51
|
Yu DD, Zhang J. Update on recurrent mutations in angioimmunoblastic T-cell lymphoma. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2021; 14:1108-1118. [PMID: 35027991 PMCID: PMC8748014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 10/26/2021] [Indexed: 06/14/2023]
Abstract
Angioimmunoblastic T-cell lymphoma (AITL) is a subtype of peripheral T cell lymphoma (PTCL), defined by genetic alterations that induce abnormal immune activity and inflammatory disorders. Through recent discoveries using genomic studies, the identification of various recurrent mutations has provided greater insight and changed our understanding of the molecular genetics of the disease. By acknowledging these recurrent mutations and their affected pathways, the diagnosis, prognosis, treatment, and survival of AITL can be improved. In this review, we summarize the known recurrent mutations present in the molecular pathogenesis of AITL by emphasizing the effects of mutations on signaling pathways and genes, as well as the multistep process of AITL development.
Collapse
Affiliation(s)
| | - Jianzhong Zhang
- Department of Pathology, Strategic Support Force Medical CenterBeijing, China
| |
Collapse
|
52
|
Molecular diagnosis of T-cell lymphoma: a correlative study of PCR-based T-cell clonality assessment and targeted NGS. Blood Adv 2021; 5:4590-4593. [PMID: 34607351 PMCID: PMC8759123 DOI: 10.1182/bloodadvances.2021005249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/16/2021] [Indexed: 11/20/2022] Open
Abstract
Immunomorphological diagnosis of T-cell lymphoma (TCL) may be challenging, especially on needle biopsies. Multiplex polymerase chain reaction (PCR) assays to assess T-cell receptor (TCR) gene rearrangements are now widely used to detect T-cell clones and provide diagnostic support. However, PCR assays detect only 80% of TCL, and clonal lymphocyte populations may also appear in nonneoplastic conditions. More recently, targeted next-generation sequencing (t-NGS) technologies have been deployed to improve lymphoma classification. To the best of our knowledge, the comparison of these techniques' performance in TCL diagnosis has not been reported yet. In this study, 82 TCL samples and 25 nonneoplastic T-cell infiltrates were divided into 2 cohorts (test and validation) and analyzed with both multiplex PCR and t-NGS to investigate TCR gene rearrangements and somatic mutations, respectively. The detection of mutations appeared to be more specific (100.0%) than T-cell clonality assessment (41.7%-45.5%), whereas no differences were observed in terms of sensitivity (95.1%-97.4%). Furthermore, t-NGS provided a reliable basis for TCL diagnosis in samples with partially degraded DNA that was impossible to assess with PCR. Finally, although multiplex PCR assays appeared to be less specific than t-NGS, both techniques remain complementary, as PCR recovered some t-NGS negative cases.
Collapse
|
53
|
Holst JM, Enemark MB, Pedersen MB, Lauridsen KL, Hybel TE, Clausen MR, Frederiksen H, Møller MB, Nørgaard P, Plesner TL, Hamilton-Dutoit SJ, d’Amore F, Honoré B, Ludvigsen M. Proteomic Profiling Differentiates Lymphoma Patients with and without Concurrent Myeloproliferative Neoplasia. Cancers (Basel) 2021; 13:cancers13215526. [PMID: 34771688 PMCID: PMC8583469 DOI: 10.3390/cancers13215526] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/29/2021] [Accepted: 10/30/2021] [Indexed: 01/07/2023] Open
Abstract
Simple Summary Patients are diagnosed with myeloproliferative neoplasia (MPN) and lymphoma more frequently in the population than expected, which has led to the hypothesis that the two malignancies may, in some cases, be pathogenetically related. In this study, lymphoma patients with and without MPN show subtle but important differences in the protein expression that enables the clustering of the lymphomas, thus indicating the differences at the molecular level between the lymphoma malignancies with and without MPN, and strengthening the hypothesis that the lymphoma and MPN may be biologically related. Abstract Myeloproliferative neoplasia (MPN) and lymphoma are regarded as distinct diseases with different pathogeneses. However, patients that are diagnosed with both malignancies occur more frequently in the population than expected. This has led to the hypothesis that the two malignancies may, in some cases, be pathogenetically related. Using a mass spectrometry-based proteomic approach, we show that pre-treatment lymphoma samples from patients with both MPN and lymphoma, either angioimmunoblastic T-cell lymphoma (MPN-AITL) or diffuse large B-cell lymphoma (MPN-DLBCL), show differences in protein expression compared with reference AITL or DLBCL samples from patients without MPN. A distinct clustering of samples from patients with and without MPN was evident for both AITL and DLBCL. Regarding MPN-AITL, a pathway analysis revealed disturbances of cellular respiration as well as oxidative metabolism, and an immunohistochemical evaluation further demonstrated the differential expression of citrate synthase and DNAJA2 protein (p = 0.007 and p = 0.015). Interestingly, IDH2 protein also showed differential expression in the MPN-AITL patients, which contributes to the growing evidence of this protein’s role in both myeloid neoplasia and AITL. In MPN-DLBCL, the disturbed pathways included a significant downregulation of protein synthesis as well as a perturbation of signal transduction. These results imply an underlying disturbance of tumor molecular biology, and in turn an alternative pathogenesis for tumors in these patients with both myeloid and lymphoid malignancies.
Collapse
Affiliation(s)
- Johanne Marie Holst
- Department of Hematology, Aarhus University Hospital, 8200 Aarhus, Denmark; (J.M.H.); (M.B.E.); (M.B.P.); (T.E.H.); (F.d.)
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark;
| | - Marie Beck Enemark
- Department of Hematology, Aarhus University Hospital, 8200 Aarhus, Denmark; (J.M.H.); (M.B.E.); (M.B.P.); (T.E.H.); (F.d.)
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark;
| | - Martin Bjerregaard Pedersen
- Department of Hematology, Aarhus University Hospital, 8200 Aarhus, Denmark; (J.M.H.); (M.B.E.); (M.B.P.); (T.E.H.); (F.d.)
| | | | - Trine Engelbrecht Hybel
- Department of Hematology, Aarhus University Hospital, 8200 Aarhus, Denmark; (J.M.H.); (M.B.E.); (M.B.P.); (T.E.H.); (F.d.)
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark;
| | | | - Henrik Frederiksen
- Department of Hematology, Odense University Hospital, 5000 Odense, Denmark;
| | - Michael Boe Møller
- Department of Pathology, Odense University Hospital, 5000 Odense, Denmark;
| | - Peter Nørgaard
- Department of Pathology, Herlev Hospital, 2730 Herlev, Denmark;
| | | | - Stephen Jacques Hamilton-Dutoit
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark;
- Department of Pathology, Aarhus University Hospital, 8200 Aarhus, Denmark;
| | - Francesco d’Amore
- Department of Hematology, Aarhus University Hospital, 8200 Aarhus, Denmark; (J.M.H.); (M.B.E.); (M.B.P.); (T.E.H.); (F.d.)
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark;
| | - Bent Honoré
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark;
| | - Maja Ludvigsen
- Department of Hematology, Aarhus University Hospital, 8200 Aarhus, Denmark; (J.M.H.); (M.B.E.); (M.B.P.); (T.E.H.); (F.d.)
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark;
- Correspondence: ; Tel.: +45-22859523
| |
Collapse
|
54
|
Gupta P, Gupta N, Bal A, Rastogi P, Prakash G, Malhotra P, Dey P, Srinivasan R, Das A. Cytomorphological characterisation of angioimmunoblastic T cell lymphoma: a case-control study. J Clin Pathol 2021; 76:320-326. [PMID: 34697030 DOI: 10.1136/jclinpath-2021-207887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/11/2021] [Indexed: 11/04/2022]
Abstract
AIMS Angioimmunoblastic T cell lymphoma (AITL) is often misdiagnosed in cytology. Hence, the present study was conducted to identify the distinctive cytomorphological features of AITL in lymph node fine-needle aspirates (LN-FNA). METHODS This was a 4-year retrospective case-control study. Cases included LN-FNAs from patients with histopathologically confirmed AITL. The controls included LN-FNAs from patients with histopathologically confirmed reactive lymphoid hyperplasia (RLH; n=25). Eleven cytomorphological features were assessed in all the aspirates; the strength of association was determined by OR, Cramer's V and multiple correspondence analysis (MCA). RESULTS Of a total of 22 cases of AITL reported on histopathology, 19 adequate aspirates from 14 patients (63.6%) were available for review. On univariate analysis, 5 of 11 cytomorphological variables were found to be significant for AITL; however, on MCA, 3 of these parameters, viz absence of tingible body macrophages (OR=0.014; V=0.74), presence of atypical lymphoid cells (OR=10.8; V=0.41) and singly scattered epithelioid cells (OR=19.3; V=0.31), were found to be the strongest predictors of AITL. CONCLUSIONS The absence of tingible body macrophages, presence of atypical lymphoid cells and singly scattered epithelioid cells in polymorphic LN-FNAs are significant cytomorphological predictors of AITL in comparison with RLH. Knowledge of these diagnostic predictors, supplemented by clinicoradiological correlation and appropriate ancillary studies, can help diagnose AITL on aspiration cytology.
Collapse
Affiliation(s)
- Parikshaa Gupta
- Cytology and Gynecologic Pathology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Nalini Gupta
- Cytology and Gynecologic Pathology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Amanjit Bal
- Histopathology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Pulkit Rastogi
- Hematology Department, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Gaurav Prakash
- Department of Internal Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Pankaj Malhotra
- Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Pranab Dey
- Cytology and Gynecologic Pathology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Radhika Srinivasan
- Cytology and Gynecologic Pathology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Ashim Das
- Histopathology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
55
|
Zhang X, Zhou J, Han X, Wang E, Zhang L. Update on the Classification and Diagnostic Approaches of Mature T-Cell Lymphomas. Arch Pathol Lab Med 2021; 146:947-952. [PMID: 34524423 DOI: 10.5858/arpa.2021-0143-ra] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2021] [Indexed: 11/06/2022]
Abstract
CONTEXT.— In the 2017 revised World Health Organization classification of tumors of hematopoietic and lymphoid tissues, some mature T-cell lymphomas are reclassified and a few new provisional entities are established based on new data from clinical and laboratory studies. T follicular helper cell lymphoma is identified by T follicular helper cell markers. Anaplastic large cell lymphoma, ALK negative, is a better-defined entity based on genetic abnormalities, and breast implant-associated anaplastic large cell lymphoma is recognized as a provisional entity. The gastrointestinal T-cell lymphomas are reclassified, with addition of a new provisional entity, indolent T-cell lymphoproliferative disorder of the gastrointestinal tract, characterized by an indolent clinical course. OBJECTIVE.— To review the diagnostic approaches of reclassified and newly established entities of mature T-cell lymphomas, focusing on significant immunophenotypic features and molecular genetic abnormalities. Relevant new discoveries after the publication of the 2017 World Health Organization classification are included. DATA SOURCES.— Information from the literature most relevant to 2017 World Health Organization revised classification and publications after 2016. CONCLUSIONS.— Incorporating clinical, morphologic, and immunophenotypic features usually provides sufficient evidence to reach a preliminary diagnosis of mature T-cell lymphoma. Molecular genetic studies can be very helpful for the final diagnosis and classification, especially in challenging cases. Some molecular genetic features have been found in breast implant-associated anaplastic large cell lymphoma, distinct from anaplastic large cell lymphoma, ALK negative. Immunohistochemical staining of 4 markers may enable further subtyping of peripheral T-cell lymphomas.
Collapse
Affiliation(s)
- Xiaohui Zhang
- From the Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida (X. Zhang)
| | - Jiehao Zhou
- The Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis (Zhou)
| | - Xin Han
- The Department of Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston (Han)
| | - Endi Wang
- The Department of Pathology, Duke University Medical Center, Durham, North Carolina (Wang)
| | - Linsheng Zhang
- The Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia (L. Zhang)
| |
Collapse
|
56
|
Pritchett JC, Yang ZZ, Kim HJ, Villasboas JC, Tang X, Jalali S, Cerhan JR, Feldman AL, Ansell SM. High-dimensional and single-cell transcriptome analysis of the tumor microenvironment in angioimmunoblastic T cell lymphoma (AITL). Leukemia 2021; 36:165-176. [PMID: 34230608 DOI: 10.1038/s41375-021-01321-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/20/2021] [Accepted: 06/05/2021] [Indexed: 02/08/2023]
Abstract
Angioimmunoblastic T-cell lymphoma (AITL) is an aggressive lymphoid malignancy associated with a poor clinical prognosis. The AITL tumor microenvironment (TME) is unique, featuring a minority population of malignant CD4+ T follicular helper (TFH) cells inter-mixed with a diverse infiltrate of multi-lineage immune cells. While much of the understanding of AITL biology to date has focused on characteristics of the malignant clone, less is known about the many non-malignant populations that comprise the TME. Recently, mutational consistencies have been identified between malignant cells and non-malignant B cells within the AITL TME. As a result, a significant role for non-malignant populations in AITL biology has been increasingly hypothesized. In this study, we have utilized mass cytometry and single-cell transcriptome analysis to identify several expanded populations within the AITL TME. Notably, we find that B cells within the AITL TME feature decreased expression of key markers including CD73 and CXCR5. Furthermore, we describe the expansion of distinct CD8+ T cell populations that feature an exhausted phenotype and an underlying expression profile indicative of dysfunction, impaired cytotoxicity, and upregulation of the chemokines XCL2 and XCL1.
Collapse
Affiliation(s)
| | - Zhi-Zhang Yang
- Department of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Hyo Jin Kim
- Department of Hematology, Mayo Clinic, Rochester, MN, USA
| | | | - Xinyi Tang
- Department of Hematology, Mayo Clinic, Rochester, MN, USA
| | | | - James R Cerhan
- Department of Health Sciences Research and Epidemiology, Mayo Clinic, Rochester, MN, USA
| | - Andrew L Feldman
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
57
|
Thyroid MALT lymphoma: self-harm to gain potential T-cell help. Leukemia 2021; 35:3497-3508. [PMID: 34021249 PMCID: PMC8632687 DOI: 10.1038/s41375-021-01289-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/29/2021] [Accepted: 05/06/2021] [Indexed: 02/05/2023]
Abstract
The development of extranodal marginal zone lymphoma of mucosa-associated lymphoid tissue (MALT) is driven by chronic inflammatory responses and acquired genetic changes. To investigate its genetic bases, we performed targeted sequencing of 93 genes in 131 MALT lymphomas including 76 from the thyroid. We found frequent deleterious mutations of TET2 (86%), CD274 (53%), TNFRSF14 (53%), and TNFAIP3 (30%) in thyroid MALT lymphoma. CD274 was also frequently deleted, together with mutation seen in 68% of cases. There was a significant association between CD274 mutation/deletion and TNFRSF14 mutation (p = 0.001). CD274 (PD-L1) and TNFRSF14 are ligands for the co-inhibitory receptor PD1 and BTLA on T-helper cells, respectively, their inactivation may free T-cell activities, promoting their help to malignant B-cells. In support of this, both the proportion of activated T-cells (CD4+CD69+/CD4+) within the proximity of malignant B-cells, and the level of transformed blasts were significantly higher in cases with CD274/TNFRSF14 genetic abnormalities than those without these changes. Both CD274 and TNFRSF14 genetic changes were significantly associated with Hashimoto’s thyroiditis (p = 0.01, p = 0.04, respectively), and CD274 mutation/deletion additionally associated with increased erythrocyte sedimentation rate (p = 0.0001). In conclusion, CD274/TNFRSF14 inactivation in thyroid MALT lymphoma B-cells may deregulate their interaction with T-cells, promoting co-stimulations and impairing peripheral tolerance.
Collapse
|
58
|
Multiple mutations at exon 2 of RHOA detected in plasma from patients with peripheral T-cell lymphoma. Blood Adv 2021; 4:2392-2403. [PMID: 32484856 DOI: 10.1182/bloodadvances.2019001075] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 04/30/2020] [Indexed: 12/15/2022] Open
Abstract
The mutational landscape of peripheral T-cell lymphoma (PTCL) is being revealed through sequencing of lymph node samples, but there has been little work on the mutational load that is present in cell-free DNA (cfDNA) from plasma. We report targeted sequencing of cfDNA from PTCL patients to demonstrate c.50G>T (p.Gly17Val) in RHOA as previously described in angioimmunoblastic T-cell lymphoma (AITL) and a group of PTCL not otherwise specified (NOS) but also detect novel mutations at c.73A>G (p.Phe25Leu) and c.48A>T (p.Cys16*) of exon 2, which were confirmed by Sanger sequencing. In a group of AITL and PTCL-NOS analyzed by droplet digital polymerase chain reaction, 63% (12/19) showed c.50G>T (p.Gly17Val), 53% (10/19) c.73A>G (p.Phe25Leu), and 37% (7/19) c.48A>T (pCys16*). Sequencing of lymph node tissue in 3 out of 9 cases confirmed the presence of c.73A>G (p.Phe25Leu). Inspection of individual sequencing reads from individual patients showed that a single RHOA allele could contain >1 mutation, suggesting haplotypes of mutations at RHOA. Serial sampling showed changes to RHOA mutational frequency with treatment and the apparent occurrence of clones bearing specific haplotypes associated with relapse. Therefore, sequencing of RHOA from cfDNA has revealed new mutations and haplotypes. The clinical significance of these findings will need to be explored in clinical trials, but liquid biopsy might have potential for guiding treatment decisions in PTCL.
Collapse
|
59
|
Cortés JR, Palomero T. Biology and Molecular Pathogenesis of Mature T-Cell Lymphomas. Cold Spring Harb Perspect Med 2021; 11:cshperspect.a035402. [PMID: 32513675 DOI: 10.1101/cshperspect.a035402] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Peripheral T-cell lymphomas (PTCLs) constitute a highly heterogeneous group of hematological diseases with complex clinical and molecular features consistent with the diversity of the T-cell type from which they originate. In the past several years, the systematic implementation of high-throughput genomic technologies for the analysis of T-cell malignancies has supported an exponential progress in our understanding of the genetic drivers of oncogenesis and unraveled the molecular complexity of these diseases. Recent findings have helped redefine the classification of T-cell malignancies and provided novel biomarkers to improve diagnosis accuracy and analyze the response to therapy. In addition, multiple novel targeted therapies including small-molecule inhibitors, antibody-based approaches, and immunotherapy have shown promising results in early clinical analysis and have the potential to completely change the way T-cell malignancies have been treated traditionally.
Collapse
Affiliation(s)
| | - Teresa Palomero
- Institute for Cancer Genetics.,Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York 10032, USA
| |
Collapse
|
60
|
Ho CC, Tung JK, Zehnder JL, Zhang BM. Validation of a Next-Generation Sequencing-Based T-Cell Receptor Gamma Gene Rearrangement Diagnostic Assay: Transitioning from Capillary Electrophoresis to Next-Generation Sequencing. J Mol Diagn 2021; 23:805-815. [PMID: 33892183 DOI: 10.1016/j.jmoldx.2021.03.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 03/15/2021] [Accepted: 03/25/2021] [Indexed: 01/23/2023] Open
Abstract
Assessment of T-cell receptor γ gene (TRG) rearrangements is an importants consideration in the diagnostic workup of lymphoproliferative diseases. Although fragment analysis by PCR and capillary electrophoresis (CE) is the current standard of such assessment in clinical molecular diagnostic laboratories, it does not provide sequence information and is only semi-quantitative. Next-generation sequencing (NGS)-based assays are an attractive alternative to the conventional fragment size-based methods, given that they generate results with specific clonotype sequence information and allow for more accurate quantitation. The present study evaluated various test parameters and performance characteristics of a commercially available NGS-based TRG gene-rearrangement assay by testing 101 clinical samples previously characterized by fragment analysis. The NGS TRG assay showed an overall accuracy of 83% and an analytical specificity of 100%. The concordance rates were 88% to 95% in the Vγ1-8, Vγ10, and Vγ11 gene families, but lower in the Vγ9 gene family. This difference was mostly attributed to the incomplete polyclonal symmetry resulting from the two-tube CE assay versus the one-tube design of the NGS assay. The NGS assay also demonstrated strengths in distinguishing clonotypes of the same fragment size. This clinical validation demonstrated robust performance of the NGS-based TRG assay and identified potential pitfalls associated with CE assay design that are important for understanding the observed discrepancies with the CE-based assay.
Collapse
Affiliation(s)
- Chandler C Ho
- Molecular Pathology Laboratory, Stanford Health Care, Stanford, California
| | - Jack K Tung
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - James L Zehnder
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Bing M Zhang
- Department of Pathology, Stanford University School of Medicine, Stanford, California.
| |
Collapse
|
61
|
Pasca S, Jurj A, Zdrenghea M, Tomuleasa C. The Potential Equivalents of TET2 Mutations. Cancers (Basel) 2021; 13:cancers13071499. [PMID: 33805247 PMCID: PMC8036366 DOI: 10.3390/cancers13071499] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/10/2021] [Accepted: 03/22/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary In acute myeloid leukemia (AML) TET2 mutations have been observed to be mutually exclusive with IDH1, IDH2, and WT1 mutations, all of them showing a similar impact on the transcription profile. Because of this, it is possible that TET2/IDH1/2/WT1 mutated AML could be considered as having similar characteristics between each other. Nonetheless, other genes also interact with TET2 and influence its activity. Because of this, it is possible that other signatures exist that would mimic the effect of TET2 mutations. Thus, in this review, we searched the literature for the genes that were observed to interact with TET2 and classified them in the following manner: transcription alteration, miRs, direct interaction, posttranslational changes, and substrate reduction. Abstract TET2 is a dioxygenase dependent on Fe2+ and α-ketoglutarate which oxidizes 5-methylcytosine (5meC) to 5-hydroxymethylcytosine (5hmeC). TET proteins successively oxidize 5mC to yield 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC). Among these oxidized methylcytosines, 5fC and 5caC are directly excised by thymine DNA glycosylase (TDG) and ultimately replaced with unmethylated cytosine. Mutations in TET2 have been shown to lead to a hypermethylated state of the genome and to be responsible for the initiation of the oncogenetic process, especially in myeloid and lymphoid malignancies. Nonetheless, this was also shown to be the case in other cancers. In AML, TET2 mutations have been observed to be mutually exclusive with IDH1, IDH2, and WT1 mutations, all of them showing a similar impact on the transcription profile of the affected cell. Because of this, it is possible that TET2/IDH1/2/WT1 mutated AML could be considered as having similar characteristics between each other. Nonetheless, other genes also interact with TET2 and influence its effect, thus making it possible that other signatures exist that would mimic the effect of TET2 mutations. Thus, in this review, we searched the literature for the genes that were observed to interact with TET2 and classified them in the following manner: transcription alteration, miRs, direct interaction, posttranslational changes, and substrate reduction. What we propose in the present review is the potential extension of the TET2/IDH1/2/WT1 entity with the addition of certain expression signatures that would be able to induce a similar phenotype with that induced by TET2 mutations. Nonetheless, we recommend that this approach be taken on a disease by disease basis.
Collapse
Affiliation(s)
- Sergiu Pasca
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj Napoca, Romania; (S.P.); (M.Z.); (C.T.)
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj Napoca, Romania
- Department of Hematology, Ion Chiricuta Clinical Cancer Center, 400124 Cluj Napoca, Romania
| | - Ancuta Jurj
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
- Correspondence:
| | - Mihnea Zdrenghea
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj Napoca, Romania; (S.P.); (M.Z.); (C.T.)
- Department of Hematology, Ion Chiricuta Clinical Cancer Center, 400124 Cluj Napoca, Romania
| | - Ciprian Tomuleasa
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj Napoca, Romania; (S.P.); (M.Z.); (C.T.)
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj Napoca, Romania
- Department of Hematology, Ion Chiricuta Clinical Cancer Center, 400124 Cluj Napoca, Romania
| |
Collapse
|
62
|
Nguyen PN, Tran NTB, Nguyen TPX, Ngo TNM, Lai DV, Deel CD, Hassell LA, Vuong HG. Clinicopathological Implications of RHOA Mutations in Angioimmunoblastic T-Cell Lymphoma: A Meta-analysis: RHOA mutations in AITL. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2021; 21:431-438. [PMID: 33849798 DOI: 10.1016/j.clml.2021.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/09/2021] [Accepted: 03/14/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Studies have recently shown that RHOA mutations play a crucial role in angioimmunoblastic T-cell lymphoma (AITL) pathogenesis. We aimed to pool data from these studies to provide a comparison of clinicopathological features between the RHOA mutant and RHOA wild-type groups in the AITL population. METHODS We searched PubMed and Web of Science for the keywords "RHOA AND lymphoma" and selected only studies reporting the clinical significance of RHOA mutations in AITL. We calculated the odds ratios (OR) or the mean difference with 95% CI using a random effect model. RESULTS Our pooled results showed a significant association between RHOA mutations and a T-follicular helper cell (TFH) phenotype, especially CD10 (OR, 5.16; 95% CI, 2.32-11.46), IDH2 mutations (OR, 10.70; 95% CI, 4.22-27.15), and TET2 mutations (OR, 7.03; 95% CI, 2.14-23.12). Although DNMT3A together with TET2 and IDH2 mutations are epigenetic gene alterations, we found an insignificant association between RHOA and DNMT3A mutations (OR, 1.72; 95% CI, 0.73-4.05). No significant associations of RHOA mutations with other clinicopathological features and overall survival were found. CONCLUSIONS RHOA mutations are strongly correlated with a T-follicular helper cell phenotype and epigenetic mutations such as TET2 and IDH2. Further studies with large AITL samples should be conducted to validate the relationship of TET2, DNMT3A, and RHOA co-mutations.
Collapse
Affiliation(s)
- Phuong Nhat Nguyen
- Department of Pathology, Forensic Medicine Center of Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Ngoc T B Tran
- Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, OR
| | - Truong P X Nguyen
- Department of Pathology, Cho Ray Hospital, Ho Chi Minh City, Vietnam
| | - Tam N M Ngo
- Faculty of Medicine, Pham Ngoc Thach University of Medicine, Ho Chi Minh City, Vietnam
| | - Doan Van Lai
- Department of Pathology, Keck School of Medicine University of Southern California, Los Angeles, CA
| | - Chelsey D Deel
- Department of Pathology, Oklahoma University Health Sciences Center, Oklahoma City, OK
| | - Lewis A Hassell
- Department of Pathology, Oklahoma University Health Sciences Center, Oklahoma City, OK
| | - Huy Gia Vuong
- Department of Pathology, Oklahoma University Health Sciences Center, Oklahoma City, OK; Stephenson Cancer Center, Oklahoma University Health Sciences Center, Oklahoma City, OK.
| |
Collapse
|
63
|
Paul S, Pearlman AH, Douglass J, Mog BJ, Hsiue EHC, Hwang MS, DiNapoli SR, Konig MF, Brown PA, Wright KM, Sur S, Gabelli SB, Li Y, Ghiaur G, Pardoll DM, Papadopoulos N, Bettegowda C, Kinzler KW, Zhou S, Vogelstein B. TCR β chain-directed bispecific antibodies for the treatment of T cell cancers. Sci Transl Med 2021; 13:eabd3595. [PMID: 33649188 PMCID: PMC8236299 DOI: 10.1126/scitranslmed.abd3595] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/30/2020] [Accepted: 02/03/2021] [Indexed: 12/27/2022]
Abstract
Immunotherapies such as chimeric antigen receptor (CAR) T cells and bispecific antibodies redirect healthy T cells to kill cancer cells expressing the target antigen. The pan-B cell antigen-targeting immunotherapies have been remarkably successful in treating B cell malignancies. Such therapies also result in the near-complete loss of healthy B cells, but this depletion is well tolerated by patients. Although analogous targeting of pan-T cell markers could, in theory, help control T cell cancers, the concomitant healthy T cell depletion would result in severe and unacceptable immunosuppression. Thus, therapies directed against T cell cancers require more selective targeting. Here, we describe an approach to target T cell cancers through T cell receptor (TCR) antigens. Each T cell, normal or malignant, expresses a unique TCR β chain generated from 1 of 30 TCR β chain variable gene families (TRBV1 to TRBV30). We hypothesized that bispecific antibodies targeting a single TRBV family member expressed in malignant T cells could promote killing of these cancer cells, while preserving healthy T cells that express any of the other 29 possible TRBV family members. We addressed this hypothesis by demonstrating that bispecific antibodies targeting TRBV5-5 (α-V5) or TRBV12 (α-V12) specifically lyse relevant malignant T cell lines and patient-derived T cell leukemias in vitro. Treatment with these antibodies also resulted in major tumor regressions in mouse models of human T cell cancers. This approach provides an off-the-shelf, T cell cancer selective targeting approach that preserves enough healthy T cells to maintain cellular immunity.
Collapse
Affiliation(s)
- Suman Paul
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA.
- Howard Hughes Medical Institute, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
- Ludwig Center and Lustgarten Laboratory, at the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Alexander H Pearlman
- Howard Hughes Medical Institute, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
- Ludwig Center and Lustgarten Laboratory, at the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Jacqueline Douglass
- Howard Hughes Medical Institute, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
- Ludwig Center and Lustgarten Laboratory, at the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Brian J Mog
- Howard Hughes Medical Institute, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
- Ludwig Center and Lustgarten Laboratory, at the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Emily Han-Chung Hsiue
- Howard Hughes Medical Institute, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
- Ludwig Center and Lustgarten Laboratory, at the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Michael S Hwang
- Howard Hughes Medical Institute, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
- Ludwig Center and Lustgarten Laboratory, at the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Sarah R DiNapoli
- Howard Hughes Medical Institute, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
- Ludwig Center and Lustgarten Laboratory, at the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Maximilian F Konig
- Howard Hughes Medical Institute, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
- Ludwig Center and Lustgarten Laboratory, at the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
- Division of Rheumatology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Patrick A Brown
- Division of Pediatric Oncology, Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Katharine M Wright
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Surojit Sur
- Howard Hughes Medical Institute, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
- Ludwig Center and Lustgarten Laboratory, at the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Sandra B Gabelli
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Yana Li
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Gabriel Ghiaur
- Hematologic Malignancies and Bone Marrow Transplantation Program, Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Drew M Pardoll
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Nickolas Papadopoulos
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
- Ludwig Center and Lustgarten Laboratory, at the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Chetan Bettegowda
- Ludwig Center and Lustgarten Laboratory, at the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
- Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Kenneth W Kinzler
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
- Ludwig Center and Lustgarten Laboratory, at the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Shibin Zhou
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
- Ludwig Center and Lustgarten Laboratory, at the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Bert Vogelstein
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA.
- Howard Hughes Medical Institute, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
- Ludwig Center and Lustgarten Laboratory, at the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
64
|
New developments in non-Hodgkin lymphoid malignancies. Pathology 2021; 53:349-366. [PMID: 33685720 DOI: 10.1016/j.pathol.2021.01.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 12/23/2022]
Abstract
The revised fourth edition of the World Health Organization (WHO) Classification of Tumours of Haematopoietic and Lymphoid Tissues (2017) reflects significant advances in understanding the biology, genetic basis and behaviour of haematopoietic neoplasms. This review focuses on some of the major changes in B-cell and T-cell non-Hodgkin lymphomas in the 2017 WHO and includes more recent updates. The 2017 WHO saw a shift towards conservatism in the classification of precursor lesions of small B-cell lymphomas such as monoclonal B-cell lymphocytosis, in situ follicular and in situ mantle cell neoplasms. With more widespread use of next generation sequencing (NGS), special entities within follicular lymphoma and mantle cell lymphoma were recognised with recurrent genetic aberrations and unique clinicopathological features. The diagnostic workup of lymphoplasmacytic lymphoma and hairy cell leukaemia has been refined with the discovery of MYD88 L265P and BRAF V600E mutations, respectively, in these entities. Recommendations in the immunohistochemical evaluation of diffuse large B-cell lymphoma include determining cell of origin and expression of MYC and BCL2, so called 'double-expressor' phenotype. EBV-positive large B-cell lymphoma of the elderly has been renamed to recognise its occurrence amongst a wider age group. EBV-positive mucocutaneous ulcer is a newly recognised entity with indolent clinical behaviour that occurs in the setting of immunosuppression. Two lymphomas with recurrent genetic aberrations are newly included provisional entities: Burkitt-like lymphoma with 11q aberration and large B-cell lymphoma with IRF4 rearrangement. Aggressive B-cell lymphomas with MYC, BCL2 and/or BCL6 rearrangements, so called 'double-hit/triple-hit' lymphomas are now a distinct entity. Much progress has been made in understanding intestinal T-cell lymphomas. Enteropathy-associated T-cell lymphoma, type II, is now known to not be associated with coeliac disease and is hence renamed monomorphic epitheliotropic T-cell lymphoma. An indolent clonal T-cell lymphoproliferative disorder of the GI tract is a newly included provisional entity. Angioimmunoblastic T-cell lymphoma and nodal T-cell lymphomas with T-follicular helper phenotype are included in a single broad category, emphasising their shared genetic and phenotypic features. Anaplastic large cell lymphoma, ALK- is upgraded to a definitive entity with subsets carrying recurrent rearrangements in DUSP22 or TP63. Breast implant-associated anaplastic large cell lymphoma is a new provisional entity with indolent behaviour. Finally, cutaneous T-cell proliferations include a new provisional entity, primary cutaneous acral CD8-positive T-cell lymphoma, and reclassification of primary small/medium CD4-positive T-cell lymphoma as lymphoproliferative disorder.
Collapse
|
65
|
Xie C, Li X, Zeng H, Qian W. Molecular insights into pathogenesis and targeted therapy of peripheral T cell lymphoma. Exp Hematol Oncol 2020; 9:30. [PMID: 33292562 PMCID: PMC7664070 DOI: 10.1186/s40164-020-00188-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 11/03/2020] [Indexed: 02/08/2023] Open
Abstract
Peripheral T-cell lymphomas (PTCLs) are biologically and clinically heterogeneous diseases almost all of which are associated with poor outcomes. Recent advances in gene expression profiling that helps in diagnosis and prognostication of different subtypes and next-generation sequencing have given new insights into the pathogenesis and molecular pathway of PTCL. Here, we focus on a broader description of mutational insights into the common subtypes of PTCL including PTCL not other specified type, angioimmunoblastic T-cell lymphoma, anaplastic large cell lymphoma, and extra-nodal NK/T cell lymphoma, nasal type, and also present an overview of new targeted therapies currently in various stages of clinical trials.
Collapse
Affiliation(s)
- Caiqin Xie
- Department of Hematology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, 88# Jiefang Road, Hangzhou, 310009, Zhejiang, People's Republic of China
| | - Xian Li
- Department of Hematology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, 88# Jiefang Road, Hangzhou, 310009, Zhejiang, People's Republic of China
| | - Hui Zeng
- Department of Hematology, First Affiliated Hospital of Jiaxing University, 1882# Zhonghuan South Road, Jiaxing, 314000, People's Republic of China.
| | - Wenbin Qian
- Department of Hematology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, 88# Jiefang Road, Hangzhou, 310009, Zhejiang, People's Republic of China. .,National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, 215006, People's Republic of China.
| |
Collapse
|
66
|
Katan M, Cockcroft S. Phospholipase C families: Common themes and versatility in physiology and pathology. Prog Lipid Res 2020; 80:101065. [PMID: 32966869 DOI: 10.1016/j.plipres.2020.101065] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/14/2020] [Accepted: 09/17/2020] [Indexed: 12/20/2022]
Abstract
Phosphoinositide-specific phospholipase Cs (PLCs) are expressed in all mammalian cells and play critical roles in signal transduction. To obtain a comprehensive understanding of these enzymes in physiology and pathology, a detailed structural, biochemical, cell biological and genetic information is required. In this review, we cover all these aspects to summarize current knowledge of the entire superfamily. The families of PLCs have expanded from 13 enzymes to 16 with the identification of the atypical PLCs in the human genome. Recent structural insights highlight the common themes that cover not only the substrate catalysis but also the mechanisms of activation. This involves the release of autoinhibitory interactions that, in the absence of stimulation, maintain classical PLC enzymes in their inactive forms. Studies of individual PLCs provide a rich repertoire of PLC function in different physiologies. Furthermore, the genetic studies discovered numerous mutated and rare variants of PLC enzymes and their link to human disease development, greatly expanding our understanding of their roles in diverse pathologies. Notably, substantial evidence now supports involvement of different PLC isoforms in the development of specific cancer types, immune disorders and neurodegeneration. These advances will stimulate the generation of new drugs that target PLC enzymes, and will therefore open new possibilities for treatment of a number of diseases where current therapies remain ineffective.
Collapse
Affiliation(s)
- Matilda Katan
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London WC1E 6BT, UK
| | - Shamshad Cockcroft
- Department of Neuroscience, Physiology and Pharmacology, Division of Biosciences, University College London, 21 University Street, London WC1E 6JJ, UK.
| |
Collapse
|
67
|
Mhaidly R, Krug A, Gaulard P, Lemonnier F, Ricci JE, Verhoeyen E. New preclinical models for angioimmunoblastic T-cell lymphoma: filling the GAP. Oncogenesis 2020; 9:73. [PMID: 32796826 PMCID: PMC7427806 DOI: 10.1038/s41389-020-00259-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/24/2020] [Accepted: 07/30/2020] [Indexed: 12/13/2022] Open
Abstract
Mouse models are essential to study and comprehend normal and malignant hematopoiesis. The ideal preclinical model should mimic closely the human malignancy. This means that these mice should recapitulate the clinical behavior of the human diseases such as cancer and therapeutic responses with high reproducibility. In addition, the genetic mutational status, the cell phenotype, the microenvironment of the tumor and the time until tumor development occurs, should be mimicked in a preclinical model. This has been particularly challenging for human angioimmunoblastic lymphoma (AITL), one of the most prominent forms of peripheral T-cell lymphomas. A complex network of interactions between AITL tumor cells and the various cells of the tumor microenvironment has impeded the study of AITL pathogenesis in vitro. Very recently, new mouse models that recapitulate faithfully the major features of human AITL disease have been developed. Here, we provide a summary of the pathology, the transcriptional profile and genetic and immune-phenotypic features of human AITL. In addition, we give an overview of preclinical models that recapitulate more or less faithfully human AITL characteristics and pathology. These recently engineered mouse models were essential in the evaluation of novel therapeutic agents for possible treatment of AITL, a malignancy in urgent need of new treatment options.
Collapse
Affiliation(s)
- Rana Mhaidly
- Université Côte d'Azur, INSERM, C3M, 06204, Nice, France
- Institut Curie, Stress and Cancer Laboratory, Equipe Labellisée par la Ligue Nationale contre le Cancer, PSL Research University, 26, rue d'ULM, F-75248, Paris, France
- Inserm, U830, 26, rue d'ULM, Paris, F-75005, France
| | - Adrien Krug
- Université Côte d'Azur, INSERM, C3M, 06204, Nice, France
| | - Philippe Gaulard
- Université Paris-Est Créteil; Institut Mondor de Recherche Biomédicale, INSERMU955; Institut Mondor de Recherche Biomédicale, INSERMU955, Université Paris Est Créteil, Créteil, France
- Département de Pathologie, Hôpitaux Universitaires Henri Mondor, Assistance publique des Hôpitaux de Paris, Créteil, France
| | - François Lemonnier
- Université Paris-Est Créteil; Institut Mondor de Recherche Biomédicale, INSERMU955; Institut Mondor de Recherche Biomédicale, INSERMU955, Université Paris Est Créteil, Créteil, France
- Unité Hémopathies Lymphoïdes, Hôpitaux Universitaires Henri Mondor, Assistance Publique des Hôpitaux de Paris, Créteil, France
| | | | - Els Verhoeyen
- Université Côte d'Azur, INSERM, C3M, 06204, Nice, France.
- CIRI, Université de Lyon, INSERM U1111, ENS de Lyon, Université Lyon1, CNRS, UMR 5308, 69007, Lyon, France.
| |
Collapse
|
68
|
Chiba S, Sakata-Yanagimoto M. Advances in understanding of angioimmunoblastic T-cell lymphoma. Leukemia 2020; 34:2592-2606. [PMID: 32704161 PMCID: PMC7376827 DOI: 10.1038/s41375-020-0990-y] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/27/2020] [Accepted: 07/14/2020] [Indexed: 12/17/2022]
Abstract
It has been nearly half a century since angioimmunoblastic T-cell lymphoma (AITL) was characterized in the early 1970’s. Our understanding of the disease has dramatically changed due to multiple discoveries and insights. One of the key features of AITL is aberrant immune activity. Although AITL is now understood to be a neoplastic disease, pathologists appreciated that it was an inflammatory condition. The more we understand AITL at cellular and genetic levels, the more we view it as both a neoplastic and an inflammatory disease. Here, we review recent progress in our understanding of AITL, focusing on as yet unsolved questions.
Collapse
Affiliation(s)
- Shigeru Chiba
- Department of Hematology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan.
| | - Mamiko Sakata-Yanagimoto
- Department of Hematology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
| |
Collapse
|