51
|
Hu L, Cui W, He Z, Shi X, Feng K, Ma B, Cai YD. Cooperativity among short amyloid stretches in long amyloidogenic sequences. PLoS One 2012; 7:e39369. [PMID: 22761773 PMCID: PMC3382238 DOI: 10.1371/journal.pone.0039369] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2012] [Accepted: 05/18/2012] [Indexed: 12/29/2022] Open
Abstract
Amyloid fibrillar aggregates of polypeptides are associated with many neurodegenerative diseases. Short peptide segments in protein sequences may trigger aggregation. Identifying these stretches and examining their behavior in longer protein segments is critical for understanding these diseases and obtaining potential therapies. In this study, we combined machine learning and structure-based energy evaluation to examine and predict amyloidogenic segments. Our feature selection method discovered that windows consisting of long amino acid segments of ~30 residues, instead of the commonly used short hexapeptides, provided the highest accuracy. Weighted contributions of an amino acid at each position in a 27 residue window revealed three cooperative regions of short stretch, resemble the β-strand-turn-β-strand motif in A-βpeptide amyloid and β-solenoid structure of HET-s(218-289) prion (C). Using an in-house energy evaluation algorithm, the interaction energy between two short stretches in long segment is computed and incorporated as an additional feature. The algorithm successfully predicted and classified amyloid segments with an overall accuracy of 75%. Our study revealed that genome-wide amyloid segments are not only dependent on short high propensity stretches, but also on nearby residues.
Collapse
Affiliation(s)
- Lele Hu
- Institute of Systems Biology, Shanghai University, Shanghai, People’s Republic of China
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, People’s Republic of China
| | - Weiren Cui
- CAS-MPG Partner Institute of Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - Zhisong He
- CAS-MPG Partner Institute of Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - Xiaohe Shi
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Kaiyan Feng
- Shanghai Center for Bioinformation Technology, Shanghai, China
| | - Buyong Ma
- Basic Science Program, SAIC – Frederick, Center for Cancer Research Nanobiology Program, National Cancer Institute-Fredeick, National Institute of Health, Frederick, Maryland, United States of America
| | - Yu-Dong Cai
- Institute of Systems Biology, Shanghai University, Shanghai, People’s Republic of China
| |
Collapse
|
52
|
Brender JR, Salamekh S, Ramamoorthy A. Membrane disruption and early events in the aggregation of the diabetes related peptide IAPP from a molecular perspective. Acc Chem Res 2012; 45:454-62. [PMID: 21942864 DOI: 10.1021/ar200189b] [Citation(s) in RCA: 314] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The aggregation of proteins is tightly controlled in living systems, and misfolded proteins are normally removed before aggregation of the misfolded protein can occur. But for reasons not clearly understood, in some individuals this degradation process breaks down, and misfolded proteins accumulate in insoluble protein aggregates (amyloid deposits) over time. Of the many proteins expressed in humans, a small but growing number have been found to form the long, highly ordered β-sheet protein fibers that comprise amyloid deposits. Despite a lack of obvious sequence similarity, the amyloid forms of diverse proteins are strikingly similar, consisting of long, highly ordered insoluble fibers with a characteristic crossed β-sheet pattern. Amyloidogenesis has been the focus of intense basic and clinical research, because a high proportion of amyloidogenic proteins have been linked to common degenerative diseases, including Alzheimer's disease, type II diabetes, and Parkinson's disease. The apparent link between amyloidogenic proteins and disease was initially attributed to the amyloid form of the protein; however, increasing evidence suggests that the toxicity is due to intermediates generated during the assembly of amyloid fibers. These intermediates have been proposed to attack cells in a variety of ways, such as by generating inflammation, creating reactive oxygen species, and overloading the misfolded protein response pathway. One common, well-studied mechanism is the disruption of the plasma and organelle membranes. In this Account, we examine the early molecular-level events in the aggregation of the islet amyloid polypeptide (IAPP, also called amylin) and its ensuing disruption of membranes. IAPP is a 37-residue peptide secreted in conjunction with insulin; it is highly amyloidogenic and often found in amyloid deposits in type II diabetics. IAPP aggregates are highly toxic to the β-cells that produce insulin, and thus IAPP is believed to be one of the factors involved in the transition from early to later stages of type II diabetes. Using variants of IAPP that are combinations of toxic or non-toxic and amyloidogenic or nonamyloidogenic forms, we have shown that formation of amyloid fibers is a sufficient but not necessary condition for the disruption of β-cells. Instead, the ability to induce membrane disruption in model membranes appears to be related to the peptide's ability to stabilize curvature in the membrane, which in turn is related to the depth of penetration in the membrane. Although many similarities exist between IAPP and other amyloidogenic proteins, one important difference appears to be the role of small oligomers in the assembly process of amyloid fibers. In many amyloidogenic proteins, small oligomers form a distinct metastable intermediate that is frequently the most toxic species; however, in IAPP, small oligomers appear to be transient and are rapidly converted to amyloid fibers. Moreover, the aggregation and toxicity of IAPP is controlled by other cofactors present in the secretory granule from which it is released, such as zinc and insulin, in a control mechanism that is somehow unbalanced in type II diabetics. Investigations into this process are likely to give clues to the mysterious origins of type II diabetes at the molecular level.
Collapse
Affiliation(s)
- Jeffrey R. Brender
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Samer Salamekh
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
53
|
Wang L, Middleton CT, Singh S, Reddy AS, Woys AM, Strasfeld DB, Marek P, Raleigh DP, de Pablo JJ, Zanni MT, Skinner JL. 2DIR spectroscopy of human amylin fibrils reflects stable β-sheet structure. J Am Chem Soc 2011; 133:16062-71. [PMID: 21916515 PMCID: PMC3196637 DOI: 10.1021/ja204035k] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The aggregation of human amylin to form amyloid contributes to islet β-cell dysfunction in type 2 diabetes. Studies of amyloid formation have been hindered by the low structural resolution or relatively modest time resolution of standard methods. Two-dimensional infrared (2DIR) spectroscopy, with its sensitivity to protein secondary structures and its intrinsic fast time resolution, is capable of capturing structural changes during the aggregation process. Moreover, isotope labeling enables the measurement of residue-specific information. The diagonal line widths of 2DIR spectra contain information about dynamics and structural heterogeneity of the system. We illustrate the power of a combined atomistic molecular dynamics simulation and theoretical and experimental 2DIR approach by analyzing the variation in diagonal line widths of individual amide I modes in a series of labeled samples of amylin amyloid fibrils. The theoretical and experimental 2DIR line widths suggest a "W" pattern, as a function of residue number. We show that large line widths result from substantial structural disorder and that this pattern is indicative of the stable secondary structure of the two β-sheet regions. This work provides a protocol for bridging MD simulation and 2DIR experiments for future aggregation studies.
Collapse
Affiliation(s)
- Lu Wang
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, United States.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Huggins KNL, Bisaglia M, Bubacco L, Tatarek-Nossol M, Kapurniotu A, Andersen NH. Designed hairpin peptides interfere with amyloidogenesis pathways: fibril formation and cytotoxicity inhibition, interception of the preamyloid state. Biochemistry 2011; 50:8202-12. [PMID: 21848289 DOI: 10.1021/bi200760h] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Hairpin peptides bearing cross-strand Trp-Trp and Tyr-Tyr pairs at non-H-bonded strand sites modulate the aggregation of two unrelated amyloidogenic systems, human pancreatic amylin (hAM) and α-synuclein (α-syn), associated with type II diabetes and Parkinson's disease, respectively. In the case of hAM, we have previously reported that inhibition of amyloidogenesis is observed as an increase in the lag time to amyloid formation and a diminished thioflavin (ThT) fluorescence response. In this study, a reduced level of hAM fibril formation is confirmed by transmission electron microscopy imaging. Several of the hairpins tested were significantly more effective inhibitors than rat amylin. Moreover, a marked inhibitory effect on hAM-associated cytotoxicity by the more potent hairpin peptide is demonstrated. In the case of α-syn, the dominant effect of active hairpins was, besides a weakened ThT fluorescence response, the earlier appearance of insoluble aggregates that do not display amyloid characteristics with the few fibrils observed having abnormal morphology. We attribute the alteration of the α-synuclein aggregation pathway observed to the capture of a preamyloid state and diversion to nonamyloidogenic aggregates. These β-hairpins represent a new class of amyloid inhibitors that bear no sequence similarity to the amyloid-producing polypeptides that are inhibited. A mechanistic rationale for these effects is proposed.
Collapse
Affiliation(s)
- Kelly N L Huggins
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | | | |
Collapse
|
55
|
Nanga RPR, Brender JR, Vivekanandan S, Ramamoorthy A. Structure and membrane orientation of IAPP in its natively amidated form at physiological pH in a membrane environment. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:2337-42. [PMID: 21723249 DOI: 10.1016/j.bbamem.2011.06.012] [Citation(s) in RCA: 217] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 06/09/2011] [Accepted: 06/14/2011] [Indexed: 11/25/2022]
Abstract
Human islet amyloid polypeptide is a hormone coexpressed with insulin by pancreatic beta-cells. For reasons not clearly understood, hIAPP aggregates in type II diabetics to form oligomers that interfere with beta-cell function, eventually leading to the loss of insulin production. The cellular membrane catalyzes the formation of amyloid deposits and is a target of amyloid toxicity through disruption of the membrane's structural integrity. Therefore, there is considerable current interest in solving the 3D structure of this peptide in a membrane environment. NMR experiments could not be directly utilized in lipid bilayers due to the rapid aggregation of the peptide. To overcome this difficulty, we have solved the structure of the naturally occurring peptide in detergent micelles at a neutral pH. The structure has an overall kinked helix motif, with residues 7-17 and 21-28 in a helical conformation, and with a 3(10) helix from Gly 33-Asn 35. In addition, the angle between the N- and C-terminal helices is constrained to 85°. The greater helical content of human IAPP in the amidated versus free acid form is likely to play a role in its aggregation and membrane disruptive activity.
Collapse
|
56
|
Ahmad E, Ahmad A, Singh S, Arshad M, Khan AH, Khan RH. A mechanistic approach for islet amyloid polypeptide aggregation to develop anti-amyloidogenic agents for type-2 diabetes. Biochimie 2011; 93:793-805. [DOI: 10.1016/j.biochi.2010.12.012] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2010] [Accepted: 12/19/2010] [Indexed: 10/18/2022]
|
57
|
Laghaei R, Mousseau N, Wei G. Structure and Thermodynamics of Amylin Dimer Studied by Hamiltonian-Temperature Replica Exchange Molecular Dynamics Simulations. J Phys Chem B 2011; 115:3146-54. [DOI: 10.1021/jp108870q] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Rozita Laghaei
- Département de Physique and Groupe de Recherche sur les Protéines Membranaires (GEPROM), Université de Montréal, C.P. 6128, succursale Centre-ville, Montréal (Québec), Canada
| | - Normand Mousseau
- Département de Physique and Groupe de Recherche sur les Protéines Membranaires (GEPROM), Université de Montréal, C.P. 6128, succursale Centre-ville, Montréal (Québec), Canada
| | - Guanghong Wei
- State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), and Department of Physics, Fudan University, 220 Handan Road, Shanghai 200433, China
| |
Collapse
|
58
|
Marshall KE, Morris KL, Charlton D, O'Reilly N, Lewis L, Walden H, Serpell LC. Hydrophobic, aromatic, and electrostatic interactions play a central role in amyloid fibril formation and stability. Biochemistry 2011; 50:2061-71. [PMID: 21288003 DOI: 10.1021/bi101936c] [Citation(s) in RCA: 177] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Amyloid-like fibrous crystals formed by the peptide KFFEAAAKKFFE have been previously characterized and provide an ideal model system to examine the importance of specific interactions by introducing specific substitutions. We find that the removal of any phenylalanine residue completely abrogates assembly ability, while charged residues modulate interactions within the structure resulting in alternative fibrillar morphologies. X-ray fiber diffraction analysis reveals that the essential backbone packing of the peptide molecules is maintained, while small changes accommodate differences in side chain size in the variants. We conclude that even very short peptides are adaptable and add to the growing knowledge regarding amyloid polymorphisms. Additionally, this work impacts on our understanding of the importance of residue composition for amyloidogenic peptides, in particular the roles of electrostatic, aromatic, and hydrophobic interactions in amyloid assembly.
Collapse
Affiliation(s)
- Karen E Marshall
- School of Life Sciences, University of Sussex, Falmer, East Sussex BN1 9QG, UK
| | | | | | | | | | | | | |
Collapse
|
59
|
Andrews MN, Winter R. Comparing the structural properties of human and rat islet amyloid polypeptide by MD computer simulations. Biophys Chem 2010; 156:43-50. [PMID: 21266296 DOI: 10.1016/j.bpc.2010.12.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2010] [Revised: 12/26/2010] [Accepted: 12/26/2010] [Indexed: 10/18/2022]
Abstract
Conformational properties of the full-length human and rat islet amyloid polypeptide 1-37 (amyloidogenic hIAPP and non-amyloidogenic rIAPP, respectively) were studied at 310 and 330 K by MD simulations both for the cysteine (reduced IAPP) and cystine (oxidized IAPP) moieties. At all temperatures studied, IAPP does not adopt a well-defined conformation and is essentially random coil in solution, although transient helices appear forming along the peptide between residues 8 and 22, particularly in the reduced form. Above the water percolation transition (at 320 K), the reduced hIAPP moiety presents a considerably diminished helical content remaining unstructured, while the natural cystine moiety reaches a rather compact state, presenting a radius of gyration that is almost 10% smaller and characterized by intrapeptide H-bonds that form many β-bridges in the C-terminal region. This compact conformation presents a short end-to-end distance and seems to form through the formation of β-sheet conformations in the C-terminal region with a minimization of the Y/F distances in a two-step mechanism: the first step taking place when the Y37/F23 distance is ~1.1 nm, and subsequently Y37/F15 reaches its minimum of ~0.86 nm. rIAPP, which does not aggregate, also presents transient helical conformations. A particularly stable helix is located in proximity of the C-terminal region, starting from residues L27 and P28. Our MD simulations show that P28 in rIAPP influences the secondary structure of IAPP by stabilizing the peptide in helical conformations. When this helix is not present, the peptide presents bends or H-bonded turns at P28 that seem to inhibit the formation of the β-bridges seen in hIAPP. Conversely, hIAPP is highly disordered in the C-terminal region, presenting transient isolated β-strand conformations, particularly at higher temperatures and when the natural disulfide bond is present. Such conformational differences found in our simulations could be responsible for the different aggregational propensities of the two different homologues. In fact, the fragment 30-37, which is identical in both homologues, is known to aggregate in vitro, hence the overall sequence must be responsible for the amyloidogenicity of hIAPP. The increased helicity in rIAPP induced by the serine-to-proline variation at residue 28 seems to be a plausible inhibitor of its aggregation.
Collapse
Affiliation(s)
- Maximilian N Andrews
- Faculty of Chemistry, Physical Chemistry I—Biophysical Chemistry, TU Dortmund University, Germany.
| | | |
Collapse
|
60
|
Reddy AS, Wang L, Singh S, Ling YL, Buchanan L, Zanni MT, Skinner JL, de Pablo JJ. Stable and metastable states of human amylin in solution. Biophys J 2010; 99:2208-16. [PMID: 20923655 PMCID: PMC3042569 DOI: 10.1016/j.bpj.2010.07.014] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 06/28/2010] [Accepted: 07/06/2010] [Indexed: 11/26/2022] Open
Abstract
Patients with type II diabetes exhibit fibrillar deposits of human amylin protein in the pancreas. It has been proposed that amylin oligomers arising along the aggregation or fibril-formation pathways are important in the genesis of the disease. In a step toward understanding these aggregation pathways, in this work we report the conformational preferences of human amylin monomer in solution using molecular simulations and infrared experiments. In particular, we identify a stable conformer that could play a key role in aggregation. We find that amylin adopts three stable conformations: one with an α-helical segment comprising residues 9-17 and a short antiparallel β-sheet comprising residues 24-28 and 31-35; one with an extended antiparallel β-hairpin with the turn region comprising residues 20-23; and one with no particular structure. Using detailed calculations, we determine the relative stability of these various conformations, finding that the β-hairpin conformation is the most stable, followed by the α-helical conformation, and then the unstructured coil. To test our predicted structure, we calculate its infrared spectrum in the amide I stretch regime, which is sensitive to secondary structure through vibrational couplings and linewidths, and compare it to experiment. We find that theoretically predicted spectra are in good agreement with the experimental line shapes presented herein. The implications of the monomer secondary structures on its aggregation pathway and on its interaction with cell membranes are discussed.
Collapse
Affiliation(s)
- Allam S. Reddy
- Departments of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin
| | - Lu Wang
- Chemistry, University of Wisconsin-Madison, Madison, Wisconsin
| | - Sadanand Singh
- Departments of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin
| | - Yun L. Ling
- Chemistry, University of Wisconsin-Madison, Madison, Wisconsin
| | - Lauren Buchanan
- Chemistry, University of Wisconsin-Madison, Madison, Wisconsin
| | - Martin T. Zanni
- Chemistry, University of Wisconsin-Madison, Madison, Wisconsin
| | | | - Juan J. de Pablo
- Departments of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
61
|
Goldsbury C, Baxa U, Simon MN, Steven AC, Engel A, Wall JS, Aebi U, Müller SA. Amyloid structure and assembly: insights from scanning transmission electron microscopy. J Struct Biol 2010; 173:1-13. [PMID: 20868754 DOI: 10.1016/j.jsb.2010.09.018] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 09/14/2010] [Accepted: 09/16/2010] [Indexed: 10/19/2022]
Abstract
Amyloid fibrils are filamentous protein aggregates implicated in several common diseases such as Alzheimer's disease and type II diabetes. Similar structures are also the molecular principle of the infectious spongiform encephalopathies such as Creutzfeldt-Jakob disease in humans, scrapie in sheep, and of the so-called yeast prions, inherited non-chromosomal elements found in yeast and fungi. Scanning transmission electron microscopy (STEM) is often used to delineate the assembly mechanism and structural properties of amyloid aggregates. In this review we consider specifically contributions and limitations of STEM for the investigation of amyloid assembly pathways, fibril polymorphisms and structural models of amyloid fibrils. This type of microscopy provides the only method to directly measure the mass-per-length (MPL) of individual filaments. Made on both in vitro assembled and ex vivo samples, STEM mass measurements have illuminated the hierarchical relationships between amyloid fibrils and revealed that polymorphic fibrils and various globular oligomers can assemble simultaneously from a single polypeptide. The MPLs also impose strong constraints on possible packing schemes, assisting in molecular model building when combined with high-resolution methods like solid-state nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR).
Collapse
Affiliation(s)
- Claire Goldsbury
- The Brain and Mind Research Institute, University of Sydney, NSW 2006, Australia
| | | | | | | | | | | | | | | |
Collapse
|
62
|
Abstract
Gut microbiota is an assortment of microorganisms inhabiting the length and width of the mammalian gastrointestinal tract. The composition of this microbial community is host specific, evolving throughout an individual's lifetime and susceptible to both exogenous and endogenous modifications. Recent renewed interest in the structure and function of this "organ" has illuminated its central position in health and disease. The microbiota is intimately involved in numerous aspects of normal host physiology, from nutritional status to behavior and stress response. Additionally, they can be a central or a contributing cause of many diseases, affecting both near and far organ systems. The overall balance in the composition of the gut microbial community, as well as the presence or absence of key species capable of effecting specific responses, is important in ensuring homeostasis or lack thereof at the intestinal mucosa and beyond. The mechanisms through which microbiota exerts its beneficial or detrimental influences remain largely undefined, but include elaboration of signaling molecules and recognition of bacterial epitopes by both intestinal epithelial and mucosal immune cells. The advances in modeling and analysis of gut microbiota will further our knowledge of their role in health and disease, allowing customization of existing and future therapeutic and prophylactic modalities.
Collapse
Affiliation(s)
- Inna Sekirov
- Michael Smith Laboratories, Department of Microbiology and Immunology, The University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | |
Collapse
|
63
|
Marshall KE, Hicks MR, Williams TL, Hoffmann SV, Rodger A, Dafforn TR, Serpell LC. Characterizing the assembly of the Sup35 yeast prion fragment, GNNQQNY: structural changes accompany a fiber-to-crystal switch. Biophys J 2010; 98:330-8. [PMID: 20338855 DOI: 10.1016/j.bpj.2009.10.020] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Revised: 10/13/2009] [Accepted: 10/15/2009] [Indexed: 01/18/2023] Open
Abstract
Amyloid-like fibrils can be formed by many different proteins and peptides. The structural characteristics of these fibers are very similar to those of amyloid fibrils that are deposited in a number of protein misfolding diseases, including Alzheimer's disease and the transmissible spongiform encephalopathies. The elucidation of two crystal structures from an amyloid-like fibril-forming fragment of the yeast prion, Sup35, with sequence GNNQQNY, has contributed to knowledge regarding side-chain packing of amyloid-forming peptides. Both structures share a cross-beta steric zipper arrangement but vary in the packing of the peptide, particularly in terms of the tyrosine residue. We investigated the fibrillar and crystalline structure and assembly of the GNNQQNY peptide using x-ray fiber diffraction, electron microscopy, intrinsic and quenched tyrosine fluorescence, and linear dichroism. Electron micrographs reveal that at concentrations between 0.5 and 10 mg/mL, fibers form initially, followed by crystals. Fluorescence studies suggest that the environment of the tyrosine residue changes as crystals form. This is corroborated by linear dichroism experiments that indicate a change in the orientation of the tyrosine residue over time, which suggests that a structural rearrangement occurs as the crystals form. Experimental x-ray diffraction patterns from fibers and crystals also suggest that these species are structurally distinct. A comparison of experimental and calculated diffraction patterns contributes to an understanding of the different arrangements accessed by the peptide.
Collapse
Affiliation(s)
- Karen E Marshall
- Department of Biochemistry, School of Life Sciences, University of Sussex, Falmer, BN1 9QG, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
64
|
Marek P, Mukherjee S, Zanni MT, Raleigh DP. Residue-specific, real-time characterization of lag-phase species and fibril growth during amyloid formation: a combined fluorescence and IR study of p-cyanophenylalanine analogs of islet amyloid polypeptide. J Mol Biol 2010; 400:878-88. [PMID: 20630475 DOI: 10.1016/j.jmb.2010.05.041] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Revised: 05/05/2010] [Accepted: 05/16/2010] [Indexed: 01/09/2023]
Abstract
Amyloid formation normally exhibits a lag phase followed by a growth phase, which leads to amyloid fibrils. Characterization of the species populated during the lag phase is experimentally challenging, but is critical since the most toxic entities may be pre-fibrillar species. p-Cyanophenylalanine (F(C[triple bond]N)) fluorescence is used to probe the nature of lag-phase species populated during the formation of amyloid by human islet amyloid polypeptide. The polypeptide contains two phenylalanines at positions 15 and 23 and a single tyrosine located at the C-terminus. Each aromatic residue was separately replaced by F(C[triple bond]N). The substitutions do not perturb amyloid formation relative to wild-type islet amyloid polypeptide as detected using thioflavin T fluorescence and electron microscopy. F(C[triple bond]N) fluorescence is high when the cyano group is hydrogen bonded and low when it is not. It can also be quenched via Förster resonance energy transfer to tyrosine. Fluorescence intensity was monitored in real time and revealed that all three positions remained exposed to solvent during the lag phase but less exposed than unstructured model peptides. The time course of amyloid formation as monitored by thioflavin T fluorescence and F(C[triple bond]N) fluorescence is virtually identical. Fluorescence quenching experiments confirmed that each residue remains exposed during the lag phase. These results place significant constraints on the nature of intermediates that are populated during the lag phase and indicate that significant sequestering of the aromatic side chains does not occur until beta-structure sufficient to bind thioflavin T has developed. Seeding studies and analysis of maximum rates confirm that sequestering of the cyano groups occurs concomitantly with the development of thioflavin T binding capability. Overall, the process of amyloid formation and growth appears to be remarkably homogenous in terms of side-chain ordering. F(C[triple bond]N) also provides information about fibril structure. Fluorescence emission measurements, infrared measurements, and quenching studies indicate that the aromatic residues are differentially exposed in the fibril state with Phe15 being the most exposed. F(C[triple bond]N) is readily accommodated into proteins; thus, the approach should be broadly applicable.
Collapse
Affiliation(s)
- Peter Marek
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY 11794-3400, USA
| | | | | | | |
Collapse
|
65
|
Laghaei R, Mousseau N, Wei G. Effect of the Disulfide Bond on the Monomeric Structure of Human Amylin Studied by Combined Hamiltonian and Temperature Replica Exchange Molecular Dynamics Simulations. J Phys Chem B 2010; 114:7071-7. [DOI: 10.1021/jp100205w] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Rozita Laghaei
- Département de Physique and Regroupement québécois sur les matériaux de pointe, Université de Montréal, C.P. 6128, succursale Centre-ville, Montréal (Québec), Canada
| | - Normand Mousseau
- Département de Physique and Regroupement québécois sur les matériaux de pointe, Université de Montréal, C.P. 6128, succursale Centre-ville, Montréal (Québec), Canada
| | - Guanghong Wei
- Department of Physics and Surface Physics Laboratory (National Key Laboratory), Fudan University, 220 Handan Road, Shanghai 200433, China
| |
Collapse
|
66
|
Sasahara K, Hall D, Hamada D. Effect of lipid type on the binding of lipid vesicles to islet amyloid polypeptide amyloid fibrils. Biochemistry 2010; 49:3040-8. [PMID: 20210361 DOI: 10.1021/bi9019252] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Amyloid deposits, composed primarily of the 37-residue islet amyloid polypeptide (IAPP), are observed near pancreatic beta-cells of type II diabetics, with their presence strongly correlating with a loss of beta-cell mass and decreased pancreatic function. Although beta-cell membranes have been implicated as the likely target of amyloidogenic IAPP toxicity, interactions between membranes and IAPP in the fibrillar state have not been well characterized. In this study, turbidity measurements were conducted to provide a detailed description of the binding reaction between IAPP fibrils and lipid vesicles made from phosphatidylcholine. The kinetic data representing the rate and extent of the fibril-vesicle binding reaction are described well by an empirical double-exponential equation. The extent of binding was found to increase with increasing amyloid fibril concentration. Modification of the vesicle composition significantly altered the observed binding reaction kinetics, with the change quantified using the parameters obtained from the double-exponential fitting analysis. When the vesicles contained a significant amount of the lipid phosphatidylglycerol, substantial sedimentation of the vesicles under gravity was detected following the initial binding reaction. To rationalize the observed kinetic binding data, we developed a mesoscopic simulation model based on a hard particle representation of the species involved. In light of the observed data and simulation predictions, the potential roles of IAPP amyloid fibrils in membrane binding are discussed.
Collapse
Affiliation(s)
- Kenji Sasahara
- Division of Structural Biology, Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Kobe University, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan.
| | | | | |
Collapse
|
67
|
Wei L, Jiang P, Yau YH, Summer H, Shochat SG, Mu Y, Pervushin K. Residual structure in islet amyloid polypeptide mediates its interactions with soluble insulin. Biochemistry 2010; 48:2368-76. [PMID: 19146426 DOI: 10.1021/bi802097b] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Islet amyloid polypeptide (IAPP), a 37-amino acid polypeptide hormone of the calcitonin family, is colocalized and cosecreted with insulin in secretory granules of pancreatic islet beta cells. IAPP can assemble into toxic oligomers and amyloid fibrils, a hallmark of type 2 diabetes. Its interactions with insulin in the secretory granules might influence the formation of cytotoxic oligomers and amyloid fibrils. Presented NMR analysis shows that IAPP, free in solution and in complex with insulin, retains elements of residual secondary structure. NMR chemical shifts and (15)N relaxation data as well as 49 ns replica exchange molecular dynamic simulations indicate that the transiently populated helical structure in residues 11-18 is essential for interactions with insulin. These interactions are mediated by salt bridges between positively charged residues Arg11 or Arg18 of rat IAPP and Glu13 of insulin B chain as well as by hydrophobic interactions flanking the salt bridges. The insulin binding region is composed of the same amino acids in amyloidogenic human IAPP and soluble rat IAPP (with the sole exception of His/Arg-18), implying the same binding mode for both hormones. This His/Arg-18 mutation results in reduced affinity binding of human IAPP to insulin in comparison to rat IAPP as it is detected by surface plasmon resonance biosensor analysis. Implications of the described interactions between soluble forms of IAPP and insulin in preventing oligomerization of human IAPP are discussed.
Collapse
Affiliation(s)
- Lei Wei
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | | | | | | | | | | | | |
Collapse
|
68
|
Dupuis NF, Wu C, Shea JE, Bowers MT. Human islet amyloid polypeptide monomers form ordered beta-hairpins: a possible direct amyloidogenic precursor. J Am Chem Soc 2010; 131:18283-92. [PMID: 19950949 DOI: 10.1021/ja903814q] [Citation(s) in RCA: 194] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Oligomerization of human islet amyloid polypeptide (IAPP) has been increasingly considered a pathogenic process in type II diabetes. Here structural features of the IAPP monomer have been probed using a combination of ion mobility mass spectrometry (IMS-MS) and all-atom replica exchange molecular dynamics (REMD) simulations. Three distinct conformational families of human IAPP monomer are observed in IMS experiments, and two of them are identified as dehydrated solution structures on the basis of our simulation results: one is an extended beta-hairpin structural family, and the second is a compact helix-coil structural family. The extended beta-hairpin family is topologically similar to the peptide conformation in the solid-state NMR fibril structure published by Tycko and co-workers. It is absent in both experiments and simulations performed on the non-amyloidogenic rat IAPP, suggesting it may play an important role in the fibrillation pathway of human IAPP. In addition, pH dependence studies show that the relative abundance of the beta-hairpin structural family is significantly enhanced at pH 8.0. This observation is consistent with the increased rate of fibrillation at high pH in vitro and offers a possible explanation of the pH dependent fibrillation in vivo. This paper, to the best of our knowledge, presents the first experimental evidence of a significant population of beta-hairpin conformers for the IAPP peptide. It is consistent with a previous suggestion in the literature that beta-sheet-rich oligomers are assembled from ordered beta-hairpins rather than from coiled structures.
Collapse
Affiliation(s)
- Nicholas F Dupuis
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, USA
| | | | | | | |
Collapse
|
69
|
Reddy AS, Wang L, Lin YS, Ling Y, Chopra M, Zanni MT, Skinner JL, De Pablo JJ. Solution structures of rat amylin peptide: simulation, theory, and experiment. Biophys J 2010; 98:443-51. [PMID: 20141758 PMCID: PMC2814214 DOI: 10.1016/j.bpj.2009.10.029] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Revised: 10/15/2009] [Accepted: 10/19/2009] [Indexed: 10/19/2022] Open
Abstract
Amyloid deposits of amylin in the pancreas are an important characteristic feature found in patients with Type-2 diabetes. The aggregate has been considered important in the disease pathology and has been studied extensively. However, the secondary structures of the individual peptide have not been clearly identified. In this work, we present detailed solution structures of rat amylin using a combination of Monte Carlo and molecular dynamics simulations. A new Monte Carlo method is presented to determine the free energy of distinct biomolecular conformations. Both folded and random-coil conformations of rat amylin are observed in water and their relative stability is examined in detail. The former contains an alpha-helical segment comprised of residues 7-17. We find that at room temperature the folded structure is more stable, whereas at higher temperatures the random-coil structure predominates. From the configurations and weights we calculate the alpha-carbon NMR chemical shifts, with results that are in reasonable agreement with experiments of others. We also calculate the infrared spectrum in the amide I stretch regime, and the results are in fair agreement with the experimental line shape presented herein.
Collapse
Affiliation(s)
- Allam S. Reddy
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin
| | - Lu Wang
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin
| | - Yu-Shan Lin
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin
| | - Yun Ling
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin
| | - Manan Chopra
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin
| | - Martin T. Zanni
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin
| | - James L. Skinner
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin
| | - Juan J. De Pablo
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
70
|
Hossain S, Hashimoto M, Katakura M, Miwa K, Shimada T, Shido O. Mechanism of docosahexaenoic acid-induced inhibition ofin vitroAβ1-42fibrillation and Aβ1-42-induced toxicity in SH-S5Y5 cells. J Neurochem 2009; 111:568-79. [DOI: 10.1111/j.1471-4159.2009.06336.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
71
|
Abstract
The folding of a protein from a sequence of amino acids to a well-defined tertiary structure is one of the most studied and enigmatic events to take place in biological systems. Relatively recently, it has been established that some proteins and peptides are able to take on conformations other than their native fold to form long fibres known as amyloid. In vivo, these are associated with misfolding diseases, such as Alzheimer's disease, Type 2 diabetes and the amyloidoses. In vitro, peptide assembly leads to amyloid-like fibres that have high stability, resistance to degradation and high tensile strength. Remarkably, despite the lack of any obvious sequence similarity between these fibrillogenic proteins and peptides, all amyloid fibrils share common structural characteristics and their underlying structure is known as 'cross-beta'. Nature is rich in beta-sheet protein assemblies such as spider silk and other 'useful' amyloids such as curli from Escherichia coli, where the strength of fibrils is fundamental to their function.
Collapse
|
72
|
Cort JR, Liu Z, Lee GM, Huggins K, Janes S, Prickett K, Andersen NH. Solution state structures of human pancreatic amylin and pramlintide. Protein Eng Des Sel 2009; 22:497-513. [PMID: 19596697 PMCID: PMC2719500 DOI: 10.1093/protein/gzp029] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Revised: 06/01/2009] [Accepted: 06/03/2009] [Indexed: 12/20/2022] Open
Abstract
We have employed pramlintide (prAM) as a surrogate for hAM in CD and NMR studies of the conformational preferences of the N-terminal portion of the structure in media which do not provide long-lived monomeric solutions of hAM due to its rapid conversion to preamyloid beta aggregate states. Direct comparison of hAM and prAM could be made under helix-formation-favoring conditions. On the basis of CD and NMR studies: (i) the Cys(2)-Cys(7) loop conformation has a short-span of helix (Ala(5)-Cys(7)); (ii) the extent to which this helix propagates further into the sequence is medium-dependent; a helix from Ala(5) through Ser(20) (with end fraying from His(18) onward) is observed in aqueous fluoroalcohol media; (iii) in 12+ vol.% HFIP, the amyloidogenic region of hAM forms a second helical domain (Phe(23)-Ser(29)); (iv) the two helical regions of hAM do not have any specific geometric relationship as they are connected by a flexible loop that takes different conformations and (v) although the extreme C-terminus is essential for bioactivity, it is found to be extensively randomized with conformer interconversions occurring at a much faster rate than that is observed in the remainder of the peptide sequence. Two NMR-derived structures of the 1-22 sequence fragment of hAM have been derived. The work also serves to illustrate improved methods for the NMR characterization of helices. A detailed quantitative analysis of the NOE intensities observed in aqueous HFIP revealed alternative conformations in the C-terminal portion of the common amylin helix, a region that is known to be involved in the biorecognition phenomena leading to amyloidogenesis. Even though the SNN sequence appears to be a flexible loop, the chemical shifts (and changes induced upon helix structuring) suggest some interactions between the loop and the amyloidogenic segment of hAM that occur on partial helix formation.
Collapse
Affiliation(s)
- John R. Cort
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Zhihong Liu
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Gregory M. Lee
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - K.N.L. Huggins
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Susan Janes
- Amylin Pharmaceuticals, 9373 Towne Centre Dr., San Diego, CA 92121, USA
| | - Kathryn Prickett
- Amylin Pharmaceuticals, 9373 Towne Centre Dr., San Diego, CA 92121, USA
| | - Niels H. Andersen
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
73
|
Helix stabilization precedes aqueous and bilayer-catalyzed fiber formation in islet amyloid polypeptide. J Mol Biol 2009; 393:383-96. [PMID: 19647750 DOI: 10.1016/j.jmb.2009.07.077] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Revised: 07/12/2009] [Accepted: 07/27/2009] [Indexed: 11/22/2022]
Abstract
Islet amyloid polypeptide (IAPP) is an unstructured polypeptide hormone that is cosecreted with insulin. In patients with type 2 diabetes, IAPP undergoes a transition from its natively disordered state to a highly ordered, all-beta-strand amyloid fiber. Although predominantly disordered, IAPP transiently samples alpha-helical structure in solution. IAPP adopts a fully helical structure when bound to membrane surfaces in a process associated with catalysis of amyloid formation. Here, we use spectroscopic techniques to study the structure of full-length, monomeric IAPP under amyloidogenic conditions. We observe that the residues with helical propensity in solution (1-22) also form the membrane-associated helix. Additionally, reduction of the N-terminal disulfide bond (Cys2-Cys7) decreases the extent of helix formed throughout this region. Through manipulation of sample conditions to increase or decrease the amount of helix, we show that the degree of helix formed affects the rate of amyloid assembly. Formation of helical structure is directly correlated with enhanced amyloid formation both on the membrane surface and in solution. These observations support suggested mechanisms in which parallel helix associations bring together regions of the peptide that could nucleate beta-strand structure. Remarkably, stabilization of non-amyloid structure appears to be a key intermediate in assembly of IAPP amyloid.
Collapse
|
74
|
Hebda JA, Miranker AD. The interplay of catalysis and toxicity by amyloid intermediates on lipid bilayers: insights from type II diabetes. Annu Rev Biophys 2009; 38:125-52. [PMID: 19416063 DOI: 10.1146/annurev.biophys.050708.133622] [Citation(s) in RCA: 196] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The dynamics, energies, and structures governing protein folding are critical to biological function. Amyloidoses are a class of disease defined, in part, by the misfolding and aggregation of functional protein precursors into fibrillar states. Amyloid fibers contribute to the pathology of many diseases, including type II diabetes, Alzheimer's, and Parkinson's. In these disorders, amyloid fibers are present in affected tissues. However, it has become clear that intermediate states, rather than mature fibers, represent the cytotoxic species. In this review, we focus particularly on lipid bilayer-bound intermediates. Remarkably, the precursors of these fibers are intrinsically disordered, and yet catalysis of beta-sheet formation appears to be mediated by the stabilization of alpha-helical states. On the lipid bilayer, these intermediate species have been implicated as cytotoxic through elimination of ionic homeostasis. Recent advances are enabling insights at a molecular level that promise to provide meaningful targets for the development of therapeutics.
Collapse
Affiliation(s)
- James A Hebda
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | | |
Collapse
|
75
|
Soong R, Brender JR, Macdonald PM, Ramamoorthy A. Association of highly compact type II diabetes related islet amyloid polypeptide intermediate species at physiological temperature revealed by diffusion NMR spectroscopy. J Am Chem Soc 2009; 131:7079-85. [PMID: 19405534 DOI: 10.1021/ja900285z] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Self-association of human islet amyloid polypeptide (hIAPP) is correlated with the development of type II diabetes by the disruption of cellular homeostasis in islet cells through the formation of membrane-active oligomers. The toxic species of hIAPP responsible for membrane damage has not been identified. In this study, we show by pulsed field gradient NMR spectroscopy that the monomeric form of the toxic, amyloidogenic human variant of IAPP (hIAPP) adopts a temperature dependent compact folded conformation that is absent in both the nontoxic and nonamyloidogenic rat variant of IAPP and absent in hIAPP at low temperatures, suggesting this compact form of monomeric hIAPP may be linked to its later aggregation and cytotoxicity. In addition to the monomeric form of hIAPP, a large oligomeric species greater than 100 nm in diameter is also present but does not trigger the nucleation-dependent aggregation of IAPP at 4 degrees C, indicating the large oligomeric species may be an off-pathway intermediate that has been predicted by kinetic models of IAPP fiber formation. Furthermore, analysis of the polydispersity of the calculated diffusion values indicates small oligomeric species of hIAPP are absent in agreement with a recent ultracentrifugation study. The absence of small oligomeric species in solution suggests the formation of small, well-defined ion channels by hIAPP may proceed by aggregation of monomeric IAPP on the membrane, rather than by the insertion of preformed structured oligomers from the solution state as has been proposed for other amyloidogenic proteins.
Collapse
Affiliation(s)
- Ronald Soong
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | |
Collapse
|
76
|
Ruschak AM, Miranker AD. The role of prefibrillar structures in the assembly of a peptide amyloid. J Mol Biol 2009; 393:214-26. [PMID: 19524594 DOI: 10.1016/j.jmb.2009.06.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Revised: 06/02/2009] [Accepted: 06/08/2009] [Indexed: 11/17/2022]
Abstract
The self-assembly of proteins into stable, fibrillar aggregates is a general property of polypeptides most notably associated with degenerative diseases termed amyloidoses. These nano- to micrometer scale structures are formed predominantly of beta-sheets that self-assemble by a nucleation-dependent mechanism. The rate-limiting step of assembly involves stabilization of high-energy intermediates in a kinetic step termed nucleation. Determination of the structural characteristics of these high-energy intermediates has been elusive, as its members are the least populated states on the assembly pathway. Using a peptide derived from diabetes-related amyloid, we use electron paramagnetic resonance (EPR) spectroscopy and disulfide crosslinking to show that fibers are composed of parallel, in-register beta-sheets. Kinetic studies are then used to infer the structural elements of the pre-nucleation intermediates. Notably, stabilization of this ensemble is shown to depend on the number but not the position of amide side chains within the primary sequence. Additionally, fiber formation is accelerated by constructs that mimic the intra-sheet structure of the fiber. Our data suggest that pre-nucleation intermediates sample intra- beta-sheet structure and place bounds on the possible nucleation mechanisms for fiber assembly. Understanding the nucleation of fibrillogenesis is critical so that this process can be prevented in disease and productively controlled by design.
Collapse
Affiliation(s)
- Amy M Ruschak
- Department of Chemistry, Yale University, 350 Edwards Street, New Haven, CT 06520-8107, USA
| | | |
Collapse
|
77
|
Yonemoto IT, Kroon GJA, Dyson HJ, Balch WE, Kelly JW. Amylin proprotein processing generates progressively more amyloidogenic peptides that initially sample the helical state. Biochemistry 2008; 47:9900-10. [PMID: 18710262 DOI: 10.1021/bi800828u] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Human amylin, or islet amyloid polypeptide, is a peptide cosecreted with insulin by the beta cells of the pancreatic islets of Langerhans. The 37-residue, C-terminally amidated human amylin peptide derives from a proprotein that undergoes disulfide bond formation in the endoplasmic reticulum and is then subjected to four enzymatic processing events in the immature secretory granule. Human amylin forms both intracellular and extracellular amyloid deposits in the pancreas of most type II diabetic subjects, likely reflecting compromised secretory cell function. In addition, amylin processing intermediates, postulated to initiate intracellular amyloidogenesis, have been reported as components of intracellular amyloid in beta cells. We investigated the amyloidogenicity of amylin and its processing intermediates in vitro. Chaotrope-denatured amylin and amylin processing intermediates were subjected to size exclusion chromatography, affording high concentrations of monomeric peptides. NMR studies reveal that human amylin samples helical conformations. Under conditions mimicking the immature secretory granule (37 degrees C, pH 6), amylin forms amyloid aggregates more rapidly than its processing intermediates, and more rapidly than its reduced counterparts. Our studies also show that the amyloidogenicity of amylin and its processing intermediates is negatively correlated with net charge and charge at the C-terminus. Although our conditions may not precisely reflect those of amyloidogenesis in vivo, the lower amyloidogenicity of the processing intermediates relative to amylin suggests their presence in intracellular amyloid deposits in the increasingly stressed beta cells of diabetic subjects may be a consequence of general defects in protein homeostasis control known to occur in diabetes rather than serving as amyloid initiators.
Collapse
Affiliation(s)
- Isaac T Yonemoto
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
78
|
Marek P, Gupta R, Raleigh DP. The fluorescent amino acid p-cyanophenylalanine provides an intrinsic probe of amyloid formation. Chembiochem 2008; 9:1372-4. [PMID: 18478525 DOI: 10.1002/cbic.200800052] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Peter Marek
- Department of Chemistry, State University of New York, Stony Brook, NY 11794-3400, USA
| | | | | |
Collapse
|
79
|
Lopes DHJ, Smirnovas V, Winter R. Islet amyloid polypeptide and high hydrostatic pressure: towards an understanding of the fibrillization process. ACTA ACUST UNITED AC 2008. [DOI: 10.1088/1742-6596/121/11/112002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
80
|
The role of the 14-20 domain of the islet amyloid polypeptide in amyloid formation. EXPERIMENTAL DIABETES RESEARCH 2008; 2008:256954. [PMID: 18566678 PMCID: PMC2426739 DOI: 10.1155/2008/256954] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2007] [Revised: 03/19/2008] [Accepted: 05/02/2008] [Indexed: 01/15/2023]
Abstract
The molecular mechanism of amyloid formation by the islet amyloid polypeptide (IAPP) has been intensively studied since its identification in the late 1980s. The IAPP(20–29) region is considered to be the central amyloidogenic module of the polypeptide. This assumption is mainly based on the amyloidogenic properties of the region and on the large sequence diversity within this region between the human and mouse IAPP, as the mouse IAPP does not form amyloids. A few years ago, another region within IAPP was identified that seems to be at least as important as IAPP(20–29) in facilitation of molecular recognition that leads to amyloid formation. Here, we reinforce our and others' previous findings by analyzing supporting evidence from the recent literature. Moreover, we provide new proofs to our hypothesis by comparing between the amyloidogenic properties of the two regions derived from the IAPP of cats, which is also known to form amyloid fibrils.
Collapse
|
81
|
Wiltzius JJW, Sievers SA, Sawaya MR, Cascio D, Popov D, Riekel C, Eisenberg D. Atomic structure of the cross-beta spine of islet amyloid polypeptide (amylin). Protein Sci 2008; 17:1467-74. [PMID: 18556473 DOI: 10.1110/ps.036509.108] [Citation(s) in RCA: 285] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Human islet amyloid polypeptide (IAPP or amylin) is a 37-residue hormone found as fibrillar deposits in pancreatic extracts of nearly all type II diabetics. Although the cellular toxicity of IAPP has been established, the structure of the fibrillar form found in these deposits is unknown. Here we have crystallized two segments from IAPP, which themselves form amyloid-like fibrils. The atomic structures of these two segments, NNFGAIL and SSTNVG, were determined, and form the basis of a model for the most commonly observed, full-length IAPP polymorph.
Collapse
Affiliation(s)
- Jed J W Wiltzius
- Howard Hughes Medical Institute, UCLA-DOE Institute for Genomics and Proteomics, Los Angeles, California 90095-1570, USA
| | | | | | | | | | | | | |
Collapse
|
82
|
Ballin JD, Prevas JP, Bharill S, Gryczynski I, Gryczynski Z, Wilson GM. Local RNA conformational dynamics revealed by 2-aminopurine solvent accessibility. Biochemistry 2008; 47:7043-52. [PMID: 18543944 DOI: 10.1021/bi800487c] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Acrylamide quenching is widely used to monitor the solvent exposure of fluorescent probes in vitro. Here, we tested the utility of this technique to discriminate local RNA secondary structures using the fluorescent adenine analogue 2-aminopurine (2-AP). Under native conditions, the solvent accessibilities of most 2-AP-labeled RNA substrates were poorly resolved by classical single-population models; rather, a two-state quencher accessibility algorithm was required to model acrylamide-dependent changes in 2-AP fluorescence in structured RNA contexts. Comparing 2-AP quenching parameters between structured and unstructured RNA substrates permitted the effects of local RNA structure on 2-AP solvent exposure to be distinguished from nearest neighbor effects or environmental influences on intrinsic 2-AP photophysics. Using this strategy, the fractional accessibility of 2-AP for acrylamide ( f a) was found to be highly sensitive to local RNA structure. Base-paired 2-AP exhibited relatively poor accessibility, consistent with extensive shielding by adjacent bases. 2-AP in a single-base bulge was uniformly accessible to solvent, whereas the fractional accessibility of 2-AP in a hexanucleotide loop was indistinguishable from that of an unstructured RNA. However, these studies also provided evidence that the f a parameter reflects local conformational dynamics in base-paired RNA. Enhanced base pair dynamics at elevated temperatures were accompanied by increased f a values, while restricting local RNA breathing by adding a C-G base pair clamp or positioning 2-AP within extended RNA duplexes significantly decreased this parameter. Together, these studies show that 2-AP quenching studies can reveal local RNA structural and dynamic features beyond those that can be measured by conventional spectroscopic approaches.
Collapse
Affiliation(s)
- Jeff D Ballin
- Department of Biochemistry and Molecular Biology and Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | | | | | | | |
Collapse
|
83
|
Recent insights in islet amyloid polypeptide-induced membrane disruption and its role in beta-cell death in type 2 diabetes mellitus. EXPERIMENTAL DIABETES RESEARCH 2008; 2008:421287. [PMID: 18483616 PMCID: PMC2377315 DOI: 10.1155/2008/421287] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2007] [Accepted: 02/18/2008] [Indexed: 12/20/2022]
Abstract
The presence of fibrillar protein deposits (amyloid) of human islet amyloid polypeptide (hIAPP) in the pancreatic islets of Langerhans is thought to be related to death of the insulin-producing islet β-cells in type 2 diabetes mellitus (DM2). The mechanism of hIAPP-induced β-cell death is not understood. However, there is growing evidence that hIAPP-induced disruption of β-cell membranes is the cause of hIAPP cytotoxicity. Amyloid cytotoxicity by membrane damage has not only been suggested for hIAPP, but also for peptides and proteins related to other misfolding diseases, like Alzheimer's disease, Parkinson's disease, and prion diseases. Here we review the interaction of hIAPP with membranes, and discuss recent progress in the field, with a focus on hIAPP structure and on the proposed mechanisms of hIAPP-induced membrane damage in relation to β-cell death in DM2.
Collapse
|
84
|
Koo BW, Hebda JA, Miranker AD. Amide inequivalence in the fibrillar assembly of islet amyloid polypeptide. Protein Eng Des Sel 2008; 21:147-54. [PMID: 18299291 DOI: 10.1093/protein/gzm076] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Amyloid fibers are aggregated, yet highly ordered, beta-sheet-rich assemblies of misfolded proteins. Order is established in such systems following profiles indicative of nucleation-dependent assembly. Nucleation dependence suggests that specific interactions, such as long-range contacts and/or strand registration, are critical to establishing initial fiber structure. Here, we show that amino acids at selected positions participate in key interactions that modulate the pathway of amyloid fiber formation by the hormone, islet amyloid polypeptide (IAPP). Specifically, we investigated the role of amide side-chain interactions in the process of IAPP assembly. We mutated five of the asparagine side chains in IAPP and assessed their effects on the kinetics of assembly. We find that the asparagine amide side chains strongly dictate the ability of IAPP to form fibers. In particular, the elimination of two specific asparagines results in near and total loss of amyloid, respectively. Interestingly, the two asparagines are located in a recently identified domain with alpha-helical bias. These sensitivities are unusual for IAPP, as IAPP is generally tolerant to mutation. Here, we demonstrate this mutational tolerance by assessing 10 alterations at five distinct sites. In all cases, the constructs form fibers on timescales perturbed by less than a factor of two compared with wild-type protein. These findings indicate the presence of key specific interactions that are the determinants of IAPP amyloid formation.
Collapse
Affiliation(s)
- Bon W Koo
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | | | | |
Collapse
|
85
|
Islet Amyloid Polypeptide Forms Rigid Lipid–Protein Amyloid Fibrils on Supported Phospholipid Bilayers. J Mol Biol 2008; 376:42-54. [DOI: 10.1016/j.jmb.2007.11.077] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2007] [Revised: 11/21/2007] [Accepted: 11/21/2007] [Indexed: 11/21/2022]
|
86
|
Luca S, Yau WM, Leapman R, Tycko R. Peptide conformation and supramolecular organization in amylin fibrils: constraints from solid-state NMR. Biochemistry 2007; 46:13505-22. [PMID: 17979302 DOI: 10.1021/bi701427q] [Citation(s) in RCA: 508] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The 37-residue amylin peptide, also known as islet amyloid polypeptide, forms fibrils that are the main peptide or protein component of amyloid that develops in the pancreas of type 2 diabetes patients. Amylin also readily forms amyloid fibrils in vitro that are highly polymorphic under typical experimental conditions. We describe a protocol for the preparation of synthetic amylin fibrils that exhibit a single predominant morphology, which we call a striated ribbon, in electron microscopy and atomic force microscopy images. Solid-state nuclear magnetic resonance (NMR) measurements on a series of isotopically labeled samples indicate a single molecular structure within the striated ribbons. We use scanning transmission electron microscopy and several types of one- and two-dimensional solid-state NMR techniques to obtain constraints on the peptide conformation and supramolecular structure in these amylin fibrils and to derive molecular structural models that are consistent with the experimental data. The basic structural unit in amylin striated ribbons, which we call the protofilament, contains four layers of parallel beta-sheets, formed by two symmetric layers of amylin molecules. The molecular structure of amylin protofilaments in striated ribbons closely resembles the protofilament in amyloid fibrils with a similar morphology formed by the 40-residue beta-amyloid peptide that is associated with Alzheimer's disease.
Collapse
Affiliation(s)
- Sorin Luca
- Laboratory of Chemical Physics, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, USA
| | | | | | | |
Collapse
|
87
|
Munishkina LA, Fink AL. Fluorescence as a method to reveal structures and membrane-interactions of amyloidogenic proteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:1862-85. [PMID: 17493579 DOI: 10.1016/j.bbamem.2007.03.015] [Citation(s) in RCA: 219] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2006] [Revised: 03/11/2007] [Accepted: 03/13/2007] [Indexed: 10/23/2022]
Abstract
Amyloidogenesis is a characteristic feature of the 40 or so known protein deposition diseases, and accumulating evidence strongly suggests that self-association of misfolded proteins into either fibrils, protofibrils, or soluble oligomeric species is cytotoxic. The most likely mechanism for toxicity is through perturbation of membrane structure, leading to increased membrane permeability and eventual cell death. There have been a rather limited number of investigations of the interactions of amyloidogenic polypeptides and their aggregated states with membranes; these are briefly reviewed here. Amyloidogenic proteins discussed include A-beta from Alzheimer's disease, the prion protein, alpha-synuclein from Parkinson's disease, transthyretin (FAP, SSA amyloidosis), immunoglobulin light chains (primary (AL) amyloidosis), serum amyloid A (secondary (AA) amyloidosis), amylin or IAPP (Type 2 diabetes) and apolipoproteins. This review highlights the significant role played by fluorescence techniques in unraveling the nature of amyloid fibrils and their interactions and effects on membranes. Fluorescence spectroscopy is a valuable and versatile method for studying the complex mechanisms of protein aggregation, amyloid fibril formation and the interactions of amyloidogenic proteins with membranes. Commonly used fluorescent techniques include intrinsic and extrinsic fluorophores, fluorescent probes incorporated in the membrane, steady-state and lifetime measurements of fluorescence emission, fluorescence correlation spectroscopy, fluorescence anisotropy and polarization, fluorescence resonance energy transfer (FRET), fluorescence quenching, and fluorescence microscopy.
Collapse
Affiliation(s)
- Larissa A Munishkina
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| | | |
Collapse
|
88
|
Marek P, Abedini A, Song B, Kanungo M, Johnson ME, Gupta R, Zaman W, Wong SS, Raleigh DP. Aromatic interactions are not required for amyloid fibril formation by islet amyloid polypeptide but do influence the rate of fibril formation and fibril morphology. Biochemistry 2007; 46:3255-61. [PMID: 17311418 DOI: 10.1021/bi0621967] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Amyloid formation has been implicated in a wide range of human diseases, and a diverse set of proteins is involved. There is considerable interest in elucidating the interactions which lead to amyloid formation and which contribute to amyloid fibril stability. Recent attention has been focused upon the potential role of aromatic-aromatic and aromatic-hydrophobic interactions in amyloid formation by short to midsized polypeptides. Here we examine whether aromatic residues are necessary for amyloid formation by islet amyloid polypeptide (IAPP). IAPP is responsible for the formation of islet amyloid in type II diabetes which is thought to play a role in the pathology of the disease. IAPP is 37 residues in length and contains three aromatic residues, Phe-15, Phe-23, and Tyr-37. Structural models of IAPP amyloid fibrils postulate that Tyr-37 is near one of the phenylalanine residues, and it is known that Tyr-37 interacts with one of the phenylalanines during fibrillization; however, it is not known if aromatic-aromatic or aromatic-hydrophobic interactions are absolutely required for amyloid formation. An F15L/F23L/Y37L triple mutant (IAPP-3XL) was prepared, and its ability to form amyloid was tested. CD, thioflavin binding assays, AFM, and TEM measurements all show that the triple leucine mutant readily forms amyloid fibrils. The substitutions do, however, decrease the rate of fibril formation and alter the tendency of fibrils to aggregate. Thus, while aromatic residues are not an absolute requirement for amyloid formation by IAPP, they do play a role in the fibril assembly process.
Collapse
Affiliation(s)
- Peter Marek
- Department of Chemistry, State University of New York, Stony Brook, New York 1179-3400, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Williamson JA, Miranker AD. Direct detection of transient alpha-helical states in islet amyloid polypeptide. Protein Sci 2006; 16:110-7. [PMID: 17123962 PMCID: PMC2222845 DOI: 10.1110/ps.062486907] [Citation(s) in RCA: 180] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The protein islet amyloid polypeptide (IAPP) is a glucose metabolism associated hormone cosecreted with insulin by the beta-cells of the pancreas. In humans with type 2 diabetes, IAPP deposits as amyloid fibers. The assembly intermediates of this process are associated with beta-cell death. Here, we examine the rat IAPP sequence variant under physiological solution conditions. Rat IAPP is mechanistically informative for fibrillogenesis, as it samples intermediate-like states but does not progress to form amyloid. A central challenge was the development of a bacterial expression system to generate isotopically labeled IAPP without terminal tags, but which does include a eukaryotic post-translational modification. While optical spectroscopy shows IAPP to be natively unfolded, NMR chemical shifts of backbone and beta-carbon resonances reveal the sampling of alpha-helical states across a continuous stretch comprising approximately 40% of the protein. In addition, the manifestation of nonrandom coil chemical shifts is confirmed by the relative insensitivity of the amide proton chemical shifts to alterations in temperature. Intriguingly, the residues displaying helical propensity are conserved with the human sequence, suggesting a functional role for this conformational bias. The inability of rat IAPP to self assemble can be ascribed, in part, to several slowly exchanging conformations evident as multiple chemical shift assignments in the immediate vicinity of three proline residues residing outside of this helical region.
Collapse
Affiliation(s)
- Jessica A Williamson
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | | |
Collapse
|
90
|
Knight JD, Hebda JA, Miranker AD. Conserved and cooperative assembly of membrane-bound alpha-helical states of islet amyloid polypeptide. Biochemistry 2006; 45:9496-508. [PMID: 16878984 DOI: 10.1021/bi060579z] [Citation(s) in RCA: 262] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The conversion of soluble protein into beta-sheet-rich amyloid fibers is the hallmark of a number of serious diseases. Precursors for many of these systems (e.g., Abeta from Alzheimer's disease) reside in close association with a biological membrane. Membrane bilayers are reported to accelerate the rate of amyloid assembly. Furthermore, membrane permeabilization by amyloidogenic peptides can lead to toxicity. Given the beta-sheet-rich nature of mature amyloid, it is seemingly paradoxical that many precursors are either intrinsically alpha-helical or transiently adopt an alpha-helical state upon association with membrane. In this work, we investigate these phenomena in islet amyloid polypeptide (IAPP). IAPP is a 37-residue peptide hormone which forms amyloid fibers in individuals with type II diabetes. Fiber formation by human IAPP (hIAPP) is markedly accelerated by lipid bilayers despite adopting an alpha-helical state on the membrane. We further show that IAPP partitions into monomeric and oligomeric helical assemblies. Importantly, it is this latter state which most strongly correlates to both membrane leakage and accelerated fiber formation. A sequence variant of IAPP from rodents (rIAPP) does not form fibers and is reputed not to permeabilize membranes. Here, we report that rIAPP is capable of permeabilizing membranes under conditions that permit rIAPP membrane binding. Sequence and spectroscopic comparisons of rIAPP and hIAPP enable us to propose a general mechanism for the helical acceleration of amyloid formation in vitro. As rIAPP cannot form amyloid fibers, our results show that fiber formation need not be directly coupled to toxicity.
Collapse
Affiliation(s)
- Jefferson D Knight
- Department of Pharmacology, Yale University, 260 Whitney Avenue, New Haven, Connecticut 06520-8114, USA
| | | | | |
Collapse
|
91
|
Tatarek-Nossol M, Yan LM, Schmauder A, Tenidis K, Westermark G, Kapurniotu A. Inhibition of hIAPP amyloid-fibril formation and apoptotic cell death by a designed hIAPP amyloid- core-containing hexapeptide. ACTA ACUST UNITED AC 2005; 12:797-809. [PMID: 16039527 DOI: 10.1016/j.chembiol.2005.05.010] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2004] [Revised: 03/26/2005] [Accepted: 05/09/2005] [Indexed: 11/30/2022]
Abstract
The pathogenesis of type II diabetes is associated with the aggregation of the 37-residue human islet amyloid polypeptide (hIAPP) into cytotoxic beta sheet aggregates and fibrils. We have recently shown that introduction of two N-methyl rests in the beta sheet- and amyloid-core-containing sequence hIAPP(22-27), or NFGAIL converted this amyloidogenic and cytotoxic sequence into nonamyloidogenic and noncytotoxic NF(N-Me)GA(N-Me)IL. Here, we show that NF(N-Me)GA(N-Me)IL is able to bind with high-affinity full-length hIAPP and to inhibit its fibrillogenesis. NF(N-Me)GA(N-Me)IL also inhibits hIAPP-mediated apoptotic beta cell death. By contrast, unmodified NFGAIL does not inhibit hIAPP amyloidogenesis and cytotoxicity, suggesting that N-methylation conferred on NFGAIL the properties of NF(N-Me)GA(N-Me)IL. These results support the concept that rational N-methylation of hIAPP amyloid-core sequences may be a valuable strategy to design pancreatic-amyloid diagnostics and therapeutics for type II diabetes.
Collapse
Affiliation(s)
- Marianna Tatarek-Nossol
- Laboratory of Bioorganic and Medicinal Chemistry, Institute of Biochemistry, University Hospital of the Rheinisch-Westfälische Technische Hochschule Aachen, D-52074 Aachen, Germany
| | | | | | | | | | | |
Collapse
|
92
|
Kajava AV, Aebi U, Steven AC. The parallel superpleated beta-structure as a model for amyloid fibrils of human amylin. J Mol Biol 2005; 348:247-52. [PMID: 15811365 DOI: 10.1016/j.jmb.2005.02.029] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2004] [Revised: 02/09/2005] [Accepted: 02/14/2005] [Indexed: 01/01/2023]
Abstract
Human amylin is a 37 amino acid residue peptide hormone whose fibrillogenesis has been correlated with type 2 diabetes. These fibrils are rope-like bundles of several 5nm diameter protofilaments. Here, we propose, as a model for the protofilament, a variant of the parallel superpleated beta-structure previously derived for amyloid filaments of the yeast prion Ure2p. In the amylin model, individual polypeptides from residues 9 to 37 have a planar S-shaped fold with three beta-strands. These serpentines are stacked in register, with a 0.47 nm axial rise and a small rotational twist per step, generating an array of three parallel beta-sheets in cross-beta conformation. The interior, the two "bays" sandwiched between adjacent sheets, are occupied by non-polar and by polar/uncharged residues that are predicted to form H-bonded ladders, similar to those found in beta-helical proteins. The N-terminal peptide containing a disulfide bond occupies an extraneous peripheral position in the protofilament. The left-handed twist of the beta-sheets is shown to underlie left-handed coiling of amylin protofilaments in fibrils. The model is consistent with current biophysical, biochemical and genetic data and, in particular, affords a plausible explanation for why rodent amylin does not form fibrils.
Collapse
Affiliation(s)
- Andrey V Kajava
- Centre de Recherches de Biochimie Macromoléculaire, CNRS FRE-2593, 1919 Route de Mende, 34293 Montpellier Cedex 5, France.
| | | | | |
Collapse
|
93
|
Koo BW, Miranker AD. Contribution of the intrinsic disulfide to the assembly mechanism of islet amyloid. Protein Sci 2004; 14:231-9. [PMID: 15576552 PMCID: PMC2253339 DOI: 10.1110/ps.041051205] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Amyloidogenesis from soluble protein requires conformational and oligomeric assembly steps. In systems where the precursor protein is natively unfolded, such as islet amyloid polypeptide (IAPP), forces and structural changes relevant to protein unfolding are not thought to participate in the assembly mechanism. Thus, fiber core structure elements should provide the dominant contributions to assembly kinetics. Here we show, however, that residues outside the amyloid core can influence the mechanism of IAPP fiber assembly. IAPP possesses an intramolecular disulfide bond between residues 2 and 7. This short-range disulfide prohibits the N-terminal region from adopting the beta-strand structure of an amyloid. We examined the role of this disulfide in fiber formation by generating a truncated construct (IAPP(8-37)) and a stable reduced form of the full-length protein (IAPP(CAM)). The fiber structures and assembly kinetics of these variants were assessed via optical and mass spectroscopy. Our data confirm that the disulfide does not contribute to the amyloid fiber core structure. Remarkably, however, it plays a central role in the assembly mechanism. First, loss of the disulfide substantially reduces fiber formation by secondary nucleation, i.e., the ability of pre-existing fibers to participate in the formation of new fibers. Second, the bypass of nucleation by seed addition is a two-step process, termed activation. Loss of the disulfide eliminates this two-step nature of seeded kinetics.
Collapse
Affiliation(s)
- Bon W Koo
- Department of Molecular Biophysics and Biochemistry, Yale University, 260 Whitney Ave., New Haven, CT 06520-8114, USA
| | | |
Collapse
|
94
|
Knight JD, Miranker AD. Phospholipid catalysis of diabetic amyloid assembly. J Mol Biol 2004; 341:1175-87. [PMID: 15321714 DOI: 10.1016/j.jmb.2004.06.086] [Citation(s) in RCA: 292] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2004] [Revised: 06/23/2004] [Accepted: 06/30/2004] [Indexed: 10/26/2022]
Abstract
Islet amyloid polypeptide (IAPP) is a 37-residue hormone that forms cytotoxic amyloid fibers in the endocrine pancreas of patients with type II diabetes (NIDDM). A potential origin for cytotoxicity is disruption of lipid membranes by IAPP as has been observed in vitro. The cause of amyloid formation during NIDDM is not known, nor is the mechanism by which membrane disruption occurs in vitro. Here, we use kinetic studies in conjunction with assessments of lipid binding and electron microscopy to investigate the interactions of IAPP with phospholipid bilayers and the morphological effects of membranes on IAPP fibers. Fibrillogenesis of IAPP is catalyzed by synthetic and human tissue-derived phospholipids, leading to >tenfold increases in the rate of fibrillogenesis. The molecular basis of this phenomenon includes a strong dependence on the concentration and charge density of the membrane. IAPP binds to lipid membranes of mixed anionic (DOPG) and zwitterionic (DOPC) content. The transition for binding occurs over a physiologically relevant range of anionic content. Membrane binding by IAPP occurs on timescales that are short compared to fibrillogenesis and results in assembly into preamyloid states via ordered interactions at the N but not C terminus of the protein. These assemblies lead both to gross morphological changes in liposomes and to alterations in the appearance of early fibers when compared to liposome-free fibril formation. Intact bilayer surfaces are regenerated upon dissociation of fibers from the membrane surface. These findings offer a structural mechanism of membrane destabilization and suggest that changes in lipid metabolism could induce IAPP fiber formation in NIDDM.
Collapse
Affiliation(s)
- Jefferson D Knight
- Department of Pharmacology, Yale University, New Haven, CT 06520-8066, USA
| | | |
Collapse
|
95
|
Jayasinghe SA, Langen R. Identifying structural features of fibrillar islet amyloid polypeptide using site-directed spin labeling. J Biol Chem 2004; 279:48420-5. [PMID: 15358791 DOI: 10.1074/jbc.m406853200] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Pancreatic amyloid deposits, composed primarily of the 37-residue islet amyloid polypeptide (IAPP), are a characteristic feature found in more than 90% of patients with type II diabetes. Although IAPP amyloid deposits are associated with areas of pancreatic islet beta-cell dysfunction and depletion and are thought to play a role in disease, their structure is unknown. We used electron paramagnetic resonance spectroscopy to analyze eight spin-labeled derivatives of IAPP in an effort to determine structural features of the peptide. In solution, all eight derivatives gave rise to electron paramagnetic resonance spectra with sharp lines indicative of rapid motion on the sub-nanosecond time scale. These spectra are consistent with a rapidly tumbling and highly dynamic peptide. In contrast, spectra for the fibrillar form exhibit reduced mobility and the presence of strong intermolecular spin-spin interactions. The latter implies that the peptide subunits are ordered and that the same residues from neighboring peptides are in close proximity to one another. Our data are consistent with a parallel arrangement of IAPP peptides within the amyloid fibril. Analysis of spin label mobility indicates a high degree of order throughout the peptide, although the N-terminal region is slightly less ordered. Possible similarities with respect to the domain organization and parallelism of Alzheimer's amyloid beta peptide fibrils are discussed.
Collapse
Affiliation(s)
- Sajith A Jayasinghe
- Department of Biochemistry and Molecular Biology, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California 90033, USA
| | | |
Collapse
|
96
|
Zanuy D, Haspel N, Tsai HHG, Ma B, Gunasekaran K, Wolfson HJ, Nussinov R. Side chain interactions determine the amyloid organization: a single layer -sheet molecular structure of the calcitonin peptide segment 15–19. Phys Biol 2004; 1:89-99. [PMID: 16204826 DOI: 10.1088/1478-3967/1/2/005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In this paper we present a detailed atomic model for a protofilament, the most basic organization level, of the amyloid fibre formed by the peptide DFNKF. This pentapeptide is a segment derived from the human calcitonin, a natural amyloidogenic protein. Our model, which represents the outcome of extensive explicit solvent molecular dynamics (MD) simulations of different strand/sheet organizations, is a single beta-sheet filament largely without a hydrophobic core. Nevertheless, this structure is capable of reproducing the main features of the characteristic amyloid fibril organization and provides clues to the molecular basis of its experimental aggregation behaviour. Our results show that the side chains' chemical diversity induces the formation of a complex network of interactions that finally determine the microscopic arrangement of the strands at the protofilament level. This network of interactions, consisting of both side chain-side chain and backbone-side chain interactions, confers on the final single beta-sheet arrangement an unexpected stability, both by enhancing the association of related chemical groups and, at the same time, by shielding the hydrophobic segments from the polar solvent. The chemical physical characterization of this protofilament provides hints to the possible thermodynamical basis of the supra molecular organization that allows the formation of the filaments by lateral association of the preformed protofibrils. Its regular, highly polarized structure shows how other protofilaments can assemble. In terms of structural biology, our results clearly indicate that an amyloid organization implies a degree of complexity far beyond a simple nonspecific association of peptide strands via amide hydrogen bonds.
Collapse
Affiliation(s)
- David Zanuy
- Laboratory of Experimental and Computational Biology, NCI-Frederick, Bldg 469, Rm 151, Frederick, MD 21702, USA.
| | | | | | | | | | | | | |
Collapse
|
97
|
Affiliation(s)
- Andrew D Miranker
- Department of Molecular Biophysics and Biochemistry, Yale University, 260 Whitney Avenue, New Haven, CT 06520-8114, USA.
| |
Collapse
|
98
|
Abstract
Islet amyloid is found in many patients suffering from type 2 diabetes. Amyloid fibrils found deposited in the pancreatic islets are composed of a 37-residue peptide, known as islet amyloid polypeptide (IAPP) (also known as amylin) and are similar to those found in other amyloid diseases. Synthetic IAPP peptide readily forms amyloid fibrils in vitro and this has allowed fibril formation kinetics and the overall morphology of IAPP amyloid to be studied. Here, we use X-ray fibre diffraction, electron microscopy and cryo-electron microscopy to examine the molecular structure of IAPP amyloid fibrils. X-ray diffraction from aligned synthetic amyloid fibrils gave a highly oriented diffraction pattern with layer-lines spaced 4.7 A apart. Electron diffraction also revealed the characteristic 4.7 A meridional signal and the position of the reflection could be compared directly to the image of the diffracting unit. Cryo-electron microscopy revealed the strong signal at 4.7 A that has been previously visualised from a single Abeta fibre. Together, these data build up a picture of how the IAPP fibril is held together by hydrogen bonded beta-sheet structure and contribute to the understanding of the generic structure of amyloid fibrils.
Collapse
Affiliation(s)
- O Sumner Makin
- University of Cambridge, Structural Medicine Unit, Cambridge Institute for Medical Research and Department of Haematology, Hills Rd, Cambridge CB2 2XY, UK
| | | |
Collapse
|
99
|
Larson JL, Miranker AD. The mechanism of insulin action on islet amyloid polypeptide fiber formation. J Mol Biol 2004; 335:221-31. [PMID: 14659752 DOI: 10.1016/j.jmb.2003.10.045] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The pathology of type II diabetes includes the presence of cytotoxic amyloid deposits in the islets of Langerhans. The main component of these deposits, islet amyloid polypeptide (IAPP), is a hormone involved in glucose metabolism and is normally co-secreted with insulin by the beta-cells of the pancreas. Here, we perform in vitro IAPP fibrillogenesis experiments in the presence and in the absence of insulin to elucidate the mechanism by which insulin acts on fiber formation. We find that insulin is an exceptionally potent inhibitor. In contrast to the vast excess of insulin over IAPP in vivo, substoichiometric amounts of insulin inhibit seeded and unseeded reactions by more than tenfold in vitro. Unusually, the magnitude of the inhibitory effect is dependent on the concentration of insulin, yet independent of the concentration of IAPP. In addition, insulin appears to bind non-specifically to fiber surfaces, giving rise to altered morphology. IAPP fiber formation in vitro requires a minimum of three steps: fiber-independent nucleation, elongation, and fiber-dependent nucleation. Furthermore, these steps are attenuated by the presence of a dispersed-phase transition. We interpret these data in the context of the phase-mediated fibrillogenesis model (PMF) and conclude through experiment and kinetic simulation that the dominant effect of insulin is to act on the elongation portion of the reaction. These results suggest that amyloid formation in type II diabetes involves either an additional agent that acts as an accelerant, or a step that segregates IAPP from insulin.
Collapse
Affiliation(s)
- Jennifer L Larson
- Department of Molecular Biophysics and Biochemistry, Yale University, 260 Whitney Avenue, New Haven, CT 06520-8114, USA
| | | |
Collapse
|
100
|
Scrocchi LA, Chen Y, Wang F, Han K, Ha K, Wu L, Fraser PE. Inhibitors of islet amyloid polypeptide fibrillogenesis, and the treatment of type-2 diabetes. Int J Pept Res Ther 2003. [DOI: 10.1007/s10989-004-2423-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|