51
|
Convergent evolution in two bacterial replicative helicase loaders. Trends Biochem Sci 2022; 47:620-630. [DOI: 10.1016/j.tibs.2022.02.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 02/06/2022] [Accepted: 02/08/2022] [Indexed: 12/23/2022]
|
52
|
Spaulding Z, Thevarajan I, Schrag LG, Zubcevic L, Zolkiewska A, Zolkiewski M. Human mitochondrial AAA+ ATPase SKD3/CLPB assembles into nucleotide-stabilized dodecamers. Biochem Biophys Res Commun 2022; 602:21-26. [PMID: 35247700 PMCID: PMC8957611 DOI: 10.1016/j.bbrc.2022.02.101] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 02/24/2022] [Indexed: 12/01/2022]
Abstract
SKD3, also known as human CLPB, belongs to the AAA+ family of ATPases associated with various activities. Mutations in the SKD3/CLPB gene cause 3-methylglutaconic aciduria type VII and congenital neutropenia. SKD3 is upregulated in acute myeloid leukemia, where it contributes to anti-cancer drug resistance. SKD3 resides in the mitochondrial intermembrane space, where it forms ATP-dependent high-molecular weight complexes, but its biological function and mechanistic links to the clinical phenotypes are currently unknown. Using sedimentation equilibrium and dynamic light scattering, we show that SKD3 is monomeric at low protein concentration in the absence of nucleotides, but it forms oligomers at higher protein concentration or in the presence of adenine nucleotides. The apparent molecular weight of the nucleotide-bound SKD3 is consistent with self-association of 12 monomers. Image-class analysis and averaging from negative-stain electron microscopy (EM) of SKD3 in the ATP-bound state visualized cylinder-shaped particles with an open central channel along the cylinder axis. The dimensions of the EM-visualized particle suggest that the SKD3 dodecamer is formed by association of two hexameric rings. While hexameric structure has been often observed among AAA+ ATPases, a double-hexamer sandwich found for SKD3 appears uncommon within this protein family. A functional significance of the non-canonical structure of SKD3 remains to be determined.
Collapse
Affiliation(s)
- Zachary Spaulding
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA
| | - Indhujah Thevarajan
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA
| | - Lynn G Schrag
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Lejla Zubcevic
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Anna Zolkiewska
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA
| | - Michal Zolkiewski
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA.
| |
Collapse
|
53
|
Kavalchuk M, Jomaa A, Müller AU, Weber-Ban E. Structural basis of prokaryotic ubiquitin-like protein engagement and translocation by the mycobacterial Mpa-proteasome complex. Nat Commun 2022; 13:276. [PMID: 35022401 PMCID: PMC8755798 DOI: 10.1038/s41467-021-27787-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 12/13/2021] [Indexed: 12/19/2022] Open
Abstract
Proteasomes are present in eukaryotes, archaea and Actinobacteria, including the human pathogen Mycobacterium tuberculosis, where proteasomal degradation supports persistence inside the host. In mycobacteria and other members of Actinobacteria, prokaryotic ubiquitin-like protein (Pup) serves as a degradation tag post-translationally conjugated to target proteins for their recruitment to the mycobacterial proteasome ATPase (Mpa). Here, we use single-particle cryo-electron microscopy to determine the structure of Mpa in complex with the 20S core particle at an early stage of pupylated substrate recruitment, shedding light on the mechanism of substrate translocation. Two conformational states of Mpa show how substrate is translocated stepwise towards the degradation chamber of the proteasome core particle. We also demonstrate, in vitro and in vivo, the importance of a structural feature in Mpa that allows formation of alternating charge-complementary interactions with the proteasome resulting in radial, rail-guided movements during the ATPase conformational cycle. Pup is the bacterial analog of ubiquitin for targeting proteins to the proteasome. Here, the authors use cryoEM to visualize structures of the Mycobacterium tuberculosis proteasome translocating a Pup-tagged substrate.
Collapse
Affiliation(s)
- Mikhail Kavalchuk
- ETH Zurich, Institute of Molecular Biology & Biophysics, CH-8093, Zurich, Switzerland
| | - Ahmad Jomaa
- ETH Zurich, Institute of Molecular Biology & Biophysics, CH-8093, Zurich, Switzerland.
| | - Andreas U Müller
- ETH Zurich, Institute of Molecular Biology & Biophysics, CH-8093, Zurich, Switzerland
| | - Eilika Weber-Ban
- ETH Zurich, Institute of Molecular Biology & Biophysics, CH-8093, Zurich, Switzerland.
| |
Collapse
|
54
|
Arguello T, Peralta S, Antonicka H, Gaidosh G, Diaz F, Tu YT, Garcia S, Shiekhattar R, Barrientos A, Moraes CT. ATAD3A has a scaffolding role regulating mitochondria inner membrane structure and protein assembly. Cell Rep 2021; 37:110139. [PMID: 34936866 PMCID: PMC8785211 DOI: 10.1016/j.celrep.2021.110139] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 09/02/2021] [Accepted: 11/24/2021] [Indexed: 11/30/2022] Open
Abstract
The ATPase Family AAA Domain Containing 3A (ATAD3A), is a mitochondrial inner membrane protein conserved in metazoans. ATAD3A has been associated with several mitochondrial functions, including nucleoid organization, cholesterol metabolism, and mitochondrial translation. To address its primary role, we generated a neuronal-specific conditional knockout (Atad3 nKO) mouse model, which developed a severe encephalopathy by 5 months of age. Pre-symptomatic mice showed aberrant mitochondrial cristae morphogenesis in the cortex as early as 2 months. Using a multi-omics approach in the CNS of 2-to-3-month-old mice, we found early alterations in the organelle membrane structure. We also show that human ATAD3A associates with different components of the inner membrane, including OXPHOS complex I, Letm1, and prohibitin complexes. Stochastic Optical Reconstruction Microscopy (STORM) shows that ATAD3A is regularly distributed along the inner mitochondrial membrane, suggesting a critical structural role in inner mitochondrial membrane and its organization, most likely in an ATPase-dependent manner. Arguello et al. show that deletion of the mitochondrial protein ATAD3 in neurons leads to neuronal loss and death. The earliest phenotype is disruption of the mitochondrial inner membrane structure; OXPHOS complexes are affected later. ATAD3 is regularly spaced and has several interactors at the inner membrane, including CI subunits.
Collapse
Affiliation(s)
- Tania Arguello
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Susana Peralta
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Hana Antonicka
- Department of Human Genetics and Montreal Neurological Institute, McGill University, Montreal, QC H3A 0C7, Canada
| | - Gabriel Gaidosh
- Department of Human Genetics, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Francisca Diaz
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Ya-Ting Tu
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Sofia Garcia
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Ramin Shiekhattar
- Department of Human Genetics, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Antonio Barrientos
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Carlos T Moraes
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
55
|
A viral genome packaging ring-ATPase is a flexibly coordinated pentamer. Nat Commun 2021; 12:6548. [PMID: 34772936 PMCID: PMC8589836 DOI: 10.1038/s41467-021-26800-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 10/21/2021] [Indexed: 01/13/2023] Open
Abstract
Multi-subunit ring-ATPases carry out a myriad of biological functions, including genome packaging in viruses. Though the basic structures and functions of these motors have been well-established, the mechanisms of ATPase firing and motor coordination are poorly understood. Here, using single-molecule fluorescence, we determine that the active bacteriophage T4 DNA packaging motor consists of five subunits of gp17. By systematically doping motors with an ATPase-defective subunit and selecting single motors containing a precise number of active or inactive subunits, we find that the packaging motor can tolerate an inactive subunit. However, motors containing one or more inactive subunits exhibit fewer DNA engagements, a higher failure rate in encapsidation, reduced packaging velocity, and increased pausing. These findings suggest a DNA packaging model in which the motor, by re-adjusting its grip on DNA, can skip an inactive subunit and resume DNA translocation, suggesting that strict coordination amongst motor subunits of packaging motors is not crucial for function.
Collapse
|
56
|
Chen X, Htet ZM, López-Alfonzo E, Martin A, Walters KJ. Proteasome interaction with ubiquitinated substrates: from mechanisms to therapies. FEBS J 2021; 288:5231-5251. [PMID: 33211406 PMCID: PMC8131406 DOI: 10.1111/febs.15638] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 11/10/2020] [Accepted: 11/17/2020] [Indexed: 12/11/2022]
Abstract
The 26S proteasome is responsible for regulated proteolysis in eukaryotic cells. Its substrates are diverse in structure, function, sequence length, and amino acid composition, and are targeted to the proteasome by post-translational modification with ubiquitin. Ubiquitination occurs through a complex enzymatic cascade and can also signal for other cellular events, unrelated to proteasome-catalyzed degradation. Like other post-translational protein modifications, ubiquitination is reversible, with ubiquitin chain hydrolysis catalyzed by the action of deubiquitinating enzymes (DUBs), ~ 90 of which exist in humans and allow for temporal events and dynamic ubiquitin-chain remodeling. DUBs have been known for decades to be an integral part of the proteasome, as deubiquitination is coupled to substrate unfolding and translocation into the internal degradation chamber. Moreover, the proteasome also binds several ubiquitinating enzymes and shuttle factors that recruit ubiquitinated substrates. The role of this intricate machinery and how ubiquitinated substrates interact with proteasomes remains an area of active investigation. Here, we review what has been learned about the mechanisms used by the proteasome to bind ubiquitinated substrates, substrate shuttle factors, ubiquitination machinery, and DUBs. We also discuss many open questions that require further study or the development of innovative approaches to be answered. Finally, we address the promise of expanded therapeutic targeting that could benefit from such new discoveries.
Collapse
Affiliation(s)
- Xiang Chen
- Protein Processing Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Zaw Min Htet
- Department of Molecular and Cell Biology, California Institute for Quantitative Biosciences, University of California at Berkeley, CA, USA
| | - Erika López-Alfonzo
- Department of Molecular and Cell Biology, California Institute for Quantitative Biosciences, University of California at Berkeley, CA, USA
| | - Andreas Martin
- Department of Molecular and Cell Biology, California Institute for Quantitative Biosciences, University of California at Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California at Berkeley, CA, USA
| | - Kylie J Walters
- Protein Processing Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| |
Collapse
|
57
|
Ye X, Mayne L, Englander SW. A conserved strategy for structure change and energy transduction in Hsp104 and other AAA+ protein motors. J Biol Chem 2021; 297:101066. [PMID: 34384781 PMCID: PMC8449053 DOI: 10.1016/j.jbc.2021.101066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 01/09/2023] Open
Abstract
The superfamily of massively large AAA+ protein molecular machines functions to convert the chemical energy of cytosolic ATP into physicomechanical form and use it to perform an extraordinary number of physical operations on proteins, nucleic acids, and membrane systems. Cryo-EM studies now reveal some aspects of substrate handling at high resolution, but the broader interpretation of AAA+ functional properties is still opaque. This paper integrates recent hydrogen exchange results for the typical AAA+ protein Hsp104 with prior information on several near and distantly related others. The analysis points to a widely conserved functional strategy. Hsp104 cycles through a long-lived loosely-structured energy-input "open" state that releases spent ADP and rebinds cytosolic ATP. ATP-binding energy is transduced by allosteric structure change to poise the protein at a high energy level in a more tightly structured "closed" state. The briefly occupied energy-output closed state binds substrate strongly and is catalytically active. ATP hydrolysis permits energetically downhill structural relaxation, which is coupled to drive energy-requiring substrate processing. Other AAA+ proteins appear to cycle through states that are analogous functionally if not in structural detail. These results revise the current model for AAA+ function, explain the structural basis of single-molecule optical tweezer kinetic phases, identify the separate energetic roles of ATP binding and hydrolysis, and specify a sequence of structural and energetic events that carry AAA+ proteins unidirectionally around a functional cycle to propel their diverse physical tasks.
Collapse
Affiliation(s)
- Xiang Ye
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - Leland Mayne
- Department of Biochemistry and Biophysics and Johnson Research Foundation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - S Walter Englander
- Department of Biochemistry and Biophysics and Johnson Research Foundation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
58
|
Nandi P, Li S, Columbres RCA, Wang F, Williams DR, Poh YP, Chou TF, Chiu PL. Structural and Functional Analysis of Disease-Linked p97 ATPase Mutant Complexes. Int J Mol Sci 2021; 22:ijms22158079. [PMID: 34360842 PMCID: PMC8347982 DOI: 10.3390/ijms22158079] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/22/2021] [Accepted: 07/25/2021] [Indexed: 01/14/2023] Open
Abstract
IBMPFD/ALS is a genetic disorder caused by a single amino acid mutation on the p97 ATPase, promoting ATPase activity and cofactor dysregulation. The disease mechanism underlying p97 ATPase malfunction remains unclear. To understand how the mutation alters the ATPase regulation, we assembled a full-length p97R155H with its p47 cofactor and first visualized their structures using single-particle cryo-EM. More than one-third of the population was the dodecameric form. Nucleotide presence dissociates the dodecamer into two hexamers for its highly elevated function. The N-domains of the p97R155H mutant all show up configurations in ADP- or ATPγS-bound states. Our functional and structural analyses showed that the p47 binding is likely to impact the p97R155H ATPase activities via changing the conformations of arginine fingers. These functional and structural analyses underline the ATPase dysregulation with the miscommunication between the functional modules of the p97R155H.
Collapse
Affiliation(s)
- Purbasha Nandi
- Biodesign Center for Applied Structural Discovery, School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA;
| | - Shan Li
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; (S.L.); (R.C.A.C.); (F.W.); (Y.-P.P.)
| | - Rod Carlo A. Columbres
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; (S.L.); (R.C.A.C.); (F.W.); (Y.-P.P.)
| | - Feng Wang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; (S.L.); (R.C.A.C.); (F.W.); (Y.-P.P.)
| | | | - Yu-Ping Poh
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; (S.L.); (R.C.A.C.); (F.W.); (Y.-P.P.)
| | - Tsui-Fen Chou
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; (S.L.); (R.C.A.C.); (F.W.); (Y.-P.P.)
- Correspondence: (T.-F.C.); (P.-L.C.)
| | - Po-Lin Chiu
- Biodesign Center for Applied Structural Discovery, School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA;
- Correspondence: (T.-F.C.); (P.-L.C.)
| |
Collapse
|
59
|
Abstract
The 26S proteasome is the macromolecular machine responsible for the bulk of protein degradation in eukaryotic cells. As it degrades a ubiquitinated protein, the proteasome transitions from a substrate-accepting conformation (s1) to a set of substrate-processing conformations (s3 like), each stabilized by different intramolecular contacts. Tools to study these conformational changes remain limited, and although several interactions have been proposed to be important for stabilizing the proteasome's various conformations, it has been difficult to test these directly under equilibrium conditions. Here, we describe a conformationally sensitive Förster resonance energy transfer assay, in which fluorescent proteins are fused to Sem1 and Rpn6, which are nearer each other in substrate-processing conformations than in the substrate-accepting conformation. Using this assay, we find that two sets of interactions, one involving Rpn5 and another involving Rpn2, are both important for stabilizing substrate-processing conformations. Mutations that disrupt these interactions both destabilize substrate-processing conformations relative to the substrate-accepting conformation and diminish the proteasome's ability to successfully unfold and degrade hard-to-unfold substrates, providing a link between the proteasome's conformational state and its unfolding ability.
Collapse
|
60
|
Prattes M, Grishkovskaya I, Hodirnau VV, Rössler I, Klein I, Hetzmannseder C, Zisser G, Gruber CC, Gruber K, Haselbach D, Bergler H. Structural basis for inhibition of the AAA-ATPase Drg1 by diazaborine. Nat Commun 2021; 12:3483. [PMID: 34108481 PMCID: PMC8190095 DOI: 10.1038/s41467-021-23854-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/20/2021] [Indexed: 02/01/2023] Open
Abstract
The hexameric AAA-ATPase Drg1 is a key factor in eukaryotic ribosome biogenesis and initiates cytoplasmic maturation of the large ribosomal subunit by releasing the shuttling maturation factor Rlp24. Drg1 monomers contain two AAA-domains (D1 and D2) that act in a concerted manner. Rlp24 release is inhibited by the drug diazaborine which blocks ATP hydrolysis in D2. The mode of inhibition was unknown. Here we show the first cryo-EM structure of Drg1 revealing the inhibitory mechanism. Diazaborine forms a covalent bond to the 2'-OH of the nucleotide in D2, explaining its specificity for this site. As a consequence, the D2 domain is locked in a rigid, inactive state, stalling the whole Drg1 hexamer. Resistance mechanisms identified include abolished drug binding and altered positioning of the nucleotide. Our results suggest nucleotide-modifying compounds as potential novel inhibitors for AAA-ATPases.
Collapse
Affiliation(s)
- Michael Prattes
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Irina Grishkovskaya
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter, Vienna, Austria
| | | | - Ingrid Rössler
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Isabella Klein
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | | | - Gertrude Zisser
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | | | - Karl Gruber
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
- Field of Excellence BioHealth - University of Graz, Graz, Austria
| | - David Haselbach
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter, Vienna, Austria.
| | - Helmut Bergler
- Institute of Molecular Biosciences, University of Graz, Graz, Austria.
- BioTechMed-Graz, Graz, Austria.
- Field of Excellence BioHealth - University of Graz, Graz, Austria.
| |
Collapse
|
61
|
A DNA packaging motor inchworms along one strand allowing it to adapt to alternative double-helical structures. Nat Commun 2021; 12:3439. [PMID: 34103515 PMCID: PMC8187434 DOI: 10.1038/s41467-021-23725-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 04/22/2021] [Indexed: 01/29/2023] Open
Abstract
Ring ATPases that translocate disordered polymers possess lock-washer architectures that they impose on their substrates during transport via a hand-over-hand mechanism. Here, we investigate the operation of ring motors that transport ordered, helical substrates, such as the bacteriophage ϕ29 dsDNA packaging motor. This pentameric motor alternates between an ATP loading dwell and a hydrolysis burst wherein it packages one turn of DNA in four steps. When challenged with DNA-RNA hybrids and dsRNA, the motor matches its burst to the shorter helical pitches, keeping three power strokes invariant while shortening the fourth. Intermittently, the motor loses grip on the RNA-containing substrates, indicating that it makes optimal load-bearing contacts with dsDNA. To rationalize these observations, we propose a helical inchworm translocation mechanism in which, during each cycle, the motor increasingly adopts a lock-washer structure during the ATP loading dwell and successively regains its planar form with each power stroke during the burst. Ring ATPase translocases that operate on disordered substrates adopt lockwasher architectures and use a hand-over-hand mechanism. By challenging the dsDNA packaging motor of bacteriophage ϕ29 with hybrid and dsRNA, the authors propose that the motor cycles between planar and lock-washer structures.
Collapse
|
62
|
Abstract
In this Primer, Seraphim and Houry highlight the structural features and functional diversity of AAA+ proteins and summarise our current knowledge of the molecular mechanisms driving the activities of these proteins.
Collapse
Affiliation(s)
- Thiago V Seraphim
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Walid A Houry
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 1M1, Canada; Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada.
| |
Collapse
|
63
|
Jansen RLM, Santana-Molina C, van den Noort M, Devos DP, van der Klei IJ. Comparative Genomics of Peroxisome Biogenesis Proteins: Making Sense of the PEX Proteins. Front Cell Dev Biol 2021; 9:654163. [PMID: 34095119 PMCID: PMC8172628 DOI: 10.3389/fcell.2021.654163] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 04/21/2021] [Indexed: 11/29/2022] Open
Abstract
PEX genes encode proteins involved in peroxisome biogenesis and proliferation. Using a comparative genomics approach, we clarify the evolutionary relationships between the 37 known PEX proteins in a representative set of eukaryotes, including all common model organisms, pathogenic unicellular eukaryotes and human. A large number of previously unknown PEX orthologs were identified. We analyzed all PEX proteins, their conservation and domain architecture and defined the core set of PEX proteins that is required to make a peroxisome. The molecular processes in peroxisome biogenesis in different organisms were put into context, showing that peroxisomes are not static organelles in eukaryotic evolution. Organisms that lack peroxisomes still contain a few PEX proteins, which probably play a role in alternative processes. Finally, the relationships between PEX proteins of two large families, the Pex11 and Pex23 families, were analyzed, thereby contributing to the understanding of their complicated and sometimes incorrect nomenclature. We provide an exhaustive overview of this important eukaryotic organelle.
Collapse
Affiliation(s)
- Renate L M Jansen
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Carlos Santana-Molina
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas, Universidad Pablo de Olavide, Seville, Spain
| | - Marco van den Noort
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Damien P Devos
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas, Universidad Pablo de Olavide, Seville, Spain
| | - Ida J van der Klei
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| |
Collapse
|
64
|
Katikaridis P, Bohl V, Mogk A. Resisting the Heat: Bacterial Disaggregases Rescue Cells From Devastating Protein Aggregation. Front Mol Biosci 2021; 8:681439. [PMID: 34017857 PMCID: PMC8129007 DOI: 10.3389/fmolb.2021.681439] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 04/12/2021] [Indexed: 11/23/2022] Open
Abstract
Bacteria as unicellular organisms are most directly exposed to changes in environmental growth conditions like temperature increase. Severe heat stress causes massive protein misfolding and aggregation resulting in loss of essential proteins. To ensure survival and rapid growth resume during recovery periods bacteria are equipped with cellular disaggregases, which solubilize and reactivate aggregated proteins. These disaggregases are members of the Hsp100/AAA+ protein family, utilizing the energy derived from ATP hydrolysis to extract misfolded proteins from aggregates via a threading activity. Here, we describe the two best characterized bacterial Hsp100/AAA+ disaggregases, ClpB and ClpG, and compare their mechanisms and regulatory modes. The widespread ClpB disaggregase requires cooperation with an Hsp70 partner chaperone, which targets ClpB to protein aggregates. Furthermore, Hsp70 activates ClpB by shifting positions of regulatory ClpB M-domains from a repressed to a derepressed state. ClpB activity remains tightly controlled during the disaggregation process and high ClpB activity states are likely restricted to initial substrate engagement. The recently identified ClpG (ClpK) disaggregase functions autonomously and its activity is primarily controlled by substrate interaction. ClpG provides enhanced heat resistance to selected bacteria including pathogens by acting as a more powerful disaggregase. This disaggregase expansion reflects an adaption of bacteria to extreme temperatures experienced during thermal based sterilization procedures applied in food industry and medicine. Genes encoding for ClpG are transmissible by horizontal transfer, allowing for rapid spreading of extreme bacterial heat resistance and posing a threat to modern food production.
Collapse
Affiliation(s)
- Panagiotis Katikaridis
- Center for Molecular Biology of the Heidelberg University and German Cancer Research Center, DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Valentin Bohl
- Center for Molecular Biology of the Heidelberg University and German Cancer Research Center, DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Axel Mogk
- Center for Molecular Biology of the Heidelberg University and German Cancer Research Center, DKFZ-ZMBH Alliance, Heidelberg, Germany
| |
Collapse
|
65
|
Subramanian S, Gorday K, Marcus K, Orellana MR, Ren P, Luo XR, O'Donnell ME, Kuriyan J. Allosteric communication in DNA polymerase clamp loaders relies on a critical hydrogen-bonded junction. eLife 2021; 10:e66181. [PMID: 33847559 PMCID: PMC8121543 DOI: 10.7554/elife.66181] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/03/2021] [Indexed: 02/06/2023] Open
Abstract
Clamp loaders are AAA+ ATPases that load sliding clamps onto DNA. We mapped the mutational sensitivity of the T4 bacteriophage sliding clamp and clamp loader by deep mutagenesis, and found that residues not involved in catalysis or binding display remarkable tolerance to mutation. An exception is a glutamine residue in the AAA+ module (Gln 118) that is not located at a catalytic or interfacial site. Gln 118 forms a hydrogen-bonded junction in a helical unit that we term the central coupler, because it connects the catalytic centers to DNA and the sliding clamp. A suppressor mutation indicates that hydrogen bonding in the junction is important, and molecular dynamics simulations reveal that it maintains rigidity in the central coupler. The glutamine-mediated junction is preserved in diverse AAA+ ATPases, suggesting that a connected network of hydrogen bonds that links ATP molecules is an essential aspect of allosteric communication in these proteins.
Collapse
Affiliation(s)
- Subu Subramanian
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- California Institute for Quantitative Biosciences (QB3), University of California, BerkeleyBerkeleyUnited States
- Howard Hughes Medical Institute, University of California, BerkeleyBerkeleyUnited States
| | - Kent Gorday
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- California Institute for Quantitative Biosciences (QB3), University of California, BerkeleyBerkeleyUnited States
- Biophysics Graduate Group, University of California, BerkeleyBerkeleyUnited States
| | - Kendra Marcus
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- California Institute for Quantitative Biosciences (QB3), University of California, BerkeleyBerkeleyUnited States
| | - Matthew R Orellana
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- California Institute for Quantitative Biosciences (QB3), University of California, BerkeleyBerkeleyUnited States
| | - Peter Ren
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- California Institute for Quantitative Biosciences (QB3), University of California, BerkeleyBerkeleyUnited States
| | - Xiao Ran Luo
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- California Institute for Quantitative Biosciences (QB3), University of California, BerkeleyBerkeleyUnited States
| | - Michael E O'Donnell
- Howard Hughes Medical Institute, Rockefeller UniversityNew YorkUnited States
| | - John Kuriyan
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- California Institute for Quantitative Biosciences (QB3), University of California, BerkeleyBerkeleyUnited States
- Howard Hughes Medical Institute, University of California, BerkeleyBerkeleyUnited States
- Department of Chemistry, University of California, BerkeleyBerkeleyUnited States
- Physical Biosciences Division, Lawrence Berkeley National LaboratoryBerkeleyUnited States
| |
Collapse
|
66
|
Frazier MN, Pillon MC, Kocaman S, Gordon J, Stanley RE. Structural overview of macromolecular machines involved in ribosome biogenesis. Curr Opin Struct Biol 2021; 67:51-60. [PMID: 33099228 PMCID: PMC8058114 DOI: 10.1016/j.sbi.2020.09.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/04/2020] [Accepted: 09/08/2020] [Indexed: 12/17/2022]
Abstract
The production of ribosomes is essential for ensuring the translational capacity of cells. Because of its high energy demand ribosome production is subject to stringent cellular controls. Hundreds of ribosome assembly factors are required to facilitate assembly of nascent ribosome particles with high fidelity. Many ribosome assembly factors organize into macromolecular machines that drive complex steps of the production pathway. Recent advances in structural biology, in particular cryo-EM, have provided detailed information about the structure and function of these higher order enzymatic assemblies. Here, we summarize recent structures revealing molecular insight into these macromolecular machines with an emphasis on the interplay between discrete active sites.
Collapse
Affiliation(s)
- Meredith N Frazier
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Monica C Pillon
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Seda Kocaman
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Jacob Gordon
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Robin E Stanley
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
67
|
Cupido T, Jones NH, Grasso MJ, Pisa R, Kapoor TM. A chemical genetics approach to examine the functions of AAA proteins. Nat Struct Mol Biol 2021; 28:388-397. [PMID: 33782614 DOI: 10.1038/s41594-021-00575-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 02/18/2021] [Indexed: 12/12/2022]
Abstract
The structural conservation across the AAA (ATPases associated with diverse cellular activities) protein family makes designing selective chemical inhibitors challenging. Here, we identify a triazolopyridine-based fragment that binds the AAA domain of human katanin, a microtubule-severing protein. We have developed a model for compound binding and designed ASPIR-1 (allele-specific, proximity-induced reactivity-based inhibitor-1), a cell-permeable compound that selectively inhibits katanin with an engineered cysteine mutation. Only in cells expressing mutant katanin does ASPIR-1 treatment increase the accumulation of CAMSAP2 at microtubule minus ends, confirming specific on-target cellular activity. Importantly, ASPIR-1 also selectively inhibits engineered cysteine mutants of human VPS4B and FIGL1-AAA proteins, involved in organelle dynamics and genome stability, respectively. Structural studies confirm our model for compound binding at the AAA ATPase site and the proximity-induced reactivity-based inhibition. Together, our findings suggest a chemical genetics approach to decipher AAA protein functions across essential cellular processes and to test hypotheses for developing therapeutics.
Collapse
Affiliation(s)
- Tommaso Cupido
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY, USA
| | - Natalie H Jones
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY, USA.,Tri-Institutional PhD Program in Chemical Biology, The Rockefeller University, New York, NY, USA
| | - Michael J Grasso
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY, USA
| | - Rudolf Pisa
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY, USA.,Tri-Institutional PhD Program in Chemical Biology, The Rockefeller University, New York, NY, USA
| | - Tarun M Kapoor
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
68
|
Katikaridis P, Römling U, Mogk A. Basic mechanism of the autonomous ClpG disaggregase. J Biol Chem 2021; 296:100460. [PMID: 33639171 PMCID: PMC8024975 DOI: 10.1016/j.jbc.2021.100460] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/05/2021] [Accepted: 02/23/2021] [Indexed: 01/19/2023] Open
Abstract
Bacterial survival during lethal heat stress relies on the cellular ability to reactivate aggregated proteins. This activity is typically executed by the canonical 70-kDa heat shock protein (Hsp70)–ClpB bichaperone disaggregase, which is most widespread in bacteria. The ClpB disaggregase is a member of the ATPase associated with diverse cellular activities protein family and exhibits an ATP-driven threading activity. Substrate binding and stimulation of ATP hydrolysis depends on the Hsp70 partner, which initiates the disaggregation reaction. Recently elevated heat resistance in gamma-proteobacterial species was shown to be mediated by the ATPase associated with diverse cellular activities protein ClpG as an alternative disaggregase. Pseudomonas aeruginosa ClpG functions autonomously and does not cooperate with Hsp70 for substrate binding, enhanced ATPase activity, and disaggregation. With the underlying molecular basis largely unknown, the fundamental differences in ClpG- and ClpB-dependent disaggregation are reflected by the presence of sequence alterations and additional ClpG-specific domains. By analyzing the effects of mutants lacking ClpG-specific domains and harboring mutations in conserved motifs implicated in ATP hydrolysis and substrate threading, we show that the N-terminal, ClpG-specific N1 domain generally mediates protein aggregate binding as the molecular basis of autonomous disaggregation activity. Peptide substrate binding strongly stimulates ClpG ATPase activity by overriding repression by the N-terminal N1 and N2 domains. High ATPase activity requires two functional nucleotide binding domains and drives substrate threading which ultimately extracts polypeptides from the aggregate. ClpG ATPase and disaggregation activity is thereby directly controlled by substrate availability.
Collapse
Affiliation(s)
- Panagiotis Katikaridis
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany; German Cancer Research Center (DKFZ), A250 Chaperones and Proteases, Heidelberg, Germany
| | - Ute Römling
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Axel Mogk
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany; German Cancer Research Center (DKFZ), A250 Chaperones and Proteases, Heidelberg, Germany.
| |
Collapse
|
69
|
Jessop M, Felix J, Gutsche I. AAA+ ATPases: structural insertions under the magnifying glass. Curr Opin Struct Biol 2021; 66:119-128. [PMID: 33246198 PMCID: PMC7973254 DOI: 10.1016/j.sbi.2020.10.027] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/19/2020] [Accepted: 10/27/2020] [Indexed: 11/29/2022]
Abstract
AAA+ ATPases are a diverse protein superfamily which power a vast number of cellular processes, from protein degradation to genome replication and ribosome biogenesis. The latest advances in cryo-EM have resulted in a spectacular increase in the number and quality of AAA+ ATPase structures. This abundance of new information enables closer examination of different types of structural insertions into the conserved core, revealing discrepancies in the current classification of AAA+ modules into clades. Additionally, combined with biochemical data, it has allowed rapid progress in our understanding of structure-functional relationships and provided arguments both in favour and against the existence of a unifying molecular mechanism for the ATPase activity and action on substrates, stimulating further intensive research.
Collapse
Affiliation(s)
- Matthew Jessop
- Institut de Biologie Structurale, Univ. Grenoble Alpes, CEA, CNRS, IBS, 71 Avenue des martyrs, F-38044 Grenoble, France.
| | - Jan Felix
- Institut de Biologie Structurale, Univ. Grenoble Alpes, CEA, CNRS, IBS, 71 Avenue des martyrs, F-38044 Grenoble, France
| | - Irina Gutsche
- Institut de Biologie Structurale, Univ. Grenoble Alpes, CEA, CNRS, IBS, 71 Avenue des martyrs, F-38044 Grenoble, France.
| |
Collapse
|
70
|
Kang ZH, Liu YT, Gou Y, Deng QR, Hu ZY, Li GR. Progress and prospect of single-molecular ClpX ATPase researching system-a mini-review. Gene 2021; 774:145420. [PMID: 33434627 DOI: 10.1016/j.gene.2021.145420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/04/2020] [Accepted: 01/05/2021] [Indexed: 11/28/2022]
Abstract
ClpXP in Escherichia coli is a proteasome degrading protein substrates. It consists of one hexamer of ATPase (ClpX) and two heptamers of peptidase (ClpP). The ClpX binds ATP and translocates the substrate protein into the ClpP chamber by binding and hydrolysis of ATP. At single molecular level, ClpX harnesses cycles of power stroke (dwell and burst) to unfold the substrates, then releases the ADP and Pi. Based on the construction and function of ClpXP, especially the recent progress on how ClpX unfold protein substrates, in this mini-review, a currently proposed single ClpX molecular model system detected by optical tweezers, and its prospective for the elucidation of the mechanism of force generation of ClpX in its power stroke and the subunit interaction with each other, were discussed in detail.
Collapse
Affiliation(s)
- Zhen-Hui Kang
- School of Bioengineering, Sichuan University of Science & Engineering, Yibin 644005, Sichuan, China.
| | - Yi-Ting Liu
- School of Bioengineering, Sichuan University of Science & Engineering, Yibin 644005, Sichuan, China
| | - Yang Gou
- School of Bioengineering, Sichuan University of Science & Engineering, Yibin 644005, Sichuan, China
| | - Qi-Rui Deng
- School of Bioengineering, Sichuan University of Science & Engineering, Yibin 644005, Sichuan, China
| | - Zi-Yu Hu
- School of Bioengineering, Sichuan University of Science & Engineering, Yibin 644005, Sichuan, China
| | - Guan-Rong Li
- Southwest University, Beibei 400716, Chongqing, China.
| |
Collapse
|
71
|
Hajredini F, Piserchio A, Ghose R. Long-range dynamic correlations regulate the catalytic activity of the bacterial tyrosine kinase Wzc. SCIENCE ADVANCES 2020; 6:eabd3718. [PMID: 33355134 PMCID: PMC11206214 DOI: 10.1126/sciadv.abd3718] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 11/04/2020] [Indexed: 06/12/2023]
Abstract
BY-kinases represent a highly conserved family of protein tyrosine kinases unique to bacteria without eukaryotic orthologs. BY-kinases are regulated by oligomerization-enabled transphosphorylation on a C-terminal tyrosine cluster through a process with sparse mechanistic detail. Using the catalytic domain (CD) of the archetypal BY-kinase, Escherichia coli Wzc, and enhanced-sampling molecular dynamics simulations, isothermal titration calorimetry and nuclear magnetic resonance measurements, we propose a mechanism for its activation and nucleotide exchange. We find that the monomeric Wzc CD preferentially populates states characterized by distortions at its oligomerization interfaces and by catalytic element conformations that allow high-affinity interactions with ADP but not with ATP·Mg2+ We propose that oligomer formation stabilizes the intermonomer interfaces and results in catalytic element conformations suitable for optimally engaging ATP·Mg2+, facilitating exchange with bound ADP. This sequence of events, oligomerization, i.e., substrate binding, before engaging ATP·Mg2+, facilitates optimal autophosphorylation by preventing a futile cycle of ATP hydrolysis.
Collapse
Affiliation(s)
- Fatlum Hajredini
- Department of Chemistry and Biochemistry, The City College of New York, New York, NY 10031, USA
- PhD Program in Biochemistry, The Graduate Center of CUNY, New York, NY 10016, USA
| | - Andrea Piserchio
- Department of Chemistry and Biochemistry, The City College of New York, New York, NY 10031, USA
| | - Ranajeet Ghose
- Department of Chemistry and Biochemistry, The City College of New York, New York, NY 10031, USA.
- PhD Program in Biochemistry, The Graduate Center of CUNY, New York, NY 10016, USA
- PhD Program in Chemistry, The Graduate Center of CUNY, New York, NY 10016, USA
- PhD Program in Physics, The Graduate Center of CUNY, New York, NY 10016, USA
| |
Collapse
|
72
|
Bai R, Wan R, Yan C, Jia Q, Lei J, Shi Y. Mechanism of spliceosome remodeling by the ATPase/helicase Prp2 and its coactivator Spp2. Science 2020; 371:science.abe8863. [PMID: 33243853 DOI: 10.1126/science.abe8863] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 11/04/2020] [Indexed: 01/01/2023]
Abstract
Spliceosome remodeling, executed by conserved adenosine triphosphatase (ATPase)/helicases including Prp2, enables precursor messenger RNA (pre-mRNA) splicing. However, the structural basis for the function of the ATPase/helicases remains poorly understood. Here, we report atomic structures of Prp2 in isolation, Prp2 complexed with its coactivator Spp2, and Prp2-loaded activated spliceosome and the results of structure-guided biochemical analysis. Prp2 weakly associates with the spliceosome and cannot function without Spp2, which stably associates with Prp2 and anchors on the spliceosome, thus tethering Prp2 to the activated spliceosome and allowing Prp2 to function. Pre-mRNA is loaded into a featured channel between the N and C halves of Prp2, where Leu536 from the N half and Arg844 from the C half prevent backward sliding of pre-mRNA toward its 5'-end. Adenosine 5'-triphosphate binding and hydrolysis trigger interdomain movement in Prp2, which drives unidirectional stepwise translocation of pre-mRNA toward its 3'-end. These conserved mechanisms explain the coupling of spliceosome remodeling to pre-mRNA splicing.
Collapse
Affiliation(s)
- Rui Bai
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang Province, China.,Westlake Laboratory of Life Sciences and Biomedicine, Xihu District, Hangzhou 310024, Zhejiang Province, China.,Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Xihu District, Hangzhou 310024, Zhejiang Province, China
| | - Ruixue Wan
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang Province, China. .,Westlake Laboratory of Life Sciences and Biomedicine, Xihu District, Hangzhou 310024, Zhejiang Province, China.,Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Xihu District, Hangzhou 310024, Zhejiang Province, China
| | - Chuangye Yan
- Beijing Advanced Innovation Center for Structural Biology and Advanced Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qi Jia
- Beijing Advanced Innovation Center for Structural Biology and Advanced Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jianlin Lei
- Beijing Advanced Innovation Center for Structural Biology and Advanced Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.,Technology Center for Protein Sciences, Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yigong Shi
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang Province, China. .,Westlake Laboratory of Life Sciences and Biomedicine, Xihu District, Hangzhou 310024, Zhejiang Province, China.,Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Xihu District, Hangzhou 310024, Zhejiang Province, China.,Beijing Advanced Innovation Center for Structural Biology and Advanced Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
73
|
Fercher C, Zacchi LF. Resolving the TorsinA Oligomerization Conundrum: The Glycan Hypothesis. Front Mol Biosci 2020; 7:585643. [PMID: 33134321 PMCID: PMC7567157 DOI: 10.3389/fmolb.2020.585643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/14/2020] [Indexed: 11/13/2022] Open
Abstract
TorsinA is a AAA+ ATPase involved in the severe neurological disease Early Onset Torsion Dystonia. Despite the impressive progress in the field in the recent years, the structural organization and function of this intriguing molecule is still not clear. One outstanding difference between torsinA and other AAA+ ATPases is that torsinA is a glycoprotein. TorsinA N-linked glycans impact torsinA biogenesis and subcellular localization. Here, we propose that torsinA glycans also modulate torsinA oligomerization properties. We used structural modeling to test this idea, and show that N-linked glycans appear to restrict torsinA's ability to form closed homohexameric ring assemblies, and instead promote an open hexameric conformation that allows torsinA interaction with key cofactors required for ATP hydrolysis. This mechanism would make torsinA a prime example of Nature's sophisticated molecular glycoengineering.
Collapse
Affiliation(s)
- Christian Fercher
- Australian Research Council (ARC), Training Centre for Biopharmaceutical Innovation, The University of Queensland, St Lucia, QLD, Australia
| | - Lucía F Zacchi
- Australian Research Council (ARC), Training Centre for Biopharmaceutical Innovation, The University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
74
|
Scull NW, Lucius AL. Kinetic Analysis of AAA+ Translocases by Combined Fluorescence and Anisotropy Methods. Biophys J 2020; 119:1335-1350. [PMID: 32997959 DOI: 10.1016/j.bpj.2020.08.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 08/03/2020] [Accepted: 08/17/2020] [Indexed: 11/30/2022] Open
Abstract
The multitude of varied, energy-dependent processes that exist in the cell necessitate a diverse array of macromolecular machines to maintain homeostasis, allow for growth, and facilitate reproduction. ATPases associated with various cellular activity are a set of protein assemblies that function as molecular motors to couple the energy of nucleoside triphosphate binding and hydrolysis to mechanical movement along a polymer lattice. A recent boom in structural insights into these motors has led to structural hypotheses on how these motors fulfill their function. However, in many cases, we lack direct kinetic measurements of the dynamic processes these motors undergo as they transition between observed structural states. Consequently, there is a need for improved techniques for testing the structural hypotheses in solution. Here, we apply transient-state fluorescence anisotropy and total fluorescence stopped-flow methods to the analysis of polypeptide translocation catalyzed by these ATPase motors. We specifically focus on the Hsp100-Clp protein system of ClpA, which is a well-studied, model ATPases associated with various cellular activity system that has both eukaryotic and archaea homologs. Using this system, we show that we can reproduce previously established kinetic parameters from the simultaneous analysis of fluorescence anisotropy and total fluorescence and overcome previous limitations of our previous approach. Specifically, for the first time, to our knowledge, we obtain quantitative interpretations of the translocation of polypeptide substrates longer than 100 aa.
Collapse
Affiliation(s)
- Nathaniel W Scull
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama
| | - Aaron L Lucius
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama.
| |
Collapse
|
75
|
Long-range intramolecular allostery and regulation in the dynein-like AAA protein Mdn1. Proc Natl Acad Sci U S A 2020; 117:18459-18469. [PMID: 32694211 DOI: 10.1073/pnas.2002792117] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Mdn1 is an essential mechanoenzyme that uses the energy from ATP hydrolysis to physically reshape and remodel, and thus mature, the 60S subunit of the ribosome. This massive (>500 kDa) protein has an N-terminal AAA (ATPase associated with diverse cellular activities) ring, which, like dynein, has six ATPase sites. The AAA ring is followed by large (>2,000 aa) linking domains that include an ∼500-aa disordered (D/E-rich) region, and a C-terminal substrate-binding MIDAS domain. Recent models suggest that intramolecular docking of the MIDAS domain onto the AAA ring is required for Mdn1 to transmit force to its ribosomal substrates, but it is not currently understood what role the linking domains play, or why tethering the MIDAS domain to the AAA ring is required for protein function. Here, we use chemical probes, single-particle electron microscopy, and native mass spectrometry to study the AAA and MIDAS domains separately or in combination. We find that Mdn1 lacking the D/E-rich and MIDAS domains retains ATP and chemical probe binding activities. Free MIDAS domain can bind to the AAA ring of this construct in a stereo-specific bimolecular interaction, and, interestingly, this binding reduces ATPase activity. Whereas intramolecular MIDAS docking appears to require a treatment with a chemical inhibitor or preribosome binding, bimolecular MIDAS docking does not. Hence, tethering the MIDAS domain to the AAA ring serves to prevent, rather than promote, MIDAS docking in the absence of inducing signals.
Collapse
|
76
|
Frazier AE, Compton AG, Kishita Y, Hock DH, Welch AE, Amarasekera SSC, Rius R, Formosa LE, Imai-Okazaki A, Francis D, Wang M, Lake NJ, Tregoning S, Jabbari JS, Lucattini A, Nitta KR, Ohtake A, Murayama K, Amor DJ, McGillivray G, Wong FY, van der Knaap MS, Jeroen Vermeulen R, Wiltshire EJ, Fletcher JM, Lewis B, Baynam G, Ellaway C, Balasubramaniam S, Bhattacharya K, Freckmann ML, Arbuckle S, Rodriguez M, Taft RJ, Sadedin S, Cowley MJ, Minoche AE, Calvo SE, Mootha VK, Ryan MT, Okazaki Y, Stroud DA, Simons C, Christodoulou J, Thorburn DR. Fatal perinatal mitochondrial cardiac failure caused by recurrent de novo duplications in the ATAD3 locus. MED 2020; 2:49-73. [PMID: 33575671 DOI: 10.1016/j.medj.2020.06.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background In about half of all patients with a suspected monogenic disease, genomic investigations fail to identify the diagnosis. A contributing factor is the difficulty with repetitive regions of the genome, such as those generated by segmental duplications. The ATAD3 locus is one such region, in which recessive deletions and dominant duplications have recently been reported to cause lethal perinatal mitochondrial diseases characterized by pontocerebellar hypoplasia or cardiomyopathy, respectively. Methods Whole exome, whole genome and long-read DNA sequencing techniques combined with studies of RNA and quantitative proteomics were used to investigate 17 subjects from 16 unrelated families with suspected mitochondrial disease. Findings We report six different de novo duplications in the ATAD3 gene locus causing a distinctive presentation including lethal perinatal cardiomyopathy, persistent hyperlactacidemia, and frequently corneal clouding or cataracts and encephalopathy. The recurrent 68 Kb ATAD3 duplications are identifiable from genome and exome sequencing but usually missed by microarrays. The ATAD3 duplications result in the formation of identical chimeric ATAD3A/ATAD3C proteins, altered ATAD3 complexes and a striking reduction in mitochondrial oxidative phosphorylation complex I and its activity in heart tissue. Conclusions ATAD3 duplications appear to act in a dominant-negative manner and the de novo inheritance infers a low recurrence risk for families, unlike most pediatric mitochondrial diseases. More than 350 genes underlie mitochondrial diseases. In our experience the ATAD3 locus is now one of the five most common causes of nuclear-encoded pediatric mitochondrial disease but the repetitive nature of the locus means ATAD3 diagnoses may be frequently missed by current genomic strategies. Funding Australian NHMRC, US Department of Defense, Japanese AMED and JSPS agencies, Australian Genomics Health Alliance and Australian Mito Foundation.
Collapse
Affiliation(s)
- Ann E Frazier
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, VIC 3052, Australia.,These authors contributed equally: A.E. Frazier, A.G. Compton
| | - Alison G Compton
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, VIC 3052, Australia.,These authors contributed equally: A.E. Frazier, A.G. Compton
| | - Yoshihito Kishita
- Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Juntendo University, Graduate School of Medicine, Tokyo, 113-8421, Japan
| | - Daniella H Hock
- Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, VIC 3052, Australia
| | - AnneMarie E Welch
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia
| | - Sumudu S C Amarasekera
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Rocio Rius
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Luke E Formosa
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia
| | - Atsuko Imai-Okazaki
- Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Juntendo University, Graduate School of Medicine, Tokyo, 113-8421, Japan.,Division of Genomic Medicine Research, Medical Genomics Center, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - David Francis
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia
| | - Min Wang
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia
| | - Nicole J Lake
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, VIC 3052, Australia.,Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Simone Tregoning
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia.,Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia
| | - Jafar S Jabbari
- Australian Genome Research Facility Ltd, Victorian Comprehensive Cancer Centre, Melbourne VIC 3052, Australia
| | - Alexis Lucattini
- Australian Genome Research Facility Ltd, Victorian Comprehensive Cancer Centre, Melbourne VIC 3052, Australia
| | - Kazuhiro R Nitta
- Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Juntendo University, Graduate School of Medicine, Tokyo, 113-8421, Japan
| | - Akira Ohtake
- Department of Pediatrics & Clinical Genomics, Saitama Medical University Hospital, Saitama, 350-0495, Japan
| | - Kei Murayama
- Department of Metabolism, Chiba Children's Hospital, Chiba, 266-0007, Japan
| | - David J Amor
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, VIC 3052, Australia
| | - George McGillivray
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia
| | - Flora Y Wong
- Ritchie Centre, Hudson Institute of Medical Research; Department of Paediatrics, Monash University; and Monash Newborn, Monash Children's Hospital, Melbourne, VIC 3168, Australia
| | - Marjo S van der Knaap
- Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam Neuroscience, 1081 HV Amsterdam, The Netherlands.,Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit and Amsterdam Neuroscience, 1081 HV Amsterdam, The Netherlands
| | - R Jeroen Vermeulen
- Department of Neurology, Maastricht University Medical Center, 6229 HX, Maastricht, The Netherlands
| | - Esko J Wiltshire
- Department of Paediatrics and Child Health, University of Otago Wellington and Capital and Coast District Health Board, Wellington 6021, New Zealand
| | - Janice M Fletcher
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA 5000, Australia
| | - Barry Lewis
- Department of Clinical Biochemistry, PathWest Laboratory Medicine Western Australia, Nedlands, WA 6009, Australia
| | - Gareth Baynam
- Western Australian Register of Developmental Anomalies and Genetic Services of Western Australia and King Edward Memorial Hospital for Women Perth, Subiaco, WA 6008, Australia.,Telethon Kids Institute and School of Paediatrics and Child Health, The University of Western Australia, Perth, WA 6009, Australia
| | - Carolyn Ellaway
- Genetic Metabolic Disorders Service, Sydney Children's Hospital Network, The Children's Hospital at Westmead, Sydney, NSW 2145, Australia.,Disciplines of Genomic Medicine and Child and Adolescent Health, Sydney Medical School, University of Sydney, NSW 2145, Australia
| | - Shanti Balasubramaniam
- Genetic Metabolic Disorders Service, Sydney Children's Hospital Network, The Children's Hospital at Westmead, Sydney, NSW 2145, Australia
| | - Kaustuv Bhattacharya
- Genetic Metabolic Disorders Service, Sydney Children's Hospital Network, The Children's Hospital at Westmead, Sydney, NSW 2145, Australia.,Disciplines of Genomic Medicine and Child and Adolescent Health, Sydney Medical School, University of Sydney, NSW 2145, Australia
| | | | - Susan Arbuckle
- Department of Histopathology, The Children's Hospital at Westmead, Sydney Children's Hospital Network, Sydney, NSW 2145, Australia
| | - Michael Rodriguez
- Discipline of Pathology, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | | | - Simon Sadedin
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia.,Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia
| | - Mark J Cowley
- Children's Cancer Institute, Kensington, NSW 2750, Australia; St Vincent's Clinical School, UNSW Sydney, Darlinghurst, NSW 2010, Australia.,Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
| | - André E Minoche
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
| | - Sarah E Calvo
- Broad Institute, Cambridge, MA 02142, USA; Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02446, USA
| | - Vamsi K Mootha
- Broad Institute, Cambridge, MA 02142, USA; Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02446, USA
| | - Michael T Ryan
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia
| | - Yasushi Okazaki
- Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Juntendo University, Graduate School of Medicine, Tokyo, 113-8421, Japan
| | - David A Stroud
- Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Cas Simons
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia.,Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072 Australia
| | - John Christodoulou
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, VIC 3052, Australia.,Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia.,Disciplines of Genomic Medicine and Child and Adolescent Health, Sydney Medical School, University of Sydney, NSW 2145, Australia
| | - David R Thorburn
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, VIC 3052, Australia.,Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia.,Lead contact
| |
Collapse
|
77
|
The AAA+ ATPase Msp1 is a processive protein translocase with robust unfoldase activity. Proc Natl Acad Sci U S A 2020; 117:14970-14977. [PMID: 32541053 DOI: 10.1073/pnas.1920109117] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Msp1 is a conserved eukaryotic AAA+ ATPase localized to the outer mitochondrial membrane, where it is thought to extract mislocalized tail-anchored proteins. Despite recent in vivo and in vitro studies supporting this function, a mechanistic understanding of how Msp1 extracts its substrates is still lacking. Msp1's ATPase activity depends on its hexameric state, and previous characterizations of the cytosolic AAA+ domain in vitro had proved challenging due to its monomeric nature in the absence of the transmembrane domain. Here, we used a hexamerization scaffold to study the substrate-processing mechanism of the soluble Msp1 motor, the functional homo-hexameric state of which was confirmed by negative-stain electron microscopy. We demonstrate that Msp1 is a robust bidirectional protein translocase that is able to unfold diverse substrates by processive threading through its central pore. This unfoldase activity is inhibited by Pex3, a membrane protein proposed to regulate Msp1 at the peroxisome.
Collapse
|
78
|
Crossing the Vacuolar Rubicon: Structural Insights into Effector Protein Trafficking in Apicomplexan Parasites. Microorganisms 2020; 8:microorganisms8060865. [PMID: 32521667 PMCID: PMC7355975 DOI: 10.3390/microorganisms8060865] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/01/2020] [Accepted: 06/05/2020] [Indexed: 12/13/2022] Open
Abstract
Apicomplexans form a large phylum of parasitic protozoa, including the genera Plasmodium, Toxoplasma, and Cryptosporidium, the causative agents of malaria, toxoplasmosis, and cryptosporidiosis, respectively. They cause diseases not only in humans but also in animals, with dramatic consequences in agriculture. Most apicomplexans are vacuole-dwelling and obligate intracellular parasites; as they invade the host cell, they become encased in a parasitophorous vacuole (PV) derived from the host cellular membrane. This creates a parasite-host interface that acts as a protective barrier but also constitutes an obstacle through which the pathogen must import nutrients, eliminate wastes, and eventually break free upon egress. Completion of the parasitic life cycle requires intense remodeling of the infected host cell. Host cell subversion is mediated by a subset of essential effector parasitic proteins and virulence factors actively trafficked across the PV membrane. In the malaria parasite Plasmodium, a unique and highly specialized ATP-driven vacuolar secretion system, the Plasmodium translocon of exported proteins (PTEX), transports effector proteins across the vacuolar membrane. Its core is composed of the three essential proteins EXP2, PTEX150, and HSP101, and is supplemented by the two auxiliary proteins TRX2 and PTEX88. Many but not all secreted malarial effector proteins contain a vacuolar trafficking signal or Plasmodium export element (PEXEL) that requires processing by an endoplasmic reticulum protease, plasmepsin V, for proper export. Because vacuolar parasitic protein export is essential to parasite survival and virulence, this pathway is a promising target for the development of novel antimalarial therapeutics. This review summarizes the current state of structural and mechanistic knowledge on the Plasmodium parasitic vacuolar secretion and effector trafficking pathway, describing its most salient features and discussing the existing differences and commonalities with the vacuolar effector translocation MYR machinery recently described in Toxoplasma and other apicomplexans of significance to medical and veterinary sciences.
Collapse
|
79
|
Shin M, Puchades C, Asmita A, Puri N, Adjei E, Wiseman RL, Karzai AW, Lander GC. Structural basis for distinct operational modes and protease activation in AAA+ protease Lon. SCIENCE ADVANCES 2020; 6:eaba8404. [PMID: 32490208 PMCID: PMC7239648 DOI: 10.1126/sciadv.aba8404] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 03/09/2020] [Indexed: 05/21/2023]
Abstract
Substrate-bound structures of AAA+ protein translocases reveal a conserved asymmetric spiral staircase architecture wherein a sequential ATP hydrolysis cycle drives hand-over-hand substrate translocation. However, this configuration is unlikely to represent the full conformational landscape of these enzymes, as biochemical studies suggest distinct conformational states depending on the presence or absence of substrate. Here, we used cryo-electron microscopy to determine structures of the Yersinia pestis Lon AAA+ protease in the absence and presence of substrate, uncovering the mechanistic basis for two distinct operational modes. In the absence of substrate, Lon adopts a left-handed, "open" spiral organization with autoinhibited proteolytic active sites. Upon the addition of substrate, Lon undergoes a reorganization to assemble an enzymatically active, right-handed "closed" conformer with active protease sites. These findings define the mechanistic principles underlying the operational plasticity required for processing diverse protein substrates.
Collapse
Affiliation(s)
- Mia Shin
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Cristina Puchades
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ananya Asmita
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - Neha Puri
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - Eric Adjei
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - R. Luke Wiseman
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - A. Wali Karzai
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - Gabriel C. Lander
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
80
|
Lopez KE, Rizo AN, Tse E, Lin J, Scull NW, Thwin AC, Lucius AL, Shorter J, Southworth DR. Conformational plasticity of the ClpAP AAA+ protease couples protein unfolding and proteolysis. Nat Struct Mol Biol 2020; 27:406-416. [PMID: 32313240 PMCID: PMC7529148 DOI: 10.1038/s41594-020-0409-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 03/09/2020] [Indexed: 11/09/2022]
Abstract
The ClpAP complex is a conserved bacterial protease that unfolds and degrades proteins targeted for destruction. The ClpA double-ring hexamer powers substrate unfolding and translocation into the ClpP proteolytic chamber. Here, we determined high-resolution structures of wild-type Escherichia coli ClpAP undergoing active substrate unfolding and proteolysis. A spiral of pore loop-substrate contacts spans both ClpA AAA+ domains. Protomers at the spiral seam undergo nucleotide-specific rearrangements, supporting substrate translocation. IGL loops extend flexibly to bind the planar, heptameric ClpP surface with the empty, symmetry-mismatched IGL pocket maintained at the seam. Three different structures identify a binding-pocket switch by the IGL loop of the lowest positioned protomer, involving release and re-engagement with the clockwise pocket. This switch is coupled to a ClpA rotation and a network of conformational changes across the seam, suggesting that ClpA can rotate around the ClpP apical surface during processive steps of translocation and proteolysis.
Collapse
Affiliation(s)
- Kyle E Lopez
- Graduate Program in Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
| | - Alexandrea N Rizo
- Department of Biochemistry and Biophysics, Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
- Graduate Program in Chemical Biology, University of Michigan, Ann Arbor, MI, USA
| | - Eric Tse
- Department of Biochemistry and Biophysics, Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
| | - JiaBei Lin
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Nathaniel W Scull
- Department of Chemistry, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Aye C Thwin
- Department of Biochemistry and Biophysics, Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
| | - Aaron L Lucius
- Department of Chemistry, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel R Southworth
- Department of Biochemistry and Biophysics, Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
81
|
Abstract
Two interpretations of similar structures for the same molecular machine illustrate the limits of inferring biochemical mechanism from protein structure.
Collapse
Affiliation(s)
- Francis TF Tsai
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, United States
| | - Christopher P Hill
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, United States
| |
Collapse
|
82
|
Bacterial Enhancer Binding Proteins-AAA + Proteins in Transcription Activation. Biomolecules 2020; 10:biom10030351. [PMID: 32106553 PMCID: PMC7175178 DOI: 10.3390/biom10030351] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/12/2020] [Accepted: 02/20/2020] [Indexed: 01/24/2023] Open
Abstract
Bacterial enhancer-binding proteins (bEBPs) are specialised transcriptional activators. bEBPs are hexameric AAA+ ATPases and use ATPase activities to remodel RNA polymerase (RNAP) complexes that contain the major variant sigma factor, σ54 to convert the initial closed complex to the transcription competent open complex. Earlier crystal structures of AAA+ domains alone have led to proposals of how nucleotide-bound states are sensed and propagated to substrate interactions. Recently, the structure of the AAA+ domain of a bEBP bound to RNAP-σ54-promoter DNA was revealed. Together with structures of the closed complex, an intermediate state where DNA is partially loaded into the RNAP cleft and the open promoter complex, a mechanistic understanding of how bEBPs use ATP to activate transcription can now be proposed. This review summarises current structural models and the emerging understanding of how this special class of AAA+ proteins utilises ATPase activities to allow σ54-dependent transcription initiation.
Collapse
|
83
|
Gates SN, Martin A. Stairway to translocation: AAA+ motor structures reveal the mechanisms of ATP-dependent substrate translocation. Protein Sci 2020; 29:407-419. [PMID: 31599052 PMCID: PMC6954725 DOI: 10.1002/pro.3743] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 09/28/2019] [Accepted: 09/30/2019] [Indexed: 12/31/2022]
Abstract
Translocases of the AAA+ (ATPases Associated with various cellular Activities) family are powerful molecular machines that use the mechano-chemical coupling of ATP hydrolysis and conformational changes to thread DNA or protein substrates through their central channel for many important biological processes. These motors comprise hexameric rings of ATPase subunits, in which highly conserved nucleotide-binding domains form active-site pockets near the subunit interfaces and aromatic pore-loop residues extend into the central channel for substrate binding and mechanical pulling. Over the past 2 years, 41 cryo-EM structures have been solved for substrate-bound AAA+ translocases that revealed spiral-staircase arrangements of pore-loop residues surrounding substrate polypeptides and indicating a conserved hand-over-hand mechanism for translocation. The subunits' vertical positions within the spiral arrangements appear to be correlated with their nucleotide states, progressing from ATP-bound at the top to ADP or apo states at the bottom. Studies describing multiple conformations for a particular motor illustrate the potential coupling between ATP-hydrolysis steps and subunit movements to propel the substrate. Experiments with double-ring, Type II AAA+ motors revealed an offset of hydrolysis steps between the two ATPase domains of individual subunits, and the upper ATPase domains lacking aromatic pore loops frequently form planar rings. This review summarizes the critical advances provided by recent studies to our structural and functional understanding of hexameric AAA+ translocases, as well as the important outstanding questions regarding the underlying mechanisms for coordinated ATP-hydrolysis and mechano-chemical coupling.
Collapse
Affiliation(s)
- Stephanie N. Gates
- Department of Molecular and Cell BiologyUniversity of CaliforniaBerkeleyCalifornia
- California Institute for Quantitative BiosciencesUniversity of California at BerkeleyBerkeleyCalifornia
- Howard Hughes Medical InstituteUniversity of California at BerkeleyBerkeleyCalifornia
| | - Andreas Martin
- Department of Molecular and Cell BiologyUniversity of CaliforniaBerkeleyCalifornia
- California Institute for Quantitative BiosciencesUniversity of California at BerkeleyBerkeleyCalifornia
- Howard Hughes Medical InstituteUniversity of California at BerkeleyBerkeleyCalifornia
| |
Collapse
|