51
|
Grande MJ, Abriouel H, Lucas López R, Valdivia E, Ben Omar N, Martínez-Cañamero M, Gálvez A. Efficacy of enterocin AS-48 against bacilli in ready-to-eat vegetable soups and purees. J Food Prot 2007; 70:2339-45. [PMID: 17969616 DOI: 10.4315/0362-028x-70.10.2339] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The broad-spectrum bacteriocin enterocin AS-48 was tested for biopreservation of ready-to-eat vegetable foods (soups and purees) against aerobic mesophilic endospore-forming bacteria. By adding AS-48 (10 microg/ml), Bacillus cereus LWL1 was completely inhibited in all six vegetable products tested (natural vegetable cream, asparagus cream, traditional soup, homemade-style traditional soup, vegetable soup, and vichyssoise) for up to 30 days at 6, 15, and 22 degrees C. A collection of strains isolated from spoiled purees showed slightly higher resistance to AS-48 in the order Paenibacillus sp. > Bacillus macroides > B. cereus, although they were also completely inhibited in natural vegetable cream by AS-48 at 10 microg/ml. However, cocktails of five or eight strains composed of B. cereus (three strains), B. macroides (two strains), and Paenibacillus sp., Paenibacillus polymyxa, and Paenibacillus amylolyticus showed higher bacteriocin resistance with AS-48 of up to 50 microg/ml required for complete inactivation in natural vegetable cream stored at 22 degrees C. Repetitive extragenic palindromic sequence-based PCR (REP-PCR) analysis showed that paenibacilli (along with some B. cereus) was the predominant survivor in the cocktails after bacteriocin treatment. To increase the effectiveness of enterocin AS-48, the bacteriocin was tested (at 20 microg/ml) against the eight-strain cocktail in natural vegetable cream in combination with other antimicrobials. The combination of AS-48 and nisin had a slight but significant additive effect. Bactericidal activity was greatly enhanced by phenolic compounds (carvacrol, eugenol, geraniol, and hydrocinnamic acid), achieving a rapid and complete inactivation of bacilli in the tested puree at 22 degrees C.
Collapse
Affiliation(s)
- Maria J Grande
- Area de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén, 23071-Jaén, Spain
| | | | | | | | | | | | | |
Collapse
|
52
|
From C, Hormazabal V, Granum PE. Food poisoning associated with pumilacidin-producing Bacillus pumilus in rice. Int J Food Microbiol 2007; 115:319-24. [PMID: 17275116 DOI: 10.1016/j.ijfoodmicro.2006.11.005] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2006] [Revised: 11/03/2006] [Accepted: 11/03/2006] [Indexed: 11/19/2022]
Abstract
Food poisoning caused by other Bacillus species than B. cereus has been described, but the toxins involved have rarely been isolated. Endospores will survive heat treatment and will germinate and multiply in cooked foods producing toxins under appropriate conditions. We describe a small food poisoning outbreak where three people became ill after a dinner in a Chinese restaurant. Acute symptoms including dizziness, headache, chills and back pain developed during the meal, and a few hours later they got stomach cramps and diarrhoea which lasted for several days. Cooked, reheated rice was the prime suspect of the food poisoning, and from the rice large numbers of Bacillus pumilus were isolated. The isolated B. pumilus strain was found to produce a complex of lipopeptides known as pumilacidins with the highest amounts produced at 15 degrees C. This is the first report on isolation of a pumilacidin-producing B. pumilus strain from food implicated in food poisoning and characterization of the organism and the toxin complex involved.
Collapse
Affiliation(s)
- Cecilie From
- Department of Food Safety and Infection Biology, Norwegian School of Veterinary Science, P.O. Box 8146 Dep., N-0033 Oslo, Norway.
| | | | | |
Collapse
|
53
|
Banerjee P, Morgan MT, Rickus JL, Ragheb K, Corvalan C, Robinson JP, Bhunia AK. Hybridoma Ped-2E9 cells cultured under modified conditions can sensitively detect Listeria monocytogenes and Bacillus cereus. Appl Microbiol Biotechnol 2007; 73:1423-34. [PMID: 17043821 DOI: 10.1007/s00253-006-0622-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2006] [Revised: 07/17/2006] [Accepted: 08/08/2006] [Indexed: 10/24/2022]
Abstract
Lymphocyte origin hybridoma Ped-2E9 cell-based cytotoxicity assay can detect virulent Listeria or Bacillus species, and its application in a cell-based biosensor for onsite use would be very attractive. However, maintaining enough viable cells on a sensor platform for a prolonged duration is a challenging task. In this study, key factors affecting the survival and growth of Ped-2E9 cells under modified conditions were investigated. When the Ped-2E9 cells were grown in media containing 5% fetal bovine serum in sealed tubes without any replenishment of nutrients or exogenous CO(2) supply, a large portion of the cells remained viable for 6 to 7 days and cells entered into G0/G1 resting phase. The media pH change was negligible and no cell death was observed in the first 4 days, then cells sequentially underwent apoptotic (fourth day onward) phase until day 7 after which a majority was dead. Subsequent cytotoxicity testing of 3- to 7-day stored Ped-2E9 cells sensitively detected virulent Listeria and Bacillus species. These data strongly suggest that Ped-2E9 cells can be maintained in viable state for 6 days in a sealed tube mimicking the environment in a potential sensor device for onsite use without the need for expensive cell culture facilities.
Collapse
Affiliation(s)
- Pratik Banerjee
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | | | | | | | |
Collapse
|
54
|
Olempska-Beer ZS, Merker RI, Ditto MD, DiNovi MJ. Food-processing enzymes from recombinant microorganisms--a review. Regul Toxicol Pharmacol 2006; 45:144-158. [PMID: 16769167 DOI: 10.1016/j.yrtph.2006.05.001] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2006] [Indexed: 11/17/2022]
Abstract
Enzymes are commonly used in food processing and in the production of food ingredients. Enzymes traditionally isolated from culturable microorganisms, plants, and mammalian tissues are often not well-adapted to the conditions used in modern food production methods. The use of recombinant DNA technology has made it possible to manufacture novel enzymes suitable for specific food-processing conditions. Such enzymes may be discovered by screening microorganisms sampled from diverse environments or developed by modification of known enzymes using modern methods of protein engineering or molecular evolution. As a result, several important food-processing enzymes such as amylases and lipases with properties tailored to particular food applications have become available. Another important achievement is improvement of microbial production strains. For example, several microbial strains recently developed for enzyme production have been engineered to increase enzyme yield by deleting native genes encoding extracellular proteases. Moreover, certain fungal production strains have been modified to reduce or eliminate their potential for production of toxic secondary metabolites. In this article, we discuss the safety of microorganisms used as hosts for enzyme-encoding genes, the construction of recombinant production strains, and methods of improving enzyme properties. We also briefly describe the manufacture and safety assessment of enzyme preparations and summarize options for submitting information on enzyme preparations to the US Food and Drug Administration.
Collapse
Affiliation(s)
- Zofia S Olempska-Beer
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, Office of Food Additive Safety, HFS-255, 5100 Paint Branch Parkway, College Park, MD 20740, USA.
| | | | | | | |
Collapse
|
55
|
European Food Safety Authority (EFSA). Opinion of the Panel on additives and products or substances used in animal feed (FEEDAP) on the safety and efficacy of the enzyme preparation “Bio‐Feed®Pro” (proteinase) for chickens for fattening, pigs for fattening and piglets for use as a feed additive. EFSA J 2006. [DOI: 10.2903/j.efsa.2006.351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
56
|
Gray KM, Banada PP, O'Neal E, Bhunia AK. Rapid Ped-2E9 cell-based cytotoxicity analysis and genotyping of Bacillus species. J Clin Microbiol 2005; 43:5865-72. [PMID: 16333068 PMCID: PMC1317164 DOI: 10.1128/jcm.43.12.5865-5872.2005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2005] [Revised: 05/22/2005] [Accepted: 09/25/2005] [Indexed: 11/20/2022] Open
Abstract
Bacillus species causing food-borne disease produce multiple toxins eliciting gastroenteritis. Toxin assays with mammalian cell cultures are reliable but may take 24 to 72 h to complete and also lack sensitivity. Here, a sensitive and rapid assay was developed using a murine hybridoma Ped-2E9 cell model. Bacillus culture supernatants containing toxins were added to a Ped-2E9 cell line and analyzed for cytotoxicity with an alkaline phosphatase release assay. Most Bacillus cereus strains produced positive cytotoxicity results within 1 h, and data were comparable to those obtained with the standard Chinese hamster ovary (CHO)-based cytotoxicity assay, which took about 72 h to complete. Moreover, the Ped-2E9 cell assay had 25- to 58-fold-higher sensitivity than the CHO assay. Enterotoxin-producing Bacillus thuringiensis also gave positive results with Ped-2E9 cells, while several other Bacillus species were negative. Eight isolates from food suspected of Bacillus contamination were also tested, and only one strain, which was later confirmed as B. cereus, gave a positive result. In comparison with two commercial diarrheal toxin assay kits (BDE-VIA and BCET-RPLA), the Ped-2E9 assay performed more reliably. Toxin fractions of >30 kDa showed the highest degree of cytotoxicity effects, and heat treatment significantly reduced the toxin activity, indicating the involvement of a heat-labile high-molecular-weight component in Ped-2E9 cytotoxicity. PCR results, in most cases, were in agreement with the cytotoxic potential of each strain. Ribotyping was used to identify cultures and indicated differences for several previously reported isolates. This Ped-2E9 cell assay could be used as a rapid (approximately 1-h) alternative to current methods for sensitive detection of enterotoxins from Bacillus species.
Collapse
Affiliation(s)
- Kristen M Gray
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907, USA
| | | | | | | |
Collapse
|
57
|
From C, Pukall R, Schumann P, Hormazábal V, Granum PE. Toxin-producing ability among Bacillus spp. outside the Bacillus cereus group. Appl Environ Microbiol 2005; 71:1178-83. [PMID: 15746316 PMCID: PMC1065142 DOI: 10.1128/aem.71.3.1178-1183.2005] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A total of 333 Bacillus spp. isolated from foods, water, and food plants were examined for the production of possible enterotoxins and emetic toxins using a cytotoxicity assay on Vero cells, the boar spermatozoa motility assay, and a liquid chromatography-mass spectrometry method. Eight strains produced detectable toxins; six strains were cytotoxic, three strains produced putative emetic toxins (different in size from cereulide), and one strain produced both cytotoxin(s) and putative emetic toxin(s). The toxin-producing strains could be assigned to four different species, B. subtilis, B. mojavensis, B. pumilus, or B. fusiformis, by using a polyphasic approach including biochemical, chemotaxonomic, and DNA-based analyses. Four of the strains produced cytotoxins that were concentrated by ammonium sulfate followed by dialysis, and two strains produced cytotoxins that were not concentrated by such a treatment. Two cultures maintained full cytotoxic activity, two cultures reduced their activity, and two cultures lost their activity after boiling. The two most cytotoxic strains (both B. mojavensis) were tested for toxin production at different temperatures. One of these strains produced cytotoxin at growth temperatures ranging from 25 to 42 degrees C, and no reduction in activity was observed even after 24 h of growth at 42 degrees C. The strains that produced putative emetic toxins were tested for the influence of time and temperature on the toxin production. It was shown that they produced putative emetic toxin faster or just as fast at 30 as at 22 degrees C. None of the cytotoxic strains produced B. cereus-like enterotoxins as tested by PCR or by immunological methods.
Collapse
Affiliation(s)
- Cecilie From
- Department of Food Safety and Infection Biology, Norwegian School of Veterinary Science, PO Box 8146, Dep, NO-0033 Oslo, Norway
| | | | | | | | | |
Collapse
|
58
|
Rey MW, Ramaiya P, Nelson BA, Brody-Karpin SD, Zaretsky EJ, Tang M, de Leon AL, Xiang H, Gusti V, Clausen IG, Olsen PB, Rasmussen MD, Andersen JT, Jørgensen PL, Larsen TS, Sorokin A, Bolotin A, Lapidus A, Galleron N, Ehrlich SD, Berka RM. Complete genome sequence of the industrial bacterium Bacillus licheniformis and comparisons with closely related Bacillus species. Genome Biol 2004; 5:R77. [PMID: 15461803 PMCID: PMC545597 DOI: 10.1186/gb-2004-5-10-r77] [Citation(s) in RCA: 254] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2004] [Revised: 06/30/2004] [Accepted: 08/03/2004] [Indexed: 12/04/2022] Open
Abstract
The complete sequence of the Bacillus licheniformis ATCC 14580 genome was determined, revealing 4,208 predicted protein-coding genes, 7 rRNA operons and 72 tRNA genes. Background Bacillus licheniformis is a Gram-positive, spore-forming soil bacterium that is used in the biotechnology industry to manufacture enzymes, antibiotics, biochemicals and consumer products. This species is closely related to the well studied model organism Bacillus subtilis, and produces an assortment of extracellular enzymes that may contribute to nutrient cycling in nature. Results We determined the complete nucleotide sequence of the B. licheniformis ATCC 14580 genome which comprises a circular chromosome of 4,222,336 base-pairs (bp) containing 4,208 predicted protein-coding genes with an average size of 873 bp, seven rRNA operons, and 72 tRNA genes. The B. licheniformis chromosome contains large regions that are colinear with the genomes of B. subtilis and Bacillus halodurans, and approximately 80% of the predicted B. licheniformis coding sequences have B. subtilis orthologs. Conclusions Despite the unmistakable organizational similarities between the B. licheniformis and B. subtilis genomes, there are notable differences in the numbers and locations of prophages, transposable elements and a number of extracellular enzymes and secondary metabolic pathway operons that distinguish these species. Differences include a region of more than 80 kilobases (kb) that comprises a cluster of polyketide synthase genes and a second operon of 38 kb encoding plipastatin synthase enzymes that are absent in the B. licheniformis genome. The availability of a completed genome sequence for B. licheniformis should facilitate the design and construction of improved industrial strains and allow for comparative genomics and evolutionary studies within this group of Bacillaceae.
Collapse
Affiliation(s)
- Michael W Rey
- Novozymes Biotech Inc, 1445 Drew Ave, Davis, CA 95616, USA
| | | | - Beth A Nelson
- Novozymes Biotech Inc, 1445 Drew Ave, Davis, CA 95616, USA
| | | | | | - Maria Tang
- Novozymes Biotech Inc, 1445 Drew Ave, Davis, CA 95616, USA
| | | | - Henry Xiang
- Novozymes Biotech Inc, 1445 Drew Ave, Davis, CA 95616, USA
| | - Veronica Gusti
- Novozymes Biotech Inc, 1445 Drew Ave, Davis, CA 95616, USA
| | - Ib Groth Clausen
- Novozymes A/S, Bagsværd, DK-2880, Denmark
- AstraZeneca International, Lund SE221 87, Sweden
| | | | | | | | | | | | - Alexei Sorokin
- Institut National de la Recherche Agronomique, Paris Cedex 75007, France
| | - Alexander Bolotin
- Institut National de la Recherche Agronomique, Paris Cedex 75007, France
| | - Alla Lapidus
- Institut National de la Recherche Agronomique, Paris Cedex 75007, France
- Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Nathalie Galleron
- Institut National de la Recherche Agronomique, Paris Cedex 75007, France
| | - S Dusko Ehrlich
- Institut National de la Recherche Agronomique, Paris Cedex 75007, France
| | - Randy M Berka
- Novozymes Biotech Inc, 1445 Drew Ave, Davis, CA 95616, USA
| |
Collapse
|
59
|
Matarante A, Baruzzi F, Cocconcelli PS, Morea M. Genotyping and toxigenic potential of Bacillus subtilis and Bacillus pumilus strains occurring in industrial and artisanal cured sausages. Appl Environ Microbiol 2004; 70:5168-76. [PMID: 15345396 PMCID: PMC520883 DOI: 10.1128/aem.70.9.5168-5176.2004] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2004] [Accepted: 05/10/2004] [Indexed: 11/20/2022] Open
Abstract
Artisanal and industrial sausages were analyzed for their aerobic, heat-resistant microflora to assess whether new emerging pathogens could be present among Bacillus strains naturally contaminating cured meat products. Sixty-four isolates were characterized by randomly amplified polymorphic DNA (RAPD)-PCR and fluorescent amplified fragment length polymorphism (fAFLP). The biotypes, identified by partial 16S rRNA gene sequence analysis, belonged to Bacillus subtilis, Bacillus pumilus, and Bacillus amyloliquefaciens species. Both RAPD-PCR and fAFLP analyses demonstrated that a high genetic heterogeneity is present in the B. subtilis group even in strains harvested from the same source, making it possible to isolate 56 different biotypes. Moreover, fAFLP analysis made it possible to distinguish B. subtilis from B. pumilus strains. The strains were characterized for their toxigenic potential by molecular, physiological, and immunological techniques. Specific PCR analyses revealed the absence of DNA sequences related to HBL, BcET, NHE, and entFM Bacillus cereus enterotoxins and the enzymes sphingomyelinase Sph and phospholipase PI-PLC in all strains; also, the immunological analyses showed that Bacillus strains did not react with NHE- and HBL-specific antibodies. However, some isolates were found to be positive for hemolytic and lecithinase activity. The absence of toxigenic potential in Bacillus strains from the sausages analyzed indicates that these products can be considered safe under the processing conditions they were produced; however, great care should be taken when the ripening time is shortened, particularly in the case of traditional sausages, which could contain high amounts of Bacillus strains and possibly some B. cereus cells.
Collapse
Affiliation(s)
- Alessandra Matarante
- Istituto di Scienze delle Produzioni Alimentari, CNR, Via G. Amendola, 122/O, 70125 Bari, Italy
| | | | | | | |
Collapse
|