51
|
Hutchings NJ, Clarkson N, Chalkley R, Barclay AN, Brown MH. Linking the T cell surface protein CD2 to the actin-capping protein CAPZ via CMS and CIN85. J Biol Chem 2003; 278:22396-403. [PMID: 12690097 DOI: 10.1074/jbc.m302540200] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recruitment of CD2 to the immunological synapse in response to antigen is dependent on its proline-rich cytoplasmic tail. A peptide from this region (CD2:322-339) isolated CMS (human CD2AP); a related protein, CIN85; and the actin capping protein, CAPZ from a T cell line. In BIAcore analyses, the N-terminal SH3 domains of CMS and CIN85 bound CD2:322-339 with similar dissociation constants (KD = approximately 100 microm). CAPZ bound the C-terminal half of CMS and CIN85. Direct binding between CMS/CIN85 and CAPZ provides a link with the actin cytoskeleton. Overexpression of a fragment from the C-terminal half or the N-terminal SH3 domain of CD2AP in a mouse T cell hybridoma resulted in enhanced interleukin-2 production and reduced T cell receptor down-modulation in response to antigen. These adaptor proteins are important in T cell signaling consistent with a role for CD2 in regulating pathways initiated by CMS/CIN85 and CAPZ.
Collapse
Affiliation(s)
- Nicholas J Hutchings
- Sir William Dunn School of Pathology, South Parks Road, Oxford OX1 3RE, United Kingdom
| | | | | | | | | |
Collapse
|
52
|
Schmidt MHH, Furnari FB, Cavenee WK, Bögler O. Epidermal growth factor receptor signaling intensity determines intracellular protein interactions, ubiquitination, and internalization. Proc Natl Acad Sci U S A 2003; 100:6505-10. [PMID: 12734385 PMCID: PMC164476 DOI: 10.1073/pnas.1031790100] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ligand activation of the epidermal growth factor receptor (EGFR) causes the binding of Cbls, which leads to EGFR polyubiquitination and internalization through endophilin complexes that contain the adaptor protein SH3-domain encoding, expressed in tumorigenic astrocytes/Cbl-interacting protein of 85 kDa/regulator of ubiquitous kinase (SETA/CIN85/Ruk). In cells grown at high density, high levels of SETA interfered in the recruitment of Casitas B-lineage (Cbl) proteins to the EGFR and reduced its polyubiquitination, suggesting that SETA has a regulatory function in the formation of the EGFR-Cbl-endophilin complex and in EGFR down-regulation. In a situation where there is EGFR signaling but no internalization or down-regulation, as is the case with the EGFR with exons 2-7 deleted (DeltaEGFR) oncogene, these proteins were absent altogether. By using mAb 806, which recognizes an EGFR-activation state and preferentially immunoprecipitates DeltaEGFR, we show that DeltaEGFR did not interact with Cbls, SETA, or endophilin A1, providing a mechanistic explanation for its lack of internalization. As would be expected by the absence of Cbl proteins in the DeltaEGFR complex, the mutant receptor was also not polyubiquitinated. The intracellular C terminus and tyrosine autophosphorylation pattern of DeltaEGFR are similar to wild-type EGFR, but it signals at a lower intensity as determined by levels of EGFR phosphotyrosine. To test the implication that the lack of interaction with the Cbl-SETA-endophilin complex is because of differences in signal intensity, EGFR-expressing cells were treated with tyrphostin AG1478 EGFR inhibitor. Attenuation of wild-type EGFR signal to levels similar to that found in DeltaEGFR resulted in the dissociation of SETA and Cbl proteins and a concomitant attenuation of receptor internalization.
Collapse
Affiliation(s)
- Mirko H H Schmidt
- William and Karen Davidson Laboratory of Brain Tumor Biology, Hermelin Brain Tumor Center, Department of Neurosurgery, Henry Ford Hospital, 2799 West Grand Boulevard, Detroit, MI 48202, USA
| | | | | | | |
Collapse
|
53
|
Jenke M, Sánchez A, Monje F, Stühmer W, Weseloh RM, Pardo LA. C-terminal domains implicated in the functional surface expression of potassium channels. EMBO J 2003; 22:395-403. [PMID: 12554641 PMCID: PMC140720 DOI: 10.1093/emboj/cdg035] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
A short C-terminal domain is required for correct tetrameric assembly in some potassium channels. Here, we show that this domain forms a coiled coil that determines not only the stability but also the selectivity of the multimerization. Synthetic peptides comprising the sequence of this domain in Eag1 and other channels are able to form highly stable tetrameric coiled coils and display selective heteromultimeric interactions. We show that loss of function caused by disruption of this domain in Herg1 can be rescued by introducing the equivalent domain from Eag1, and that this chimeric protein can form heteromultimers with Eag1 while wild-type Erg1 cannot. Additionally, a short endoplasmic reticulum retention sequence closely preceding the coiled coil plays a crucial role for surface expression. Both domains appear to co-operate to form fully functional channels on the cell surface and are a frequent finding in ion channels. Many pathological phenotypes may be attributed to mutations affecting one or both domains.
Collapse
Affiliation(s)
- Marc Jenke
- Max Planck Institute for Experimental Medicine, Hermann-Rein-Straße 3, 37075 Göttingen, Germany
Present address: iOnGen AG, Rudolf Wissell Straße 28, 37079 Göttingen, Germany Present address: Oppenheim Research GmbH, Unter Sachsenlausen 4, 50667 Köln, Germany Corresponding author e-mail:
R.M.Weseloh and L.A.Pardo contributed equally to this work
| | | | | | | | - Rüdiger M. Weseloh
- Max Planck Institute for Experimental Medicine, Hermann-Rein-Straße 3, 37075 Göttingen, Germany
Present address: iOnGen AG, Rudolf Wissell Straße 28, 37079 Göttingen, Germany Present address: Oppenheim Research GmbH, Unter Sachsenlausen 4, 50667 Köln, Germany Corresponding author e-mail:
R.M.Weseloh and L.A.Pardo contributed equally to this work
| | - Luis A. Pardo
- Max Planck Institute for Experimental Medicine, Hermann-Rein-Straße 3, 37075 Göttingen, Germany
Present address: iOnGen AG, Rudolf Wissell Straße 28, 37079 Göttingen, Germany Present address: Oppenheim Research GmbH, Unter Sachsenlausen 4, 50667 Köln, Germany Corresponding author e-mail:
R.M.Weseloh and L.A.Pardo contributed equally to this work
| |
Collapse
|
54
|
Buchman VL, Luke C, Borthwick EB, Gout I, Ninkina N. Organization of the mouse Ruk locus and expression of isoforms in mouse tissues. Gene 2003; 295:13-17. [PMID: 12242006 DOI: 10.1016/s0378-1119(02)00821-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ruk is a recently identified gene with a complex pattern of expression in mammalian cells and tissues. Multiple Ruk transcripts and several protein isoforms have been detected in various types of cells. Ruk proteins have multidomain organization characteristic of adapter proteins involved in regulation of signal transduction. Interaction of some Ruk isoforms with several signalling proteins, including the p85 regulatory subunit of the Class IA PI 3-kinase, c-Cbl and Grb2, has been demonstrated. Ruk(l), an isoform with three SH3 domains, inhibits lipid kinase activity of the PI 3-kinase in vitro; overexpression of this protein induces apoptotic cell death of primary neurons in culture and changes in membrane trafficking in other cultured cells. However, shorter isoforms of Ruk block pro-apoptotic effect of Ruk(l), suggesting that expression of different combinations of Ruk proteins in cells could be involved in the regulation of their survival and other intracellular processes. To understand the mechanism of differential expression of Ruk proteins we studied organization of the mouse Ruk gene and its transcripts. Twenty-four exons of the Ruk gene span over 320 kb of the mouse chromosome X. Analysis of cDNA clones, ESTs and products of RT-PCR amplifications with different combinations of primers revealed how alternative splicing and promoter usage generate a variety of Ruk transcripts and encoded protein isoforms in different mouse tissues.
Collapse
Affiliation(s)
- Vladimir L Buchman
- Department of Preclinical Veterinary Sciences, University of Edinburgh, Summerhall, Edinburgh EH9 1QH, Scotland, UK.
| | | | | | | | | |
Collapse
|
55
|
Lipkowitz S. The role of the ubiquitination-proteasome pathway in breast cancer: ubiquitin mediated degradation of growth factor receptors in the pathogenesis and treatment of cancer. Breast Cancer Res 2003; 5:8-15. [PMID: 12559039 PMCID: PMC154127 DOI: 10.1186/bcr541] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2002] [Revised: 08/13/2002] [Accepted: 09/11/2002] [Indexed: 11/30/2022] Open
Abstract
Aberrant activity of growth factor receptors has been implicated in the pathogenesis of a wide variety of malignancies. The negative regulation of signaling by growth factor receptors is mediated in large part by the ubiquitination, internalization, and degradation of the activated receptor. Over the past few years, considerable insight into the mechanisms that control receptor downregulation has been gained. There are also data suggesting that mutations that lead to inhibition of downregulation of growth factor receptors could play a role in the pathogenesis of cancer. Therapies directed at enhancing the degradation of growth factor receptors offer a promising approach to the treatment of malignancies.
Collapse
Affiliation(s)
- Stan Lipkowitz
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Naval Medical Center, Bethesda, Maryland, USA.
| |
Collapse
|
56
|
Maki M, Kitaura Y, Satoh H, Ohkouchi S, Shibata H. Structures, functions and molecular evolution of the penta-EF-hand Ca2+-binding proteins. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1600:51-60. [PMID: 12445459 DOI: 10.1016/s1570-9639(02)00444-2] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Penta-EF-hand (PEF) proteins comprise a family of Ca(2+)-binding proteins that have five repetitive EF-hand motifs. Among the eight alpha-helices (alpha1-alpha8), alpha4 and alpha7 link EF2-EF3 and EF4-EF5, respectively. In addition to the structural similarities in the EF-hand regions, the PEF protein family members have common features: (i) dimerization through unpaired C-terminal EF5s, (ii) possession of hydrophobic Gly/Pro-rich N-terminal domains, and (iii) Ca(2+)-dependent translocation to membranes. Based on comparison of amino acid sequences, mammalian PEF proteins are classified into two groups: Group I PEF proteins (ALG-2 and peflin) and Group II PEF proteins (Ca(2+)-dependent protease calpain subfamily members, sorcin and grancalcin). The Group I genes have also been found in lower animals, plants, fungi and protists. Recent findings of specific interacting proteins have started to gradually unveil the functions of the noncatalytic mammalian PEF proteins.
Collapse
Affiliation(s)
- Masatoshi Maki
- Laboratory of Molecular and Cellular Regulation, Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan.
| | | | | | | | | |
Collapse
|
57
|
Szymkiewicz I, Kowanetz K, Soubeyran P, Dinarina A, Lipkowitz S, Dikic I. CIN85 participates in Cbl-b-mediated down-regulation of receptor tyrosine kinases. J Biol Chem 2002; 277:39666-72. [PMID: 12177062 DOI: 10.1074/jbc.m205535200] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Cbl family of ubiquitin ligases in mammals contains three members, Cbl, Cbl-b, and Cbl-3, that are involved in down-regulation of receptor tyrosine kinases (RTKs) by mediating receptor ubiquitination and degradation. More recently, a novel pathway has been identified whereby Cbl promotes internalization of EGF receptor via a CIN85/endophilin pathway that is functionally separable from the ubiquitin ligase activity of Cbl (1). Here we show that Cbl-b, but not Cbl-3, utilize the same mechanism to down-regulate multiple RTKs. CIN85 was shown to bind to the minimal binding domain identified in the carboxyl terminus of Cbl-b. Ligand-induced phosphorylation of Cbl-b further increased their interactions and led to a rapid and sustained recruitment of CIN85 in the complex with EGF or PDGF receptors. Inhibition of binding between CIN85 and Cbl-b was sufficient to impair Cbl-b-mediated internalization of EGF receptors, while being dispensable for Cbl-b-directed polyubiquitination of EGF receptors. Moreover, CIN85 and Cbl/Cbl-b were constitutively associated with activated PDGF, EGF, or c-Kit receptors in several tumor cell lines. Our data reveal a common pathway utilized by Cbl and Cbl-b that may have an important and redundant function in negative regulation of ligand-activated as well as oncogenically activated RTKs in vivo.
Collapse
Affiliation(s)
- Iwona Szymkiewicz
- Ludwig Institute for Cancer Research, Box 595, Husargatan 3, Uppsala, S-75124, Sweden
| | | | | | | | | | | |
Collapse
|
58
|
Abstract
CIN85 and CMS belong to a family of ubiquitously expressed adaptor molecules containing three SH3 domains, a proline-rich region and a coiled-coil domain. By binding to numerous proteins they assemble multimeric complexes implicated in cell-specific signals controlling T-cell activation, kidney glomeruli function or apoptosis in neuronal cells. CIN85/CMS also associate with accessory endocytic proteins, components of the actin cytoskeleton as well as other adaptor proteins involved in receptor tyrosine kinase (RTK) signaling. These interactions enable CIN85/CMS to function within a network of signaling pathways that co-ordinate critical steps involved in downregulation and degradation of RTKs.
Collapse
Affiliation(s)
- Ivan Dikic
- Ludwig Institute for Cancer Research, Husargatan 3, SE-75 124, Uppsala, Sweden.
| |
Collapse
|
59
|
Soubeyran P. Le couple Cbl-CIN85 essentiel à l’endocytose des récepteurs. Med Sci (Paris) 2002. [DOI: 10.1051/medsci/20021810923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
60
|
Haglund K, Shimokawa N, Szymkiewicz I, Dikic I. Cbl-directed monoubiquitination of CIN85 is involved in regulation of ligand-induced degradation of EGF receptors. Proc Natl Acad Sci U S A 2002; 99:12191-6. [PMID: 12218189 PMCID: PMC129420 DOI: 10.1073/pnas.192462299] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Addition of ubiquitin or ubiquitin chains to target proteins leads to their mono- or polyubiquitination, respectively. Whereas polyubiquitination targets proteins for degradation, monoubiquitination is thought to regulate receptor internalization and endosomal sorting. Cbl proteins are major ubiquitin ligases that promote ligand-dependent polyubiquitination and degradation of receptor tyrosine kinases. They also recruit CIN85-endophilin in the complex with activated receptors, thus controlling receptor endocytosis. Here we show that the adaptor protein CIN85 and its homologue CMS are monoubiquitinated by Cbl/Cbl-b after epidermal growth factor (EGF) stimulation. Monoubiquitination of CIN85 required direct interactions between CIN85 and Cbl, the intact RING finger domain of Cbl and a ubiquitin acceptor site present in the carboxyl terminus of CIN85. Cbl-b and monoubiquitinated CIN85 are found in the complex with polyubiquitinated EGF receptors during prolonged EGF stimulation and are degraded together in the lysosome. Dominant interfering forms of CIN85, which have been shown previously to delay EGF receptor degradation, were also impaired in their monoubiquitination. Thus, our data demonstrate that Cbl/Cbl-b can mediate polyubiquitination of cargo as well as monoubiquitination of CIN85 to control endosomal sorting and degradation of receptor tyrosine kinases.
Collapse
Affiliation(s)
- Kaisa Haglund
- Ludwig Institute for Cancer Research, Box 595, Husargatan 3, S-75124 Uppsala, Sweden
| | | | | | | |
Collapse
|
61
|
Scott MP, Zappacosta F, Kim EY, Annan RS, Miller WT. Identification of novel SH3 domain ligands for the Src family kinase Hck. Wiskott-Aldrich syndrome protein (WASP), WASP-interacting protein (WIP), and ELMO1. J Biol Chem 2002; 277:28238-46. [PMID: 12029088 DOI: 10.1074/jbc.m202783200] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The importance of the SH3 domain of Hck in kinase regulation, substrate phosphorylation, and ligand binding has been established. However, few in vivo ligands are known for the SH3 domain of Hck. In this study, we used mass spectrometry to identify approximately 25 potential binding partners for the SH3 domain of Hck from the monocyte cell line U937. Two major interacting proteins were the actin binding proteins Wiskott-Aldrich syndrome protein (WASP) and WASP-interacting protein (WIP). We also focused on a novel interaction between Hck and ELMO1, an 84-kDa protein that was recently identified as the mammalian ortholog of the Caenorhabditis elegans gene, ced-12. In mammalian cells, ELMO1 interacts with Dock180 as a component of the CrkII/Dock180/Rac pathway responsible for phagocytosis and cell migration. Using purified proteins, we confirmed that WASP-interacting protein and ELMO1 interact directly with the SH3 domain of Hck. We also show that Hck and ELMO1 interact in intact cells and that ELMO1 is heavily tyrosine-phosphorylated in cells that co-express Hck, suggesting that it is a substrate of Hck. The binding of ELMO1 to Hck is specifically dependent on the interaction of a polyproline motif with the SH3 domain of Hck. Our results suggest that these proteins may be novel activators/effectors of Hck.
Collapse
Affiliation(s)
- Margaret Porter Scott
- Department of Physiology and Biophysics, School of Medicine, State University of New York, Stony Brook, New York 11794-8661, USA
| | | | | | | | | |
Collapse
|
62
|
Verdier F, Valovka T, Zhyvoloup A, Drobot LB, Buchman V, Waterfield M, Gout I. Ruk is ubiquitinated but not degraded by the proteasome. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:3402-8. [PMID: 12135478 DOI: 10.1046/j.1432-1033.2002.03031.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The regulator of ubiquitous kinase (Ruk) protein, also known as CIN85 or SETA, is an adaptor-type protein belonging to the CD2AP/CMS family. It was found in complexes with many signaling proteins, including phosphoinositol (PtdIns) 3-kinase (EC 2.7.1.137), Cbl, GRB2, p130Cas and Crk. Functional analysis of these interactions, implicated Ruk in the regulation of apoptosis, receptor endocytosis and cytoskeletal rearrangements. We have recently demonstrated that overexpression of Ruk induces apoptotic death in neurons, which could be reversed by activated forms of PtdIns 3-kinase and PKB/Akt. Furthermore, Ruk was shown to be a negative regulator of PtdIns 3-kinase activity through binding to its P85 regulatory subunit [Gout, I., Middleton, G., Adu, J., Ninkina, N. N., Drobot, L. B., Filonenko, V., Matsuka, G., Davies, A.M., Waterfield, M. & Buchman, V. L. (2000) Embo J.19, 4015-4025]. Here, we report for the first time, that all three isoforms of Ruk (L, M and S) are ubiquitinated. Specific interaction between the E3 ubiquitin ligase Cbl and all three Ruk isoforms was demonstrated by coexpression studies in Hek293 cells. The interaction of Ruk M and S isoforms with Cbl was found to be mediated via heterodimerization with Ruk L. The use of proteosomal and lysosomal inhibitors clearly indicated that ubiquitination of Ruk L does not lead to its degradation. Based on this study, we propose a possible mechanism for the regulation of Ruk function by ubiquitination.
Collapse
Affiliation(s)
- Frédérique Verdier
- Ludwig Institute for Cancer Research, University College of London Medical School, London, UK.
| | | | | | | | | | | | | |
Collapse
|
63
|
Springael JY, Nikko E, André B, Marini AM. Yeast Npi3/Bro1 is involved in ubiquitin-dependent control of permease trafficking. FEBS Lett 2002; 517:103-9. [PMID: 12062418 DOI: 10.1016/s0014-5793(02)02586-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The membrane traffic and stability of the general amino acid permease Gap1 of Saccharomyces cerevisiae are under nitrogen control. Addition of a preferential nitrogen source such as ammonium to cells growing on a poor nitrogen source induces internalization of the permease and its subsequent degradation in the vacuole. This down-regulation requires ubiquitination of Gap1 through a process involving ubiquitin ligase Npi1/Rsp5, ubiquitin hydrolase Npi2/Doa4, and Bul1/2, two Npi1/Rsp5 interacting proteins. Here we report that yet another protein, Npi3, is involved in the regulation of Gap1 trafficking. We show that Npi3 is required for NH4+-induced down-regulation of Gap1, and particularly for efficient ubiquitination of the permease. Npi3 plays a pleiotropic role in permease down-regulation, since it is also involved in ubiquitination and stress-induced down-regulation of the uracil permease Fur4 and in glucose-induced degradation of hexose transporters Hxt6/7. We further provide evidence that Npi3 is required for direct vacuolar sorting of neosynthesized Gap1 permease as it occurs in npr1 mutant cells. NPI3 is identical to BRO1, a gene encoding a protein of unknown biochemical function and recently proposed to be involved in protein turnover. Npi3/Bro1 homologues include fungal proteins required for proteolytic cleavage of zinc finger proteins and the mouse Aip1 protein involved in apoptosis. We propose that proteins of the Npi3/Bro1 family, including homologues from higher species, may play a conserved role in ubiquitin-dependent control of membrane protein trafficking.
Collapse
Affiliation(s)
- Jean Yves Springael
- Laboratoire de Physiologie Cellulaire, Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles, Gosselies, Belgium
| | | | | | | |
Collapse
|
64
|
Soubeyran P, Kowanetz K, Szymkiewicz I, Langdon WY, Dikic I. Cbl-CIN85-endophilin complex mediates ligand-induced downregulation of EGF receptors. Nature 2002; 416:183-7. [PMID: 11894095 DOI: 10.1038/416183a] [Citation(s) in RCA: 450] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cbl is a multi-adaptor protein involved in ligand-induced downregulation of receptor tyrosine kinases. It is thought that Cbl-mediated ubiquitination of active receptors is essential for receptor degradation and cessation of receptor-induced signal transduction. Here we demonstrate that Cbl additionally regulates epidermal growth factor (EGF) receptor endocytosis. Cbl rapidly recruits CIN85 (Cbl-interacting protein of 85K; ref. 6) and endophilins (regulatory components of clathrin-coated vesicles) to form a complex with activated EGF receptors, thus controlling receptor internalization. CIN85 was constitutively associated with endophilins, whereas CIN85 binding to the distal carboxy terminus of Cbl was increased on EGF stimulation. Inhibition of these interactions was sufficient to block EGF receptor internalization, delay receptor degradation and enhance EGF-induced gene transcription, without perturbing Cbl-directed receptor ubiquitination. Thus, the evolutionary divergent C terminus of Cbl uses a mechanism that is functionally separable from the ubiquitin ligase activity of Cbl to mediate ligand-dependent downregulation of receptor tyrosine kinases.
Collapse
Affiliation(s)
- Philippe Soubeyran
- Ludwig Institute for Cancer Research, Box 595, Husargatan 3, Uppsala, S-75124, Sweden
| | | | | | | | | |
Collapse
|
65
|
Petrelli A, Gilestro GF, Lanzardo S, Comoglio PM, Migone N, Giordano S. The endophilin-CIN85-Cbl complex mediates ligand-dependent downregulation of c-Met. Nature 2002; 416:187-90. [PMID: 11894096 DOI: 10.1038/416187a] [Citation(s) in RCA: 356] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Ligand-dependent downregulation of tyrosine kinase receptors is a critical step for modulating their activity. Upon ligand binding, hepatocyte growth factor (HGF) receptor (Met) is polyubiquitinated and degraded; however, the mechanisms underlying HGF receptor endocytosis are not yet known. Here we demonstrate that a complex involving endophilins, CIN85 and Cbl controls this process. Endophilins are regulatory components of clathrin-coated vesicle formation. Through their acyl-transferase activity they are thought to modify the membrane phospholipids and induce negative curvature and invagination of the plasma membrane during the early steps of endocytosis. Furthermore, by means of their Src-homology 3 domains, endophilins are able to bind CIN85, a recently identified protein that interacts with the Cbl proto-oncogene. Cbl, in turn, binds and ubiquitinates activated HGF receptor, and by recruiting the endophilin-CIN85 complex, it regulates receptor internalization. Inhibition of complex formation is sufficient to block HGF receptor internalization and to enhance HGF-induced signal transduction and biological responses. These data provide further evidence of a relationship between receptor-mediated signalling and endocytosis, and disclose a novel functional role for Cbl in HGF receptor signalling.
Collapse
Affiliation(s)
- Annalisa Petrelli
- CNR-CIOS and Department of Genetics, Biology and Biochemistry, University of Torino, 10126 Torino, Italy
| | | | | | | | | | | |
Collapse
|
66
|
Futaki M, Watanabe S, Kajigaya S, Liu JM. Fanconi anemia protein, FANCG, is a phosphoprotein and is upregulated with FANCA after TNF-alpha treatment. Biochem Biophys Res Commun 2001; 281:347-51. [PMID: 11181053 DOI: 10.1006/bbrc.2001.4359] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fanconi anemia (FA) is a genetic syndrome characterized by bone marrow failure, birth defects, and a predisposition to malignancy. At this time, six FA genes have been identified, and several gene products have been found to interact in a protein complex. FA cells appear to overexpress the proinflammatory cytokine, tumor necrosis factor-alpha (TNF-alpha). We therefore examined the effects of TNF-alpha on the regulation of FA complementation group proteins, FANCG and FANCA. We found that treatment with TNF-alpha induced FANCG protein expression. FANCA was induced concurrently with FANCG, and the FANCA/FANCG complex was increased in the nucleus following TNF-alpha treatment. Inactivation of inhibitory kappa B kinase-2 modulated the expression of FANCG. We also found that both nuclear and cytoplasmic FANCG fractions were phosphorylated. These results show that FANCG is a phosphoprotein and suggest that the cellular accumulation of FA proteins is subject to regulation by TNF-alpha signaling.
Collapse
Affiliation(s)
- M Futaki
- Hematology Branch, NHLBI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|