51
|
Murcha MW, Rudhe C, Elhafez D, Adams KL, Daley DO, Whelan J. Adaptations required for mitochondrial import following mitochondrial to nucleus gene transfer of ribosomal protein S10. PLANT PHYSIOLOGY 2005; 138:2134-44. [PMID: 16040655 PMCID: PMC1183401 DOI: 10.1104/pp.105.062745] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The minimal requirements to support protein import into mitochondria were investigated in the context of the phenomenon of ongoing gene transfer from the mitochondrion to the nucleus in plants. Ribosomal protein 10 of the small subunit is encoded in the mitochondrion in soybean and many other angiosperms, whereas in several other species it is nuclear encoded and thus must be imported into the mitochondrial matrix to function. When encoded by the nuclear genome, it has adopted different strategies for mitochondrial targeting and import. In lettuce (Lactuca sativa) and carrot (Daucus carota), Rps10 independently gained different N-terminal extensions from other genes, following transfer to the nucleus. (The designation of Rps10 follows the following convention. The gene is indicated in italics. If encoded in the mitochondrion, it is rps10; if encoded in the nucleus, it is Rps10.) Here, we show that the N-terminal extensions of Rps10 in lettuce and carrot are both essential for mitochondrial import. In maize (Zea mays), Rps10 has not acquired an extension upon transfer but can be readily imported into mitochondria. Deletion analysis located the mitochondrial targeting region to the first 20 amino acids. Using site directed mutagenesis, we changed residues in the first 20 amino acids of the mitochondrial encoded soybean (Glycine max) rps10 to the corresponding amino acids in the nuclear encoded maize Rps10 until import was achieved. Changes were required that altered charge, hydrophobicity, predicted ability to form an amphipathic alpha-helix, and generation of a binding motif for the outer mitochondrial membrane receptor, translocase of the outer membrane 20. In addition to defining the changes required to achieve mitochondrial localization, the results demonstrate that even proteins that do not present barriers to import can require substantial changes to acquire a mitochondrial targeting signal.
Collapse
Affiliation(s)
- Monika W Murcha
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley 6009, Western Australia
| | | | | | | | | | | |
Collapse
|
52
|
Danpure CJ. Molecular etiology of primary hyperoxaluria type 1: new directions for treatment. Am J Nephrol 2005; 25:303-10. [PMID: 15961951 DOI: 10.1159/000086362] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2005] [Accepted: 05/04/2005] [Indexed: 01/10/2023]
Abstract
Primary hyperoxaluria type 1 (PH1) is a rare autosomal-recessive disorder caused by a deficiency of the liver-specific enzyme alanine:glyoxylate aminotransferase (AGT). AGT deficiency results in increased synthesis and excretion of the metabolic end-product oxalate and deposition of insoluble calcium oxalate in the kidney and urinary tract. Classic treatments for PH1 have tended to address the more distal aspects of the disease process (i.e. the symptoms rather than the causes). However, advances in the understanding of the molecular etiology of PH1 over the past decade have shifted attention towards the more proximal aspects of the disease process (i.e. the causes rather than the symptoms). The determination of the crystal structure of AGT has enabled the effects of some of the most important missense mutations in the AGXT gene to be rationalised in terms of AGT folding, dimerization and stability. This has opened up new possibilities for the design pharmacological agents that might counteract the destabilizing effects of these mutations and which might be of use for the treatment of a potentially life-threatening and difficult-to-treat disease.
Collapse
|
53
|
Igura M, Ose T, Obita T, Sato C, Maenaka K, Endo T, Kohda D. Crystallization and preliminary X-ray analysis of mitochondrial presequence receptor Tom20 in complexes with a presequence from aldehyde dehydrogenase. Acta Crystallogr Sect F Struct Biol Cryst Commun 2005; 61:514-7. [PMID: 16511083 PMCID: PMC1952308 DOI: 10.1107/s1744309105011577] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2005] [Accepted: 04/14/2005] [Indexed: 11/10/2022]
Abstract
Most mitochondrial proteins are synthesized in the cytosol and must be imported into the mitochondria. Many mitochondrial precursor proteins have an extra leader sequence at their N-terminus called a presequence. Presequences are recognized by the Tom20 receptor protein. Based on the previously determined NMR structure of rat Tom20, a fragment corresponding to the core structure was generated. A cysteine residue was added at the C-terminus of the rat aldehyde dehydrogenase presequence to fix the presequence peptide onto the Tom20 fragment via an intermolecular disulfide bond. Two crystal forms of the complex were successfully obtained with different designs of the linker sequence which diffracted to 2.1 and 1.9 A. Crystal dehydration and subsequent annealing was essential to obtain good diffraction data for the 2.1 A crystal form.
Collapse
Affiliation(s)
- Mayumi Igura
- Division of Structural Biology, Medical Institute of Bioregulation, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan
| | - Toyoyuki Ose
- Division of Structural Biology, Medical Institute of Bioregulation, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan
| | - Takayuki Obita
- Division of Structural Biology, Medical Institute of Bioregulation, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan
| | - Chiaki Sato
- Department of Structural Biology, Bioengineering Research Institute, Furuedai, Osaka 565-0874, Japan
| | - Katsumi Maenaka
- Division of Structural Biology, Medical Institute of Bioregulation, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan
| | - Toshiya Endo
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Daisuke Kohda
- Division of Structural Biology, Medical Institute of Bioregulation, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
54
|
Likić VA, Perry A, Hulett J, Derby M, Traven A, Waller RF, Keeling PJ, Koehler CM, Curran SP, Gooley PR, Lithgow T. Patterns that Define the Four Domains Conserved in Known and Novel Isoforms of the Protein Import Receptor Tom20. J Mol Biol 2005; 347:81-93. [PMID: 15733919 DOI: 10.1016/j.jmb.2004.12.057] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2004] [Revised: 12/17/2004] [Accepted: 12/27/2004] [Indexed: 11/22/2022]
Abstract
Tom20 is the master receptor for protein import into mitochondria. Analysis of motifs present in Tom20 sequences from fungi and animals found several highly conserved regions, including features of the transmembrane segment, the ligand-binding domain and functionally important flexible segments at the N terminus and the C terminus of the protein. Hidden Markov model searches of genome sequence data revealed novel isoforms of Tom20 in vertebrate and invertebrate animals. A three-dimensional comparative model of the novel type I Tom20, based on the structurally characterized type II isoform, shows important differences in the amino acid residues lining the ligand-binding groove, where the type I protein from animals is more similar to the fungal form of Tom20. Given that the two receptor types from mouse interact with the same set of precursor protein substrates, comparative analysis of the substrate-binding site provides unique insight into the mechanism of substrate recognition. No Tom20-related protein was found in genome sequence data from plants or protozoans, suggesting the receptor Tom20 evolved after the split of animals and fungi from the main lineage of eukaryotes.
Collapse
Affiliation(s)
- Vladimir A Likić
- Russell Grimwade School of Biochemistry and Molecular Biology, University of Melbourne, Melbourne 3010, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Nagai T, Abe A, Sasakawa C. Targeting of enteropathogenic Escherichia coli EspF to host mitochondria is essential for bacterial pathogenesis: critical role of the 16th leucine residue in EspF. J Biol Chem 2004; 280:2998-3011. [PMID: 15533930 DOI: 10.1074/jbc.m411550200] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The attachment of enteropathogenic Escherichia coli (EPEC) to host cells and the induction of attaching and effacing (A/E) lesions are prominent pathogenic features. EPEC infection also leads to host cell death and damage to the intestinal mucosa, which is partly dependent upon EspF, one of the effectors. In this study, we demonstrate that EspF is a mitochondrial import protein with a functional mitochondrial targeting signal (MTS), because EspF activity for importing into the mitochondria was abrogated by MTS deletion mutants. Substitution of the 16th leucine with glutamic acid (EspF(L16E)) completely abolished EspF activity. Infection of HeLa cells with wild type but not the espF mutant (DeltaespF) decreased mitochondrial membrane potential (DeltaPsi(m)), leading to cell death. The DeltaPsi(m) decrease and cell death were restored in cells infected with DeltaespF/pEspF but not DeltaespF/pEspF(L16E), suggesting that the 16th leucine in the MTS is a critical amino acid for EspF function. To demonstrate the impact of EspF in vivo, we exploited Citrobacter rodentium by infecting C3H/HeJ mice with DeltaespF(CR), DeltaespF(CR)/pEspF(CR), or DeltaespF(CR)/pEspF(L16E)(CR). These results indicate that EspF activity contributes to bacterial pathogenesis, as judged by murine lethality and intestinal histopathology, and promotion of bacterial colonization of the intestinal mucosa.
Collapse
Affiliation(s)
- Takeshi Nagai
- Department of Microbiology and Immunity, Institute of Medical Science, University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | | | | |
Collapse
|
56
|
Schinzel A, Kaufmann T, Borner C. Bcl-2 family members: integrators of survival and death signals in physiology and pathology [corrected]. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2004; 1644:95-105. [PMID: 14996494 DOI: 10.1016/j.bbamcr.2003.09.006] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2003] [Accepted: 09/26/2003] [Indexed: 10/26/2022]
Abstract
The members of the Bcl-2 family of proteins are crucial regulators of apoptosis. In order to determine cell fate, these proteins must be targeted to distinct intracellular membranes, including the mitochondrial outer membrane (MOM), the membrane of the endoplasmic reticulum (ER) and its associated nuclear envelope. The targeting sequences and mechanisms that mediate the specificity of these proteins for a particular cellular membrane remain poorly defined. Several Bcl-2 family members have been reported to be tail-anchored via their predicted hydrophobic COOH-terminal transmembrane domains (TMDs). Tail-anchoring imposes a posttranslational mechanism of membrane insertion on the already folded protein, suggesting that the transient binding of cytosolic chaperone proteins to the hydrophobic TMD may be an important regulatory event in the targeting process. The TMD of certain family members is initially concealed and only becomes available for targeting and membrane insertion in response to apoptotic stimuli. These proteins either undergo a conformational change, posttranslational modification or a combination of these events enabling them to translocate to sites at which they are functional. Some Bcl-2 family members lack a TMD, but nevertheless localize to the MOM or the ER membrane during apoptosis where they execute their functions. In this review, we will focus on the intracellular targeting of Bcl-2 family members and the mechanisms by which they translocate to their sites of action. Furthermore, we will discuss the posttranslational modifications which regulate these events.
Collapse
Affiliation(s)
- Anna Schinzel
- Institute for Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg, Breisachertstrasse 66, D-79106 Fribourg, Germany
| | | | | |
Collapse
|
57
|
Moberg P, Nilsson S, Ståhl A, Eriksson AC, Glaser E, Mäler L. NMR solution structure of the mitochondrial F1beta presequence from Nicotiana plumbaginifolia. J Mol Biol 2004; 336:1129-40. [PMID: 15037074 DOI: 10.1016/j.jmb.2004.01.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2003] [Revised: 12/18/2003] [Accepted: 01/07/2004] [Indexed: 11/19/2022]
Abstract
We have isolated, characterized and determined the three-dimensional NMR solution structure of the presequence of ATPsynthase F1beta subunit from Nicotiana plumbaginifolia. A general method for purification of presequences is presented. The method is based on overexpression of a mutant precursor containing a methionine residue introduced at the processing site, followed by CNBr-cleavage and purification of the presequence on a cation-exchange column. The F1beta presequence, 53 amino acid residues long, retained its native properties as evidenced by inhibition of in vitro mitochondrial import and processing at micromolar concentrations. CD spectroscopy revealed that the F1beta presequence formed an alpha-helical structure in membrane mimetic environments such as SDS and DPC micelles (approximately 50% alpha-helix), and in acidic phospholipid bicelles (approximately 60% alpha-helix). The NMR solution structure of the F1beta presequence in SDS micelles was determined on the basis of 518 distance and 21 torsion angle constraints. The structure was found to contain two helices, an N-terminal amphipathic alpha-helix (residues 4-15) and a C-terminal alpha-helix (residues 43-53), separated by a largely unstructured 27 residue long internal domain. The N-terminal amphipathic alpha-helix forms the putative Tom20 receptor binding site, whereas the C-terminal alpha-helix is located upstream of the mitochondrial processing peptidase cleavage site.
Collapse
Affiliation(s)
- Per Moberg
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
58
|
Ambard-Bretteville F, Small I, Grandjean O, Colas des Francs-Small C. Discrete mutations in the presequence of potato formate dehydrogenase inhibit the in vivo targeting of GFP fusions into mitochondria. Biochem Biophys Res Commun 2003; 311:966-71. [PMID: 14623276 DOI: 10.1016/j.bbrc.2003.10.099] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Most mitochondrial proteins are encoded by the nucleus, translated in the cytosol, and imported. Mitochondrial precursors generally contain their targeting information in a cleavable N-terminal presequence, which is rich in hydroxylated and positively charged residues and can form amphiphilic alpha-helices. We report the in vivo targeting of green fluorescent protein (GFP) by the FDH presequence, as well as several truncated or mutated variants. Some of these mutations modify the amphiphilicity of the predicted alpha-helix. The removal of the first two residues abolishes import and some single amino acid mutations strongly inhibit import. Such strong effects on import had not been observed in similar studies on other plant mitochondrial presequences, suggesting that the FDH presequence is a particularly good model for functional studies.
Collapse
|
59
|
Zhang X, Roe SM, Hou Y, Bartlam M, Rao Z, Pearl LH, Danpure CJ. Crystal structure of alanine:glyoxylate aminotransferase and the relationship between genotype and enzymatic phenotype in primary hyperoxaluria type 1. J Mol Biol 2003; 331:643-52. [PMID: 12899834 DOI: 10.1016/s0022-2836(03)00791-5] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A deficiency of the liver-specific enzyme alanine:glyoxylate aminotransferase (AGT) is responsible for the potentially lethal hereditary kidney stone disease primary hyperoxaluria type 1 (PH1). Many of the mutations in the gene encoding AGT are associated with specific enzymatic phenotypes such as accelerated proteolysis (Ser205Pro), intra-peroxisomal aggregation (Gly41Arg), inhibition of pyridoxal phosphate binding and loss of catalytic activity (Gly82Glu), and peroxisome-to-mitochondrion mistargeting (Gly170Arg). Several mutations, including that responsible for AGT mistargeting, co-segregate and interact synergistically with a Pro11Leu polymorphism found at high frequency in the normal population. In order to gain further insights into the mechanistic link between genotype and enzymatic phenotype in PH1, we have determined the crystal structure of normal human AGT complexed to the competitive inhibitor amino-oxyacetic acid to 2.5A. Analysis of this structure allows the effects of these mutations and polymorphism to be rationalised in terms of AGT tertiary and quaternary conformation, and in particular it provides a possible explanation for the Pro11Leu-Gly170Arg synergism that leads to AGT mistargeting.
Collapse
Affiliation(s)
- Xiaoxuan Zhang
- Department of Biology, University College London, Gower Street, London WC1E 6BT, UK
| | | | | | | | | | | | | |
Collapse
|
60
|
Obita T, Muto T, Endo T, Kohda D. Peptide library approach with a disulfide tether to refine the Tom20 recognition motif in mitochondrial presequences. J Mol Biol 2003; 328:495-504. [PMID: 12691756 DOI: 10.1016/s0022-2836(03)00288-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Many mitochondrial matrix and inner-membrane proteins are synthesized in the cytosol as precursor proteins with an N-terminal presequence, and are imported into the mitochondria. Although no distinct sequence homology has been found among mitochondrial presequences, Tom20, a general import receptor in the outer mitohcondrial membrane, binds to presequences, and distinguishes mitochondrial proteins from non-mitochonrial proteins. The recently determined structure of the cytosolic domain of Tom20 (DeltaTom20) in a complex with the presequence of rat aldehyde dehydrogenase (ALDH) showed that a short stretch of the presequence forms an amphiphilic helix, and its hydrophobic surface interacts with the hydrophobic-binding groove of Tom20. The following NMR analyses revealed a common five-residue pattern for Tom20 binding in five different presequences. To refine the common amino acid motif for the recognition by Tom20, we introduced a new peptide library approach in this study: we prepared a mixture of ALDH presequence variants, tethered these peptides to DeltaTom20 in a competitive manner by an intermolecular disulfide bond, and determined the relative affinities by MALDI-TOF mass spectrometry. We successfully deduced a refined, common motif for the recognition by Tom20, and found that the segment consisting of residues 14-20 of the ALDH presequence was locally optimized in the sequence space, with respect to Tom20 binding.
Collapse
Affiliation(s)
- Takayuki Obita
- Department of Structural Biology, Biomolecular Engineering Research Institute, Suita, Osaka 565-0874, Japan
| | | | | | | |
Collapse
|
61
|
Mukhopadhyay A, Heard TS, Wen X, Hammen PK, Weiner H. Location of the actual signal in the negatively charged leader sequence involved in the import into the mitochondrial matrix space. J Biol Chem 2003; 278:13712-8. [PMID: 12551941 DOI: 10.1074/jbc.m212743200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Proteins destined for the mitochondrial matrix space have leader sequences that are typically present at the most N-terminal end of the nuclear-encoded precursor protein. The leaders are rich in positive charges and usually deficient of negative charges. This observation led to the acid-chain hypothesis to explain how the leader sequences interact with negatively charged receptor proteins. Here we show using both chimeric leaders and one from isopropyl malate synthase that possesses a negative charge that the leader need not be at the very N terminus of the precursor. Experiments were performed with modified non-functioning leader sequences fused to either the native or a non-functioning leader of aldehyde dehydrogenase so that an internal leader sequence could exist. The internal leader is sufficient for the import of the modified precursor protein. It appears that this leader still needs to form an amphipathic helix just like the normal N-terminal leaders do. This internal leader could function even if the most N-terminal portion contained negative charges in the first 7-11 residues. If the first 11 residues were deleted from isopropyl malate synthase, the resulting protein was imported more successfully than the native protein. It appears that precursors that carry negatively charged leaders use an internal signal sequence to compensate for the non-functional segment at the most N-terminal portion of the protein.
Collapse
Affiliation(s)
- Abhijit Mukhopadhyay
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907-2063, USA
| | | | | | | | | |
Collapse
|
62
|
Danpure CJ, Lumb MJ, Birdsey GM, Zhang X. Alanine:glyoxylate aminotransferase peroxisome-to-mitochondrion mistargeting in human hereditary kidney stone disease. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1647:70-5. [PMID: 12686111 DOI: 10.1016/s1570-9639(03)00055-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The pyridoxal-phosphate (PLP)-dependent enzyme alanine:glyoxylate aminotransferase (AGT) is mistargeted from peroxisomes to mitochondria in patients with the hereditary kidney stone disease primary hyperoxaluria type 1 (PH1) due to the synergistic interaction between a common Pro(11)Leu polymorphism and a PH1-specific Gly(170)Arg mutation. The kinetic partitioning of newly synthesised AGT between peroxisomes and mitochondria is determined by the combined effects of (1) the generation of cryptic mitochondrial targeting information, and (2) the inhibition of AGT dimerization. The crystal structure of AGT has recently been solved, allowing the effects of the various polymorphisms and mutations to be rationalised in terms of AGT's three-dimensional conformation. Procedures that increase dimer stability and/or increase the rate of dimer formation have potential in the formulation of novel strategies to treat this otherwise intractable life-threatening disease.
Collapse
Affiliation(s)
- Christopher J Danpure
- Department of Biology, University College London, Gower Street, London WC1E 6BT, UK.
| | | | | | | |
Collapse
|
63
|
Beilharz T, Egan B, Silver PA, Hofmann K, Lithgow T. Bipartite signals mediate subcellular targeting of tail-anchored membrane proteins in Saccharomyces cerevisiae. J Biol Chem 2003; 278:8219-23. [PMID: 12514182 DOI: 10.1074/jbc.m212725200] [Citation(s) in RCA: 140] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tail-anchored proteins have an NH(2)-terminal cytosolic domain anchored to intracellular membranes by a single, COOH-terminal, transmembrane segment. Sequence analysis identified 55 tail-anchored proteins in Saccharomyces cerevisiae, with several novel proteins, including Prm3, which we find is required for karyogamy and is tail-anchored in the nuclear envelope. A total of six tail-anchored proteins are present in the mitochondrial outer membrane and have relatively hydrophilic transmembrane segments that serve as targeting signals. The rest, by far the majority, localize via a bipartite system of signals: uniformly hydrophobic tail anchors are first inserted into the endoplasmic reticulum, and additional segments within the cytosolic domain of each protein can dictate subsequent sorting to a precise destination within the cell.
Collapse
Affiliation(s)
- Traude Beilharz
- Russell Grimwade School of Biochemistry & Molecular Biology, University of Melbourne, Parkville 3010, Australia
| | | | | | | | | |
Collapse
|
64
|
Vial S, Lu H, Allen S, Savory P, Thornton D, Sheehan J, Tokatlidis K. Assembly of Tim9 and Tim10 into a functional chaperone. J Biol Chem 2002; 277:36100-8. [PMID: 12138093 DOI: 10.1074/jbc.m202310200] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The TIM10 complex is localized in the mitochondrial intermembrane space and mediates insertion of hydrophobic proteins at the inner membrane. We have characterized TIM10 assembly and analyzed the structural properties of its subunits, Tim9 and Tim10. Both proteins are alpha-helical with a protease-resistant central domain, and each self-associates to form mainly dimers and trimers in solution. Tim9 and Tim10 bound to one another with submicromolar affinity in equimolar amounts and assembled in a stable, significantly extended complex that was indistinguishable from the native mitochondrial TIM10 complex. Importantly, the reconstituted TIM10 complex is functional because it bound to the physiological substrate ADP/ATP carrier and displayed chaperone activity in refolding the model substrate firefly luciferase. These data demonstrate that the individual subunits can exist as independent, dynamically self-associating proteins. Assembly into the thermodynamically stable hexameric complex is necessary for the TIM10 chaperone function.
Collapse
Affiliation(s)
- Sarah Vial
- School of Biological Sciences and The Wellcome Trust Centre for Cell Matrix Research, University of Manchester, Manchester M13 9PT, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
65
|
Endo T, Kohda D. Functions of outer membrane receptors in mitochondrial protein import. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1592:3-14. [PMID: 12191763 DOI: 10.1016/s0167-4889(02)00259-8] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Most mitochondrial proteins are synthesized in the cytosol as precursor proteins and are imported into mitochondria. The targeting signals for mitochondria are encoded in the presequences or in the mature parts of the precursor proteins, and are decoded by the receptor sites in the translocator complex in the mitochondrial outer membrane. The recently determined NMR structure of the general import receptor Tom20 in a complex with a presequence peptide reveals that, although the amphiphilicity and positive charges of the presequence is essential for the import ability of the presequence, Tom20 recognizes only the amphiphilicity, but not the positive charges. This leads to a new model that different features associated with the mitochondrial targeting sequence of the precursor protein can be recognized by the mitochondrial protein import system in different steps during the import.
Collapse
Affiliation(s)
- Toshiya Endo
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, 464-8602, Japan.
| | | |
Collapse
|
66
|
Mukhopadhyay A, Hammen P, Waltner-Law M, Weiner H. Timing and structural consideration for the processing of mitochondrial matrix space proteins by the mitochondrial processing peptidase (MPP). Protein Sci 2002; 11:1026-35. [PMID: 11967360 PMCID: PMC2373553 DOI: 10.1110/ps.3760102] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2001] [Revised: 01/19/2001] [Accepted: 01/22/2001] [Indexed: 10/14/2022]
Abstract
Most mitochondrial matrix space proteins are synthesized as a precursor protein, and the N-terminal extension of amino acids that served as the leader sequence is removed after import by the action of a metalloprotease called mitochondrial processing peptidase (MPP). The crystal structure of MPP has been solved very recently, and it has been shown that synthetic leader peptides bind with MPP in an extended conformation. However, it is not known how MPP recognizes hundreds of leader peptides with different primary and secondary structures or when during import the leader is removed. Here we took advantage of the fact that the structure of the leader from rat liver aldehyde dehydrogenase has been determined by 2D-NMR to possess two helical portions separated by a three amino acid (RGP) linker. When the linker was deleted, the leader formed one long continuous helix that can target a protein to the matrix space but is not removed by the action of MPP. Repeats of two and three leaders were fused to the precursor protein to determine the stage of import at which processing occurs, if MPP could function as an endo peptidase, and if it would process if the cleavage site was part of a helix. Native or linker deleted constructs were used. Import into isolated yeast mitochondria or processing with recombinantly expressed MPP was performed. It was concluded that processing did not occur as the precursor was just entering the matrix space, but most likely coincided with the folding of the protein. Further, finding that hydrolysis could not take place if the processing site was part of a stable helix is consistent with the crystal structure of MPP. Lastly, it was found that MPP could function at sites as far as 108 residues from the N terminus of the precursor protein, but its ability to process decreases exponentially as the distance increases.
Collapse
Affiliation(s)
- Abhijit Mukhopadhyay
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907-1153, USA
| | | | | | | |
Collapse
|
67
|
Mukhopadhyay A, Avramova LV, Weiner H. Tom34 unlike Tom20 does not interact with the leader sequences of mitochondrial precursor proteins. Arch Biochem Biophys 2002; 400:97-104. [PMID: 11913975 DOI: 10.1006/abbi.2002.2777] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Tom20 and Tom34 are mammalian liver proteins previously identified by others to be components of the mitochondrial import translocation apparatus. It has been shown that Tom20 interacts with the leader sequence of nuclear coded matrix space precursor proteins. Here we show with recombinantly expressed Tom proteins that Tom34 binds the mature portion of the precursor and not the leader. Both these Tom proteins inhibited the import of newly translated precursor of aldehyde dehydrogenase in an in vitro assay. Only Tom20 inhibited the import of a fusion protein of the leader of aldehyde dehydrogenase attached to dihydrofolate reductase. Antibodies against Tom20 coprecipitated both the precursor of aldehyde dehydrogenase (pALDH) and of dihydrofolate reductase (pA-DHFR). Antibodies against Tom34 interacted only when the mature portion of aldehyde dehydrogenase was present. Similar import inhibition patterns were found when other precursor and chimeric constructs we investigated. When Tom34-green fluorescence protein was transfected to HeLa cells it was observed that Tom34 was found through out the cell. It is concluded from our observation that Tom34 is a cytosolic protein, whose role appeared to be to interact with mature portion of some preproteins and may keep them in an unfolded, import compatible state.
Collapse
Affiliation(s)
- Abhijit Mukhopadhyay
- Department of Biochemistry, Purdue University, 1153 Biochemistry Building, West Lafayette, Indiana 47907-1153, USA
| | | | | |
Collapse
|
68
|
Schleiff E, Soll J, Sveshnikova N, Tien R, Wright S, Dabney-Smith C, Subramanian C, Bruce BD. Structural and guanosine triphosphate/diphosphate requirements for transit peptide recognition by the cytosolic domain of the chloroplast outer envelope receptor, Toc34. Biochemistry 2002; 41:1934-46. [PMID: 11827540 DOI: 10.1021/bi011361+] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Toc34 is a transmembrane protein located in the outer envelope membrane of chloroplasts and involved in transit peptide recognition. The cytosolic region of Toc34 reveals 34% alpha-helical and 26% beta-strand structure and is stabilized by intramolecular electrostatic interaction. Toc34 binds both chloroplast preproteins and isolated transit peptides in a guanosine triphosphate- (GTP-) dependent mechanism. In this study we demonstrate that the soluble, cytosolic domain of Toc34 (Toc34deltaTM) functions as receptor in vitro and is capable to compete with the import of the preprotein of the small subunit (preSSU) of ribulose-1,5-bisphosphate carboxylase-oxygenase into chloroplasts in a GTP-dependent manner. We have developed a biosensor assay to study the interaction of Toc34deltaTM with purified preproteins and transit peptides. The results are compared with the interactions of both a full-size preprotein and the transit peptide of preSSU with the translocon of the outer envelope of chloroplasts (Toc complex) in situ. Several mutants of the transit peptide of preSSU were evaluated to identify amino acid segments that are specifically recognized by Toc34. We present a model of how Toc34 may recognize the transit peptide and discuss how this interaction may facilitate interaction and translocation of preproteins via the Toc complex in vivo.
Collapse
Affiliation(s)
- E Schleiff
- Institut of Botany, University Kiel, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| | | | | | | | | | | | | | | |
Collapse
|
69
|
Emanuelsson O, von Heijne G. Prediction of organellar targeting signals. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1541:114-9. [PMID: 11750667 DOI: 10.1016/s0167-4889(01)00145-8] [Citation(s) in RCA: 138] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The subcellular location of a protein is an important characteristic with functional implications, and hence the problem of predicting subcellular localization from the amino acid sequence has received a fair amount of attention from the bioinformatics community. This review attempts to summarize the present state of the art in the field.
Collapse
Affiliation(s)
- O Emanuelsson
- Stockholm Bioinformatics Center, Stockholm University, S-10691, Stockholm, Sweden
| | | |
Collapse
|
70
|
Bruce BD. The paradox of plastid transit peptides: conservation of function despite divergence in primary structure. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1541:2-21. [PMID: 11750659 DOI: 10.1016/s0167-4889(01)00149-5] [Citation(s) in RCA: 180] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Transit peptides are N-terminal extensions that facilitate the targeting and translocation of cytosolically synthesized precursors into plastids via a post-translational mechanism. With the complete Arabidopsis genome in hand, it is now evident that transit peptides direct more than 3500 different proteins into the plastid during the life of a typical plant. Deciphering a common mechanism for how this multitude of targeting sequences function has been hampered by the realization that at a primary sequence level, transit peptides are highly divergent in length, composition, and organization. This review addresses recent findings on several of the diverse functions that transit peptides must perform, including direct interaction with envelope lipids, association with a cis-acting guidance complex, recognition by envelope receptors, insertion into the Toc/Tic translocon, interaction with molecular motors, and finally, recognition/cleavage by the stromal processing peptidase. In addition to higher plants, transit peptides also direct the import of proteins into complex plastids derived from secondary endosymbiosis. An emerging concept suggests that transit peptides contain multiple domains that provide either distinct or possibly overlapping functions. Although still poorly characterized, evolutionary processes could yield transit peptides with alternative domain organizations.
Collapse
Affiliation(s)
- B D Bruce
- Department of Biochemistry, Cellular and Molecular Biology, Center of Excellence in Structural Biology, Graduate Program in Genome Science and Technology, University of Tennessee, Knoxville, TN 37917, USA.
| |
Collapse
|
71
|
Zhang XP, Sjöling S, Tanudji M, Somogyi L, Andreu D, Eriksson LE, Gräslund A, Whelan J, Glaser E. Mutagenesis and computer modelling approach to study determinants for recognition of signal peptides by the mitochondrial processing peptidase. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2001; 27:427-38. [PMID: 11576427 DOI: 10.1046/j.1365-313x.2001.01108.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Determinants for the recognition of a mitochondrial presequence by the mitochondrial processing peptidase (MPP) have been investigated using mutagenesis and bioinformatics approaches. All plant mitochondrial presequences with a cleavage site that was confirmed by experimental studies can be grouped into three classes. Two major classes contain an arginine residue at position -2 or -3, and the third class does not have any conserved arginines. Sequence logos revealed loosely conserved cleavage motifs for the first two classes but no significant amino acid conservation for the third class. Investigation of processing determinants for a class III precursor, Nicotiana plumbaginifolia F1beta precursor of ATP synthase (pF1beta), was performed using a series of pF1beta presequence mutants and mutant presequence peptides derived from the C-terminal portion of the presequence. Replacement of -2 Gln by Arg inhibited processing, whereas replacement of either the most proximally located -5 Arg or -15 Arg by Leu had only a low inhibitory effect. The C-terminal portion of the pF1beta presequence forms a helix-turn-helix structure. Mutations disturbing or prolonging the helical element upstream of the cleavage site inhibited processing significantly. Structural models of potato MPP and the C-terminal pF1beta presequence peptide were built by homology modelling and empirical conformational energy search methods, respectively. Molecular docking of the pF1beta presequence peptide to the MPP model suggested binding of the peptide to the negatively charged binding cleft formed by the alpha-MPP and beta-MPP subunits in close proximity to the H111XXE114H115X(116-190)E191 proteolytic active site on beta-MPP. Our results show for the first time that the amino acid at the -2 position, even if not an arginine, as well as structural properties of the C-terminal portion of the presequence are important determinants for the processing of a class III precursor by MPP.
Collapse
Affiliation(s)
- X P Zhang
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, 106 91 Stockholm, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|