51
|
Freiberg A, Machner MP, Pfeil W, Schubert WD, Heinz DW, Seckler R. Folding and stability of the leucine-rich repeat domain of internalin B from Listeri monocytogenes. J Mol Biol 2004; 337:453-61. [PMID: 15003459 DOI: 10.1016/j.jmb.2004.01.044] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2003] [Revised: 01/08/2004] [Accepted: 01/23/2004] [Indexed: 11/26/2022]
Abstract
Internalin B (InlB), a surface protein of the human pathogen Listeria monocytogenes, promotes invasion into various host cell types by inducing phagocytosis of the entire bacterium. The N-terminal half of InlB (residues 36-321, InlB321), which is sufficient for this process, contains a central leucine-rich repeat (LRR) domain that is flanked by a small alpha-helical cap and an immunoglobulin (Ig)-like domain. Here we investigated the spectroscopic properties, stability and folding of InlB321 and of a shorter variant lacking the Ig-like domain (InlB248). The circular dichroism spectra of both protein variants in the far ultraviolet region are very similar, with a characteristic minimum found at approximately 200 nm, possibly resulting from the high 3(10)-helical content in the LRR domain. Upon addition of chemical denaturants, both variants unfold in single transitions with unusually high cooperativity that are fully reversible and best described by two-state equilibria. The free energies of GdmCl-induced unfolding determined from transitions at 20 degrees C are 9.9(+/-0.8)kcal/mol for InlB321 and 5.4(+/-0.4)kcal/mol for InlB248. InlB321 is also more stable against thermal denaturation, as observed by scanning calorimetry. This suggests, that the Ig-like domain, which presumably does not directly interact with the host cell receptor during bacterial invasion, plays a critical role for the in vivo stability of InlB.
Collapse
Affiliation(s)
- Alexander Freiberg
- Potsdam University, Physical Biochemistry, Karl-Liebknecht-Str. 24-25, Haus 25, D-14476 Potsdam-Golm, Germany
| | | | | | | | | | | |
Collapse
|
52
|
Binz HK, Stumpp MT, Forrer P, Amstutz P, Plückthun A. Designing repeat proteins: well-expressed, soluble and stable proteins from combinatorial libraries of consensus ankyrin repeat proteins. J Mol Biol 2003; 332:489-503. [PMID: 12948497 DOI: 10.1016/s0022-2836(03)00896-9] [Citation(s) in RCA: 434] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
We describe an efficient way to generate combinatorial libraries of stable, soluble and well-expressed ankyrin repeat (AR) proteins. Using a combination of sequence and structure consensus analyses, we designed a 33 amino acid residue AR module with seven randomized positions having a theoretical diversity of 7.2x10(7). Different numbers of this module were cloned between N and C-terminal capping repeats, i.e. ARs designed to shield the hydrophobic core of stacked AR modules. In this manner, combinatorial libraries of designed AR proteins consisting of four to six repeats were generated, thereby potentiating the theoretical diversity. All randomly chosen library members were expressed in soluble form in the cytoplasm of Escherichia coli in amounts up to 200 mg per 1 l of shake-flask culture. Virtually pure proteins were obtained in a single purification step. The designed AR proteins are monomeric and display CD spectra identical with those of natural AR proteins. At the same time, our AR proteins are highly thermostable, with T(m) values ranging from 66 degrees C to well above 85 degrees C. Thus, our combinatorial library members possess the properties required for biotechnological applications. Moreover, the favorable biophysical properties and the modularity of the AR fold may account, partly, for the abundance of natural AR proteins.
Collapse
Affiliation(s)
- H Kaspar Binz
- Biochemisches Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | | | | | | | | |
Collapse
|
53
|
Main ERG, Jackson SE, Regan L. The folding and design of repeat proteins: reaching a consensus. Curr Opin Struct Biol 2003; 13:482-9. [PMID: 12948778 DOI: 10.1016/s0959-440x(03)00105-2] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Although they are widely distributed across kingdoms and are involved in a myriad of essential processes, until recently, repeat proteins have received little attention in comparison to globular proteins. As the name indicates, repeat proteins contain strings of tandem repeats of a basic structural element. In this respect, their construction is quite different from that of globular proteins, in which sequentially distant elements coalesce to form the protein. The different families of repeat proteins use their diverse scaffolds to present highly specific binding surfaces through which protein-protein interactions are mediated. Recent studies seek to understand the stability, folding and design of this important class of proteins.
Collapse
Affiliation(s)
- Ewan R G Main
- Department of Molecular Biophysics & Biochemistry, Yale University, 266 Whitney Avenue, New Haven, CT 06520, USA
| | | | | |
Collapse
|
54
|
|
55
|
Main ERG, Xiong Y, Cocco MJ, D'Andrea L, Regan L. Design of stable alpha-helical arrays from an idealized TPR motif. Structure 2003; 11:497-508. [PMID: 12737816 DOI: 10.1016/s0969-2126(03)00076-5] [Citation(s) in RCA: 222] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The tetratricopeptide repeat (TPR) is a 34-amino acid alpha-helical motif that occurs in over 300 different proteins. In the different proteins, three to sixteen or more TPR motifs occur in tandem arrays and function to mediate protein-protein interactions. The binding specificity of each TPR protein is different, although the underlying structural motif is the same. Here we describe a statistical approach to the design of an idealized TPR motif. We present the high-resolution X-ray crystal structures (to 1.55 and 1.6 A) of designed TPR proteins and describe their solution properties and stability. A detailed analysis of these structures provides an understanding of the TPR motif, how it is repeated to give helical arrays with different superhelical twists, and how a very stable framework may be constructed for future functional designs.
Collapse
Affiliation(s)
- Ewan R G Main
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | | | | | | | | |
Collapse
|
56
|
Cammett TJ, Luo L, Peng ZY. Design and characterization of a hyperstable p16INK4a that restores Cdk4 binding activity when combined with oncogenic mutations. J Mol Biol 2003; 327:285-97. [PMID: 12614625 DOI: 10.1016/s0022-2836(03)00043-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cyclin-dependent kinase inhibitor p16(INK4a) is the founding member of the INK4 family of tumor suppressors capable of arresting mammalian cell division. Missense mutations in the p16(INK4a) gene (INK4a/CDKN2A/MTS1) are strongly linked to several types of human cancer. These mutations are evenly distributed throughout this small, ankyrin repeat protein and the majority of them disrupt the native secondary and/or tertiary structure, leading to protein unfolding, aggregation and loss of function. We report here the use of multiple stabilizing substitutions to increase the stability of p16(INK4a) and furthermore, to restore Cdk4 binding activity of several defective, cancer-related mutant proteins. Stabilizing substitutions were predicted using four different techniques. The three most effective substitutions were combined to create a hyperstable p16(INK4a) variant that is 1.4 kcal/mol more stable than wild-type. This engineered construct is monomeric in solution with wild-type-like secondary and tertiary structure and cyclin-dependent kinase 4 binding activity. Interestingly, these hyperstable substitutions, when combined with oncogenic mutations R24P, P81L or V126D, can significantly restore Cdk4 binding activity, despite the divergent features of each destabilizing mutation. Extensive biophysical studies indicate that the hyperstable substitutions enhance the binding activity of mutant p16 through several different mechanisms, including an increased amount of secondary structure and thermostability, reduction in exposed hydrophobic surface(s) and/or a reduced tendency to aggregate. This apparent global suppressor effect suggests that increasing the thermodynamic stability of p16 can be used as a general strategy to restore the biological activity to defective mutants of this important tumor suppressor protein.
Collapse
Affiliation(s)
- Tobin J Cammett
- Department of Biochemistry, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030, USA
| | | | | |
Collapse
|
57
|
Kohl A, Binz HK, Forrer P, Stumpp MT, Plückthun A, Grütter MG. Designed to be stable: crystal structure of a consensus ankyrin repeat protein. Proc Natl Acad Sci U S A 2003; 100:1700-5. [PMID: 12566564 PMCID: PMC149896 DOI: 10.1073/pnas.0337680100] [Citation(s) in RCA: 207] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2002] [Accepted: 12/17/2002] [Indexed: 11/18/2022] Open
Abstract
Ankyrin repeat (AR) proteins mediate innumerable protein-protein interactions in virtually all phyla. This finding suggested the use of AR proteins as designed binding molecules. Based on sequence and structural analyses, we designed a consensus AR with fixed framework and randomized interacting residues. We generated several combinatorial libraries of AR proteins consisting of defined numbers of this repeat. Randomly chosen library members are expressed in soluble form in the cytoplasm of Escherichia coli constituting up to 30% of total cellular protein and show high thermodynamic stability. We determined the crystal structure of one of those library members to 2.0-A resolution, providing insight into the consensus AR fold. Besides the highly complementary hydrophobic repeat-repeat interfaces and the absence of structural irregularities in the consensus AR protein, the regular and extended hydrogen bond networks in the beta-turn and loop regions are noteworthy. Furthermore, all residues found in the turn region of the Ramachandran plot are glycines. Many of these features also occur in natural AR proteins, but not in this rigorous and standardized fashion. We conclude that the AR domain fold is an intrinsically very stable and well-expressed scaffold, able to display randomized interacting residues. This scaffold represents an excellent basis for the design of novel binding molecules.
Collapse
Affiliation(s)
- Andreas Kohl
- Biochemisches Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
58
|
Abstract
The ANK repeat is a ubiquitous 33-residue motif that adopts a beta hairpin helix-loop-helix fold. Multiple tandem repeats stack in a linear manner to produce an elongated structure that is stabilized predominantly by short-range interactions between residues close in sequence. The tumor suppressor p16(INK4) consists of four repeats and represents the minimal ANK folding unit. We found from Phi value analysis that p16 unfolded sequentially. The two N-terminal ANK repeats, which are distorted from the canonical ANK structure in all INK4 proteins and which are important for functional specificity, were mainly unstructured in the rate-limiting transition state for folding/unfolding, while the two C-terminal repeats were fully formed. A sequential unfolding mechanism could have implications for the cellular fate of wild-type and cancer-associated mutant p16 proteins.
Collapse
Affiliation(s)
- Kit S Tang
- Department of Chemistry and, MRC Centre for Protein Engineering, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | | | | |
Collapse
|
59
|
Bradley CM, Barrick D. Limits of cooperativity in a structurally modular protein: response of the Notch ankyrin domain to analogous alanine substitutions in each repeat. J Mol Biol 2002; 324:373-86. [PMID: 12441114 DOI: 10.1016/s0022-2836(02)00945-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To determine the limits of cooperativity in a structurally modular protein, we characterized the structure and stability of glycine variants of the ankyrin repeat domain from the Drosophila melangaster Notch receptor. The substitutions are of analogous alanine residues to glycine in each repeat, and allow the same perturbation to be examined at different positions in the protein. The ankyrin domain is insensitive to substitution in repeat one, suggesting that the first repeat is not fully-folded. Glycine substitutions in repeat two through seven are strongly destabilizing, but the variants retain their overall secondary and tertiary structures. Spectroscopic and calorimetric data are consistent with two-state unfolding transitions for the repeat-two through repeat-five glycine variants, and for the wild-type protein. These data indicate that, despite its modular structure, the Notch ankyrin domain unfolds as a cooperative unit consisting of the six C-terminal repeats, and that this cooperativity is maintained in the presence of severely destabilizing substitutions in the N-terminal and central repeats. In contrast, glycine substitution in repeat six leads to a multi-state unfolding transition, suggesting that the coupling that gives rise to long-range cooperativity in the wild-type protein may have a weak link in the C-terminal region. Such behavior is captured by a simple statistical thermodynamic model in which an unstable C-terminal region is coupled to a stable N-terminal region through a strongly stabilizing interface.
Collapse
Affiliation(s)
- Christina Marchetti Bradley
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | | |
Collapse
|
60
|
Mosavi LK, Williams S, Peng Zy ZY. Equilibrium folding and stability of myotrophin: a model ankyrin repeat protein. J Mol Biol 2002; 320:165-70. [PMID: 12079376 DOI: 10.1016/s0022-2836(02)00441-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Proteins containing stretches of repeating amino acid sequences are prevalent throughout nature, yet little is known about the general folding and assembly mechanisms of these systems. Here we propose myotrophin as a model system to study the folding of ankyrin repeat proteins. Myotrophin is folded over a large pH range and is soluble at high concentrations. Thermal and urea denaturation studies show that the protein displays cooperative two-state folding properties despite its modular nature. Taken together with previous studies on other ankyrin repeat proteins, our data suggest that the two-state folding pathway may be characteristic of ankyrin repeat proteins and other integrated alpha-helical repeat proteins in general.
Collapse
Affiliation(s)
- Leila K Mosavi
- Department of Biochemistry, University of Connecticut Health Center, MC-3305, 263 Farmington Avenue, Farmington, CT 06030, USA
| | | | | |
Collapse
|
61
|
Blackwood MA, Holmes R, Synnestvedt M, Young M, George C, Yang H, Elder DE, Schuchter LM, Guerry D, Ganguly A. Multiple primary melanoma revisited. Cancer 2002; 94:2248-55. [PMID: 12001124 DOI: 10.1002/cncr.10454] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND Incidence of cutaneous melanoma continues to increase in the Caucasian population worldwide. Approximately 5% of melanoma patients develop additional primary melanoma. This rate is significantly higher than the estimated lifetime risk of an individual for developing the disease (1.4%). These features suggest that a genetic predisposition may underlie multiple primary melanomas (MPMs). Prior studies had identified CDKN2A mutations in a few MPM individuals. The objectives of this study were to determine the frequency of family history of melanoma in MPM cases, to characterize other clinical features including history of other cancer, and to determine the association with functional CDKN2A mutations. METHODS This study used a case series design. All living patients who had been seen in the Pigmented Lesion Clinic at the University of Pennsylvania and who had more than one primary invasive malignant melanoma or an invasive primary followed by an in situ melanoma were eligible for participation. RESULTS Individuals with MPM frequently had a family history of melanoma, dysplastic nevi (DN), and/or another cancer including basal cell carcinoma (BCC), and squamous cell carcinoma breast cancer, and a personal history of DN, and basal cell carcinoma. Germline mutations in CDKN2A gene were identified in 8 of 96 MPM cases (8.3%, 95% confidence interval, 6.7-9.9%). CONCLUSIONS These data indicate that the presence of MPM is associated with a modest incidence of a family history of melanoma, DN, or BCC and a small association with CDKN2A mutations. Therefore, in addition to the MPM index case, other family members can benefit from screening and regular surveillance for melanoma, DN, and BCC.
Collapse
Affiliation(s)
- M Anne Blackwood
- Department of Medicine, Hematology-Oncology Division, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6145, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Fiorini E, Schmitz I, Marissen WE, Osborn SL, Touma M, Sasada T, Reche PA, Tibaldi EV, Hussey RE, Kruisbeek AM, Reinherz EL, Clayton LK. Peptide-induced negative selection of thymocytes activates transcription of an NF-kappa B inhibitor. Mol Cell 2002; 9:637-48. [PMID: 11931770 DOI: 10.1016/s1097-2765(02)00469-0] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Negative selection eliminates thymocytes bearing autoreactive T cell receptors (TCR) via an apoptotic mechanism. We have cloned an inhibitor of NF-kappa B, I kappa BNS, which is rapidly expressed upon TCR-triggered but not dexamethasone- or gamma irradiation-stimulated thymocyte death. The predicted protein contains seven ankyrin repeats and is homologous to I kappa B family members. In class I and class II MHC-restricted TCR transgenic mice, transcription of I kappa BNS is stimulated by peptides that trigger negative selection but not by those inducing positive selection (i.e., survival) or nonselecting peptides. I kappa BNS blocks transcription from NF-kappa B reporters, alters NF-kappa B electrophoretic mobility shifts, and interacts with NF-kappa B proteins in thymic nuclear lysates following TCR stimulation. Retroviral transduction of I kappa BNS in fetal thymic organ culture enhances TCR-triggered cell death consistent with its function in selection.
Collapse
Affiliation(s)
- Emma Fiorini
- Laboratory of Immunobiology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Zeeb M, Rösner H, Zeslawski W, Canet D, Holak TA, Balbach J. Protein folding and stability of human CDK inhibitor p19(INK4d). J Mol Biol 2002; 315:447-57. [PMID: 11786024 DOI: 10.1006/jmbi.2001.5242] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
P19(INK4d) is a tumor suppressing protein and belongs to a family of cyclin D-dependent kinase inhibitors of CDK4 and CDK6, which play a key role in human cell cycle control. P19 comprises ten alpha-helices arranged sequentially in five ankyrin repeats forming an elongated structure. This rather simple topology, combined with its physiological function, makes p19 an interesting model protein for folding studies. Urea-induced unfolding transitions monitored by far-UV CD and phenylalanine fluorescence coincide and suggest a two-state mechanism for equilibrium unfolding. Unfolding of p19 followed by 2D (1)H-(15)N HSQC spectra revealed a third species at moderate urea concentrations with a maximum population of about 30 % near 3.2 M urea. It shows poor chemical shift dispersion, but cross-peaks emerge for some residues that are distinct from the native or unfolded state. This equilibrium intermediate either arises only at high protein concentrations (as in the NMR experiment) or has similar optical properties to the unfolded state. Stopped-flow far-UV CD experiments at various urea concentrations revealed that alpha-helical structure is formed in three phases, of which only the fastest phase (10 s(-1)) depends upon the urea concentration. The kinetic of the slowest phase (0.017 s(-1)) can be resolved by 1D real-time NMR and accelerated by cyclophilin. It is limited in rate by prolyl isomerization, and native-like ordered structure cannot form prior to this isomerization. The two fast phases lead to 83 % native protein within the dead time of the NMR experiment. In contrast to p16(INK4a), which exhibits only a marginal stability and high unfolding rates, p19 shows the expected stability for a protein of this size with a clear kinetic barrier between the unfolded and folded state. Therefore, p19 might complement the function of less stable INK4 inhibitors in cell cycle control under unfavorable conditions.
Collapse
Affiliation(s)
- Markus Zeeb
- Laboratorium für Biochemie, Universität Bayreuth, D-95440 Bayreuth, Germany
| | | | | | | | | | | |
Collapse
|
64
|
Schmidt M, Koller R, Haviernik P, Bies J, Maciag K, Wolff L. Deregulated c-Myb expression in murine myeloid leukemias prevents the up-regulation of p15(INK4b) normally associated with differentiation. Oncogene 2001; 20:6205-14. [PMID: 11593429 DOI: 10.1038/sj.onc.1204821] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2000] [Revised: 07/05/2001] [Accepted: 07/09/2001] [Indexed: 12/29/2022]
Abstract
Deregulated expression of the proto-oncogene c-myb, which results from provirus integration, is thought to be responsible for transformation in a set of murine leukemia virus (MuLV)-induced myeloid leukemias (MML). We reported recently that this transcription factor promotes proliferation by directly transactivating c-myc and inhibits cell death through its up-regulation of Bcl-2 (Schmidt et al., 2000). To understand more about how these cells become transformed we looked at how they deal with cellular pathways inducing growth arrest. Specifically, we were interested in the expression of the tumor suppressor gene Cdkn2b (p15(INK4b)) in MML because this gene is expressed during myeloid differentiation and its inactivation by methylation has been shown to be important for the development of human acute myeloid leukemia. mRNA levels for p15(INK4b) and another INK4 gene p16(INK4a) were examined in monocytic Myb tumors and were compared with expression of the same genes in c-myc transformed monocytic tumors that do not express c-Myb. The Cdkn2a (p16(INK4a)) gene was generally not expressed in either tumor type, an observation explained by methylation or deletion in the promoter region. Although Cdkn2b (p15(INK4b)) mRNA was expressed in the Myc tumors, many transcripts were aberrant in size and contained only exon 1. Surprisingly, in the majority of the Myb tumors there was no p15(INK4b) transcription and neither deletion nor methylation could explain this result. Additional experiments demonstrated that, in the presence of constitutive c-Myb expression, the induction of p15(INK4b) mRNA that accompanies differentiation of M1 cells to monocytes does not occur. Therefore, the transcriptional regulator c-Myb appears to prevent activation of a growth arrest pathway that normally accompanies monocyte maturation.
Collapse
MESH Headings
- Animals
- Blotting, Northern
- Blotting, Western
- Carrier Proteins/metabolism
- Cell Cycle Proteins
- Cell Differentiation
- CpG Islands
- Cyclin-Dependent Kinase Inhibitor p15
- Cyclin-Dependent Kinase Inhibitor p16
- DNA, Complementary/metabolism
- Exons
- Gene Expression Regulation, Neoplastic
- Genes, myc/genetics
- Interleukin-6/metabolism
- Leukemia, Myeloid/metabolism
- Mice
- Mice, Inbred BALB C
- Models, Genetic
- Polymerase Chain Reaction
- Promoter Regions, Genetic
- Proto-Oncogene Mas
- Proto-Oncogene Proteins c-myb/metabolism
- RNA, Messenger/metabolism
- Tumor Cells, Cultured
- Tumor Suppressor Proteins
- Up-Regulation
Collapse
Affiliation(s)
- M Schmidt
- Laboratory of Cellular Oncology, National Cancer Institute, Bethesda, MD, USA
| | | | | | | | | | | |
Collapse
|