51
|
Abstract
[structure: see text] We report G-quartet formation from an N2-modified lipophilic guanosine nucleoside, N2-(4-n-butylphenyl)-2',3',5'-O-triacetylguanosine. We show that, in the presence of either K+ or Na+, this guanosine derivative self-assembles into a D4-symmetric octamer consisting of two stacking all-syn G-quartets in a tail-to-tail (or head-to-head) fashion and a central ion.
Collapse
Affiliation(s)
- Xiangyang Liu
- Department of Chemistry, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | | | | | | |
Collapse
|
52
|
Phan AT, Kuryavyi V, Patel DJ. DNA architecture: from G to Z. Curr Opin Struct Biol 2006; 16:288-98. [PMID: 16714104 PMCID: PMC4689308 DOI: 10.1016/j.sbi.2006.05.011] [Citation(s) in RCA: 215] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2006] [Revised: 04/10/2006] [Accepted: 05/10/2006] [Indexed: 12/27/2022]
Abstract
G-quadruplexes and Z-DNA are two important non-B forms of DNA architecture. Results on novel structural elements, folding and unfolding kinetics, and interactions with small molecules and proteins have been reported recently for these forms. These results will enhance our understanding of the biology of these structures and provide a platform for drug design.
Collapse
Affiliation(s)
- Anh Tuân Phan
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA.
| | | | | |
Collapse
|
53
|
Mergny JL, De Cian A, Amrane S, da Silva MW. Kinetics of double-chain reversals bridging contiguous quartets in tetramolecular quadruplexes. Nucleic Acids Res 2006; 34:2386-97. [PMID: 16682446 PMCID: PMC1458523 DOI: 10.1093/nar/gkl098] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Repetitive 5′GGXGG DNA segments abound in, or near, regulatory regions of the genome and may form unusual structures called G-quadruplexes. Using NMR spectroscopy, we demonstrate that a family of 5′GCGGXGGY sequences adopts a folding topology containing double-chain reversals. The topology is composed of two bistranded quadruplex monomeric units linked by formation of G:C:G:C tetrads. We provide a complete thermodynamic and kinetic analysis of 13 different sequences using absorbance spectroscopy and DSC, and compare their kinetics with a canonical tetrameric parallel-stranded quadruplex formed by TG4T. We demonstrate large differences (up to 105-fold) in the association constants of these quadruplexes depending on primary sequence; the fastest samples exhibiting association rate equal or higher than the canonical TG4T quadruplex. In contrast, all sequences studied here unfold at a lower temperature than this quadruplex. Some sequences have thermodynamic stability comparable to the canonical TG4T tetramolecular quadruplex, but with faster association and dissociation. Sequence effects on the dissociation processes are discussed in light of structural data.
Collapse
Affiliation(s)
- Jean-Louis Mergny
- To whom correspondence should be addressed. Jean-Louis Mergny: Tel: +33 1 40 79 36 89; Fax: +33 1 40 79 37 05;
| | | | | | - Mateus Webba da Silva
- School of Biomedical Sciences, University of UlsterColeraine BT52 1SA, Northern Ireland, UK
- Cellular Biochemistry and Biophysics Program, Memorial Sloan-Kettering Cancer Center1275 York Avenue, New York, NY 10021, USA
- Correspondance may also be addressed to M. Webba da Silva. Tel: +44 28 7032 4009; Fax: +44 28 7032 4375;
| |
Collapse
|
54
|
Zhang N, Phan AT, Patel DJ. (3 + 1) Assembly of three human telomeric repeats into an asymmetric dimeric G-quadruplex. J Am Chem Soc 2006; 127:17277-85. [PMID: 16332077 PMCID: PMC4693638 DOI: 10.1021/ja0543090] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We present an NMR study on the structure of a DNA fragment of the human telomere containing three guanine-tracts, d(GGGTTAGGGTTAGGGT). This sequence forms in Na(+) solution a unique asymmetric dimeric quadruplex, in which the G-tetrad core involves all three G-tracts of one strand and only the last 3'-end G-tract of the other strand. We show that a three-repeat human telomeric sequence can also associate with a single-repeat human telomeric sequence into a structure with the same topology that we name (3 + 1) quadruplex assembly. In this G-quadruplex assembly, there are one syn.syn.syn.anti and two anti.anti.anti.syn G-tetrads, two edgewise loops, three G-tracts oriented in one direction and the fourth oriented in the opposite direction. We discuss the possible implications of the new folding topology for understanding the structure of telomeric DNA, including t-loop formation, and for targeting G-quadruplexes in the telomeres.
Collapse
|
55
|
Phan AT, Kuryavyi V, Gaw HY, Patel DJ. Small-molecule interaction with a five-guanine-tract G-quadruplex structure from the human MYC promoter. Nat Chem Biol 2005; 1:167-73. [PMID: 16408022 PMCID: PMC4690526 DOI: 10.1038/nchembio723] [Citation(s) in RCA: 424] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2005] [Accepted: 06/24/2005] [Indexed: 12/29/2022]
Abstract
It has been widely accepted that DNA can adopt other biologically relevant structures beside the Watson-Crick double helix. One recent important example is the guanine-quadruplex (G-quadruplex) structure formed by guanine tracts found in the MYC (or c-myc) promoter region, which regulates the transcription of the MYC oncogene. Stabilization of this G-quadruplex by ligands, such as the cationic porphyrin TMPyP4, decreases the transcriptional level of MYC. Here, we report the first structure of a DNA fragment containing five guanine tracts from this region. An unusual G-quadruplex fold, which was derived from NMR restraints using unambiguous model-independent resonance assignment approaches, involves a core of three stacked guanine tetrads formed by four parallel guanine tracts with all anti guanines and a snapback 3'-end syn guanine. We have determined the structure of the complex formed between this G-quadruplex and TMPyP4. This structural information, combined with details of small-molecule interaction, provides a platform for the design of anticancer drugs targeting multi-guanine-tract sequences that are found in the MYC and other oncogenic promoters, as well as in telomeres.
Collapse
Affiliation(s)
- Anh Tuân Phan
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA.
| | | | | | | |
Collapse
|
56
|
Abstract
Guanine (G)-rich DNA sequences can adopt stable G-quadruplex structures by G-tetrad hydrogen-bonding and hydrophobic stacking. Recently, it has been shown that a DNA sequence forms an aptamer (termed 93del) and adopts a novel dimeric quadruplex folding topology in K+ solution. This aptamer exhibits anti-HIV1 integrase activity in the nanomolar range in vitro. A docking-based model of the 93del-integrase complex positions the DNA aptamer within a channel of the tetrameric integrase. This mutual fitting blocks several catalytic amino acid residues that are essential for integrase function, and accounts for the anti-HIV1 activity of the 93del aptamer.
Collapse
Affiliation(s)
- Shan-Ho Chou
- Institute of Biochemistry, National Chung-Hsing University, Taichung, Taiwan, Republic of China.
| | | | | |
Collapse
|
57
|
Webba da Silva M. Experimental demonstration of T:(G:G:G:G):T hexad and T:A:A:T tetrad alignments within a DNA quadruplex stem. Biochemistry 2005; 44:3754-64. [PMID: 15751952 DOI: 10.1021/bi0478190] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A template-based approach was used to design unprecedented architectural motifs into a known DNA framework. The structure formed by the sequence d(GCGGTTGGAT) in 0.1 M Na(+) solution has been determined using molecular dynamics simulations constrained by distance and dihedral restraints derived from NMR experiments. The molecular topology has been previously observed for the sequence d(GCGGTGGAT) (Webba da Silva, M. (2003) Biochemistry 42, 14356-65). Insertion of a single thymine into the double chain reversal formed by the segment GGTGG results in the unprecedented experimental demonstration of a T:(G:G:G:G):T hexad. The bi-stranded hexad results from the pairing alignment of two G(T-G) triads. Each triad results from recognition of the sheared edge of a guanine by the Watson-Crick edge of a thymine of the segment GGTTGG. The alignment is stabilized by base-stacking of the thymine to the sugar pucker of the preceding thymine. The latter is involved in formation of the T:A:A:T tetrad alignment by forming a hydrogen bond with the free amino proton of a Watson-Crick aligned A:A mispair. We have thus established that residues in double chain reversal loops linking juxtaposed tetrads of a quadruplex stem may facilitate formation of yet unknown hydrogen bond alignments. By employing a systematic approach analysis of sequence motifs appearing in double chain reversals, bridging tetrad layers should allow for the prediction of topologies and architectural motifs appearing in biologically relevant genomic regions.
Collapse
Affiliation(s)
- Mateus Webba da Silva
- Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA.
| |
Collapse
|
58
|
Sket P, Crnugelj M, Plavec J. d(G3T4G4) forms unusual dimeric G-quadruplex structure with the same general fold in the presence of K+, Na+ or NH4+ ions. Bioorg Med Chem 2005; 12:5735-44. [PMID: 15498650 DOI: 10.1016/j.bmc.2004.08.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2004] [Accepted: 08/03/2004] [Indexed: 10/26/2022]
Abstract
We have recently communicated that DNA oligonucleotide d(G(3)T(4)G(4)) forms a dimeric G-quadruplex in the presence of K(+) ions [J. Am. Chem. Soc.2003, 125, 7866-7871]. The high-resolution NMR structure of d(G(3)T(4)G(4))(2) G-quadruplex exhibits G-quadruplex core consisting of three stacked G-quartets. The two overhanging G3 and G11 residues are located at the opposite sides of the end G-quartets and are not involved in G-quartet formation. d(G(3)T(4)G(4))(2) G-quadruplex represents the first bimolecular G-quadruplex where end G-quartets are spanned by diagonal (T4-T7) as well as edge-type loops (T15-T18). Three of the G-rich strands are parallel while one is anti-parallel. The G12-G22 strand demonstrates a sharp reversal in strand direction between residues G19 and G20 that is accommodated with the leap over the middle G-quartet. The reversal in strand direction is achieved without any extra intervening residues. Here we furthermore examined the influence of different monovalent cations on the folding of d(G(3)T(4)G(4)). The resolved imino and aromatic proton resonances as well as (sequential) NOE connectivity patterns showed only minor differences in key intra- and interquartet NOE intensities in the presence of K(+), Na(+) and NH(4)(+) ions, which were consistent with subtle structural differences while retaining the same folding topology of d(G(3)T(4)G(4))(2) G-quadruplex.
Collapse
Affiliation(s)
- Primoz Sket
- NMR Center, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
| | | | | |
Collapse
|
59
|
Phan AT, Kuryavyi V, Ma JB, Faure A, Andréola ML, Patel DJ. An interlocked dimeric parallel-stranded DNA quadruplex: a potent inhibitor of HIV-1 integrase. Proc Natl Acad Sci U S A 2005; 102:634-9. [PMID: 15637158 PMCID: PMC545538 DOI: 10.1073/pnas.0406278102] [Citation(s) in RCA: 194] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We report on the NMR-based solution structure of the 93del d(GGGGTGGGAGGAGGGT) aptamer, a potent nanomolar inhibitor of HIV-1 integrase. This guanine-rich DNA sequence adopts an unusually stable dimeric quadruplex architecture in K+ solution. Within each 16-nt monomer subunit, which contains one A.(G.G.G.G) pentad sandwiched between two G.G.G.G tetrads, all G-stretches are parallel, and all guanines are anti with the exception of G1, which is syn. Dimer formation is achieved through mutual pairing of G1 of one monomer, with G2, G6, and G13 of the other monomer, to complete G.G.G.G tetrad formation. There are three single-nucleotide double-chain-reversal loops within each monomer fold, such that the first (T5) and third (A12) loops bridge three G-tetrad layers, whereas the second (A9) loop bridges two G-tetrad layers and participates in A.(G.G.G.G) pentad formation. Results of NMR and of integrase inhibition assays on loop-modified sequences allowed us to propose a strategy toward the potential design of improved HIV-1 integrase inhibitors. Finally, we propose a model, based on molecular docking approaches, for positioning the 93del dimeric DNA quadruplex within a basic channel/canyon formed between subunits of a dimer of dimers of HIV-1 integrase.
Collapse
Affiliation(s)
- Anh Tuân Phan
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | | | | | | | | | |
Collapse
|
60
|
Phan AT, Modi YS, Patel DJ. Propeller-type parallel-stranded G-quadruplexes in the human c-myc promoter. J Am Chem Soc 2004; 126:8710-6. [PMID: 15250723 PMCID: PMC4692381 DOI: 10.1021/ja048805k] [Citation(s) in RCA: 426] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The nuclease-hypersensitivity element III1 in the c-myc promoter is a good anticancer target since it largely controls transcriptional activation of the important c-myc oncogene. Recently, the guanine-rich strand of this element has been shown to form an equilibrium between G-quadruplex structures built from two different sets of G-stretches; two models of intramolecular fold-back antiparallel-stranded G-quadruplexes, called "basket" and "chair" forms, were proposed. Here, we show by NMR that two sequences containing these two sets of G-stretches form intramolecular propeller-type parallel-stranded G-quadruplexes in K(+)-containing solution. The two structures involve a core of three stacked G-tetrads formed by four parallel G-stretches with all anti guanines and three double-chain-reversal loops bridging three G-tetrad layers. The central loop contains two or six residues, while the two other loops contain only one residue.
Collapse
Affiliation(s)
- Anh Tuân Phan
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA.
| | | | | |
Collapse
|
61
|
Phan AT, Patel DJ. Two-repeat human telomeric d(TAGGGTTAGGGT) sequence forms interconverting parallel and antiparallel G-quadruplexes in solution: distinct topologies, thermodynamic properties, and folding/unfolding kinetics. J Am Chem Soc 2004; 125:15021-7. [PMID: 14653736 PMCID: PMC4693644 DOI: 10.1021/ja037616j] [Citation(s) in RCA: 227] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We demonstrate by NMR that the two-repeat human telomeric sequence d(TAGGGTTAGGGT) can form both parallel and antiparallel G-quadruplex structures in K(+)-containing solution. Both structures are dimeric G-quadruplexes involving three stacked G-tetrads. The sequence d(TAGGGUTAGGGT), containing a single thymine-to-uracil substitution at position 6, formed a predominantly parallel dimeric G-quadruplex with double-chain-reversal loops; the structure was symmetric, and all guanines were anti. Another modified sequence, d(UAGGGT(Br)UAGGGT), formed a predominantly antiparallel dimeric G-quadruplex with edgewise loops; the structure was asymmetric with six syn guanines and six anti guanines. The two structures can coexist and interconvert in solution. For the latter sequence, the antiparallel form is more favorable at low temperatures (<50 degrees C), while the parallel form is more favorable at higher temperatures; at temperatures lower than 40 degrees C, the antiparallel G-quadruplex folds faster but unfolds slower than the parallel G-quadruplex.
Collapse
Affiliation(s)
- Anh Tuân Phan
- Cellular Biochemistry and Biophysics Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA.
| | | |
Collapse
|
62
|
Crnugelj M, Sket P, Plavec J. Small change in a G-rich sequence, a dramatic change in topology: new dimeric G-quadruplex folding motif with unique loop orientations. J Am Chem Soc 2003; 125:7866-71. [PMID: 12823005 DOI: 10.1021/ja0348694] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
NMR study has shown that DNA oligonucleotide d(G(3)T(4)G(4)) adopts an asymmetric bimolecular G-quadruplex structure in solution. The structure of d(G(3)T(4)G(4))(2) is composed of three G-quartets, overhanging G11 residue and G3, which is part of the loop. Unique structural feature of d(G(3)T(4)G(4))(2) fold is the orientation of the two loops. Thymidine residues T4-T7 form a diagonal loop, whereas T15-T18 form an edge type loop. The G-quadruplex core of d(G(3)T(4)G(4))(2) consists of two stacked G-quartets with syn-anti-anti-anti alternation of dG residues and one G-quartet with syn-syn-anti-anti alternation. Another unusual structural feature of d(G(3)T(4)G(4))(2) is a leap between G19 and G20 over the middle G-quartet and chain reversal between G19 and G20 residues. The presence of one antiparallel and three parallel strands reveals the hitherto unknown G-quadruplex folding motif consisting of antiparallel/parallel strands and diagonal as well as edge type loops. Further examination of the influence of different monovalent cations on the folding of d(G(3)T(4)G(4)) showed that it forms a bimolecular G-quadruplex in the presence of K+, Na+, and NH4+ ions with the same general fold.
Collapse
Affiliation(s)
- Martin Crnugelj
- NMR center, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
| | | | | |
Collapse
|
63
|
Pan B, Xiong Y, Shi K, Deng J, Sundaralingam M. Crystal structure of an RNA purine-rich tetraplex containing adenine tetrads: implications for specific binding in RNA tetraplexes. Structure 2003; 11:815-23. [PMID: 12842044 DOI: 10.1016/s0969-2126(03)00107-2] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Purine-rich regions in DNA and RNA may contain both guanines and adenines, which have various biological functions. Here we report the crystal structure of an RNA purine-rich fragment containing both guanine and adenine at 1.4 A resolution. Adenines form an adenine tetrad in the N6-H em leader N7 conformation. Substitution of an adenine tetrad in the guanine tetraplex does not change the global conformation but introduces irregularity in both the hydrogen bonding interaction pattern in the groove and the metal ion binding pattern in the central cavity of the tetraplex. The irregularity in groove binding may be critical for specific binding in tetraplexes. The formation of G-U octads provides a mechanism for interaction in the groove. Ba(2+) ions prefer to bind guanine tetrads, and adenine tetrads can only be bound by Na(+) ions, illustrating the binding selectivity of metal ions for the tetraplex.
Collapse
Affiliation(s)
- Baocheng Pan
- Departments of Chemistry and Biochemistry, The Ohio State University, 200 Johnston Lab, 176 West 19th Avenue, Columbus, OH 43210, USA
| | | | | | | | | |
Collapse
|
64
|
Abstract
Single-stranded DNA or double-stranded DNA has the potential to adopt a wide variety of unusual duplex and hairpin motifs in the presence (trans) or absence (cis) of ligands. Several principles for the formation of those unusual structures have been established through the observation of a number of recurring structural motifs associated with different sequences. These include: (i) internal loops of consecutive mismatches can occur in a B-DNA duplex when sheared base pairs are adjacent to each other to confer extensive cross- and intra-strand base stacking; (ii) interdigitated (zipper-like) duplex structures form instead when sheared G*A base pairs are separated by one or two pairs of purine*purine mismatches; (iii) stacking is not restricted to base, deoxyribose also exhibits the potential to do so; (iv) canonical G*C or A.T base pairs are flexible enough to exhibit considerable changes from the regular H-bonded conformation. The paired bases become stacked when bracketed by sheared G.A base pairs, or become extruded out and perpendicular to their neighboring bases in the presence of interacting drugs; (v) the purine-rich and pyrimidine-rich loop structures are notably different in nature. The purine-rich loops form compact triloop structures closed by a sheared G*A, A*A, A*C or sheared-like G(anti)*C(syn) base pair that is stacked by a single residue. On the other hand, the pyrimidine-rich loops with a thymidine in the first position exhibit no base pairing but are characterized by the folding of the thymidine residue into the minor groove to form a compact loop structure. Identification of such diverse duplex or hairpin motifs greatly enlarges the repertoire for unusual DNA structural formation.
Collapse
Affiliation(s)
- Shan-Ho Chou
- Department of Life Science, National Central University, Jung-Li, 320, Taiwan, ROC
| | | | | |
Collapse
|
65
|
Escaja N, Gelpí JL, Orozco M, Rico M, Pedroso E, González C. Four-stranded DNA structure stabilized by a novel G:C:A:T tetrad. J Am Chem Soc 2003; 125:5654-62. [PMID: 12733903 DOI: 10.1021/ja0344157] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The solution structure of a cyclic oligonucleotide d<pCGCTCATT> has been determined by two-dimensional NMR spectroscopy and restrained molecular dynamics. Under the appropriate experimental conditions, this molecule self-associates, forming a symmetric dimer stabilized by four intermolecular Watson-Crick base pairs. The resulting four-stranded structure consists of two G:C:A:T tetrads, formed by facing the minor groove side of the Watson-Crick base-pairs. Most probably, the association of the base-pairs is stabilized by coordinating a Na(+) cation. This is the first time that this novel G:C:A:T tetrad has been found in an oligonucleotide structure. This observation increases considerably the number of sequences that may adopt a four-stranded architecture. Overall, the three-dimensional structure is similar to those observed previously in other quadruplexes formed by minor groove alignment of Watson-Crick base pairs. This resemblance strongly suggests that we may be observing a general motif for DNA-DNA recognition.
Collapse
Affiliation(s)
- Núria Escaja
- Departament de Química Orgànica, Universitat de Barcelona, C/, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
66
|
Zarudnaya MI, Potyahaylo AL, Kolomiets IM, Hovorun DM. Auxiliary elements of mammalian pre-mRNAs polyadenylation signals. ACTA ACUST UNITED AC 2002. [DOI: 10.7124/bc.00062e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | | | | | - D. M. Hovorun
- Institute of Molecular Biology and Genetics, NAS of Ukraine
| |
Collapse
|
67
|
Crnugelj M, Hud NV, Plavec J. The solution structure of d(G(4)T(4)G(3))(2): a bimolecular G-quadruplex with a novel fold. J Mol Biol 2002; 320:911-24. [PMID: 12126614 DOI: 10.1016/s0022-2836(02)00569-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The G-rich 11-mer oligonucleotide d(G(4)T(4)G(3)) forms a bimolecular G-quadruplex in the presence of sodium ions with a topology that is distinct from the folds of the closely related and well-characterized sequences d(G(4)T(4)G(4)) and d(G(3)T(4)G(3)). The solution structure of d(G(4)T(4)G(3))(2) has been determined using a combination of NMR spectroscopy and restrained molecular dynamics calculations. d(G(4)T(4)G(3))(2) forms an asymmetric dimeric fold-back structure consisting of three stacked G-quartets. The two T(4) loops that span diagonally across the outer faces of the G-quartets assume different conformations. The glycosidic torsion angle conformations of the guanine bases are 5'-syn-anti-syn-anti-(T(4) loop)-anti-syn-anti in one strand and 5'-syn-anti-syn-anti-(T(4) loop)-syn-anti-syn in the other strand. The guanine bases of the two outer G-quartets exhibit a clockwise donor-acceptor hydrogen-bonding directionality, while those of the middle G-quartet exhibit the anti-clockwise directionality. The topology of this G-quadruplex, like other bimolecular fold-back structures with diagonal loops, places each strand of the G-quartet region next to a neighboring parallel and an anti-parallel strand. The two guanine residues not involved in G-quartet formation, G4 and G12 (i.e. the fourth guanine base of one strand and the first guanine base of the other strand), adopt distinct conformations. G4 is stacked on top of an adjacent G-quartet, and this base-stacking continues along with the bases of the loop residues T5 and T6. G12 is orientated away from the core of G-quartets; stacked on the T7 base and apparently involved in hydrogen-bonding interactions with the phosphodiester group of this same residue. The cation-dependent folding of the d(G(4)T(4)G(3))(2) quadruplex structure is distinct from that observed for similar sequences. While both d(G(4)T(4)G(4)) and d(G(3)T(4)G(3)) form bimolecular, diagonally looped G-quadruplex structures in the presence of Na(+), K(+) and NH(4)(+), we have observed this folding to be favored for d(G(4)T(4)G(3)) in the presence of Na(+), but not in the presence of K(+) or NH(4)(+). The structure of d(G(4)T(4)G(3))(2) exhibits a "slipped-loop" element that is similar to what has been proposed for structural intermediates in the folding pathway of some G-quadruplexes, and therefore provides support for the feasibility of these proposed transient structures in G-quadruplex formation.
Collapse
Affiliation(s)
- Martin Crnugelj
- NMR center, National Institute of Chemistry, Hajdrihova 19, SI-1000, Ljubljana, Slovenia
| | | | | |
Collapse
|
68
|
Abstract
We describe the design, synthesis and biophysical characterization of a novel DNA construct in which a folded quadruplex structure is joined to a standard double helix. Circular dichroism, gel electrophoresis, three-dimensional UV melting and differential scanning calorimetry were all used to characterize the structure. Rigorous molecular dynamics simulations were used to build a plausible atomic-level structural model of the DNA construct. This novel DNA construct provides a model for the duplex-quadruplex junction region at the end of chromosomal DNA and offers a system for the study of structure-selective ligand binding.
Collapse
Affiliation(s)
- Jinsong Ren
- Department of Biochemistry, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216-4505, USA
| | | | | | | |
Collapse
|
69
|
Abstract
Hydrogen-bonded base pairs are an important determinant of nucleic acid structure and function. However, other interactions such as base-base stacking, base-backbone, and backbone-backbone interactions as well as effects exerted by the solvent and by metal or NH(4)(+) ions also have to be taken into account. In addition, hydrogen-bonded base complexes involving more than two bases can occur. With the rapidly increasing number and structural diversity of nucleic acid structures known at atomic detail higher-order hydrogen-bonded base complexes, base polyads, have attracted much interest. This review provides an overview on the occurrence of base polyads in nucleic acid structures and describes computational studies on these nucleic acid building blocks.
Collapse
Affiliation(s)
- J Sühnel
- Biocomputing Group, Institut für Molekulare Biotechnologie, Postfach 100813, D-07708 Jena, Germany
| |
Collapse
|
70
|
Majumdar A, Patel DJ. Identifying hydrogen bond alignments in multistranded DNA architectures by NMR. Acc Chem Res 2002; 35:1-11. [PMID: 11790083 DOI: 10.1021/ar010097+] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
NMR studies of nucleic acids have benefited tremendously from the discovery of trans-hydrogen-bond scalar coupling constants, which have enabled direct determination of N-H...N and N-H...O=C hydrogen bonds using a combination of (2h)J(NN)-, (4h)J(NN)-, and (3h)J(NC)-based spectroscopy. This is especially true of multistranded DNA architectures containing intricate hydrogen-bonded networks mediated primarily through mismatched base pairing, which often resist identification by posing serious technical, spectroscopic, and physicochemical challenges. In this Account, we present a suite of NMR pulse sequences that have been developed in our laboratory to address these issues. We demonstrate the utility of these methods for identifying hydrogen bonds in two quadruplex DNA structures, containing triad, tetrad, and hexad motifs involving Watson-Crick, G.G and sheared G.A mismatch base pairing.
Collapse
Affiliation(s)
- Ananya Majumdar
- Cellular Biochemistry and Biophysics Department, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, New York 10021, USA.
| | | |
Collapse
|