumor cells in the ducts. To overcome these challenges, we developed Topographic Single Cell Sequencing (TSCS) to measure genomic copy number profiles of single tumor cells while preserving their spatial context in tissue sections. We applied TSCS to 1,293 single cells from 10 synchronous patients with both DCIS and IDC regions in addition to exome sequencing. Our data reveal a direct genomic lineage between in situ and invasive tumor subpopulations and further show that most mutations and copy number aberrations evolved within the ducts prior to invasion. These results support a multiclonal invasion model, in which one or more clones escape the ducts and migrate into the adjacent tissues to establish the invasive carcinomas.
Collapse
Affiliation(s)
- Anna K Casasent
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Aislyn Schalck
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ruli Gao
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Emi Sei
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Annalyssa Long
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - William Pangburn
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tod Casasent
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Funda Meric-Bernstam
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mary E Edgerton
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Nicholas E Navin
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
57
|
Abstract
Ductal carcinoma in situ (DCIS), the noninvasive form of breast cancer (BC), comprises just over 20% of breast cancer cases diagnosed each year in the USA. Most patients are treated with local excision of the disease followed by whole breast radiation therapy. Total mastectomy is not an uncommon approach, and total mastectomy with a contralateral risk-reducing mastectomy has been on the rise in the past decade. In estrogen receptor-positive disease, patients are often offered endocrine ablative therapy with a selective estrogen receptor modulator or an aromatase inhibitor as both treatment and prevention. Local regional treatment options have no impact upon ultimate overall survival. Long-term survival rates are higher in patients with DCIS than with any other form of the disease. Are these strikingly high success rates a testament to effective treatment strategies or is there a significant subset of DCIS that was unlikely to ever progress to invasive ductal carcinoma? DCIS was not seen in the US prior to the advent of screening mammography. When compared to other countries, the USA has the highest utilization of screening mammography and the incidence rate of DCIS. Other lines of evidence include autopsy series examining the breast tissue of women who died of other causes, missed-diagnosis series and current retrospective reviews of DCIS, all align in support of the concept of DCIS as indolent in the majority of cases [3-14]. The evidence suggests that both patient and physician misconceptions about DCIS have led to overdiagnosis and over-treatment of DCIS. Recently, a gene expression profiling tool (12 gene assay, Oncotype DCIS) has emerged that shows considerable promise in predicting class in DCIS patients.
Collapse
Affiliation(s)
- Joshua Feinberg
- Department of Surgery, Maimonides Breast Center, Maimonides Medical Center, Research Fellow, Oxford University, Oxford, England
| | - Rachel Wetstone
- Department of Surgery, Maimonides Medical Center, Brooklyn, NY, USA
| | - Dana Greenstein
- Department of Surgery, Maimonides Medical Center, Brooklyn, NY, USA
| | - Patrick Borgen
- Department of Surgery, Maimonides Medical Center, Brooklyn, NY, USA.
| |
Collapse
|
58
|
Abstract
Ductal carcinoma in situ (DCIS) accounts for 20% of all newly diagnosed breast cancers. Mastectomy was once the gold standard for the treatment of DCIS; however, breast-conserving surgery (BCS) has been adopted as the treatment of choice for patients with small, screen-detected lesions. Both adjuvant radiation and hormonal therapy following BCS have been demonstrated in randomized trials to reduce the risk of both invasive and DCIS recurrence, but neither affects survival. With the variety of surgical and adjuvant treatment options available, there has been great interest in tailoring the treatment to the individual, with the goal of optimizing the balance of risks and benefits according to the values and priorities of the woman herself. Prospective studies of women with "low-risk" DCIS treated with BCS alone have successfully identified women at lower than average risk but have not achieved the goal of identifying a subset of women with DCIS at minimal risk of recurrence after surgical excision alone. No studies have evaluated the safety of medical management alone.
Collapse
Affiliation(s)
- Andrea V Barrio
- Breast Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065;
| | - Kimberly J Van Zee
- Breast Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065;
| |
Collapse
|
59
|
Molecular Profiling and Significance of Circulating Tumor Cell Based Genetic Signatures. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 994:143-167. [PMID: 28560673 DOI: 10.1007/978-3-319-55947-6_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cancer kills by metastasizing beyond the primary site. Early detection, surgical intervention and other treatments have improved the survival rates of patients with cancer, however, once metastasis occurs, responses to conventional therapies become significantly less effective, and this remains the leading cause of death. Circulating tumor cells (CTCs) are tumor cells that have preferentially disseminated from the primary tumor mass into the hematological system, and are en route to favorable distant sites where if they survive, can develop into metastases. They may be the earliest detectable cells with metastatic ability, and are gaining increasing attention because of their prognostic value in many types of cancers including breast, prostate, colon and lung. Recent technological advances have removed barriers that previously hindered the detection and isolation of these rare cells from blood, and have exponentially improved the genetic resolution at which we can characterize signatures that define CTCs. Some of the most significant observations from such examinations are described here. Firstly, aberrations that were thought to be unique to CTCs are detected at subclonal frequencies within primary tumors with measurable heterogeneity, indicating pre-existing genetic signatures for metastasis. Secondly, these subclonal events are enriched in CTCs and metastases, pointing towards the selection of a more 'fit' component of tumor cells with survival advantages. Lastly, this component of cancer cells may also be the chemoresistant portion that escapes systemic treatment, or acquires resistance during progression of the disease. The future of cancer management may include a standardized method of measuring intratumor heterogeneity of the primary as well as matched CTCs. This will help identify and target rare aberrations within primary tumors that make them more adept to disseminate, and also to monitor the development of treatment resistant subclones as cancer progresses.
Collapse
|
60
|
Gorringe KL, Fox SB. Ductal Carcinoma In Situ Biology, Biomarkers, and Diagnosis. Front Oncol 2017; 7:248. [PMID: 29109942 PMCID: PMC5660056 DOI: 10.3389/fonc.2017.00248] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 10/02/2017] [Indexed: 12/21/2022] Open
Abstract
Ductal carcinoma in situ (DCIS) is an often-diagnosed breast disease and a known, non-obligate, precursor to invasive breast carcinoma. In this review, we explore the clinical and pathological features of DCIS, fundamental elements of DCIS biology including gene expression and genetic events, the relationship of DCIS with recurrence and invasive breast cancer, and the interaction of DCIS with the microenvironment. We also survey how these various elements are being used to solve the clinical conundrum of how to optimally treat a disease that has potential to progress, and yet is also likely over-treated in a significant proportion of cases.
Collapse
Affiliation(s)
- Kylie L. Gorringe
- Cancer Genomics Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
| | - Stephen B. Fox
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| |
Collapse
|
61
|
Han C, Seebacher NA, Hornicek FJ, Kan Q, Duan Z. Regulation of microRNAs function by circular RNAs in human cancer. Oncotarget 2017; 8:64622-64637. [PMID: 28969099 PMCID: PMC5610031 DOI: 10.18632/oncotarget.19930] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 07/25/2017] [Indexed: 02/07/2023] Open
Abstract
Circular RNAs (circRNAs) are a newly validated class of endogenous non-coding RNA, generated from the ligation of exons, introns, or both, which arise via a diverse number of cellular mechanisms. Due to rapid advances in the development of combined high-throughput sequencing and bioinformatics analyzing tools, many circRNAs have recently been discovered, revealing an expansive number of ubiquitously expressed mammalian circRNAs. Interestingly, it has recently been confirmed that circRNAs bind to microRNAs (miRs), as miR “sponges”, acting to suppress miR function. As miRs are known to alter the development and progression of cancer, circRNAs may offer a novel diagnostic and prognostic biomarker for cancer. Indeed, recent evidence has shown that circRNAs are associated with many human cancers. Herein, we review the molecular characteristics and biogenesis of circRNAs, with a focus on newly identified circRNAs that may play an important role in human cancer, through their regulation of miR expression.
Collapse
Affiliation(s)
- Chao Han
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China.,Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Nicole A Seebacher
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Francis J Hornicek
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Quancheng Kan
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Zhenfeng Duan
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China.,Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
62
|
Lambein K, Van Bockstal M, Vandemaele L, Van den Broecke R, Cocquyt V, Geenen S, Denys H, Libbrecht L. Comparison of HER2 amplification status among breast cancer subgroups offers new insights in pathways of breast cancer progression. Virchows Arch 2017; 471:575-587. [PMID: 28567637 DOI: 10.1007/s00428-017-2161-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/09/2017] [Accepted: 05/22/2017] [Indexed: 12/21/2022]
Abstract
Although the prognostic and predictive significance of human epidermal growth factor receptor 2 (HER2) in invasive breast cancer is well established, its role in ductal carcinoma in situ (DCIS) remains unclear. Reports on combined evaluation of both HER2 protein expression and HER2 amplification status in pure DCIS and DCIS adjacent to invasive ductal carcinoma (i.e., admixed DCIS) are scarce. In this study, immunohistochemistry and fluorescence in situ hybridization (FISH) were used to assess HER2 status in 72 cases of pure DCIS, 73 cases of DCIS admixed with invasive ductal carcinoma (IDC), and 60 cases of pure IDC. HER2 copy number-based amplification was present in 49% of pure DCIS, 16% of admixed DCIS, 18% of admixed IDC, and 8% of pure IDC. Amplified pure DCIS with clusters of HER2 signals showed a significantly lower HER2 copy number than amplified admixed DCIS with clusters. Whereas pure DCIS and admixed DCIS presented significant differences, the in situ and invasive component of admixed tumors showed striking similarities regarding mean HER2 and chromosome 17 centromere (CEP17) copy number, grade, and estrogen and progesterone receptor expression. The discrepant prevalence of HER2 amplification among breast cancer subgroups indirectly suggests that HER2 may not play a crucial role in the transition of in situ to invasive breast cancer. The similarities in HER2 amplification status between the in situ and invasive component of admixed tumors hint at a common biological pathway for both components. Our data support the theory that pure DCIS, pure IDC, and admixed lesions have a common progenitor, but can progress as separate lineages.
Collapse
MESH Headings
- Adult
- Aged
- Biomarkers, Tumor/analysis
- Biomarkers, Tumor/genetics
- Breast Neoplasms/genetics
- Breast Neoplasms/pathology
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/pathology
- Carcinoma, Intraductal, Noninfiltrating/genetics
- Carcinoma, Intraductal, Noninfiltrating/pathology
- Disease Progression
- Female
- Gene Amplification
- Humans
- Middle Aged
- Receptor, ErbB-2/genetics
Collapse
Affiliation(s)
- Kathleen Lambein
- Department of Pathology, AZ St Lucas Hospital, Groenebriel 1, 9000, Ghent, Belgium
- Department of Oncology, KU Leuven, Surgical Oncology, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Mieke Van Bockstal
- Department of Medical and Forensic Pathology, Ghent University, De Pintelaan 185, 9000, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Lies Vandemaele
- Department of Medical and Forensic Pathology, Ghent University, De Pintelaan 185, 9000, Ghent, Belgium
| | - Rudy Van den Broecke
- Department of Gynaecology, Ghent University Hospital, De Pintelaan 185, 9000, Ghent, Belgium
| | - Veronique Cocquyt
- Department of Medical Oncology, Ghent University Hospital, De Pintelaan 185, 9000, Ghent, Belgium
| | - Sofie Geenen
- Department of Medical and Forensic Pathology, Ghent University, De Pintelaan 185, 9000, Ghent, Belgium
| | - Hannelore Denys
- Department of Medical Oncology, Ghent University Hospital, De Pintelaan 185, 9000, Ghent, Belgium
| | - Louis Libbrecht
- Department of Medical and Forensic Pathology, Ghent University, De Pintelaan 185, 9000, Ghent, Belgium.
- Department of Pathology, University Clinics St Luc, Hippokrateslaan 10, 1200, Sint-Lambrechts-Woluwe, Belgium.
| |
Collapse
|
63
|
Benson JR, Jatoi I, Toi M. Treatment of low-risk ductal carcinoma in situ: is nothing better than something? Lancet Oncol 2017; 17:e442-e451. [PMID: 27733270 DOI: 10.1016/s1470-2045(16)30367-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 07/08/2016] [Accepted: 07/13/2016] [Indexed: 10/20/2022]
Abstract
The heterogeneous nature of ductal carcinoma in situ has been emphasised by data for breast-cancer screening that show substantial increases in the detection of early-stage non-invasive breast cancer but no noteworthy change in the incidence of invasive and distant metastatic disease. Indolent non-progressive forms of ductal carcinoma in situ are managed according to similar surgical strategies as high-risk disease, with extent of resection dictated by radiological and pathological estimates of tumour dimensions. Although adjuvant treatments might be withheld for low-risk lesions, surgical treatments incur potential morbidity, especially when mastectomy and breast reconstruction are done for widespread low-grade or intermediate-grade ductal carcinoma in situ. Low rates of deaths from breast cancer coupled with overdiagnosis within screening programmes have prompted a fundamental rethink of approaches to the management of both low-risk and high-risk ductal carcinoma in situ. Changes include active surveillance for low-risk lesions and a watchful waiting policy with intervention when invasive local recurrence after breast-conserving surgery is detected. Prediction of ipsilateral invasive recurrence is likely to be improved by integration of molecular biomarkers with conventional histopathological parameters. Moreover, further genetic interrogation of ductal carcinoma in situ might lead to a reclassification of some low-grade lesions as non-cancerous entities.
Collapse
Affiliation(s)
- John R Benson
- Cambridge Breast Unit, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust Cambridge, UK.
| | - Ismail Jatoi
- Division of Surgical Oncology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Masakazu Toi
- Breast Cancer Unit, Kyoto University Hospital, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
64
|
Abstract
Advances in mammography have sparked an exponential increase in the detection of early-stage breast lesions, most commonly ductal carcinoma in situ (DCIS). More than 50% of DCIS lesions are benign and will remain indolent, never progressing to invasive cancers. However, the factors that promote DCIS invasion remain poorly understood. Here, we show that SMARCE1 is required for the invasive progression of DCIS and other early-stage tumors. We show that SMARCE1 drives invasion by regulating the expression of secreted proteases that degrade basement membrane, an ECM barrier surrounding all epithelial tissues. In functional studies, SMARCE1 promotes invasion of in situ cancers growing within primary human mammary tissues and is also required for metastasis in vivo. Mechanistically, SMARCE1 drives invasion by forming a SWI/SNF-independent complex with the transcription factor ILF3. In patients diagnosed with early-stage cancers, SMARCE1 expression is a strong predictor of eventual relapse and metastasis. Collectively, these findings establish SMARCE1 as a key driver of invasive progression in early-stage tumors.
Collapse
|
65
|
Martelotto LG, Baslan T, Kendall J, Geyer FC, Burke KA, Spraggon L, Piscuoglio S, Chadalavada K, Nanjangud G, Ng CKY, Moody P, D'Italia S, Rodgers L, Cox H, da Cruz Paula A, Stepansky A, Schizas M, Wen HY, King TA, Norton L, Weigelt B, Hicks JB, Reis-Filho JS. Whole-genome single-cell copy number profiling from formalin-fixed paraffin-embedded samples. Nat Med 2017; 23:376-385. [PMID: 28165479 PMCID: PMC5608257 DOI: 10.1038/nm.4279] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 01/09/2017] [Indexed: 12/16/2022]
Abstract
A substantial proportion of tumors consist of genotypically distinct subpopulations of cancer cells. This intratumor genetic heterogeneity poses a substantial challenge for the implementation of precision medicine. Single-cell genomics constitutes a powerful approach to resolve complex mixtures of cancer cells by tracing cell lineages and discovering cryptic genetic variations that would otherwise be obscured in tumor bulk analyses. Because of the chemical alterations that result from formalin fixation, single-cell genomic approaches have largely remained limited to fresh or rapidly frozen specimens. Here we describe the development and validation of a robust and accurate methodology to perform whole-genome copy-number profiling of single nuclei obtained from formalin-fixed paraffin-embedded clinical tumor samples. We applied the single-cell sequencing approach described here to study the progression from in situ to invasive breast cancer, which revealed that ductal carcinomas in situ show intratumor genetic heterogeneity at diagnosis and that these lesions may progress to invasive breast cancer through a variety of evolutionary processes.
Collapse
Affiliation(s)
- Luciano G Martelotto
- Department of Pathology, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA
| | - Timour Baslan
- Cold Spring Harbor Laboratory (CSHL), Cold Spring Harbor, New York, USA.,Department of Molecular and Cellular Biology, Stony Brook University, New York, New York, USA
| | - Jude Kendall
- Cold Spring Harbor Laboratory (CSHL), Cold Spring Harbor, New York, USA
| | - Felipe C Geyer
- Department of Pathology, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA
| | - Kathleen A Burke
- Department of Pathology, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA
| | - Lee Spraggon
- Department of Pathology, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA
| | - Salvatore Piscuoglio
- Department of Pathology, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA
| | - Kalyani Chadalavada
- Molecular Cytogenetics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Gouri Nanjangud
- Molecular Cytogenetics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Charlotte K Y Ng
- Department of Pathology, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA
| | - Pamela Moody
- Cold Spring Harbor Laboratory (CSHL), Cold Spring Harbor, New York, USA
| | - Sean D'Italia
- Cold Spring Harbor Laboratory (CSHL), Cold Spring Harbor, New York, USA
| | - Linda Rodgers
- Cold Spring Harbor Laboratory (CSHL), Cold Spring Harbor, New York, USA
| | - Hilary Cox
- Cold Spring Harbor Laboratory (CSHL), Cold Spring Harbor, New York, USA
| | - Arnaud da Cruz Paula
- Department of Pathology, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA.,Instituto Português de Oncologia, Porto, Portugal
| | - Asya Stepansky
- Cold Spring Harbor Laboratory (CSHL), Cold Spring Harbor, New York, USA
| | - Michail Schizas
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Hannah Y Wen
- Department of Pathology, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA
| | - Tari A King
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Larry Norton
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Britta Weigelt
- Department of Pathology, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA
| | - James B Hicks
- Cold Spring Harbor Laboratory (CSHL), Cold Spring Harbor, New York, USA
| | - Jorge S Reis-Filho
- Department of Pathology, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA
| |
Collapse
|
66
|
Groen EJ, Elshof LE, Visser LL, Rutgers EJT, Winter-Warnars HA, Lips EH, Wesseling J. Finding the balance between over- and under-treatment of ductal carcinoma in situ (DCIS). Breast 2017; 31:274-283. [DOI: 10.1016/j.breast.2016.09.001] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 08/19/2016] [Accepted: 09/01/2016] [Indexed: 12/21/2022] Open
|
67
|
Da Cruz Paula A, Leitão C, Marques O, Rosa AM, Santos AH, Rêma A, de Fátima Faria M, Rocha A, Costa JL, Lima M, Lopes C. Molecular characterization of CD44 +/CD24 -/Ck +/CD45 - cells in benign and malignant breast lesions. Virchows Arch 2017; 470:311-322. [PMID: 28116522 DOI: 10.1007/s00428-017-2068-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 11/04/2016] [Accepted: 01/06/2017] [Indexed: 01/09/2023]
Abstract
Breast cancer epithelial cells with the CD44+/CD24-/low phenotype possess tumor-initiating cells and epithelial-mesenchymal transition (EMT) capacity. Massive parallel sequencing can be an interesting approach to deepen the molecular characterization of these cells. We characterized CD44+/CD24-/cytokeratin(Ck)+/CD45- cells isolated through flow cytometry from 43 biopsy and 6 mastectomy samples harboring different benign and malignant breast lesions. The Ion Torrent Ampliseq Cancer Hotspot panel v2 (CHPv2) was used for the identification of somatic mutations in the DNA extracted from isolated CD44+/CD24-/Ck+/CD45- cells. E-Cadherin and vimentin immunohistochemistry was performed on sections from the corresponding formalin-fixed, paraffin-embedded (FFPE) blocks. The percentage of CD44+/CD24-/Ck+/CD45- cells increased significantly from non-malignant to malignant lesions and in association with a significant increase in the expression of vimentin. Non-malignant lesions harbored only a single-nucleotide polymorphism (SNP). Mutations in the tumor suppressor p53 (TP53), NOTCH homolog 1 (NOTCH1), phosphatase and tensin homolog (PTEN), and v-akt murine thymoma viral oncogene homolog 1 (AKT1) genes were found in isolated CD44+/CD24-/Ck+/CD45- cells from ductal carcinomas in situ (DCIS). Additional mutations in the colony-stimulating factor 1 receptor (CSF1R), ret proto-oncogene (RET), and TP53 genes were also identified in invasive ductal carcinomas (IDCs). The use of massive parallel sequencing technology for this type of application revealed to be extremely effective even when using small amounts of DNA extracted from a low number of cells. Additional studies are now required using larger cohorts to design an appropriate mutational profile for this phenotype.
Collapse
MESH Headings
- Biomarkers, Tumor/analysis
- Breast Diseases/genetics
- Breast Diseases/mortality
- Breast Diseases/pathology
- Breast Neoplasms/genetics
- Breast Neoplasms/mortality
- Breast Neoplasms/pathology
- Cadherins/analysis
- Cadherins/biosynthesis
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/mortality
- Carcinoma, Ductal, Breast/pathology
- Carcinoma, Intraductal, Noninfiltrating/genetics
- Carcinoma, Intraductal, Noninfiltrating/mortality
- Carcinoma, Intraductal, Noninfiltrating/pathology
- DNA Mutational Analysis
- Female
- Flow Cytometry
- High-Throughput Nucleotide Sequencing
- Humans
- Hyaluronan Receptors/analysis
- Hyaluronan Receptors/biosynthesis
- Immunohistochemistry
- Kaplan-Meier Estimate
- Leukocyte Common Antigens/analysis
- Leukocyte Common Antigens/biosynthesis
- Neoplastic Stem Cells/pathology
- Phenotype
- Proto-Oncogene Mas
Collapse
Affiliation(s)
- Arnaud Da Cruz Paula
- Pathology and Molecular Immunology Department, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Jorge Viterbo Ferreira Street, n° 288, 4050-313, Porto, Portugal.
- Department of Pathology, Portuguese Oncology Institute (IPO), Porto, Portugal.
| | - Catarina Leitão
- Institute of Research and Health Innovation, University of Porto, Porto, Portugal
- IBMC - Institute of Molecular and Cell Biology, Porto, Portugal
| | - Oriana Marques
- Pathology and Molecular Immunology Department, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Jorge Viterbo Ferreira Street, n° 288, 4050-313, Porto, Portugal
- Institute of Research and Health Innovation, University of Porto, Porto, Portugal
- Unit for Multidisciplinary Biomedical Research (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
- Basic and Clinical Research on Iron Biology, Institute of Molecular and Cell Biology (IBMC)/i3s, Porto, Portugal
| | - Ana Margarida Rosa
- Institute of Research and Health Innovation, University of Porto, Porto, Portugal
- Basic and Clinical Research on Iron Biology, Institute of Molecular and Cell Biology (IBMC)/i3s, Porto, Portugal
| | - Ana Helena Santos
- IBMC - Institute of Molecular and Cell Biology, Porto, Portugal
- Laboratory of Cytometry, Department of Hematology, Santo António Hospital (HSA), Porto Hospital Centre (CHP), Porto, Portugal
| | - Alexandra Rêma
- Pathology and Molecular Immunology Department, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Jorge Viterbo Ferreira Street, n° 288, 4050-313, Porto, Portugal
| | - Maria de Fátima Faria
- Pathology and Molecular Immunology Department, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Jorge Viterbo Ferreira Street, n° 288, 4050-313, Porto, Portugal
| | - Ana Rocha
- IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- Medical Faculty of the University of Porto, Porto, Portugal
| | - José Luís Costa
- Institute of Research and Health Innovation, University of Porto, Porto, Portugal
- IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- Medical Faculty of the University of Porto, Porto, Portugal
| | - Margarida Lima
- IBMC - Institute of Molecular and Cell Biology, Porto, Portugal
- Laboratory of Cytometry, Department of Hematology, Santo António Hospital (HSA), Porto Hospital Centre (CHP), Porto, Portugal
| | - Carlos Lopes
- Pathology and Molecular Immunology Department, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Jorge Viterbo Ferreira Street, n° 288, 4050-313, Porto, Portugal.
- Department of Pathology, Portuguese Oncology Institute (IPO), Porto, Portugal.
| |
Collapse
|
68
|
|
69
|
Abstract
With the rapid development of next-generation sequencing, deeper insights are being gained into the molecular evolution that underlies the development and clinical progression of breast cancer. It is apparent that during evolution, breast cancers acquire thousands of mutations including single base pair substitutions, insertions, deletions, copy number aberrations, and structural rearrangements. As a consequence, at the whole genome level, no two cancers are identical and few cancers even share the same complement of "driver" mutations. Indeed, two samples from the same cancer may also exhibit extensive differences due to constant remodeling of the genome over time. In this review, we summarize recent studies that extend our understanding of the genomic basis of cancer progression. Key biological insights include the following: subclonal diversification begins early in cancer evolution, being detectable even in in situ lesions; geographical stratification of subclonal structure is frequent in primary tumors and can include therapeutically targetable alterations; multiple distant metastases typically arise from a common metastatic ancestor following a "metastatic cascade" model; systemic therapy can unmask preexisting resistant subclones or influence further treatment sensitivity and disease progression. We conclude the review by describing novel approaches such as the analysis of circulating DNA and patient-derived xenografts that promise to further our understanding of the genomic changes occurring during cancer evolution and guide treatment decision making.
Collapse
Affiliation(s)
- Christine Desmedt
- J.-C. Heuson Breast Cancer Translational Research Laboratory, Institut Jules Bordet, Université Libre de Bruxelles, Boulevard de Waterloo 121, 1000, Brussels, Belgium.
| | - Lucy Yates
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, CB10 1SA, UK
| | - Janina Kulka
- 2nd Department of Pathology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
70
|
Casasent AK, Edgerton M, Navin NE. Genome evolution in ductal carcinoma in situ: invasion of the clones. J Pathol 2016; 241:208-218. [PMID: 27861897 DOI: 10.1002/path.4840] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 10/21/2016] [Accepted: 10/26/2016] [Indexed: 12/21/2022]
Abstract
Ductal carcinoma in situ (DCIS) is the most frequently diagnosed early-stage breast cancer. Only a subset of patients progress to invasive ductal carcinoma (IDC), and this presents a formidable clinical challenge for determining which patients to treat aggressively and which patients to monitor without therapeutic intervention. Understanding the molecular and genomic basis of invasion has been difficult to study in DCIS cancers due to several technical obstacles, including low tumour cellularity, lack of fresh-frozen tissues, and intratumour heterogeneity. In this review, we discuss the role of intratumour heterogeneity in the progression of DCIS to IDC in the context of three evolutionary models: independent lineages, evolutionary bottlenecks, and multiclonal invasion. We examine the evidence in support of these models and their relevance to the diagnosis and treatment of patients with DCIS. We also discuss how emerging technologies, such as single-cell sequencing, STAR-FISH, and imaging mass spectrometry, are likely to provide new insights into the evolution of this enigmatic disease. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Anna K Casasent
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mary Edgerton
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nicholas E Navin
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
71
|
Yeong J, Thike AA, Tan PH, Iqbal J. Identifying progression predictors of breast ductal carcinoma in situ. J Clin Pathol 2016; 70:102-108. [PMID: 27864452 DOI: 10.1136/jclinpath-2016-204154] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 10/07/2016] [Indexed: 01/08/2023]
Abstract
Ductal carcinoma in situ (DCIS) refers to neoplastic epithelial cells proliferating within the mammary ducts of the breast, which have not breached the basement membrane nor invaded surrounding tissues. Traditional thinking holds that DCIS represents an early step in a linear progression towards invasive ductal carcinoma (IDC). However, as only approximately half of DCIS cases progress to IDC, important questions around the key determinants of malignant progression need to be answered. Recent studies have revealed that molecular differences between DCIS and IDC cells are not found at the genomic level; instead, altered patterns of gene expression and post-translational regulation lead to distinct transcriptomic and proteomic profiles. Therefore, understanding malignant progression will require a different approach that takes into account the diverse tumour cell extrinsic factors driving changes in tumour cell gene expression necessary for the invasive phenotype. Here, we review the roles of the tumour stroma (including mesenchymal cells, immune cells and the extracellular matrix) and myoepithelial cells in malignant progression and make a case for a more integrated approach to the study and assessment of DCIS and its progression, or lack thereof, to invasive disease.
Collapse
Affiliation(s)
- Joe Yeong
- Division of Pathology, Singapore General Hospital, Singapore, Singapore.,Singapore Immunology Network (SIgN), Agency of Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Aye Aye Thike
- Division of Pathology, Singapore General Hospital, Singapore, Singapore
| | - Puay Hoon Tan
- Division of Pathology, Singapore General Hospital, Singapore, Singapore
| | - Jabed Iqbal
- Division of Pathology, Singapore General Hospital, Singapore, Singapore
| |
Collapse
|
72
|
Elias EV, de Castro NP, Pineda PHB, Abuázar CS, de Toledo Osorio CAB, Pinilla MG, da Silva SD, Camargo AA, Silva WA, e Ferreira EN, Brentani HP, Carraro DM. Epithelial cells captured from ductal carcinoma in situ reveal a gene expression signature associated with progression to invasive breast cancer. Oncotarget 2016; 7:75672-75684. [PMID: 27708222 PMCID: PMC5342769 DOI: 10.18632/oncotarget.12352] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 09/20/2016] [Indexed: 12/21/2022] Open
Abstract
Breast cancer biomarkers that can precisely predict the risk of progression of non-invasive ductal carcinoma in situ (DCIS) lesions to invasive disease are lacking. The identification of molecular alterations that occur during the invasion process is crucial for the discovery of drivers of transition to invasive disease and, consequently, biomarkers with clinical utility. In this study, we explored differences in gene expression in mammary epithelial cells before and after the morphological manifestation of invasion, i.e., early and late stages, respectively. In the early stage, epithelial cells were captured from both pre-invasive lesions with distinct malignant potential [pure DCIS as well as the in situ component that co-exists with invasive breast carcinoma lesions (DCIS-IBC)]; in the late stage, epithelial cells were captured from the two distinct morphological components of the same sample (in situ and invasive components). Candidate genes were identified using cDNA microarray and rapid subtractive hybridization (RaSH) cDNA libraries and validated by RT-qPCR assay using new samples from each group. These analyses revealed 26 genes, including 20 from the early and 6 from the late stage. The expression profile based on the 20 genes, marked by a preferential decrease in expression level towards invasive phenotype, discriminated the majority of DCIS samples. Thus, this study revealed a gene expression signature with the potential to predict DCIS progression and, consequently, provides opportunities to tailor treatments for DCIS patients.
Collapse
Affiliation(s)
- Eliana Vanina Elias
- Laboratory of Genomics and Molecular Biology, CIPE-International Research Center, A.C. Camargo Cancer Center, São Paulo, SP, Brazil
| | - Nadia Pereira de Castro
- Laboratory of Genomics and Molecular Biology, CIPE-International Research Center, A.C. Camargo Cancer Center, São Paulo, SP, Brazil
| | - Paulo Henrique Baldan Pineda
- Laboratory of Genomics and Molecular Biology, CIPE-International Research Center, A.C. Camargo Cancer Center, São Paulo, SP, Brazil
| | - Carolina Sens Abuázar
- Laboratory of Genomics and Molecular Biology, CIPE-International Research Center, A.C. Camargo Cancer Center, São Paulo, SP, Brazil
| | | | - Mabel Gigliola Pinilla
- Laboratory of Genomics and Molecular Biology, CIPE-International Research Center, A.C. Camargo Cancer Center, São Paulo, SP, Brazil
| | - Sabrina Daniela da Silva
- Laboratory of Genomics and Molecular Biology, CIPE-International Research Center, A.C. Camargo Cancer Center, São Paulo, SP, Brazil
| | - Anamaria Aranha Camargo
- Ludwig Institute for Cancer Research, São Paulo, SP, Brazil
- Molecular Oncology Center, Sirio-Libanese Hospital, São Paulo, SP, Brazil
| | - Wilson Araujo Silva
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, SP, Brazil
| | - Elisa Napolitano e Ferreira
- Laboratory of Genomics and Molecular Biology, CIPE-International Research Center, A.C. Camargo Cancer Center, São Paulo, SP, Brazil
| | - Helena Paula Brentani
- Institute of Psychiatry-Medical School, University of São Paulo (FMUSP), São Paulo, SP, Brazil
| | - Dirce Maria Carraro
- Laboratory of Genomics and Molecular Biology, CIPE-International Research Center, A.C. Camargo Cancer Center, São Paulo, SP, Brazil
- National Institute of Science and Technology in Oncogenomics (INCITO), São Paulo, SP, Brazil
| |
Collapse
|
73
|
Profiling of the Predicted Circular RNAs in Ductal In Situ and Invasive Breast Cancer: A Pilot Study. Int J Genomics 2016; 2016:4503840. [PMID: 27965971 PMCID: PMC5124670 DOI: 10.1155/2016/4503840] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Accepted: 10/18/2016] [Indexed: 12/21/2022] Open
Abstract
The recent advantage obtained by next generation sequencing allows a depth investigation of a new “old” kind of noncoding transcript, the circular RNAs. Circular RNAs are nontranslated RNAs, typically nonpolyadenylated, with a resistance to exonucleases that gives them the ability to be more stable than the common linear RNA isoforms. We used a bioinformatic detection tool (CIRCexplorer) to research predictive circRNAs from the next generation sequenced data of five samples of ductal in situ carcinoma (DCIS) and matched adjacent invasive ductal carcinoma (IDC). Furthermore, we also investigated the circular RNAs expressed in MCF7, an invasive breast ductal carcinoma cell line. We described the genomic context of the predicted circular RNAs and we address the hypothetical possible functional roles. This study showed a perspective of a panel of predictive circRNAs identified and the function that circRNAs could exert.
Collapse
|
74
|
Maguire SL, Peck B, Wai PT, Campbell J, Barker H, Gulati A, Daley F, Vyse S, Huang P, Lord CJ, Farnie G, Brennan K, Natrajan R. Three-dimensional modelling identifies novel genetic dependencies associated with breast cancer progression in the isogenic MCF10 model. J Pathol 2016; 240:315-328. [PMID: 27512948 PMCID: PMC5082563 DOI: 10.1002/path.4778] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 07/05/2016] [Accepted: 08/02/2016] [Indexed: 12/21/2022]
Abstract
The initiation and progression of breast cancer from the transformation of the normal epithelium to ductal carcinoma in situ (DCIS) and invasive disease is a complex process involving the acquisition of genetic alterations and changes in gene expression, alongside microenvironmental and recognized histological alterations. Here, we sought to comprehensively characterise the genomic and transcriptomic features of the MCF10 isogenic model of breast cancer progression, and to functionally validate potential driver alterations in three-dimensional (3D) spheroids that may provide insights into breast cancer progression, and identify targetable alterations in conditions more similar to those encountered in vivo. We performed whole genome, exome and RNA sequencing of the MCF10 progression series to catalogue the copy number and mutational and transcriptomic landscapes associated with progression. We identified a number of predicted driver mutations (including PIK3CA and TP53) that were acquired during transformation of non-malignant MCF10A cells to their malignant counterparts that are also present in analysed primary breast cancers from The Cancer Genome Atlas (TCGA). Acquisition of genomic alterations identified MYC amplification and previously undescribed RAB3GAP1-HRAS and UBA2-PDCD2L expressed in-frame fusion genes in malignant cells. Comparison of pathway aberrations associated with progression showed that, when cells are grown as 3D spheroids, they show perturbations of cancer-relevant pathways. Functional interrogation of the dependency on predicted driver events identified alterations in HRAS, PIK3CA and TP53 that selectively decreased cell growth and were associated with progression from preinvasive to invasive disease only when cells were grown as spheroids. Our results have identified changes in the genomic repertoire in cell lines representative of the stages of breast cancer progression, and demonstrate that genetic dependencies can be uncovered when cells are grown in conditions more like those in vivo. The MCF10 progression series therefore represents a good model with which to dissect potential biomarkers and to evaluate therapeutic targets involved in the progression of breast cancer. © 2016 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
MESH Headings
- Breast Neoplasms/genetics
- Breast Neoplasms/pathology
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/pathology
- Carcinoma, Intraductal, Noninfiltrating/genetics
- Carcinoma, Intraductal, Noninfiltrating/pathology
- Cell Line, Tumor
- Cell Transformation, Neoplastic
- Class I Phosphatidylinositol 3-Kinases
- DNA, Neoplasm/chemistry
- DNA, Neoplasm/genetics
- Disease Progression
- Exome/genetics
- Female
- Gene Expression Regulation, Neoplastic
- Genome
- High-Throughput Nucleotide Sequencing
- Humans
- Models, Biological
- Mutation
- Phosphatidylinositol 3-Kinases/genetics
- Phosphatidylinositol 3-Kinases/metabolism
- Sequence Analysis, DNA
- Spheroids, Cellular
- Transcriptome
- Tumor Suppressor Protein p53/genetics
Collapse
Affiliation(s)
- Sarah L Maguire
- The Breast Cancer Now Toby Robins Research Centre, Division of Breast Cancer, The Institute of Cancer Research, London, UK
| | - Barrie Peck
- The Breast Cancer Now Toby Robins Research Centre, Division of Breast Cancer, The Institute of Cancer Research, London, UK
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Patty T Wai
- The Breast Cancer Now Toby Robins Research Centre, Division of Breast Cancer, The Institute of Cancer Research, London, UK
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - James Campbell
- The Breast Cancer Now Toby Robins Research Centre, Division of Breast Cancer, The Institute of Cancer Research, London, UK
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Holly Barker
- The Breast Cancer Now Toby Robins Research Centre, Division of Breast Cancer, The Institute of Cancer Research, London, UK
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Aditi Gulati
- The Breast Cancer Now Toby Robins Research Centre, Division of Breast Cancer, The Institute of Cancer Research, London, UK
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Frances Daley
- The Breast Cancer Now Toby Robins Research Centre, Division of Breast Cancer, The Institute of Cancer Research, London, UK
| | - Simon Vyse
- Division of Cancer Biology, The Institute of Cancer Research, London, UK
| | - Paul Huang
- Division of Cancer Biology, The Institute of Cancer Research, London, UK
| | - Christopher J Lord
- The Breast Cancer Now Toby Robins Research Centre, Division of Breast Cancer, The Institute of Cancer Research, London, UK
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Gillian Farnie
- Institute of Cancer Sciences, University of Manchester, Manchester, UK
| | - Keith Brennan
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - Rachael Natrajan
- The Breast Cancer Now Toby Robins Research Centre, Division of Breast Cancer, The Institute of Cancer Research, London, UK.
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK.
| |
Collapse
|
75
|
Fusco N, Geyer FC, De Filippo MR, Martelotto LG, Ng CKY, Piscuoglio S, Guerini-Rocco E, Schultheis AM, Fuhrmann L, Wang L, Jungbluth AA, Burke KA, Lim RS, Vincent-Salomon A, Bamba M, Moritani S, Badve SS, Ichihara S, Ellis IO, Reis-Filho JS, Weigelt B. Genetic events in the progression of adenoid cystic carcinoma of the breast to high-grade triple-negative breast cancer. Mod Pathol 2016; 29:1292-1305. [PMID: 27491809 PMCID: PMC5083185 DOI: 10.1038/modpathol.2016.134] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 05/30/2016] [Accepted: 05/31/2016] [Indexed: 01/01/2023]
Abstract
Adenoid cystic carcinoma of the breast is a rare histological type of triple-negative breast cancer with an indolent clinical behavior, often driven by the MYB-NFIB fusion gene. Here we sought to define the repertoire of somatic genetic alterations in two adenoid cystic carcinomas associated with high-grade triple-negative breast cancer. The different components of each case were subjected to copy number profiling and massively parallel sequencing targeting all exons and selected regulatory and intronic regions of 488 genes. Reverse transcription PCR and fluorescence in situ hybridization were employed to investigate the presence of the MYB-NFIB translocation. The MYB-NFIB fusion gene was detected in both adenoid cystic carcinomas and their associated high-grade triple-negative breast cancer components. Although the distinct components of both cases displayed similar patterns of gene copy number alterations, massively parallel sequencing analysis revealed intratumor genetic heterogeneity. In case 1, progression from the trabecular adenoid cystic carcinoma to the high-grade triple-negative breast cancer was found to involve clonal shifts with enrichment of mutations affecting EP300, NOTCH1, ERBB2 and FGFR1 in the high-grade triple-negative breast cancer. In case 2, a clonal KMT2C mutation was present in the cribriform adenoid cystic carcinoma, solid adenoid cystic carcinoma and high-grade triple-negative breast cancer components, whereas a mutation affecting MYB was present only in the solid and high-grade triple-negative breast cancer areas and additional three mutations targeting STAG2, KDM6A and CDK12 were restricted to the high-grade triple-negative breast cancer. In conclusion, adenoid cystic carcinomas of the breast with high-grade transformation are underpinned by the MYB-NFIB fusion gene and, akin to other forms of cancer, may be constituted by a mosaic of cancer cell clones at diagnosis. The progression from adenoid cystic carcinoma to high-grade triple-negative breast cancer of no special type may involve the selection of neoplastic clones and/or the acquisition of additional genetic alterations.
Collapse
Affiliation(s)
- Nicola Fusco
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
- Division of Pathology, Fondazione IRCCS Ca’ Granda – Ospedale Maggiore Policlinico, Milan, Italy
| | - Felipe C Geyer
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Pathology, Hospital Israelita Albert Einstein, Instituto Israelita de Ensino e Pesquisa, São Paulo, Brazil
| | - Maria R De Filippo
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | - Charlotte K Y Ng
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | - Elena Guerini-Rocco
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Pathology, European Institute of Oncology, Milan, Italy
| | - Anne M Schultheis
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | - Lu Wang
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Achim A Jungbluth
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Kathleen A Burke
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Raymond S Lim
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | - Masamichi Bamba
- Department of Pathology and Laboratory Medicine, Saiseikai Shiga Hospital, Imperial Gift Foundation Inc., Shiga, Japan
| | - Suzuko Moritani
- Division of Diagnostic Pathology, Shiga University of Medical Science, Shiga, Japan
| | - Sunil S Badve
- Department of Pathology, Indiana University School of Medicine, Indianapolis, IN
| | - Shu Ichihara
- Department of Pathology, Nagoya National Hospital, Nagoya, Japan
| | - Ian O Ellis
- Department of Pathology, University of Nottingham, Nottingham, UK
| | - Jorge S Reis-Filho
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Britta Weigelt
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
76
|
Song JL, Chen C, Yuan JP, Sun SR. Progress in the clinical detection of heterogeneity in breast cancer. Cancer Med 2016; 5:3475-3488. [PMID: 27774765 PMCID: PMC5224851 DOI: 10.1002/cam4.943] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 09/22/2016] [Accepted: 09/23/2016] [Indexed: 12/18/2022] Open
Abstract
Breast cancer is currently the most common form of cancer and the second‐leading cause of death from cancer in women. Though considerable progress has been made in the treatment of breast cancer, the heterogeneity of tumors (both inter‐ and intratumor) remains a considerable diagnostic and prognostic challenge. From clinical observation to genetic mutations, the history of understanding the heterogeneity of breast cancer is lengthy and detailed. Effectively detecting heterogeneity in breast cancer is important during treatment. Various methods of depicting this heterogeneity are now available and include genetic, pathologic, and imaging analysis. These methods allow characterization of the heterogeneity of breast cancer on a genetic level, providing greater insight during the process of establishing an effective therapeutic plan. This study reviews how the understanding of tumor heterogeneity in breast cancer evolved, and further summarizes recent advances in the detection and monitoring of this heterogeneity in patients with breast cancer.
Collapse
Affiliation(s)
- Jun-Long Song
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China
| | - Chuang Chen
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China
| | - Jing-Ping Yuan
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China
| | - Sheng-Rong Sun
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China
| |
Collapse
|
77
|
Pang JMB, Gorringe KL, Fox SB. Ductal carcinoma in situ - update on risk assessment and management. Histopathology 2016; 68:96-109. [PMID: 26768032 DOI: 10.1111/his.12796] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 07/31/2015] [Indexed: 12/20/2022]
Abstract
Ductal carcinoma in situ (DCIS) accounts for ~20-25% of breast cancers. While DCIS is not life-threatening, it may progress to invasive carcinoma over time, and treatment intended to prevent invasive progression may itself cause significant morbidity. Accurate risk assessment is therefore necessary to avoid over- or undertreatment of an individual patient. In this review we will outline the evidence for current management of DCIS, discuss approaches to DCIS risk assessment and challenges facing identification of novel DCIS biomarkers.
Collapse
Affiliation(s)
- Jia-Min B Pang
- Department of Pathology, Peter MacCallum Cancer Centre, East Melbourne, Vic., Australia.,Department of Pathology, University of Melbourne, Melbourne, Vic., Australia
| | - Kylie L Gorringe
- Department of Pathology, University of Melbourne, Melbourne, Vic., Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Vic., Australia.,Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Vic., Australia
| | - Stephen B Fox
- Department of Pathology, Peter MacCallum Cancer Centre, East Melbourne, Vic., Australia.,Department of Pathology, University of Melbourne, Melbourne, Vic., Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Vic., Australia
| |
Collapse
|
78
|
Fleitas T, Ibarrola-Villava M, Ribas G, Cervantes A. MassARRAY determination of somatic oncogenic mutations in solid tumors: Moving forward to personalized medicine. Cancer Treat Rev 2016; 49:57-64. [DOI: 10.1016/j.ctrv.2016.07.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 07/22/2016] [Indexed: 12/11/2022]
|
79
|
Eralp Y. The Role of Genomic Profiling in Advanced Breast Cancer: The Two Faces of Janus. TRANSLATIONAL ONCOGENOMICS 2016; 8:1-7. [PMID: 27547031 PMCID: PMC4986714 DOI: 10.4137/tog.s39410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 06/16/2016] [Accepted: 06/18/2016] [Indexed: 12/13/2022]
Abstract
Recent advances in genomic technology have led to considerable improvement in our understanding of the molecular basis that underpins breast cancer biology. Through the use of comprehensive whole genome genomic profiling by next-generation sequencing, an unprecedented bulk of data on driver mutations, key genomic rearrangements, and mechanisms on tumor evolution has been generated. These developments have marked the beginning of a new era in oncology called “personalized or precision medicine.” Elucidation of biologic mechanisms that underpin carcinogenetic potential and metastatic behavior has led to an inevitable explosion in the development of effective targeted agents, many of which have gained approval over the past decade. Despite energetic efforts and the enormous support gained within the oncology community, there are many obstacles in the clinical implementation of precision medicine. Other than the well-known biologic markers, such as ER and Her-2/neu, no proven predictive marker exists to determine the responsiveness to a certain biologic agent. One of the major issues in this regard is teasing driver mutations among the background noise within the bulk of coexisting passenger mutations. Improving bioinformatics tools through electronic models, enhanced by improved insight into pathway dependency may be the step forward to overcome this problem. Next, is the puzzle on spatial and temporal tumoral heterogeneity, which remains to be solved by ultra-deep sequencing and optimizing liquid biopsy techniques. Finally, there are multiple logistical and financial issues that have to be meticulously tackled in order to optimize the use of “precision medicine” in the real-life setting.
Collapse
Affiliation(s)
- Yesim Eralp
- Professor of Medical Oncology, Istanbul University Institute of Oncology, Topkapi, Fatih, Istanbul, Turkey
| |
Collapse
|
80
|
Genomic differences between pure ductal carcinoma in situ and synchronous ductal carcinoma in situ with invasive breast cancer. Oncotarget 2016; 6:7597-607. [PMID: 25831047 PMCID: PMC4480702 DOI: 10.18632/oncotarget.3162] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 01/17/2015] [Indexed: 01/22/2023] Open
Abstract
Although ductal carcinoma in situ (DCIS) precedes invasive ductal carcinoma (IDC), the related genomic alterations remain unknown. To identify the genomic landscape of DCIS and better understand the mechanisms behind progression to IDC, we performed whole-exome sequencing and copy number profiling for six cases of pure DCIS and five pairs of synchronous DCIS and IDC. Pure DCIS harbored well-known mutations (e.g., TP53, PIK3CA and AKT1), copy number alterations (CNAs) and chromothripses, but had significantly fewer driver genes and co-occurrence of mutation/CNAs than synchronous DCIS-IDC. We found neither recurrent nor significantly mutated genes with synchronous DCIS-IDC compared to pure DCIS, indicating that there may not be a single determinant for pure DCIS progression to IDC. Of note, synchronous DCIS genomes were closer to IDC than pure DCIS. Among the clinicopathologic parameters, progesterone receptor (PR)-negative status was associated with increased mutations, CNAs, co-occurrence of mutations/CNAs and driver mutations. Our results indicate that although pure DCIS has already acquired some drivers, more changes are needed to progress to IDC. In addition, IDC-associated DCIS is more aggressive than pure DCIS at genomic level and should really be considered IDC. Finally, the data suggest that PR-negativity could be used to predict aggressive breast cancer genotypes.
Collapse
|
81
|
Encinas G, Maistro S, Pasini FS, Katayama MLH, Brentani MM, Bock GHD, Folgueira MAAK. Somatic mutations in breast and serous ovarian cancer young patients: a systematic review and meta-analysis. Rev Assoc Med Bras (1992) 2016; 61:474-83. [PMID: 26603012 DOI: 10.1590/1806-9282.61.05.474] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 05/16/2015] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE our aim was to evaluate whether somatic mutations in five genes were associated with an early age at presentation of breast cancer (BC) or serous ovarian cancer (SOC). METHODS COSMIC database was searched for the five most frequent somatic mutations in BC and SOC. A systematic review of PubMed was performed. Young age for BC and SOC patients was set at ≤ 35 and ≤ 40 years, respectively. Age groups were also classified in < 30 years and every 10 years thereafter. RESULTS twenty six (1,980 patients, 111 younger) and 16 studies (598, 41 younger), were analyzed for BC and SOC, respectively. In BC, PIK3CA wild type tumor was associated with early onset, not confirmed in binary regression with estrogen receptor (ER) status. In HER2-negative tumors, there was increased frequency of PIK3CA somatic mutation in older age groups; in ER-positive tumors, there was a trend towards an increased frequency of PIK3CA somatic mutation in older age groups. TP53 somatic mutation was described in 20% of tumors from both younger and older patients; PTEN, CDH1 and GATA3 somatic mutation was investigated only in 16 patients and PTEN mutation was detected in one of them. In SOC, TP53 somatic mutation was rather common, detected in more than 50% of tumors, however, more frequently in older patients. CONCLUSION frequency of somatic mutations in specific genes was not associated with early-onset breast cancer. Although very common in patients with serous ovarian cancer diagnosed at all ages, TP53 mutation was more frequently detected in older women.
Collapse
Affiliation(s)
- Giselly Encinas
- Department of Radiology and Oncology, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Simone Maistro
- Instituto do Câncer do Estado de São Paulo, FM, Universidade de São Paulo, São Paulo, SP, Brazil
| | | | | | | | - Geertruida Hendrika de Bock
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | | |
Collapse
|
82
|
La-Touche S, Lemetre C, Lambros M, Stankiewicz E, Ng CKY, Weigelt B, Rajab R, Tinwell B, Corbishley C, Watkin N, Berney D, Reis-Filho JS. DNA Copy Number Aberrations, and Human Papillomavirus Status in Penile Carcinoma. Clinico-Pathological Correlations and Potential Driver Genes. PLoS One 2016; 11:e0146740. [PMID: 26901676 PMCID: PMC4763861 DOI: 10.1371/journal.pone.0146740] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 12/21/2015] [Indexed: 12/11/2022] Open
Abstract
Penile squamous cell carcinoma is a rare disease, in which somatic genetic aberrations have yet to be characterized. We hypothesized that gene copy aberrations might correlate with human papillomavirus status and clinico-pathological features. We sought to determine the spectrum of gene copy number aberrations in a large series of PSCCs and to define their correlations with human papillomavirus, histopathological subtype, and tumor grade, stage and lymph node status. Seventy formalin-fixed, paraffin embedded penile squamous cell carcinomas were centrally reviewed by expert uropathologists. DNA was extracted from micro-dissected samples, subjected to PCR-based human papillomavirus assessment and genotyping (INNO-LiPA human papillomavirus Genotyping Extra Assay) and microarray-based comparative genomic hybridization using a 32K Bacterial Artificial Chromosome array platform. Sixty-four samples yielded interpretable results. Recurrent gains were observed in chromosomes 1p13.3-q44 (88%), 3p12.3-q29 (86%), 5p15.33-p11 (67%) and 8p12-q24.3 (84%). Amplifications of 5p15.33-p11 and 11p14.1-p12 were found in seven (11%) and four (6%) cases, respectively. Losses were observed in chromosomes 2q33-q37.3 (86%), 3p26.3-q11.1 (83%) and 11q12.2-q25 (81%). Although many losses and gains were similar throughout the cohort, there were small significant differences observed at specific loci, between human papillomavirus positive and negative tumors, between tumor types, and tumor grade and nodal status. These results demonstrate that despite the diversity of genetic aberrations in penile squamous cell carcinomas, there are significant correlations between the clinico-pathological data and the genetic changes that may play a role in disease natural history and progression and highlight potential driver genes, which may feature in molecular pathways for existing therapeutic agents.
Collapse
Affiliation(s)
- Susannah La-Touche
- Bart's Cancer Institute, Centre for Molecular Oncology, Queen Mary University of London, John Vane Science Centre, Charterhouse square, London, United Kingdom
- * E-mail:
| | - Christophe Lemetre
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Maryou Lambros
- Molecular Pathology, Institute of Cancer Research, London, United Kingdom
| | - Elzbieta Stankiewicz
- Bart's Cancer Institute, Centre for Molecular Oncology, Queen Mary University of London, John Vane Science Centre, Charterhouse square, London, United Kingdom
| | - Charlotte K. Y. Ng
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Britta Weigelt
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Ramzi Rajab
- St George’s Hospital, Tooting, London, United Kingdom
| | | | | | - Nick Watkin
- St George’s Hospital, Tooting, London, United Kingdom
| | - Dan Berney
- Bart's Cancer Institute, Centre for Molecular Oncology, Queen Mary University of London, John Vane Science Centre, Charterhouse square, London, United Kingdom
| | - Jorge S. Reis-Filho
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| |
Collapse
|
83
|
Eberle CA, Piscuoglio S, Rakha EA, Ng CKY, Geyer FC, Edelweiss M, Sakr RA, Weigelt B, Reis-Filho JS, Ellis IO. Infiltrating epitheliosis of the breast: characterization of histological features, immunophenotype and genomic profile. Histopathology 2016; 68:1030-9. [PMID: 26497122 DOI: 10.1111/his.12897] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 10/21/2015] [Indexed: 01/01/2023]
Abstract
AIMS Infiltrating epitheliosis is a rare complex sclerosing lesion (CSL) of the breast, characterized by infiltrating ducts immersed in a scleroelastotic stroma and filled with cells having architectural and cytological patterns reminiscent of those of usual ductal hyperplasia. In this study we sought to define the molecular characteristics of infiltrating epitheliosis. METHODS AND RESULTS Eight infiltrating epitheliosis, adjacent breast lesions (one usual ductal hyperplasia, one papilloma, one micropapillary ductal carcinoma in situ and one low-grade adenosquamous carcinoma), and corresponding normal breast tissue from each case were microdissected and subjected to massively parallel sequencing analysis targeting all coding regions of 254 genes mutated recurrently in breast cancer and/or related to DNA repair. Mutations in components of the PI3K pathway were found in all infiltrating epitheliosis samples, seven of which harboured PIK3CA hotspot mutations, while the remaining case displayed a PIK3R1 somatic mutation. CONCLUSIONS Somatic mutations affecting PI3K pathway genes were found to be highly prevalent in infiltrating epitheliosis, suggesting that these lesions may be neoplastic rather than hyperplastic. The landscape of somatic genetic alterations found in infiltrating epitheliosis is similar to that of radial scars/CSLs, suggesting that infiltrating epitheliosis may represent one end of this spectrum of lesions.
Collapse
Affiliation(s)
- Carey A Eberle
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Salvatore Piscuoglio
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Emad A Rakha
- Department of Histopathology, Nottingham University Hospitals, Nottingham, UK
| | - Charlotte K Y Ng
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Felipe C Geyer
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Pathology, Hospital Israelita Albert Einstein, Instituto Israelita de Ensino e Pesquisa, São Paulo, Brazil
| | - Marcia Edelweiss
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rita A Sakr
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Britta Weigelt
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jorge S Reis-Filho
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ian O Ellis
- Department of Histopathology, Nottingham University Hospitals, Nottingham, UK
| |
Collapse
|
84
|
De Mattos-Arruda L, Mayor R, Ng CKY, Weigelt B, Martínez-Ricarte F, Torrejon D, Oliveira M, Arias A, Raventos C, Tang J, Guerini-Rocco E, Martínez-Sáez E, Lois S, Marín O, de la Cruz X, Piscuoglio S, Towers R, Vivancos A, Peg V, Ramon y Cajal S, Carles J, Rodon J, González-Cao M, Tabernero J, Felip E, Sahuquillo J, Berger MF, Cortes J, Reis-Filho JS, Seoane J. Cerebrospinal fluid-derived circulating tumour DNA better represents the genomic alterations of brain tumours than plasma. Nat Commun 2015; 6:8839. [PMID: 26554728 PMCID: PMC5426516 DOI: 10.1038/ncomms9839] [Citation(s) in RCA: 599] [Impact Index Per Article: 59.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 10/08/2015] [Indexed: 12/16/2022] Open
Abstract
Cell-free circulating tumour DNA (ctDNA) in plasma has been shown to be informative of the genomic alterations present in tumours and has been used to monitor tumour progression and response to treatments. However, patients with brain tumours do not present with or present with low amounts of ctDNA in plasma precluding the genomic characterization of brain cancer through plasma ctDNA. Here we show that ctDNA derived from central nervous system tumours is more abundantly present in the cerebrospinal fluid (CSF) than in plasma. Massively parallel sequencing of CSF ctDNA more comprehensively characterizes the genomic alterations of brain tumours than plasma, allowing the identification of actionable brain tumour somatic mutations. We show that CSF ctDNA levels longitudinally fluctuate in time and follow the changes in brain tumour burden providing biomarkers to monitor brain malignancies. Moreover, CSF ctDNA is shown to facilitate and complement the diagnosis of leptomeningeal carcinomatosis. DNA circulating in the plasma of cancer patients carries features of the primary tumour, however such DNA is found in low levels in brain cancer patients. Here, the authors show that circulating tumour DNA can be detected in the cerebral spinal fluid of cancer patients and that this better recapitulates the primary tumour compared to DNA from the plasma.
Collapse
Affiliation(s)
- Leticia De Mattos-Arruda
- Vall d'Hebron Institute of Oncology, Vall d'Hebron University Hospital, P. Vall d'Hebron 119-129, 08035 Barcelona, Spain.,Department of Pathology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, USA.,Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Regina Mayor
- Vall d'Hebron Institute of Oncology, Vall d'Hebron University Hospital, P. Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Charlotte K Y Ng
- Department of Pathology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, USA
| | - Britta Weigelt
- Department of Pathology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, USA
| | - Francisco Martínez-Ricarte
- Universitat Autònoma de Barcelona, 08193 Barcelona, Spain.,Vall d'Hebron Institute of Research, Vall d'Hebron University Hospital, Ps Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Davis Torrejon
- Vall d'Hebron Institute of Oncology, Vall d'Hebron University Hospital, P. Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Mafalda Oliveira
- Vall d'Hebron Institute of Oncology, Vall d'Hebron University Hospital, P. Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Alexandra Arias
- Vall d'Hebron Institute of Oncology, Vall d'Hebron University Hospital, P. Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Carolina Raventos
- Vall d'Hebron Institute of Oncology, Vall d'Hebron University Hospital, P. Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Jiabin Tang
- Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Elena Guerini-Rocco
- Department of Pathology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, USA
| | - Elena Martínez-Sáez
- Vall d'Hebron Institute of Research, Vall d'Hebron University Hospital, Ps Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Sergio Lois
- Vall d'Hebron Institute of Research, Vall d'Hebron University Hospital, Ps Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Oscar Marín
- Vall d'Hebron Institute of Research, Vall d'Hebron University Hospital, Ps Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Xavier de la Cruz
- Vall d'Hebron Institute of Research, Vall d'Hebron University Hospital, Ps Vall d'Hebron 119-129, 08035 Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Salvatore Piscuoglio
- Department of Pathology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, USA
| | - Russel Towers
- Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Ana Vivancos
- Vall d'Hebron Institute of Oncology, Vall d'Hebron University Hospital, P. Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Vicente Peg
- Vall d'Hebron Institute of Research, Vall d'Hebron University Hospital, Ps Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Santiago Ramon y Cajal
- Universitat Autònoma de Barcelona, 08193 Barcelona, Spain.,Vall d'Hebron Institute of Research, Vall d'Hebron University Hospital, Ps Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Joan Carles
- Vall d'Hebron Institute of Oncology, Vall d'Hebron University Hospital, P. Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Jordi Rodon
- Vall d'Hebron Institute of Oncology, Vall d'Hebron University Hospital, P. Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | | | - Josep Tabernero
- Vall d'Hebron Institute of Oncology, Vall d'Hebron University Hospital, P. Vall d'Hebron 119-129, 08035 Barcelona, Spain.,Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Enriqueta Felip
- Vall d'Hebron Institute of Oncology, Vall d'Hebron University Hospital, P. Vall d'Hebron 119-129, 08035 Barcelona, Spain.,Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Joan Sahuquillo
- Universitat Autònoma de Barcelona, 08193 Barcelona, Spain.,Vall d'Hebron Institute of Research, Vall d'Hebron University Hospital, Ps Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Michael F Berger
- Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA.,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Javier Cortes
- Vall d'Hebron Institute of Oncology, Vall d'Hebron University Hospital, P. Vall d'Hebron 119-129, 08035 Barcelona, Spain.,Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Jorge S Reis-Filho
- Department of Pathology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, USA
| | - Joan Seoane
- Vall d'Hebron Institute of Oncology, Vall d'Hebron University Hospital, P. Vall d'Hebron 119-129, 08035 Barcelona, Spain.,Universitat Autònoma de Barcelona, 08193 Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
85
|
Bao L, Messer K, Schwab R, Harismendy O, Pu M, Crain B, Yost S, Frazer KA, Rana B, Hasteh F, Wallace A, Parker BA. Mutational Profiling Can Establish Clonal or Independent Origin in Synchronous Bilateral Breast and Other Tumors. PLoS One 2015; 10:e0142487. [PMID: 26554380 PMCID: PMC4640562 DOI: 10.1371/journal.pone.0142487] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 10/22/2015] [Indexed: 12/01/2022] Open
Abstract
Background Synchronous tumors can be independent primary tumors or a primary-metastatic (clonal) pair, which may have clinical implications. Mutational profiling of tumor DNA is increasingly common in the clinic. We investigated whether mutational profiling can distinguish independent from clonal tumors in breast and other cancers, using a carefully defined test based on the Clonal Likelihood Score (CLS = 100 x # shared high confidence (HC) mutations/ # total HC mutations). Methods Statistical properties of a formal test using the CLS were investigated. A high CLS is evidence in favor of clonality; the test is implemented as a one-sided binomial test of proportions. Test parameters were empirically determined using 16,422 independent breast tumor pairs and 15 primary-metastatic tumor pairs from 10 cancer types using The Cancer Genome Atlas. Results We validated performance of the test with its established parameters, using five published data sets comprising 15,758 known independent tumor pairs (maximum CLS = 4.1%, minimum p-value = 0.48) and 283 known tumor clonal pairs (minimum CLS 13%, maximum p-value <0.01), across renal cell, testicular, and colorectal cancer. The CLS test correctly classified all validation samples but one, which it appears may have been incorrectly classified in the published data. As proof-of-concept we then applied the CLS test to two new cases of invasive synchronous bilateral breast cancer at our institution, each with one hormone receptor positive (ER+/PR+/HER2-) lobular and one triple negative ductal carcinoma. High confidence mutations were identified by exome sequencing and results were validated using deep targeted sequencing. The first tumor pair had CLS of 81% (p-value < 10–15), supporting clonality. In the second pair, no common mutations of 184 variants were validated (p-value >0.99), supporting independence. A plausible molecular mechanism for the shift from hormone receptor positive to triple negative was identified in the clonal pair. Conclusion We have developed the statistical properties of a carefully defined Clonal Likelihood Score test from mutational profiling of tumor DNA. Under identified conditions, the test appears to reliably distinguish between synchronous tumors of clonal and of independent origin in several cancer types. This approach may have scientific and clinical utility.
Collapse
Affiliation(s)
- Lei Bao
- Moores Cancer Center, University of California San Diego, La Jolla, CA, United States of America
| | - Karen Messer
- Moores Cancer Center, University of California San Diego, La Jolla, CA, United States of America
- Division of Biostatistics, Department of Family Medicine and Public Health, University of California San Diego, La Jolla, CA, United States of America
- * E-mail:
| | - Richard Schwab
- Department of Medicine, University of California San Diego, La Jolla, CA, United States of America
| | - Olivier Harismendy
- Department of Pediatrics, University of California San Diego, La Jolla, CA, United States of America
| | - Minya Pu
- Moores Cancer Center, University of California San Diego, La Jolla, CA, United States of America
| | - Brian Crain
- Moores Cancer Center, University of California San Diego, La Jolla, CA, United States of America
| | - Shawn Yost
- Moores Cancer Center, University of California San Diego, La Jolla, CA, United States of America
| | - Kelly A. Frazer
- Department of Pediatrics, University of California San Diego, La Jolla, CA, United States of America
| | - Brinda Rana
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States of America
| | - Farnaz Hasteh
- Department of Pathology, University of California San Diego, La Jolla, CA, United States of America
| | - Anne Wallace
- Department of Surgery, University of California San Diego, La Jolla, CA, United States of America
| | - Barbara A. Parker
- Department of Medicine, University of California San Diego, La Jolla, CA, United States of America
| |
Collapse
|
86
|
Giussani M, Merlino G, Cappelletti V, Tagliabue E, Daidone MG. Tumor-extracellular matrix interactions: Identification of tools associated with breast cancer progression. Semin Cancer Biol 2015; 35:3-10. [PMID: 26416466 DOI: 10.1016/j.semcancer.2015.09.012] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 09/23/2015] [Indexed: 12/18/2022]
Abstract
Several evidences support the concept that cancer development and progression are not entirely cancer cell-autonomous processes, but may be influenced, and possibly driven, by cross-talk between cancer cells and the surrounding microenvironment in which, besides immune cells, stromal cells and extracellular matrix (ECM) play a major role in regulating distinct biologic processes. Stroma and ECM-related signatures proved to influence breast cancer progression, and to contribute to the identification of tumor phenotypes resistant to cytotoxic and hormonal treatments. The possible clinical implications of the interplay between tumor cells and the microenvironment, with special reference to ECM remodelling, will be discussed in this review.
Collapse
Affiliation(s)
- Marta Giussani
- Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Via G.A. Amadeo, 42, 20133 Milan, Italy.
| | - Giuseppe Merlino
- Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Via G.A. Amadeo, 42, 20133 Milan, Italy.
| | - Vera Cappelletti
- Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Via G.A. Amadeo, 42, 20133 Milan, Italy.
| | - Elda Tagliabue
- Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Via G.A. Amadeo, 42, 20133 Milan, Italy.
| | - Maria Grazia Daidone
- Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Via G.A. Amadeo, 42, 20133 Milan, Italy.
| |
Collapse
|
87
|
Elsarraj HS, Hong Y, Valdez KE, Michaels W, Hook M, Smith WP, Chien J, Herschkowitz JI, Troester MA, Beck M, Inciardi M, Gatewood J, May L, Cusick T, McGinness M, Ricci L, Fan F, Tawfik O, Marks JR, Knapp JR, Yeh HW, Thomas P, Carrasco DR, Fields TA, Godwin AK, Behbod F. Expression profiling of in vivo ductal carcinoma in situ progression models identified B cell lymphoma-9 as a molecular driver of breast cancer invasion. Breast Cancer Res 2015; 17:128. [PMID: 26384318 PMCID: PMC4574212 DOI: 10.1186/s13058-015-0630-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 08/11/2015] [Indexed: 11/29/2022] Open
Abstract
Introduction There are an estimated 60,000 new cases of ductal carcinoma in situ (DCIS) each year. A lack of understanding in DCIS pathobiology has led to overtreatment of more than half of patients. We profiled the temporal molecular changes during DCIS transition to invasive ductal carcinoma (IDC) using in vivo DCIS progression models. These studies identified B cell lymphoma-9 (BCL9) as a potential molecular driver of early invasion. BCL9 is a newly found co-activator of Wnt-stimulated β-catenin-mediated transcription. BCL9 has been shown to promote progression of multiple myeloma and colon carcinoma. However BCL9 role in breast cancer had not been previously recognized. Methods Microarray and RNA sequencing were utilized to characterize the sequential changes in mRNA expression during DCIS invasive transition. BCL9-shRNA knockdown was performed to assess the role of BCL9 in in vivo invasion, epithelial-mesenchymal transition (EMT) and canonical Wnt-signaling. Immunofluorescence of 28 patient samples was used to assess a correlation between the expression of BCL9 and biomarkers of high risk DCIS. The cancer genome atlas data were analyzed to assess the status of BCL9 gene alterations in breast cancers. Results Analysis of BCL9, by RNA and protein showed BCL9 up-regulation to be associated with DCIS transition to IDC. Analysis of patient DCIS revealed a significant correlation between high nuclear BCL9 and pathologic characteristics associated with DCIS recurrence: Estrogen receptor (ER) and progesterone receptor (PR) negative, high nuclear grade, and high human epidermal growth factor receptor2 (HER2). In vivo silencing of BCL9 resulted in the inhibition of DCIS invasion and reversal of EMT. Analysis of the TCGA data showed BCL9 to be altered in 26 % of breast cancers. This is a significant alteration when compared to HER2 (ERBB2) gene (19 %) and estrogen receptor (ESR1) gene (8 %). A significantly higher proportion of basal like invasive breast cancers compared to luminal breast cancers showed BCL9 amplification. Conclusion BCL9 is a molecular driver of DCIS invasive progression and may predispose to the development of basal like invasive breast cancers. As such, BCL9 has the potential to serve as a biomarker of high risk DCIS and as a therapeutic target for prevention of IDC. Electronic supplementary material The online version of this article (doi:10.1186/s13058-015-0630-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hanan S Elsarraj
- Department of Pathology, University of Kansas Medical Center, 3901 Rainbow Blvd, Mail Stop 3003, Kansas City, KS, 66160, USA.
| | - Yan Hong
- Department of Pathology, University of Kansas Medical Center, 3901 Rainbow Blvd, Mail Stop 3003, Kansas City, KS, 66160, USA.
| | - Kelli E Valdez
- Department of Pathology, University of Kansas Medical Center, 3901 Rainbow Blvd, Mail Stop 3003, Kansas City, KS, 66160, USA.
| | - Whitney Michaels
- School of Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| | - Marcus Hook
- School of Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| | - William P Smith
- Department of Radiology, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| | - Jeremy Chien
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| | - Jason I Herschkowitz
- Department of Biomedical Sciences, University at Albany-SUNY, Rensselaer, NY, 12144, USA.
| | - Melissa A Troester
- School of Public Health, University of North Carolina, Chapel Hill, NC, 27599, USA.
| | - Moriah Beck
- Department of Chemistry, Wichita State University, Wichita, KS, 67260, USA.
| | - Marc Inciardi
- Department of Radiology, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| | - Jason Gatewood
- Department of Radiology, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| | - Lisa May
- School of Medicine, University of Kansas, Wichita, KS, 67214, USA.
| | - Therese Cusick
- School of Medicine, University of Kansas, Wichita, KS, 67214, USA.
| | - Marilee McGinness
- Department of Surgery, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| | - Lawrence Ricci
- Department of Radiology, Truman Medical Center, Kansas City, MO, 64108, USA.
| | - Fang Fan
- Department of Pathology, University of Kansas Medical Center, 3901 Rainbow Blvd, Mail Stop 3003, Kansas City, KS, 66160, USA.
| | - Ossama Tawfik
- Department of Pathology, University of Kansas Medical Center, 3901 Rainbow Blvd, Mail Stop 3003, Kansas City, KS, 66160, USA.
| | - Jeffrey R Marks
- Department of Surgery, Duke University, Durham, NC, 27710, USA.
| | - Jennifer R Knapp
- Kansas Intellectual and Developmental Disabilities Research Center, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| | - Hung-Wen Yeh
- Department of Biostatistics, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| | - Patricia Thomas
- Department of Pathology, University of Kansas Medical Center, 3901 Rainbow Blvd, Mail Stop 3003, Kansas City, KS, 66160, USA.
| | - D R Carrasco
- Department of Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115-5450, USA.
| | - Timothy A Fields
- Department of Pathology, University of Kansas Medical Center, 3901 Rainbow Blvd, Mail Stop 3003, Kansas City, KS, 66160, USA.
| | - Andrew K Godwin
- Department of Pathology, University of Kansas Medical Center, 3901 Rainbow Blvd, Mail Stop 3003, Kansas City, KS, 66160, USA.
| | - Fariba Behbod
- Department of Pathology, University of Kansas Medical Center, 3901 Rainbow Blvd, Mail Stop 3003, Kansas City, KS, 66160, USA.
| |
Collapse
|
88
|
Copy number analysis of ductal carcinoma in situ with and without recurrence. Mod Pathol 2015; 28:1174-84. [PMID: 26321097 DOI: 10.1038/modpathol.2015.75] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Revised: 03/06/2015] [Accepted: 03/07/2015] [Indexed: 11/08/2022]
Abstract
Ductal carcinoma in situ (DCIS) is a non-obligate precursor of invasive breast cancer and a frequent mammographic finding requiring treatment. Up to 25% of DCIS can recur and half of recurrences are invasive, but there are no reliable biomarkers for recurrence. We hypothesised that copy number aberrations could predict likelihood of recurrence. We analysed a cohort of pure DCIS cases treated only with wide local excision for genome-wide copy number and loss of heterozygosity using Affymetrix OncoScan MIP arrays. Cases included those without recurrence within 7 years (n = 25) and with recurrence between 1 and 5 years after diagnosis (n = 15). Pure DCIS were broadly similar in copy number changes compared with invasive breast cancer, with the consistent exception of a greater frequency of ERBB2 amplification in DCIS. There were no significant differences in age or ER status between the cases with a recurrence vs those without. Overall, the DCIS cases with recurrence had more copy number events than the DCIS without recurrence. The increased copy number appeared non-random with several genomic regions showing an increase in frequency in recurrent cases, including 20 q gain, ERBB2 amplification and 15q loss. Copy number changes may provide prognostic information for DCIS recurrence, but validation in additional cohorts is required.
Collapse
|
89
|
Bethune GC, Mullen JB, Chang MC. Detecting intratumoral heterogeneity in routine breast-HER2 testing: low yield of testing multiple blocks. Ann Diagn Pathol 2015; 19:385-90. [PMID: 26372078 DOI: 10.1016/j.anndiagpath.2015.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 08/13/2015] [Indexed: 11/18/2022]
Abstract
BACKGROUND Intratumoral heterogeneity can lead to uncertainty in breast carcinoma HER2 testing, both with respect to pathology reporting and clinical significance. The standard practice is to perform breast biomarker testing on a single representative section of tumor; however, concern over heterogeneity often leads to testing on additional tissue blocks. Our objective was to assess the diagnostic yield of testing multiple blocks of a single invasive breast carcinoma. METHODS We performed a retrospective review of 139 consecutive cases (between 2006 and 2012) in which clinical HER2 testing was performed in multiple blocks. Tumor characteristics and HER2 studies (both immunohistochemistry and data from in situ hybridization) were reviewed. Regional differences in morphology and HER2 immunoreactivity were recorded. In situ hybridization was performed in 25 of 139 of the cases; patterns of genetic heterogeneity were reviewed. We audited discordances in HER2 result between blocks. RESULTS Testing of multiple blocks yielded no additional HER2 information in 134 (96.4%) of 139 cases. Morphologic differences or heterogeneity in HER2 expression was observed in 22 (15.8%) of 139 of cases. Only 5 of these showed differences in HER2 between blocks, of which 4 were associated with equivocal HER2 immunohistochemistry, and 4 were high-grade. CONCLUSIONS In the vast majority of cases, even those with heterogeneity, testing of a single block is sufficient for an accurate HER2 determination. High-grade tumors with equivocal HER2 status and observable heterogeneity are more likely to yield a different result on testing of additional blocks.
Collapse
Affiliation(s)
- Gillian C Bethune
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - J Brendan Mullen
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Martin C Chang
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
90
|
van Deurzen CHM, Foekens JA. Carcinoma in situ to invasive breast cancer. Oncoscience 2015; 2:570-1. [PMID: 26244162 PMCID: PMC4506358 DOI: 10.18632/oncoscience.170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Accepted: 06/07/2015] [Indexed: 11/25/2022] Open
Affiliation(s)
- Carolien H M van Deurzen
- Department of Pathology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - John A Foekens
- Department of Pathology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
91
|
Piccirillo SGM, Spiteri I. Intratumor heterogeneity and transcriptional profiling in glioblastoma: translational opportunities. FUTURE NEUROLOGY 2015. [DOI: 10.2217/fnl.15.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The study of phenotypic and genetic intratumor heterogeneity in glioblastoma is attracting a lot of attention. Recent studies have demonstrated that transcriptional profiling analysis can help interpret the complexity of this disease. Previously proposed molecular classifiers have been recently challenged due to the unexpected degree of intratumor heterogeneity that has been described spatially and at single-cell level. Different computational methods have been employed to analyze this huge amount of data, but new experimental designs including multisampling from individual patients and single-cell experiments require new specific approaches. In light of these results, there is hope that integration of genetic, phenotypic and transcriptional data coupled with functional experiments might help define new therapeutic strategies and classify patients according to key pathways and molecular targets that can be further investigated to develop personalized and combinatorial treatment strategies.
Collapse
Affiliation(s)
- Sara GM Piccirillo
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0PY, UK
| | - Inmaculada Spiteri
- The Institute of Cancer Research, Centre for Evolution and Cancer, 15 Cotswold Road, Sutton SM2 5NG, UK
| |
Collapse
|
92
|
Abstract
Traditionally, intertumour heterogeneity in breast cancer has been documented in terms of different histological subtypes, treatment sensitivity profiles, and clinical outcomes among different patients. Results of high-throughput molecular profiling studies have subsequently revealed the true extent of this heterogeneity. Further complicating this scenario, the heterogeneous expression of the oestrogen receptor (ER), progesterone receptor (PR), and HER2 has been reported in different areas of the same tumour. Furthermore, discordance, in terms of ER, PR and HER2 expression, has also been reported between primary tumours and their matched metastatic lesions. High-throughput molecular profiling studies have confirmed that spatial and temporal intratumour heterogeneity of breast cancers exist at a level beyond common expectations. We describe the different levels of tumour heterogeneity, and discuss the strategies that can be adopted by clinicians to tackle treatment response and resistance issues associated with such heterogeneity, including a rationally selected combination of agents that target driver mutations, the targeting of deleterious passenger mutations, identifying and eradicating the 'lethal' clone, targeting the tumour microenvironment, or using adaptive treatments and immunotherapy. The identification of the most-appropriate strategies and their implementation in the clinic will prove highly challenging and necessitate the adoption of radically new practices for the optimal clinical management of breast malignancies.
Collapse
Affiliation(s)
- Dimitrios Zardavas
- Breast International Group (BIG)-aisbl c/o Jules Bordet Institute, Boulevard de Waterloo 121, 1000 Brussels, Belgium
| | - Alexandre Irrthum
- Breast International Group (BIG)-aisbl c/o Jules Bordet Institute, Boulevard de Waterloo 121, 1000 Brussels, Belgium
| | - Charles Swanton
- University College London Cancer Institute, Cancer Research UK Lung Cancer Centre of Excellence, Paul O'Gorman Building, Huntley Street, London WC1E 6DD, UK
| | - Martine Piccart
- Jules Bordet Institute, Boulevard de Waterloo 121, 1000 Brussels, Belgium
| |
Collapse
|
93
|
Pang JMB, Gorringe KL, Wong SQ, Dobrovic A, Campbell IG, Fox SB. Appraisal of the technologies and review of the genomic landscape of ductal carcinoma in situ of the breast. Breast Cancer Res 2015; 17:80. [PMID: 26078038 PMCID: PMC4469314 DOI: 10.1186/s13058-015-0586-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Ductal carcinoma in situ is a biologically diverse entity. Whereas some lesions are cured by local surgical excision, others recur as in situ disease or progress to invasive carcinoma with subsequent potential for metastatic spread. Reliable prognostic biomarkers are therefore desirable for appropriate clinical management but remain elusive. In common with invasive breast cancer, ductal carcinoma in situ exhibits many genomic changes, predominantly copy number alterations. Although studies have revealed the genomic heterogeneity within individual ductal carcinoma in situ lesions and the association of certain copy number alterations with nuclear grade, none of the genomic changes defined so far is consistently associated with invasive transformation or recurrence risk in pure ductal carcinoma in situ. This article will review the current landscape of genomic alterations in ductal carcinoma in situ and their potential as prognostic biomarkers together with the technologies used to define these.
Collapse
Affiliation(s)
- Jia-Min B Pang
- Department of Pathology, Peter MacCallum Cancer Centre, St Andrews Place, East Melbourne, VIC, 3002, Australia. .,Department of Pathology, University of Melbourne, Grattan Street, Parkville, Melbourne, VIC, 3010, Australia.
| | - Kylie L Gorringe
- Department of Pathology, University of Melbourne, Grattan Street, Parkville, Melbourne, VIC, 3010, Australia. .,Sir Peter MacCallum Department of Oncology, University of Melbourne, Grattan Street, Parkville, Melbourne, VIC, 3010, Australia. .,Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, St Andrews Place, East Melbourne, VIC, 3002, Australia.
| | - Stephen Q Wong
- Department of Pathology, Peter MacCallum Cancer Centre, St Andrews Place, East Melbourne, VIC, 3002, Australia. .,Translational Research Laboratory, Peter MacCallum Cancer Centre, St Andrews Place, East Melbourne, VIC, 3002, Australia.
| | - Alexander Dobrovic
- Department of Pathology, University of Melbourne, Grattan Street, Parkville, Melbourne, VIC, 3010, Australia. .,Translational Genomics & Epigenomics Laboratory, Olivia Newton-John Cancer Research Institute, Studley Road, Heidelberg, VIC, 3084, Australia.
| | - Ian G Campbell
- Department of Pathology, University of Melbourne, Grattan Street, Parkville, Melbourne, VIC, 3010, Australia. .,Sir Peter MacCallum Department of Oncology, University of Melbourne, Grattan Street, Parkville, Melbourne, VIC, 3010, Australia. .,Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, St Andrews Place, East Melbourne, VIC, 3002, Australia.
| | - Stephen B Fox
- Department of Pathology, Peter MacCallum Cancer Centre, St Andrews Place, East Melbourne, VIC, 3002, Australia. .,Department of Pathology, University of Melbourne, Grattan Street, Parkville, Melbourne, VIC, 3010, Australia. .,Sir Peter MacCallum Department of Oncology, University of Melbourne, Grattan Street, Parkville, Melbourne, VIC, 3010, Australia.
| |
Collapse
|
94
|
Elshof LE, Tryfonidis K, Slaets L, van Leeuwen-Stok AE, Skinner VP, Dif N, Pijnappel RM, Bijker N, Rutgers EJT, Wesseling J. Feasibility of a prospective, randomised, open-label, international multicentre, phase III, non-inferiority trial to assess the safety of active surveillance for low risk ductal carcinoma in situ - The LORD study. Eur J Cancer 2015; 51:1497-510. [PMID: 26025767 DOI: 10.1016/j.ejca.2015.05.008] [Citation(s) in RCA: 276] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 04/22/2015] [Accepted: 05/07/2015] [Indexed: 10/23/2022]
Abstract
BACKGROUND The current debate on overdiagnosis and overtreatment of screen-detected ductal carcinoma in situ (DCIS) urges the need for prospective studies to address this issue. A substantial number of DCIS lesions will never form a health hazard, particularly if it concerns non- to slow-growing low-grade DCIS. The LORD study aims to evaluate the safety of active surveillance in women with low-risk DCIS. DESIGN This is a randomised, international multicentre, open-label, phase III non-inferiority trial, led by the Dutch Breast Cancer Research Group (BOOG 2014-04) and the European Organization for Research and Treatment of Cancer (EORTC-BCG 1401). Standard treatment will be compared to active surveillance in 1240 women aged ⩾ 45 years with asymptomatic, screen-detected, pure low-grade DCIS based on vacuum-assisted biopsies of microcalcifications only. Both study arms will be monitored with annual digital mammography for a period of 10 years. The primary end-point is 10-year ipsilateral invasive breast cancer free percentage. Secondary end-points include patient reported outcomes, diagnostic biopsy rate during follow-up, ipsilateral mastectomy rate and translational research. FEASIBILITY To explore interest in and feasibility of the LORD study we conducted a survey among EORTC and BOOG centres. A vast majority of EORTC and BOOG responding centres expressed interest in participation in the LORD study. The proposed study design is endorsed by nearly all centres.
Collapse
Affiliation(s)
- Lotte E Elshof
- Department of Surgery, Netherlands Cancer Institute/Antoni van Leeuwenhoek, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands; Department of Molecular Pathology, Netherlands Cancer Institute/Antoni van Leeuwenhoek, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands; Department of Epidemiology, Netherlands Cancer Institute/Antoni van Leeuwenhoek, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands.
| | - Konstantinos Tryfonidis
- Medical Department, European Organisation for Research and Treatment of Cancer, Avenue E. Mounier 83/11, 1200 Brussels, Belgium.
| | - Leen Slaets
- Department of Statistics, European Organisation for Research and Treatment of Cancer, Avenue E. Mounier 83/11, 1200 Brussels, Belgium.
| | | | - Victoria P Skinner
- Department of Surgery, Netherlands Cancer Institute/Antoni van Leeuwenhoek, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands.
| | - Nicolas Dif
- Department of Clinical Operations, European Organisation for Research and Treatment of Cancer, Avenue E. Mounier 83/11, 1200 Brussels, Belgium.
| | - Ruud M Pijnappel
- Department of Radiology, University Medical Centre Utrecht, PO Box 85500, 3508 GA Utrecht, The Netherlands.
| | - Nina Bijker
- Department of Radiotherapy, Academic Medical Center, PO Box 227700, 1100 DE Amsterdam, The Netherlands.
| | - Emiel J Th Rutgers
- Department of Surgery, Netherlands Cancer Institute/Antoni van Leeuwenhoek, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands.
| | - Jelle Wesseling
- Department of Molecular Pathology, Netherlands Cancer Institute/Antoni van Leeuwenhoek, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands; Department of Pathology, Netherlands Cancer Institute/Antoni van Leeuwenhoek, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands.
| |
Collapse
|
95
|
Sato F, Saji S, Toi M. Genomic tumor evolution of breast cancer. Breast Cancer 2015; 23:4-11. [DOI: 10.1007/s12282-015-0617-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 05/07/2015] [Indexed: 01/06/2023]
|
96
|
Ng CKY, Martelotto LG, Gauthier A, Wen HC, Piscuoglio S, Lim RS, Cowell CF, Wilkerson PM, Wai P, Rodrigues DN, Arnould L, Geyer FC, Bromberg SE, Lacroix-Triki M, Penault-Llorca F, Giard S, Sastre-Garau X, Natrajan R, Norton L, Cottu PH, Weigelt B, Vincent-Salomon A, Reis-Filho JS. Intra-tumor genetic heterogeneity and alternative driver genetic alterations in breast cancers with heterogeneous HER2 gene amplification. Genome Biol 2015; 16:107. [PMID: 25994018 PMCID: PMC4440518 DOI: 10.1186/s13059-015-0657-6] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 04/20/2015] [Indexed: 01/08/2023] Open
Abstract
Background HER2 is overexpressed and amplified in approximately 15% of invasive breast cancers, and is the molecular target and predictive marker of response to anti-HER2 agents. In a subset of these cases, heterogeneous distribution of HER2 gene amplification can be found, which creates clinically challenging scenarios. Currently, breast cancers with HER2 amplification/overexpression in just over 10% of cancer cells are considered HER2-positive for clinical purposes; however, it is unclear as to whether the HER2-negative components of such tumors would be driven by distinct genetic alterations. Here we sought to characterize the pathologic and genetic features of the HER2-positive and HER2-negative components of breast cancers with heterogeneous HER2 gene amplification and to define the repertoire of potential driver genetic alterations in the HER2-negative components of these cases. Results We separately analyzed the HER2-negative and HER2-positive components of 12 HER2 heterogeneous breast cancers using gene copy number profiling and massively parallel sequencing, and identified potential driver genetic alterations restricted to the HER2-negative cells in each case. In vitro experiments provided functional evidence to suggest that BRF2 and DSN1 overexpression/amplification, and the HER2 I767M mutation may be alterations that compensate for the lack of HER2 amplification in the HER2-negative components of HER2 heterogeneous breast cancers. Conclusions Our results indicate that even driver genetic alterations, such as HER2 gene amplification, can be heterogeneously distributed within a cancer, and that the HER2-negative components are likely driven by genetic alterations not present in the HER2-positive components, including BRF2 and DSN1 amplification and HER2 somatic mutations. Electronic supplementary material The online version of this article (doi:10.1186/s13059-015-0657-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Charlotte K Y Ng
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| | - Luciano G Martelotto
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| | - Arnaud Gauthier
- Department of Tumor Biology, Institut Curie, 75248, Paris, France.
| | - Huei-Chi Wen
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| | - Salvatore Piscuoglio
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| | - Raymond S Lim
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| | - Catherine F Cowell
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| | - Paul M Wilkerson
- The Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, London, SW3 6JB, UK.
| | - Patty Wai
- The Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, London, SW3 6JB, UK.
| | - Daniel N Rodrigues
- The Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, London, SW3 6JB, UK.
| | - Laurent Arnould
- Department of Pathology and CRB Ferdinand Cabanne, Centre Georges Francois Leclerc, 21000, Dijon, France.
| | - Felipe C Geyer
- Departments of Anatomic Pathology and Oncology, Hospital Israelita Albert Einstein, São Paulo, 05652-900, Brazil.
| | - Silvio E Bromberg
- Departments of Anatomic Pathology and Oncology, Hospital Israelita Albert Einstein, São Paulo, 05652-900, Brazil.
| | - Magali Lacroix-Triki
- Department of Pathology, Institut Claudius Regaud, IUCT-Oncopole, 31059, Toulouse, France.
| | - Frederique Penault-Llorca
- Department of Pathology, Centre Jean Perrin, and University of Auvergne, 63000, Clermont Ferrand, France.
| | - Sylvia Giard
- Department of Pathology, Centre Oscar Lambret, 59000, Lille, France.
| | | | - Rachael Natrajan
- The Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, London, SW3 6JB, UK.
| | - Larry Norton
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| | - Paul H Cottu
- Department of Medical Oncology, Institut Curie, 75248, Paris, France.
| | - Britta Weigelt
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| | | | - Jorge S Reis-Filho
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA. .,Affiliate Member, Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA. .,Affiliate Member, Computational Biology Center, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| |
Collapse
|
97
|
Kurelac I, de Biase D, Calabrese C, Ceccarelli C, Ng CKY, Lim R, MacKay A, Weigelt B, Porcelli AM, Reis-Filho JS, Tallini G, Gasparre G. High-resolution genomic profiling of thyroid lesions uncovers preferential copy number gains affecting mitochondrial biogenesis loci in the oncocytic variants. Am J Cancer Res 2015; 5:1954-1971. [PMID: 26269756 PMCID: PMC4529616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 05/10/2015] [Indexed: 06/04/2023] Open
Abstract
Oncocytic change is the result of aberrant mitochondrial hyperplasia, which may occur in both neoplastic and non-neoplastic cells and is not infrequent in the thyroid. Despite being a well-characterized histologic phenotype, the molecular causes underlying such a distinctive cellular change are poorly understood. To identify potential genetic causes for the oncocytic phenotype in thyroid, we analyzed copy number alterations in a set of oncocytic (n=21) and non-oncocytic (n=20) thyroid lesions by high-resolution microarray-based comparative genomic hybridization (aCGH). Each group comprised lesions of diverse histologic types, including hyperplastic nodules, adenomas and carcinomas. Unsupervised hierarchical clustering of categorical aCGH data resulted in two distinct branches, one of which was significantly enriched for samples with the oncocytic phenotype, regardless of histologic type. Analysis of aCGH events showed that the oncocytic group harbored a significantly higher number of genes involved in copy number gains, when compared to that of conventional thyroid lesions. Functional annotation demonstrated an enrichment for copy number gains that affect genes encoding activators of mitochondrial biogenesis in oncocytic cases but not in their non-oncocytic counterparts. Taken together, our data suggest that genomic alterations may represent additional/alternative mechanisms underlying the development of the oncocytic phenotype in the thyroid.
Collapse
Affiliation(s)
- Ivana Kurelac
- Medical Genetics Unit, Department of Medical and Surgical Sciences (DIMEC), University of Bologna, S. Orsola-Malpighi HospitalBologna, Italy
| | - Dario de Biase
- Department of Clinical, Diagnostic and Experimental Medicine (DIMES), University of Bologna, Section of Anatomic Pathology at Bellaria HospitalBologna, Italy
| | - Claudia Calabrese
- Medical Genetics Unit, Department of Medical and Surgical Sciences (DIMEC), University of Bologna, S. Orsola-Malpighi HospitalBologna, Italy
| | - Claudio Ceccarelli
- Department of Clinical, Diagnostic and Experimental Medicine (DIMES), University of Bologna, S. Orsola-Malpighi HospitalBologna, Italy
| | - Charlotte KY Ng
- Department of Pathology, Memorial Sloan Kettering Cancer CenterNew York, NY, USA
| | - Raymond Lim
- Department of Pathology, Memorial Sloan Kettering Cancer CenterNew York, NY, USA
| | - Alan MacKay
- Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer ResearchLondon, UK
| | - Britta Weigelt
- Department of Pathology, Memorial Sloan Kettering Cancer CenterNew York, NY, USA
| | - Anna Maria Porcelli
- Department of Farmacy and Biotechnology (FABIT), University of BolognaBologna, Italy
| | - Jorge S Reis-Filho
- Department of Pathology, Memorial Sloan Kettering Cancer CenterNew York, NY, USA
| | - Giovanni Tallini
- Department of Clinical, Diagnostic and Experimental Medicine (DIMES), University of Bologna, Section of Anatomic Pathology at Bellaria HospitalBologna, Italy
| | - Giuseppe Gasparre
- Medical Genetics Unit, Department of Medical and Surgical Sciences (DIMEC), University of Bologna, S. Orsola-Malpighi HospitalBologna, Italy
| |
Collapse
|
98
|
Weng Z, Spies N, Zhu SX, Newburger DE, Kashef-Haghighi D, Batzoglou S, Sidow A, West RB. Cell-lineage heterogeneity and driver mutation recurrence in pre-invasive breast neoplasia. Genome Med 2015; 7:28. [PMID: 25918554 PMCID: PMC4410742 DOI: 10.1186/s13073-015-0146-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 02/26/2015] [Indexed: 12/12/2022] Open
Abstract
Background All cells in an individual are related to one another by a bifurcating lineage tree, in which each node is an ancestral cell that divided into two, each branch connects two nodes, and the root is the zygote. When a somatic mutation occurs in an ancestral cell, all its descendants carry the mutation, which can then serve as a lineage marker for the phylogenetic reconstruction of tumor progression. Using this concept, we investigate cell lineage relationships and genetic heterogeneity of pre-invasive neoplasias compared to invasive carcinomas. Methods We deeply sequenced over a thousand phylogenetically informative somatic variants in 66 morphologically independent samples from six patients that represent a spectrum of normal, early neoplasia, carcinoma in situ, and invasive carcinoma. For each patient, we obtained a highly resolved lineage tree that establishes the phylogenetic relationships among the pre-invasive lesions and with the invasive carcinoma. Results The trees reveal lineage heterogeneity of pre-invasive lesions, both within the same lesion, and between histologically similar ones. On the basis of the lineage trees, we identified a large number of independent recurrences of PIK3CA H1047 mutations in separate lesions in four of the six patients, often separate from the diagnostic carcinoma. Conclusions Our analyses demonstrate that multi-sample phylogenetic inference provides insights on the origin of driver mutations, lineage heterogeneity of neoplastic proliferations, and the relationship of genomically aberrant neoplasias with the primary tumors. PIK3CA driver mutations may be comparatively benign inducers of cellular proliferation. Electronic supplementary material The online version of this article (doi:10.1186/s13073-015-0146-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ziming Weng
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305 USA ; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Noah Spies
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305 USA ; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Shirley X Zhu
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Daniel E Newburger
- Biomedical Informatics Training Program, Stanford University, Stanford, CA 94305 USA
| | | | - Serafim Batzoglou
- Department of Computer Science, Stanford University, Stanford, CA 94305 USA
| | - Arend Sidow
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305 USA ; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Robert B West
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305 USA
| |
Collapse
|
99
|
Sherman ME, Mies C, Gierach GL. Opportunities for molecular epidemiological research on ductal carcinoma in-situ and breast carcinogenesis: interdisciplinary approaches. Breast Dis 2015; 34:105-16. [PMID: 24225267 DOI: 10.3233/bd-130359] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Most invasive breast cancers arise from ductal carcinoma in-situ (DCIS), a non-obligate precursor of invasive breast cancer. Given that the natural history of individual DCIS lesions is unpredictable, many women with DCIS receive extensive treatments, which may include surgery, radiation and endocrine therapy, even though many of these lesions may have limited potential to progress to invasion and metastasize. In contrast to valid concerns about overtreatment, the fact that invasive breast cancers outnumber DCIS lesions by more than three-to-one, suggests that many cancer precursors (particularly DCIS, but LCIS also) progress to invasion prior to detection. Thus, DCIS poses a dual problem of overdiagnosis among some women and failure of early detection among others. These concerns are heightened by the multifold increase in rates of DCIS in conjunction with widespread use of mammographic screening and access to outpatient radiologically-guided biopsies. Accordingly, methods are needed to both specifically detect and identify DCIS lesions with potential to progress to invasive cancer and to discover techniques to triage and conservatively manage indolent cases of DCIS.
Collapse
Affiliation(s)
- Mark E Sherman
- National Cancer Institute, Division of Cancer Prevention, Bethesda, MD, USA
| | - Carolyn Mies
- University of Pennsylvania, Philadelphia, PA, USA
| | - Gretchen L Gierach
- National Cancer Institute, Division of Cancer Epidemiology and Genetics, Bethesda, MD, USA
| |
Collapse
|
100
|
Abstract
Recent advances in whole-genome technologies have supplied the field of cancer research with an overwhelming amount of molecular data. Improvements in massively parallel sequencing approaches have led to logarithmic decreases in costs, and so these methods are becoming almost commonplace in the analysis of clinical trials and other cohorts of interest. Furthermore, whole-transcriptome quantification by RNA sequencing is quickly replacing microarrays. However, older chip-based methodologies such as comparative genomic hybridization and single-nucleotide polymorphism arrays have benefited from this technological explosion and are now so accessible that they can be employed in increasingly larger cohorts of patients. The study of breast cancer lends itself particularly well to these technologies. It is the most commonly diagnosed neoplasm in women, giving rise to nearly 230,000 new cases each year. Many patients are given a diagnosis of early-stage disease, for which surgery is the standard of care. These attributes result in excellent availability of tissues for whole-genome/transcriptome analysis. The Cancer Genome Atlas project has generated comprehensive catalogs of publically available genomic breast cancer data. In addition, other studies employing the power of genomic technologies in medium to large cohorts were recently published. These data are now publically available for the generation of novel hypotheses. However, these studies differed in the methods, patient cohorts, and analytical techniques employed and represent complementary snapshots of the molecular underpinnings of breast cancer. Here, we will discuss the convergences and divergences of these reports as well as the scientific and clinical implications of their findings.
Collapse
|