51
|
MiR-455-5p Suppresses the Progression of Prostate Cancer by Targeting CCR5. BIOMED RESEARCH INTERNATIONAL 2019; 2019:6394784. [PMID: 31111062 PMCID: PMC6487172 DOI: 10.1155/2019/6394784] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 02/14/2019] [Accepted: 02/25/2019] [Indexed: 11/29/2022]
Abstract
Accumulated evidence indicates that miR-455-5p functions as tumor suppressor in the progression of various cancers. However, the mechanism through which miR-455-5p influences the tumorigenesis of human prostate cancer (PCa) remains undetermined. In this study, reanalysis of data obtained from the Memorial Sloan Kettering Cancer Center showed that miR-455-5p can be used as biomarker for PCa diagnosis and predictor of poor prognosis. Functional assays indicated that miR-455-5p overexpression could suppress cellular proliferation, inhibit tumor growth, and trigger apoptosis by activating and cleaving caspase 3. We experimentally verified that miR-455-5p negatively regulated the C–C motif chemokine receptor 5 (CCR5). Overall, our data demonstrate that miR-455-5p suppressed PCa cellular proliferation and induced cell apoptosis by downregulating CCR5. Thus, miR-455-5p may be considered a new therapeutic strategy for PCa.
Collapse
|
52
|
Hou D, Fang T, Song L, Sun B, Liu B, Chen L. WITHDRAWN: MicroRNA-18a promotes proliferation and metastasis in oral squamous cell carcinoma via targeting KLF4. Cancer Biomark 2018:CBM181943. [PMID: 30614801 DOI: 10.3233/cbm-181943] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Ahead of Print article withdrawn by publisher.
Collapse
|
53
|
Arai T, Kojima S, Yamada Y, Sugawara S, Kato M, Yamazaki K, Naya Y, Ichikawa T, Seki N. Pirin: a potential novel therapeutic target for castration-resistant prostate cancer regulated by miR-455-5p. Mol Oncol 2018; 13:322-337. [PMID: 30444038 PMCID: PMC6360383 DOI: 10.1002/1878-0261.12405] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/16/2018] [Accepted: 10/27/2018] [Indexed: 12/11/2022] Open
Abstract
Androgen deprivation therapy is frequently used to treat prostate cancer (PCa), but resistance can occur, a condition known as castration‐resistant prostate cancer (CRPC). Thus, novel approaches for identification of CRPC are important for designing effective PCa treatments. Analysis of microRNA (miRNA) expression signatures by RNA sequencing showed that both passenger and guide strands of the miR‐455‐duplex (miR‐455‐5p and miR‐455‐3p, respectively) acted as antitumor miRNAs in PCa cells. The involvement of miRNA passenger strands in cancer pathogenesis is a novel concept for miRNA functionality. Based on a large patient cohort in The Cancer Genome Atlas, expression of eight miR‐455‐5p/‐3p target genes (PIR: P = 0.0137, LRP8: P = 0.0495, IGFBP3: P = 0.0172, DMBX1: P = 0.0175, CCDC64: P = 0.0446, TUBB1: P = 0.0149, KIF21B: P = 0.0336, and NFAM1: P = 0.0013) was significantly associated with poor prognosis of PCa patients. Here, we focused on PIR (pirin), a highly conserved member of the cupin superfamily. PIR expression was directly regulated by miR‐455‐5p, and PIR overexpression was detected in hormone‐sensitive prostate cancer (HSPC) surgical specimens and CRPC autopsy specimens. Loss‐of‐function assays using siRNA or an inhibitor (bisamide) showed that downregulation of PIR expression blocked cancer cell migration and invasion. Moreover, the miR‐455‐5p/PIR axis contributed to cancer cell aggressiveness. These results suggest that PIR might be a promising diagnostic marker for HSPC and CRPC. Furthermore, CRPC treatment strategies targeting PIR may be possible in the future. Identification of antitumor miRNAs, including miRNA passenger strands, may contribute to the development of new diagnostic markers and therapeutic strategies for CRPC.
Collapse
Affiliation(s)
- Takayuki Arai
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Japan.,Department of Urology, Chiba University Graduate School of Medicine, Japan
| | - Satoko Kojima
- Department of Urology, Teikyo University Chiba Medical Center, Ichihara, Japan
| | - Yasutaka Yamada
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Japan.,Department of Urology, Chiba University Graduate School of Medicine, Japan
| | - Sho Sugawara
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Japan.,Department of Urology, Chiba University Graduate School of Medicine, Japan
| | - Mayuko Kato
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Japan.,Department of Urology, Chiba University Graduate School of Medicine, Japan
| | - Kazuto Yamazaki
- Department of Pathology, Teikyo University Chiba Medical Center, Ichihara, Japan
| | - Yukio Naya
- Department of Urology, Teikyo University Chiba Medical Center, Ichihara, Japan
| | - Tomohiko Ichikawa
- Department of Urology, Chiba University Graduate School of Medicine, Japan
| | - Naohiko Seki
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Japan
| |
Collapse
|
54
|
Liu Y, Tang Y, Li P. Inhibitory effect of microRNA-455-5p on biological functions of esophageal squamous cell carcinoma Eca109 cells via Rab31. Exp Ther Med 2018; 16:4959-4966. [PMID: 30542452 PMCID: PMC6257302 DOI: 10.3892/etm.2018.6820] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 04/14/2018] [Indexed: 12/12/2022] Open
Abstract
The aim of the present study was to examine microRNA (miRNA or miR)-455-5p expression in esophageal squamous cell carcinoma (ESCC) at the tissue and cellular levels in order to elucidate its biological roles. A total of 60 patients with ESCC were enrolled in the present study and reverse transcription-quantitative polymerase chain reaction was used to measure the expression of miR-455-5p. ESCC Eca109 cells were transfected with miR-NC, miR-455-5p mimics or inhibitor and a Cell Counting Kit-8 assay was used to assess proliferation. To investigate the migration and invasion abilities of Eca109 cells, Transwell and Matrigel assays were performed. Western blotting was employed to measure Rab31 protein expression, while a rescue assay was utilized to study the biological roles of miR-455-5p and Rab31 in Eca109 cells. To determine whether Rab31 is a direct target of miR-455-5p, a dual luciferase reporter assay was performed. The results revealed that miR-455-5p expression was decreased in ESCC tissues and was negatively correlated with metastasis and pathogenesis. In vitro overexpression of miR-455-5p inhibited the proliferation, migration and invasion of ESCC Eca109 cells. Furthermore, miR-455-5p regulated the expression of Rab31 protein in Eca109 cells. Rab31 overexpression promoted the proliferation, migration and invasion of Eca109 cells. Luciferase reporter assay results revealed that miR-455-5p is able to bind with the 3'-untranslated region of Rab31 mRNA to regulate its expression. In summary, the results of the present study suggest that miR-455-5p expression is decreased in ESCC tissues and is miR-455-5p is negatively correlated with lymphatic metastasis and differentiation. As a tumor-suppressor gene, miR-455-5p inhibits the proliferation, migration and invasion of ESCC Eca109 cells by suppressing the expression of Rab31.
Collapse
Affiliation(s)
- Ying Liu
- Second Department of Gastroenterology, Tianjin Integrated Traditional Chinese and Western Medicine Hospital, Tianjin Nankai Hospital, Tianjin 300100, P.R. China
| | - Yanping Tang
- Second Department of Gastroenterology, Tianjin Integrated Traditional Chinese and Western Medicine Hospital, Tianjin Nankai Hospital, Tianjin 300100, P.R. China
| | - Ping Li
- College of Acupuncture and Massage, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, P.R. China
| |
Collapse
|
55
|
Hsu SH, Chen SH, Kuo CC, Chang JY. Ubiquitin-conjugating enzyme E2 B regulates the ubiquitination of O 6-methylguanine-DNA methyltransferase and BCNU sensitivity in human nasopharyngeal carcinoma cells. Biochem Pharmacol 2018; 158:327-338. [PMID: 30449727 DOI: 10.1016/j.bcp.2018.10.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 10/25/2018] [Indexed: 02/06/2023]
Abstract
O6-Methylguanine-DNA methyltransferase (MGMT) is a DNA repair enzyme that removes the alkyl groups from the O6 position of guanine and is then degraded via ubiquitin-mediated degradation. Previous studies indicated that 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) facilitates the ubiquitination and degradation of MGMT in several types of cancer cells. However, the underlying mechanism of MGMT ubiquitination remains unclear. In this study, we demonstrated for the first time that ubiquitin-conjugating enzyme E2 B (UBE2B) is a novel regulator of MGMT ubiquitination mediated by BCNU in nasopharyngeal carcinoma (NPC) cells. The E3 ubiquitin ligase RAD18, a partner of UBE2B, is also involved in BCNU-mediated MGMT ubiquitination. Overexpression/knockdown of UBE2B enhanced/reduced BCNU-mediated MGMT ubiquitination. Surprisingly, UBE2B knockdown significantly increased BCNU cytotoxicity in NPC cells. Therefore, loss of UBE2B seems to disrupt ubiquitin-mediated degradation of alkylated MGMT. We found that UBE2B knockdown reduced MGMT activity, suggesting that loss of UBE2B leads to the accumulation of deactivated MGMT and suppresses MGMT protein turnover in BCNU-treated cells. These findings indicate that UBE2B modulates sensitivity to BCNU in NPC cells by regulating MGMT ubiquitination.
Collapse
Affiliation(s)
- Shih-Han Hsu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan; National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
| | - Shang-Hung Chen
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan; Division of Hematology/Oncology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ching-Chuan Kuo
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Taiwan
| | - Jang-Yang Chang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan; National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan; Division of Hematology/Oncology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
56
|
Dong Y, Zheng Y, Wang C, Ding X, Du Y, Liu L, Zhang W, Zhang W, Zhong Y, Wu Y, Song X. MiR-876-5p modulates head and neck squamous cell carcinoma metastasis and invasion by targeting vimentin. Cancer Cell Int 2018; 18:121. [PMID: 30181714 PMCID: PMC6114268 DOI: 10.1186/s12935-018-0619-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 08/14/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Local or distant metastasis remains the main course of death in head and neck squamous cell carcinoma (HNSCC) patients. MicroRNAs (miRNAs) have been implicated in metastasis of HNSCC, but the mechanisms of their action are mainly undocumented. Through public head and neck cancer miRNA expression datasets, we found that miR-876-5p was a novel potential tumor suppressor targeting HNSCC metastasis. METHODS Clinical significance and mechanism of miR-876-5P was systematically analyzed in HNSCC. Quantitative RT-PCR was used to evaluate miR-876-5p levels in HNSCC cell lines and in 20 pairs of HNSCC with associated regional nodal metastases and HNSCC without metastatic primary tumors. Scratch and invasion assays were evaluated to determine the role of miR-876-5p in the regulation of HNSCC cell migration and invasion, respectively. Western blotting was used to investigate the mechanism by which miR-876-5p suppresses HNSCC cell invasion and migration. Luciferase assays were performed to assess miR-876-5p binding to the vimentin gene. The animal model was used to support the in vitro experimental findings. RESULTS MiR-876-5p mimics inhibited HNSCC cell migration and invasion. Vimentin protein and mRNA levels were decreased in the miR-876-5p mimics group but increased in the miR-876-5p inhibitors group, which demonstrated that miR-876-5p inhibits vimentin expression in HNSCC cells. By directly targeting the vimentin 3'-UTR, we used dual-luciferase reporter assays to verify that vimentin is a functional downstream target of miR-876-5p. Importantly, increased vimentin expression promoted cell migration and invasion, and co-transfection with miR-876-5p mimics and vimentin restored cell aggressiveness to the original level. Moreover, miR-876-5p overexpression significantly downregulated vimentin expression level and inhibited the distal metastasis of HNSCC cells in vivo. CONCLUSIONS miR-876-5p, which functions as a tumor suppressor in HNSCC, inhibits metastasis by targeting vimentin and provides a novel therapeutic target for HNSCC treatment.
Collapse
Affiliation(s)
- Yibo Dong
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 140, Hanzhong Road, Nanjing, 210029 China
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, 136, Hanzhong Road, Nanjing, 210029 China
| | - Yang Zheng
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 140, Hanzhong Road, Nanjing, 210029 China
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, 136, Hanzhong Road, Nanjing, 210029 China
| | - Chundi Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 140, Hanzhong Road, Nanjing, 210029 China
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, 136, Hanzhong Road, Nanjing, 210029 China
| | - Xu Ding
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 140, Hanzhong Road, Nanjing, 210029 China
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, 136, Hanzhong Road, Nanjing, 210029 China
| | - Yifei Du
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 140, Hanzhong Road, Nanjing, 210029 China
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, 136, Hanzhong Road, Nanjing, 210029 China
| | - Laikui Liu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 140, Hanzhong Road, Nanjing, 210029 China
| | - Wei Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 140, Hanzhong Road, Nanjing, 210029 China
| | - Wei Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 140, Hanzhong Road, Nanjing, 210029 China
- Department of Oral Pathology, Affiliated Hospital of Stomatology, Nanjing Medical University, 136, Hanzhong Road, Nanjing, 210029 China
| | - Yi Zhong
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 140, Hanzhong Road, Nanjing, 210029 China
- Department of Oral Pathology, Affiliated Hospital of Stomatology, Nanjing Medical University, 136, Hanzhong Road, Nanjing, 210029 China
| | - Yunong Wu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 140, Hanzhong Road, Nanjing, 210029 China
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, 136, Hanzhong Road, Nanjing, 210029 China
| | - Xiaomeng Song
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 140, Hanzhong Road, Nanjing, 210029 China
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, 136, Hanzhong Road, Nanjing, 210029 China
| |
Collapse
|
57
|
Liu L, Jiang H, Zhao J, Wen H. MiRNA-16 inhibited oral squamous carcinoma tumor growth in vitro and in vivo via suppressing Wnt/β-catenin signaling pathway. Onco Targets Ther 2018; 11:5111-5119. [PMID: 30197522 PMCID: PMC6112799 DOI: 10.2147/ott.s153888] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Background Oral carcinoma, one of the most commonly diagnosed cancers, has a poor prognosis and low survival rate with treatment. In recent years, some studies reported the upregulation of miRNA-16 (miR-16) in the oral carcinoma, whereas some other studies confirmed the downregulation of miR-16. In the current study, we aimed to investigate the function of miR-16 in oral carcinoma. Materials and methods Cell proliferation assay was measured by MTT assay, quantitative real time polymerase chain reaction (qRT-PCR) was used to evaluate the expression of miR-16, and apoptosis was analyzed by flow cytometry. In addition, the expression of proteins was detected by Western blot. Moreover, xenograft tumor model was established to detect the effect of miR-16 in vivo. Results The results suggested that miR-16 was downregulated in the oral carcinoma tissues. Overexpression of miR-16 inhibited the growth and proliferation of oral squamous carcinoma cells (OSCCs) and induced apoptosis both in vitro and in vivo, which is due to the suppression of Wnt/β-catenin signaling pathway. Conclusion This study provides evidence that overexpression of miR-16 inhibits OSCC growth by regulating Wnt/β-catenin signaling. Our findings suggest that overexpression of miR-16 could be a potential approach for gene therapy of OSCC in future.
Collapse
Affiliation(s)
- Lijun Liu
- Department of Stomatology, Stomatology of Mylike Plastic and Cosmetic Hospital of ChongQing, Chongqing, China.,Department of Oral and Maxillofacial Surgery, School of Stomatology, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang, China,
| | - Han Jiang
- Department of Periodontics, School of Stomatology, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang, China
| | - Jin Zhao
- Department of Periodontics, School of Stomatology, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang, China
| | - Hao Wen
- Department of Oral and Maxillofacial Surgery, School of Stomatology, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang, China,
| |
Collapse
|
58
|
Xiao L, Xu S, Xu Y, Liu C, Yang B, Wang J, Xu H. TGF-β/SMAD signaling inhibits intermittent cyclic mechanical tension-induced degeneration of endplate chondrocytes by regulating the miR-455-5p/RUNX2 axis. J Cell Biochem 2018; 119:10415-10425. [PMID: 30132981 DOI: 10.1002/jcb.27391] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/09/2018] [Indexed: 12/30/2022]
Abstract
A mechanical stimulation plays a pivotal role in maintaining normal cartilage function. Our objective was to reveal the mechanism of action of the tension-sensitive molecule miR-455-5p in the degeneration of endplate chondrocytes and to identify whether the transforming growth factor beta (TGF-β)/SMAD signaling pathway has a regulatory effect on it. The expression profiles of members of the TGF-β/SMAD pathway, miR-455-5p, and RUNX2 were determined by microRNA microarray analysis, reverse transcription quantitative polymerase chain reaction, luciferase reporter assay, and Western blot analysis. Intermittent cyclic mechanical tension (ICMT) induced the degeneration of endplate chondrocytes without affecting their viability. The tension-sensitive molecule miR-455-5p specifically bound to RUNX2, a gene involved in the degeneration of endplate chondrocytes. Activation of the TGF-β/SMAD signaling pathway upregulated miR-455-5p expression and thus inhibited RUNX2 levels. Therefore, the TGF-β/SMAD signaling pathway inhibits the ICMT-induced degeneration of endplate chondrocytes by regulating the miR-455-5p/RUNX2 axis.
Collapse
Affiliation(s)
- Liang Xiao
- Department of Orthopedic Surgery, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Shujuan Xu
- Department of Surgery, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Yongming Xu
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Chen Liu
- Department of Orthopedic Surgery, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Bijing Yang
- Department of Orthopedic Surgery, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Jing Wang
- Department of Orthopedic Surgery, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Hongguang Xu
- Department of Orthopedic Surgery, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
| |
Collapse
|
59
|
Chen JLY, Chang CC, Huang YS, Kuo HY, Chen TY, Wang CW, Kuo SH, Lin YL. Persistently elevated soluble MHC class I polypeptide-related sequence A and transforming growth factor-β1 levels are poor prognostic factors in head and neck squamous cell carcinoma after definitive chemoradiotherapy. PLoS One 2018; 13:e0202224. [PMID: 30096190 PMCID: PMC6086445 DOI: 10.1371/journal.pone.0202224] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 07/30/2018] [Indexed: 12/27/2022] Open
Abstract
We evaluated the prognostic significance of immunologic inhibitory biomarkers in head and neck squamous cell carcinoma (HNSCC) patients undergoing definitive chemoradiotherapy (CRT). Thirty patients were prospectively enrolled. Plasma levels of soluble MHC class I polypeptide-related sequence A (sMICA) and transforming growth factor-β1 (TGF-β1) were measured before and 2 weeks after CRT. The median follow-up was 32.9 months (range: 12.4-40.6 months). The pre-treatment sMICA (p < 0.001) and TGF-β1 (p < 0.001) levels were significantly increased in HNSCC patients, compared to healthy controls. In HNSCC patients, the median pre-CRT and post-CRT sMICA levels were 43.1 pg/mL and 65.3 pg/mL, respectively, while the median pre-CRT and post-CRT TGF-β1 levels were 57.7 ng/mL and 36.0 ng/mL, respectively. After CRT, 19 patients (63.3%) exhibited persistently elevated sMICA, six patients (20.0%) exhibited persistently elevated TGF-β1, and five patients (16.7%) exhibited persistently elevated sMICA and TGF-β1. Patients with persistently elevated sMICA and TGF-β1 after CRT experienced an earlier tumor progression (p = 0.030), and poor overall survival (p = 0.010). Our results suggest that HNSCC patients who exhibit persistently elevated sMICA and TGF-β1 levels after CRT are at higher risk of tumor progression or death.
Collapse
Affiliation(s)
- Jenny Ling-Yu Chen
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
- Department of Oncology, National Taiwan University Hospital Yun-Lin Branch, Yun-Lin, Taiwan
| | - Chien-Chung Chang
- Institute of Molecular and Cellular Biology, National Tsing-Hua University, Hsin-Chu, Taiwan
| | - Yu-Sen Huang
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
- Department of Medical Imaging, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Hung-Yang Kuo
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Tzu-Yu Chen
- Department of Medical Research, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chun-Wei Wang
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Sung-Hsin Kuo
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yu-Li Lin
- Department of Medical Research, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
60
|
Andreasen S, Tan Q, Agander TK, Steiner P, Bjørndal K, Høgdall E, Larsen SR, Erentaite D, Olsen CH, Ulhøi BP, von Holstein SL, Wessel I, Heegaard S, Homøe P. Adenoid cystic carcinomas of the salivary gland, lacrimal gland, and breast are morphologically and genetically similar but have distinct microRNA expression profiles. Mod Pathol 2018; 31:1211-1225. [PMID: 29467480 DOI: 10.1038/s41379-018-0005-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 11/20/2017] [Accepted: 11/23/2017] [Indexed: 12/13/2022]
Abstract
Adenoid cystic carcinoma is among the most frequent malignancies in the salivary and lacrimal glands and has a grave prognosis characterized by frequent local recurrences, distant metastases, and tumor-related mortality. Conversely, adenoid cystic carcinoma of the breast is a rare type of triple-negative (estrogen and progesterone receptor, HER2) and basal-like carcinoma, which in contrast to other triple-negative and basal-like breast carcinomas has a very favorable prognosis. Irrespective of site, adenoid cystic carcinoma is characterized by gene fusions involving MYB, MYBL1, and NFIB, and the reason for the different clinical outcomes is unknown. In order to identify the molecular mechanisms underlying the discrepancy in clinical outcome, we characterized the phenotypic profiles, pattern of gene rearrangements, and global microRNA expression profiles of 64 salivary gland, 9 lacrimal gland, and 11 breast adenoid cystic carcinomas. All breast and lacrimal gland adenoid cystic carcinomas had triple-negative and basal-like phenotypes, while salivary gland tumors were indeterminate in 13% of cases. Aberrations in MYB and/or NFIB were found in the majority of cases in all three locations, whereas MYBL1 involvement was restricted to tumors in the salivary gland. Global microRNA expression profiling separated salivary and lacrimal gland adenoid cystic carcinoma from their respective normal glands but could not distinguish normal breast adenoid cystic carcinoma from normal breast tissue. Hierarchical clustering separated adenoid cystic carcinomas of salivary gland origin from those of the breast and placed lacrimal gland carcinomas in between these. Functional annotation of the microRNAs differentially expressed between salivary gland and breast adenoid cystic carcinoma showed these as regulating genes involved in metabolism, signal transduction, and genes involved in other cancers. In conclusion, microRNA dysregulation is the first class of molecules separating adenoid cystic carcinoma according to the site of origin. This highlights a novel venue for exploring the biology of adenoid cystic carcinoma.
Collapse
Affiliation(s)
- Simon Andreasen
- Department of Otorhinolaryngology and Maxillofacial Surgery, Zealand University Hospital, Køge, Denmark. .,Department of Otorhinolaryngology Head and Neck Surgery and Audiology, Rigshospitalet, Copenhagen, Denmark.
| | - Qihua Tan
- Department of Clinical Research, Unit of Human Genetics, University of Southern Denmark, Odense, Denmark
| | | | - Petr Steiner
- Department of Pathology, Faculty of Medicine, Charles University in Prague, Pilsen, Czech Republic.,Bioptic Laboratory Ltd, Molecular Pathology Laboratory, Pilsen, Czech Republic
| | - Kristine Bjørndal
- Department of ORL-Head and Neck Surgery, Odense University Hospital, Odense, Denmark
| | - Estrid Høgdall
- Department of Pathology, Herlev Hospital, University of Copenhagen, Herlev, Denmark
| | | | - Daiva Erentaite
- Department of Pathology, Aalborg University Hospital, Aalborg, Denmark
| | | | | | - Sarah Linéa von Holstein
- Department of Ophthalmology, Rigshospitalet-Glostrup, Copenhagen, Denmark.,Department of Ophthalmology, Zealand University Hospital, Roskilde, Denmark
| | - Irene Wessel
- Department of Otorhinolaryngology Head and Neck Surgery and Audiology, Rigshospitalet, Copenhagen, Denmark
| | - Steffen Heegaard
- Department of Pathology, Rigshospitalet, Copenhagen, Denmark.,Department of Ophthalmology, Rigshospitalet-Glostrup, Copenhagen, Denmark
| | - Preben Homøe
- Department of Otorhinolaryngology and Maxillofacial Surgery, Zealand University Hospital, Køge, Denmark
| |
Collapse
|
61
|
Sun X, Hou H, Li K, Zheng M. microRNA-761 regulates glycogen synthase kinase 3β expression and promotes the proliferation and cell cycle of human gastric cancer cells. Oncol Lett 2018; 16:3459-3464. [PMID: 30127949 PMCID: PMC6096227 DOI: 10.3892/ol.2018.9133] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 04/16/2018] [Indexed: 12/18/2022] Open
Abstract
It has been well documented that aberrant expression of microRNAs (miRs) serves important roles in cancer progression. The present study investigated the roles of miR-761 on gastric cancer (GC) cell proliferation. Reverse transcription polymerase chain reaction indicated that miR-761 was frequently upregulated in GC tissues and cells. Overexpression of miR-761 promoted the cell proliferation, cell colony formation and cell cycle of GC cells. Bioinformatics analysis revealed that miR-761 might target the 3′-untranslated region of glycogen synthase kinase 3β, and was confirmed by luciferase reporter assay and western blot analysis. Taken together, the results of the present study revealed miR-761 as a tumor promoter in GC, and that it could be considered as a novel therapeutic target for patients with GC.
Collapse
Affiliation(s)
- Xinfang Sun
- Department of Gastroenterology, Huaihe Hospital (North Campus), Henan University, Kaifeng, Henan 475000, P.R. China
| | - Hongtao Hou
- Department of Gastroenterology, Huaihe Hospital (North Campus), Henan University, Kaifeng, Henan 475000, P.R. China
| | - Ke Li
- Department of Gastroenterology, Huaihe Hospital (North Campus), Henan University, Kaifeng, Henan 475000, P.R. China
| | - Mingming Zheng
- Department of Gastroenterology, Huaihe Hospital (North Campus), Henan University, Kaifeng, Henan 475000, P.R. China
| |
Collapse
|
62
|
Andreasen S. Molecular features of adenoid cystic carcinoma with an emphasis on microRNA expression. APMIS 2018; 126 Suppl 140:7-57. [DOI: 10.1111/apm.12828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Simon Andreasen
- Department of Otorhinolaryngology and Maxillofacial Surgery; Zealand University Hospital; Køge Denmark
| |
Collapse
|
63
|
Marquez J, Fernandez-Piñeiro I, Araúzo-Bravo MJ, Poschmann G, Stühler K, Khatib AM, Sanchez A, Unda F, Ibarretxe G, Bernales I, Badiola I. Targeting liver sinusoidal endothelial cells with miR-20a-loaded nanoparticles reduces murine colon cancer metastasis to the liver. Int J Cancer 2018; 143:709-719. [PMID: 29492958 DOI: 10.1002/ijc.31343] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 02/02/2018] [Accepted: 02/19/2018] [Indexed: 12/15/2022]
Abstract
Phenotypic transformation of liver sinusoidal endothelial cells is one of the most important stages of liver metastasis progression. The miRNA effects on liver sinusoidal endothelial cells during liver metastasis have not yet been studied. Herein, whole genome analysis of miRNA expression in these cells during colorectal liver metastasis revealed repressed expression of microRNA-20a. Importantly, downregulation of miR-20a occurs in parallel with upregulation of its known protein targets. To restore normal miR-20a levels in liver sinusoidal endothelial cells, we developed chondroitin sulfate-sorbitan ester nanoparticles conjugated with miR-20a in a delivery system that specifically targets liver sinusoidal endothelial cells. The restoration of normal mir-20a levels in these cells induced downregulation of the expression of its protein targets, and this also resulted in a reduction of in vitro LSEC migration and a reduction of in vivo activation and tumor-infiltrating capacity and ability of the tumor decreased by ∼80% in a murine liver metastasis model.
Collapse
Affiliation(s)
- Joana Marquez
- Department of Cell Biology and Histology, Faculty of Medicine and Nursery, University of Basque Country, UPV/EHU, Leioa, Spain
| | - Ines Fernandez-Piñeiro
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Marcos J Araúzo-Bravo
- Computational Biology and Systems Biomedicine Research Group.Computational Biology Data Analysis Platform. Biodonostia Health Research Institute, San Sebastián, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Gereon Poschmann
- Molecular Proteomics Laboratory (MPL), Biologisch-Medizinisches Forschungszentrum (BMFZ),Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Kai Stühler
- Molecular Proteomics Laboratory (MPL), Biologisch-Medizinisches Forschungszentrum (BMFZ),Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Abdel-Majid Khatib
- Université Bordeaux, Pessac, France.,INSERM, LAMC, UMR 1029, Pessac, France
| | - Alejandro Sanchez
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, Spain.,Genetics and Biology of the Development of Kidney Diseases Unit, Sanitary Research Institute (IDIS) of the University Hospital Complex of Santiago de Compostela, Santiago de Compostela, Spain
| | - Fernando Unda
- Department of Cell Biology and Histology, Faculty of Medicine and Nursery, University of Basque Country, UPV/EHU, Leioa, Spain
| | - Gaskon Ibarretxe
- Department of Cell Biology and Histology, Faculty of Medicine and Nursery, University of Basque Country, UPV/EHU, Leioa, Spain
| | - Irantzu Bernales
- Gene Expression Unit, Genomics Facility of General Research Services (SGIker), University of the Basque Country, UPV/EHU, Leioa, Spain
| | - Iker Badiola
- Department of Cell Biology and Histology, Faculty of Medicine and Nursery, University of Basque Country, UPV/EHU, Leioa, Spain
| |
Collapse
|
64
|
Troiano G, Mastrangelo F, Caponio V, Laino L, Cirillo N, Lo Muzio L. Predictive Prognostic Value of Tissue-Based MicroRNA Expression in Oral Squamous Cell Carcinoma: A Systematic Review and Meta-analysis. J Dent Res 2018. [DOI: 10.1177/0022034518762090] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a common type of cancer characterized by a low survival rate, mostly due to local recurrence and metastasis. In view of the importance of predicting tumor behavior in the choice of treatment strategies for OSCC, several studies have attempted to investigate the prognostic value of tissue biomarkers, including microRNA (miRNA). The purpose of this study was to perform a systematic review and meta-analysis to evaluate the relationship between miRNA expression and survival of OSCC patients. Studies were identified by searching on MEDLINE/PubMed, SCOPUS, Web of Science, and Google Scholar. Quality assessment of studies was performed with the Newcastle-Ottawa Scale. Data were collected from cohort studies comparing disease-free survival and overall survival in patients with high miRNA expression compared to those with low expression. A total of 15 studies featuring 1,200 OSCC samples, predominantly from Asia, met the inclusion criteria and were included in the meta-analysis. Poor prognosis correlated with upregulation of 9 miRNAs (miR-21, miR-455-5p, miiR-155-5p, miR-372, miR-373, miR-29b, miR-1246, miR-196a, and miR-181) and downregulation of 7 miRNAs (miR-204, miR-101, miR-32, miR-20a, miR-16, miR-17, and miR-125b). The pooled hazard ratio values (95% confidence interval) related to different miRNA expression for overall survival and disease-free survival were 2.65 (2.07–3.39) and 1.95 (1.28–2.98), respectively. The results of this meta-analysis revealed that the expression levels of specific miRNAs can robustly predict prognosis of OSCC patients.
Collapse
Affiliation(s)
- G. Troiano
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - F. Mastrangelo
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - V.C.A. Caponio
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - L. Laino
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania–“Luigi Vanvitelli,” Naples, Italy
| | - N. Cirillo
- Melbourne Dental School, The University of Melbourne, Melbourne, VIC, Australia
| | - L. Lo Muzio
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| |
Collapse
|
65
|
Zeljic K, Jovanovic I, Jovanovic J, Magic Z, Stankovic A, Supic G. MicroRNA meta-signature of oral cancer: evidence from a meta-analysis. Ups J Med Sci 2018; 123:43-49. [PMID: 29482431 PMCID: PMC5901467 DOI: 10.1080/03009734.2018.1439551] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
AIM It was the aim of the study to identify commonly deregulated miRNAs in oral cancer patients by performing a meta-analysis of previously published miRNA expression profiles in cancer and matched normal non-cancerous tissue in such patients. MATERIAL AND METHODS Meta-analysis included seven independent studies analyzed by a vote-counting method followed by bioinformatic enrichment analysis. RESULTS Amongst seven independent studies included in the meta-analysis, 20 miRNAs were found to be deregulated in oral cancer when compared with non-cancerous tissue. Eleven miRNAs were consistently up-regulated in three or more studies (miR-21-5p, miR-31-5p, miR-135b-5p, miR-31-3p, miR-93-5p, miR-34b-5p, miR-424-5p, miR-18a-5p, miR-455-3p, miR-450a-5p, miR-21-3p), and nine were down-regulated (miR-139-5p, miR-30a-3p, miR-376c-3p, miR-885-5p, miR-375, miR-486-5p, miR-411-5p, miR-133a-3p, miR-30a-5p). The meta-signature of identified miRNAs was functionally characterized by KEGG enrichment analysis. Twenty-four KEGG pathways were significantly enriched, and TGF-beta signaling was the most enriched signaling pathway. The highest number of meta-signature miRNAs was involved in the sphingolipid signaling pathway. Natural killer cell-mediated cytotoxicity was the pathway with most genes regulated by identified miRNAs. The rest of the enriched pathways in our miRNA list describe different malignancies and signaling. CONCLUSIONS The identified miRNA meta-signature might be considered as a potential battery of biomarkers when distinguishing oral cancer tissue from normal, non-cancerous tissue. Further mechanistic studies are warranted in order to confirm and fully elucidate the role of deregulated miRNAs in oral cancer.
Collapse
Affiliation(s)
- Katarina Zeljic
- Faculty of Biology, University of Belgrade, Belgrade, Serbia
- CONTACT Katarina Zeljic , University of Belgrade, Faculty of Biology, Studentski trg 3, 11000 Belgrade, Serbia
| | - Ivan Jovanovic
- Laboratory for Radiobiology and Molecular Genetics, University of Belgrade, Vinča Institute of Nuclear Sciences, Belgrade, Serbia
| | | | - Zvonko Magic
- Faculty of Medicine, Military Medical Academy, University of Defence, Belgrade, Serbia
- Institute for Medical Research, Military Medical Academy, Belgrade, Serbia
| | - Aleksandra Stankovic
- Laboratory for Radiobiology and Molecular Genetics, University of Belgrade, Vinča Institute of Nuclear Sciences, Belgrade, Serbia
| | - Gordana Supic
- Faculty of Medicine, Military Medical Academy, University of Defence, Belgrade, Serbia
- Institute for Medical Research, Military Medical Academy, Belgrade, Serbia
| |
Collapse
|
66
|
Abstract
A non-invasive and early-detectable peripheral biomarker is urgently needed for Alzheimer's disease (AD). The present study is a step forward to verify the biomarker properties of human microRNA-455-3p (Hsa-miR-455-3p) in AD patients. Our previous findings on mild cognitive impaired subjects, AD patients and AD cells and mouse models unveiled the miR-455-3p as a potential peripheral biomarker for AD. In the current study, we verified the differential expression of miR-455-3p in postmortem AD brains obtained from NIH NeuroBioBank, and fibroblasts and B-lymphocytes from both familial and sporadic AD patients from Coriell Cell Repository of National Institutes on Aging. Total RNA was extracted from the fibroblasts, B-lymphocytes and AD postmortem brains, and expression of miR-455-3p was measured by real-time reverse-transcriptase RT-PCR. Our real-time RT-PCR analysis showed a significant (P = 0.0002) upregulation of miR-455-3p expression in AD postmortem brains compared to healthy control samples. Expression of miR-455-3p was also upregulated in the fibroblasts from AD patients, however a significant difference in miR-455-3p level was observed in the cells from sporadic AD patients (P = 0.014) compared to healthy controls. Similarly, in B-lymphocytes, miR-455-3p level was also higher (P = 0.044) especially in sporadic AD cases compared to controls. Receiver operating characteristic (ROC) curve analysis indicated the significant area under ROC curve (AUROC) value of miR-455-3p in AD postmortem brain (AUROC = 0.792; P = 0.001) and AD fibroblasts cells (AUROC = 0.861; P = 0.03), whereas in B-lymphocytes AUROC value of miR-455-3p was not significant. Further, in-silico analysis for miRNA targets predictions showed the binding capacity of miR-455-3p with several AD associated key genes such as APP, NGF, USP25, PDRG1, SMAD4, UBQLN1, SMAD2, TP73, VAMP2, HSPBAP1, and NRXN1. Hence, these observations further revealed that miR-455-3p is a potential biomarker for AD and its possible therapeutic target for AD.
Collapse
Affiliation(s)
- Subodh Kumar
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - P Hemachandra Reddy
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Speech, Language and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Department of Public Health, Graduate School of Biomedical Studies, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| |
Collapse
|
67
|
Cao M, Zheng L, Liu J, Dobleman T, Hu S, Go VLW, Gao G, Xiao GG. MicroRNAs as effective surrogate biomarkers for early diagnosis of oral cancer. Clin Oral Investig 2018; 22:571-581. [PMID: 29299731 DOI: 10.1007/s00784-017-2317-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 12/12/2017] [Indexed: 12/20/2022]
Abstract
BACKGROUND Oral squamous cell carcinomas (OC) are life-threatening diseases emerging as major international health concerns. OBJECTIVE Development of an efficient clinical strategy for early diagnosis of the disease is a key for reducing the death rate. Biomarkers are proven to be an effective approach for clinical diagnosis of cancer. Although mechanisms underlying regulation of oral malignancy are still unclear, microRNAs (miRNAs) as a group of small non-coded RNAs may be developed as the effective biomarkers used for early detection of oral cancer. METHODS A literature search was conducted using the databases of PubMed, Web of Science, and the Cochrane Library. The following search terms were used: miRNAs and oral cancer or oral carcinoma. A critical appraisal of the included studies was performed with upregulated miRNAs and downregulated miRNAs in oral cancer. RESULTS In this review, we summarize the research progress made in miRNAs for diagnosis of oral cancer. The involvement of miRNAs identified in signal transduction pathways in OC, including Ras/MAPK signaling, PI3K/AKT signaling, JAK/STAT signaling, Wnt/β-catenin signaling, Notch signaling, and TGF-β/SMAD signaling pathway. CONCLUSIONS A number of studies demonstrated that miRNAs may be developed as an ideal set of biomarkers used for early diagnosis and prognosis of cancers because of the stability in human peripheral blood and body fluids and availability of non-invasive approaches being developed for clinical utility. CLINICAL RELEVANCE These findings suggest that miRNAs as biomarkers may be useful for diagnosis of OC.
Collapse
Affiliation(s)
- Min Cao
- School of Pharmaceutical Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Lijuan Zheng
- Geriatric Department of Stomatology, Dalian Stomatology Hospital, Dalian, 116021, China
| | - Jianzhou Liu
- School of Pharmaceutical Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Thomas Dobleman
- Genomics and Functional Proteomics Laboratories, Creighton University Medical Center, Omaha, NE, 68131, USA
| | - Shen Hu
- School of Dentistry, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Vay Liang W Go
- UCLA Agi Hirshberg Center for Pancreatic Diseases, David Geffen School of Medicine at University of California Los Angeles, 900 Veteran Avenue, Warren Hall 13-146, Los Angeles, CA, 90095-1786, USA
| | - Ge Gao
- Faculty of Laboratory Medicine, Xiangya Medical College of Central South University, Changsha, 410013, China
| | - Gary Guishan Xiao
- School of Pharmaceutical Science and Technology, Dalian University of Technology, Dalian, 116024, China. .,Genomics and Functional Proteomics Laboratories, Creighton University Medical Center, Omaha, NE, 68131, USA. .,UCLA Agi Hirshberg Center for Pancreatic Diseases, David Geffen School of Medicine at University of California Los Angeles, 900 Veteran Avenue, Warren Hall 13-146, Los Angeles, CA, 90095-1786, USA.
| |
Collapse
|
68
|
Nunez Lopez YO, Victoria B, Golusinski P, Golusinski W, Masternak MM. Characteristic miRNA expression signature and random forest survival analysis identify potential cancer-driving miRNAs in a broad range of head and neck squamous cell carcinoma subtypes. Rep Pract Oncol Radiother 2018; 23:6-20. [PMID: 29187807 PMCID: PMC5698002 DOI: 10.1016/j.rpor.2017.10.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 08/27/2017] [Accepted: 10/22/2017] [Indexed: 12/13/2022] Open
Abstract
AIM To characterize the miRNA expression profile in head and neck squamous cell carcinoma (HNSSC) accounting for a broad range of cancer subtypes and consequently identify an optimal miRNA signature with prognostic value. BACKGROUND HNSCC is consistently among the most common cancers worldwide. Its mortality rate is about 50% because of the characteristic aggressive behavior of these cancers and the prevalent late diagnosis. The heterogeneity of the disease has hampered the development of robust prognostic tools with broad clinical utility. MATERIALS AND METHODS The Cancer Genome Atlas HNSC dataset was used to analyze level 3 miRNA-Seq data from 497 HNSCC patients. Differential expression (DE) analysis was implemented using the limma package and multivariate linear model that adjusted for the confounding effects of age at diagnosis, gender, race, alcohol history, anatomic neoplasm subdivision, pathologic stage, T and N stages, and vital status. Random forest (RF) for survival analysis was implemented using the randomForestSRC package. RESULTS A characteristic DE miRNA signature of HNSCC, comprised of 11 upregulated (i.e., miR-196b-5p, miR-1269a, miR-196a-5p, miR-4652-3p, miR-210-3p, miR-1293, miR-615-3p, miR-503-5p, miR-455-3p, miR-205-5p, and miR-21-5p) and 9 downregulated (miR-376c-3p, miR-378c, miR-29c-3p, miR-101-3p, miR-195-5p, miR-299-5p, miR-139-5p, miR-6510-3p, miR-375) miRNAs was identified. An optimal RF survival model was built from seven variables including age at diagnosis, miR-378c, miR-6510-3p, stage N, pathologic stage, gender, and race (listed in order of variable importance). CONCLUSIONS The joint differential miRNA expression and survival analysis controlling for multiple confounding covariates implemented in this study allowed for the identification of a previously undetected prognostic miRNA signature characteristic of a broad range of HNSCC.
Collapse
Affiliation(s)
- Yury O. Nunez Lopez
- Translational Research Institute for Metabolism & Diabetes, Florida Hospital, 301 East Princeton St., Orlando, FL 32804, USA
| | - Berta Victoria
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd., Orlando, FL 32827, USA
| | - Pawel Golusinski
- Department of Head and Neck Surgery, The Greater Poland Cancer Centre, 15 Garbary St., 61-866 Poznan, Poland
| | - Wojciech Golusinski
- Department of Head and Neck Surgery, The Greater Poland Cancer Centre, 15 Garbary St., 61-866 Poznan, Poland
| | - Michal M. Masternak
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd., Orlando, FL 32827, USA
- Department of Head and Neck Surgery, The Greater Poland Cancer Centre, 15 Garbary St., 61-866 Poznan, Poland
| |
Collapse
|
69
|
Zhan T, Huang X, Tian X, Chen X, Ding Y, Luo H, Zhang Y. Downregulation of MicroRNA-455-3p Links to Proliferation and Drug Resistance of Pancreatic Cancer Cells via Targeting TAZ. MOLECULAR THERAPY-NUCLEIC ACIDS 2017; 10:215-226. [PMID: 29499934 PMCID: PMC5862130 DOI: 10.1016/j.omtn.2017.12.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 12/05/2017] [Accepted: 12/05/2017] [Indexed: 01/02/2023]
Abstract
Drug resistance is a major cause of treatment failure in pancreatic cancer. The limited evidence indicates the involvement of miR-455-3p in chemotherapy resistance of cancer. Here we observed by qPCR that miR-455-3p was significantly decreased in pancreatic cancer tissues and cell lines. We then confirmed that the inhibition of miR-455-3p increased cell proliferation and gemcitabine resistance of pancreatic cancer, whereas forced overexpression of miR-455-3p had the opposite effect. Furthermore, we demonstrated that TAZ, which is associated with drug resistance of pancreatic cancer, is a new direct downstream target of miR-455-3p. Our present study suggests that miR-455-3p contributes to cell proliferation and drug resistance in pancreatic cancer cells via targeting TAZ.
Collapse
Affiliation(s)
- Ting Zhan
- Department of Gastroenterology, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan 430060, China; Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China; Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xiaodong Huang
- Department of Gastroenterology, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan 430060, China
| | - Xia Tian
- Department of Gastroenterology, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan 430060, China
| | - Xiaoli Chen
- Department of Gastroenterology, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan 430060, China
| | - Yu Ding
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Hesheng Luo
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yadong Zhang
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China.
| |
Collapse
|
70
|
Aili T, Paizula X, Ayoufu A. miR‑455‑5p promotes cell invasion and migration in breast cancer. Mol Med Rep 2017; 17:1825-1832. [PMID: 29257232 DOI: 10.3892/mmr.2017.8101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 08/07/2017] [Indexed: 11/06/2022] Open
Abstract
MicroRNA (miR)‑455‑5p has been identified as a biomarker for various types of cancer and may therefore be involved in the regulation of cancer development and progression. However, the specific role and function of miR‑455‑5p in breast cancer remains unclear. The present study explored the expression levels and function of miR‑455‑5p in breast cancer. The results from reverse transcription‑quantitative polymerase chain reaction analysis revealed that miR‑455‑5p was significantly upregulated in breast cancer. Clinically, increased expression of miR‑455‑5p predicted a poor survival rate and miR‑455‑5p was identified as one of the independent prognostic factors for breast cancer patients. Furthermore, results from wound healing and Transwell assays revealed that miR‑455‑5p accelerated invasiveness and migration capabilities of breast cancer cells. In addition, programmed cell death 4 was identified as a downstream target of miR‑455‑5p and its expression was observed to be negatively regulated by miR‑455‑5p. Overall, miR‑455‑5p may function as an oncogene in breast cancer, and may therefore be used as a prognostic marker for breast cancer patients.
Collapse
Affiliation(s)
- Tuerxunjiang Aili
- Department of General Medicine, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - Xuelaiti Paizula
- Department of Mammary Surgery, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - Aisikeer Ayoufu
- Department of Mammary Surgery, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| |
Collapse
|
71
|
miR-195-5p Suppresses the Proliferation, Migration, and Invasion of Oral Squamous Cell Carcinoma by Targeting TRIM14. BIOMED RESEARCH INTERNATIONAL 2017; 2017:7378148. [PMID: 29204446 PMCID: PMC5674489 DOI: 10.1155/2017/7378148] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/10/2017] [Accepted: 09/18/2017] [Indexed: 01/02/2023]
Abstract
MicroRNAs (miRNAs) play an essential role in tumor biological processes through interacting with specific gene targets. The involvement of miR-195-5p in cell proliferation, invasion, and migration has been demonstrated in several cancer cell lines, while its function in oral squamous cell carcinoma (OSCC) remains unclear. Here we find that miR-195-5p expression is lower in OSCC than in nontumor tissues, while its overexpression in cell lines can lead to the promotion of apoptosis and the reduction of cell growth, migration, and invasion. Moreover, we identify the tripartite motif-containing protein (TRIM14) as a target of miR-195-5p. Therefore, we reason that the tumor suppressor role of miR-195-5p in OSCC is dependent on the interaction with TRIM14.
Collapse
|
72
|
Xu L, Li H, Su L, Lu Q, Liu Z. MicroRNA-455 inhibits cell proliferation and invasion of epithelial ovarian cancer by directly targeting Notch1. Mol Med Rep 2017; 16:9777-9785. [DOI: 10.3892/mmr.2017.7790] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 09/05/2017] [Indexed: 11/05/2022] Open
|
73
|
Sun CC, Zhang L, Li G, Li SJ, Chen ZL, Fu YF, Gong FY, Bai T, Zhang DY, Wu QM, Li DJ. The lncRNA PDIA3P Interacts with miR-185-5p to Modulate Oral Squamous Cell Carcinoma Progression by Targeting Cyclin D2. MOLECULAR THERAPY-NUCLEIC ACIDS 2017; 9:100-110. [PMID: 29246288 PMCID: PMC5626923 DOI: 10.1016/j.omtn.2017.08.015] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 08/27/2017] [Accepted: 08/29/2017] [Indexed: 01/17/2023]
Abstract
Long noncoding RNAs (lncRNAs) are emerging as important regulators during tumorigenesis by serving as competing endogenous RNAs (ceRNAs). In this study, the qRT-PCR results indicated that the lncRNA protein disulfide isomerase family A member 3 pseudogene 1 (PDIA3P) was overexpressed in oral squamous cell carcinoma (OSCC) and decreased the survival rate of OSCC patients. CCK-8 and clonal colony formation assays were used to detect the effects of PDIA3P on proliferation. Results revealed that silencing PDIA3P by small interfering RNA (siRNA) inhibited OSCC cell proliferation and repressed tumor growth and reduced the expression of proliferation antigen Ki-67 in vivo. Furthermore, the interaction between PDIA3P and miRNAs was then analyzed by qRT-PCR and luciferase reporter gene assay. We found that PDIA3P negatively regulated miR-185-5p in OSCC cells. Simultaneously, we found that silencing PDIA3P by siRNA suppressed proliferation via miR-185-5p in OSCC cells. Moreover, silencing PDIA3P by siRNA inhibited CCND2 protein (no influence on mRNA levels) expression via miR-185-5p in OSCC cells, and CCND2 facilitated cell proliferation of SCC4 and SCC15 cells induced by sh-PDIA3P#1. Therefore, our study demonstrated that PDIA3P may be a therapeutic target for the treatment of OSCC.
Collapse
Affiliation(s)
- Cheng-Cao Sun
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071, China; School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Ling Zhang
- School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Guang Li
- Department of Oncology, Wuhan Pu-Ai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430034, China
| | - Shu-Jun Li
- Wuhan Hospital for the Prevention and Treatment of Occupational Diseases, Wuhan 430022, China
| | - Zhen-Long Chen
- Wuhan Hospital for the Prevention and Treatment of Occupational Diseases, Wuhan 430022, China
| | - Yun-Feng Fu
- The Third Xiang-ya Hospital of Central South University, Changsha 410013, China
| | - Feng-Yun Gong
- Department of Infectious Diseases, Wuhan Medical Treatment Center, Wuhan 430023, China
| | - Tao Bai
- Department of Infectious Diseases, Wuhan Medical Treatment Center, Wuhan 430023, China
| | - Ding-Yu Zhang
- Department of Infectious Diseases, Wuhan Medical Treatment Center, Wuhan 430023, China
| | - Qing-Ming Wu
- School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - De-Jia Li
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
74
|
Zhang S, Yin WL, Zhang X, Zhang XY. MicroRNA-455 is downregulated in gastric cancer and inhibits cell proliferation, migration and invasion via targeting insulin-like growth factor 1 receptor. Mol Med Rep 2017; 16:3664-3672. [DOI: 10.3892/mmr.2017.6979] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 04/27/2017] [Indexed: 11/05/2022] Open
|
75
|
Liu A, Zhu J, Wu G, Cao L, Tan Z, Zhang S, Jiang L, Wu J, Li M, Song L, Li J. Antagonizing miR-455-3p inhibits chemoresistance and aggressiveness in esophageal squamous cell carcinoma. Mol Cancer 2017. [PMID: 28633632 PMCID: PMC5479030 DOI: 10.1186/s12943-017-0669-9] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background The plasticity of cancer stem cells (CSCs)/tumor-initiating cells (T-ICs) suggests that multiple CSC/T-IC subpopulations exist within a tumor and that multiple oncogenic pathways collaborate to maintain the CSC/T-IC state. Here, we aimed to identify potential therapeutic targets that concomitantly regulate multiple T-IC subpopulations and CSC/T-IC-associated pathways. Methods A chemoresistant patient-derived xenograft (PDX) model of human esophageal squamous cell carcinoma (ESCC) was employed to identify microRNAs that contribute to ESCC aggressiveness. The oncogenic effects of microRNA-455-3p (miR-455-3p) on ESCC chemoresistance and tumorigenesis were examined by in vivo and in vitro chemoresistance, tumorsphere formation, side-population, and in vivo limiting dilution assays. The roles of miR-455-3p in activation of the Wnt/β-catenin and transforming growth factor-β (TGF-β)/Smad pathways were determined by luciferase and RNA immunoprecipitation assays. Results We found that miR-455-3p played essential roles in ESCC chemoresistance and tumorigenesis. Treatment with a miR-455-3p antagomir dramatically chemosensitized ESCC cells and reduced the subpopulations of CD90+ and CD271+ T-ICs via deactivation of multiple stemness-associated pathways, including Wnt/β-catenin and TGF-β signaling. Importantly, miR-455-3p exhibited aberrant upregulation in various human cancer types, and was significantly associated with decreased overall survival of cancer patients. Conclusions Our results demonstrate that miR-455-3p functions as an oncomiR in ESCC progression and may provide a potential therapeutic target to achieve better clinical outcomes in cancer patients. Electronic supplementary material The online version of this article (doi:10.1186/s12943-017-0669-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Aibin Liu
- Program of Cancer Research, Affiliated Guangzhou Women and Children's Hospital, Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan Road II, Guangzhou, Guangdong, 510080, China.,State Key Laboratory of Oncology in Southern China, Department of Experimental Research, Cancer Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Jinrong Zhu
- Program of Cancer Research, Affiliated Guangzhou Women and Children's Hospital, Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan Road II, Guangzhou, Guangdong, 510080, China
| | - Geyan Wu
- Program of Cancer Research, Affiliated Guangzhou Women and Children's Hospital, Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan Road II, Guangzhou, Guangdong, 510080, China
| | - Lixue Cao
- Program of Cancer Research, Affiliated Guangzhou Women and Children's Hospital, Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan Road II, Guangzhou, Guangdong, 510080, China
| | - Zhanyao Tan
- Program of Cancer Research, Affiliated Guangzhou Women and Children's Hospital, Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan Road II, Guangzhou, Guangdong, 510080, China
| | - Shuxia Zhang
- Program of Cancer Research, Affiliated Guangzhou Women and Children's Hospital, Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan Road II, Guangzhou, Guangdong, 510080, China
| | - Lili Jiang
- Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Jueheng Wu
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Mengfeng Li
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Libing Song
- State Key Laboratory of Oncology in Southern China, Department of Experimental Research, Cancer Center, Sun Yat-sen University, Guangzhou, 510060, China.
| | - Jun Li
- Program of Cancer Research, Affiliated Guangzhou Women and Children's Hospital, Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan Road II, Guangzhou, Guangdong, 510080, China.
| |
Collapse
|
76
|
Zhang CZ. Long intergenic non-coding RNA 668 regulates VEGFA signaling through inhibition of miR-297 in oral squamous cell carcinoma. Biochem Biophys Res Commun 2017; 489:404-412. [PMID: 28564590 DOI: 10.1016/j.bbrc.2017.05.155] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 05/26/2017] [Indexed: 01/17/2023]
Abstract
Recently, long noncoding RNAs (lncRNAs) have been reported to have crucial regulatory efficiency in human cancer biology. Long intergenic non-coding RNA 668 (LINC00668) was regarded as an oncogene in multiple cancers. However, the underlying molecular mechanism of LINC00668 in oral squamous cell carcinoma (OSCC) has not been studied. In this study, we first demonstrated that LINC00668 expression was up-regulated, which was correlated with tumor progression, and miR-297 down-regulated in OSCC tissues and cells. Importantly, LINC00668 expression was negatively correlated with miR-297 expression in OSCC tissues. Loss-of-function of LINC00668 revealed that LINC00668 functioned as a ceRNA for miR-297 to facilitate VEGFA expression, promoting OSCC progression. Furthermore, LINC00668 knockdown suppressed tumor growth and reduced the expression of proliferation antigen ki-67 in vivo. Finally, we confirmed that LINC00668 promoted OSCC activity through VEGFA signaling. In conclusion, these results suggest that LINC00668 promotes OSCC tumorigenesis via miR-297/VEGFA axis, which may provide a new target for the diagnosis and therapy of OSCC disease.
Collapse
Affiliation(s)
- Chen-Zheng Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education (KLOBM), School & Hospital of Stomatology, Wuhan University, Luoyu Rd. 237, Wuhan 430079, People's Republic of China.
| |
Collapse
|
77
|
Avellini C, Licini C, Lazzarini R, Gesuita R, Guerra E, Tossetta G, Castellucci C, Giannubilo SR, Procopio A, Alberti S, Mazzucchelli R, Olivieri F, Marzioni D. The trophoblast cell surface antigen 2 and miR-125b axis in urothelial bladder cancer. Oncotarget 2017; 8:58642-58653. [PMID: 28938585 PMCID: PMC5601681 DOI: 10.18632/oncotarget.17407] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 03/30/2017] [Indexed: 11/29/2022] Open
Abstract
Human trophoblast cell surface antigen 2 (Trop-2) is a 40-kDa transmembrane glycoprotein that was first identified as a marker of human trophoblast cells. Trop-2 acts on cell proliferation, adhesion, and migration by activating a number of intracellular signalling pathways. Elevated Trop-2 expression has been demonstrated in several types of cancer and correlated with aggressiveness and poor prognosis. Since no data are available on Trop-2 in bladder cancer (BC), the purpose of the study was to determine its levels in tissue specimens from normal individuals and patients with BC at different stages. Moreover, since according to recent evidence Trop-2 is a miR-125b target, miR-125b expression was also assessed in tissue specimens. Finally, the effect of the Trop-2/miR-125b axis on the proliferation and migration of BC cells was evaluated in vitro. The Trop-2/miR-125b axis was seen to be differentially expressed in normal urothelium, non-invasive BC and invasive BC tissue. Significant miR-125b down-regulation was associated with a significant increase in Trop-2 protein levels in BC tissue and correlated with disease severity. In vitro analysis confirmed the role of miR-125b in down-modulation of Trop-2 protein levels and showed that Trop-2/miR-125b axis affects cellular proliferation in bladder tissue. In conclusion, our findings highlight a role for the Trop-2/miR-125b axis in BC progression and suggest Trop-2 and miR-125b as diagnostic/prognostic marker candidates as well as druggable targets for innovative therapeutic approaches.
Collapse
Affiliation(s)
- Chiara Avellini
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy
| | - Caterina Licini
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy
| | - Raffaella Lazzarini
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
| | - Rosaria Gesuita
- Centre of Epidemiology, Biostatistics and Medical Information Technology, Università Politecnica delle Marche, Ancona, Italy
| | - Emanuela Guerra
- Unit of Cancer Pathology, CeSI-MeT, "G. d'Annunzio" University, Chieti, Italy.,ONCOXX Biotech SRL, Chieti, Italy
| | - Giovanni Tossetta
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy
| | - Clara Castellucci
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
| | | | - Antonio Procopio
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy.,Center of Clinical Pathology and Innovative Therapy, National Institute INRCA-IRCCS, Ancona, Italy
| | - Saverio Alberti
- Unit of Cancer Pathology, CeSI-MeT, "G. d'Annunzio" University, Chieti, Italy.,ONCOXX Biotech SRL, Chieti, Italy
| | - Roberta Mazzucchelli
- Section of Pathological Anatomy, Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, United Hospitals, Ancona, Italy
| | - Fabiola Olivieri
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy.,Center of Clinical Pathology and Innovative Therapy, National Institute INRCA-IRCCS, Ancona, Italy
| | - Daniela Marzioni
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|