51
|
Bastola DR, Otu HH, Doukas SE, Sayood K, Hinrichs SH, Iwen PC. Utilization of the relative complexity measure to construct a phylogenetic tree for fungi. ACTA ACUST UNITED AC 2004; 108:117-25. [PMID: 15119348 DOI: 10.1017/s0953756203009079] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The relative complexity measure (RCM) is a new approach to evaluate relatedness of DNA sequences which eliminates the requirement to align sequences prior to analysis, a step required with standard reference methods. The value of the RCM approach to generate distance matrices for use in phylogenetic analysis of organisms has not been determined. This study compared RCM with the algorithmic and tree searching reference methods for phylogenetic analysis using fungal sequences. Sequences of the cytochrome b gene and the 18S rDNA gene were obtained from the GenBank database to determine feasibility of this method for phylogenetic relatedness. The RCM approach was also used to construct a phylogenetic tree using internal transcribed spacer (ITS) sequences from 23 medically relevant fungal species. The robustness of the RCM and reference approaches was determined by comparing the topology of seven medically relevant fungi within the phylogenetic trees generated after progressive removal of 10, 20, 30, 40 and 50% of the nucleotide bases from either the 5' or 3' end of the three genomic target sequences. The results demonstrated that the RCM method was equivalent to the reference methods for construction of phylogenetic trees from cytochrome b and 18S rDNA gene sequences. The phylogenetic tree constructed using the ITS sequence generated no contradictory topology. The RCM generated trees retained the appropriate topology after removal of up to 50% of the cytochrome b sequence, 40% of the ITS sequence, and 30% of the 18S gene target sequence. Comparatively, the reference methods failed to maintain topology after only a 10% sequence deletion for each genomic target. The results showed the RCM to be a reliable and robust computational approach for use in the construction of fungal phylogenetic trees without the requirement for prior sequence alignment.
Collapse
Affiliation(s)
- Dhundy R Bastola
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198-6495, USA
| | | | | | | | | | | |
Collapse
|
52
|
Coenye T, Vandamme P. Extracting phylogenetic information from whole-genome sequencing projects: the lactic acid bacteria as a test case. Microbiology (Reading) 2003; 149:3507-3517. [PMID: 14663083 DOI: 10.1099/mic.0.26515-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The availability of an ever increasing number of complete genome sequences of diverse prokaryotic taxa has led to the introduction of novel approaches to infer phylogenetic relationships among bacteria. In the present study the sequences of the 16S rRNA gene and nine housekeeping genes were compared with the fraction of shared putative orthologous protein-encoding genes, conservation of gene order, dinucleotide relative abundance and codon usage among 11 genomes of species belonging to the lactic acid bacteria. In general there is a good correlation between the results obtained with various approaches, although it is clear that there is a stronger phylogenetic signal in some datasets than in others, and that different parameters have different taxonomic resolutions. It appears that trees based on different kinds of information derived from whole-genome sequencing projects do not provide much additional information about the phylogenetic relationships among bacterial taxa compared to more traditional alignment-based methods. Nevertheless, it is expected that the study of these novel forms of information will have its value in taxonomy, to determine which genes are shared, when genes or sets of genes were lost in evolutionary history, to detect the presence of horizontally transferred genes and/or confirm or enhance the phylogenetic signal derived from traditional methods. Although these conclusions are based on a relatively small dataset, they are largely in agreement with other studies and it is anticipated that similar trends will be observed when comparing other genomes.
Collapse
Affiliation(s)
- Tom Coenye
- Laboratorium voor Microbiologie, Universiteit Gent, K.L. Ledeganckstraat 35, B-9000 Gent, Belgium
| | - Peter Vandamme
- Laboratorium voor Microbiologie, Universiteit Gent, K.L. Ledeganckstraat 35, B-9000 Gent, Belgium
| |
Collapse
|
53
|
Abstract
As we enter the post-genomic era, with the accelerating availability of complete genome sequences, new theoretical approaches and new experimental techniques, our ability to dissect cellular processes at the molecular level continues to expand. Recent advances include the application of RNA interference methods to characterize loss-of-function phenotype genes in higher eukaryotes, comparative analysis of the human and mouse genome sequences, and methods for reconciling contradictory phylogenetic reconstructions. New developments feed into the increasingly rich content of databases such as the COG database. The next phase of research will be increasingly dominated by efforts to integrate the deluge of data into our understanding of biological systems.
Collapse
Affiliation(s)
- Samuel Karlin
- Department of Mathematics, Stanford University, Stanford, CA 94305, USA.
| | | | | |
Collapse
|
54
|
Maxwell CA, Keats JJ, Crainie M, Sun X, Yen T, Shibuya E, Hendzel M, Chan G, Pilarski LM. RHAMM is a centrosomal protein that interacts with dynein and maintains spindle pole stability. Mol Biol Cell 2003; 14:2262-76. [PMID: 12808028 PMCID: PMC194876 DOI: 10.1091/mbc.e02-07-0377] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The receptor for hyaluronan-mediated motility (RHAMM), an acidic coiled coil protein, has previously been characterized as a cell surface receptor for hyaluronan, and a microtubule-associated intracellular hyaluronan binding protein. In this study, we demonstrate that a subset of cellular RHAMM localizes to the centrosome and functions in the maintenance of spindle integrity. We confirm a previous study showing that the amino terminus of RHAMM interacts with microtubules and further demonstrate that a separate carboxy-terminal domain is required for centrosomal targeting. This motif overlaps the defined hyaluronan binding domain and bears 72% identity to the dynein interaction domain of Xklp2. RHAMM antibodies coimmunprecipitate dynein IC from Xenopus and HeLa extracts. Deregulation of RHAMM expression inhibits mitotic progression and affects spindle architecture. Structure, localization, and function, along with phylogenetic analysis, suggests that RHAMM may be a new member of the TACC family. Thus, we demonstrate a novel centrosomal localization and mitotic spindle-stabilizing function for RHAMM. Moreover, we provide a potential mechanism for this function in that RHAMM may cross-link centrosomal microtubules, through a direct interaction with microtubules and an association with dynein.
Collapse
Affiliation(s)
- Christopher A Maxwell
- Department of Oncology, University of Alberta/Cross Cancer Institute, Edmonton Alberta Canada T6G 1Z2
| | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Abstract
The phylogeny of highly divergent multigene families is often difficult to validate but can be substantiated by inclusion of data outside of the phylogeny, such as signature motifs, intron splice site conservation, unique substitutions of conserved residues, similar gene functions, and out groups. The Family 1 Glycosyltransferases (UGTs) comprises such a highly divergent, polyphyletic multigene family. Phylogenetic comparisons of UGTs from plants, animals, fungi, bacteria, and viruses reveal that plant UGTs represent three distinct clades. The majority of the plant sequences appears to be monophyletic and have diverged after the bifurcation of the animal/fungi/plant kingdoms. The two minor clades contain the sterol and lipid glycosyltransferases and each show more homology to non-plant sequences. The lipid glycosyltransferase clade is homologous to bacterial lipid glycosyltransferases and reflects the bacterial origin of chloroplasts. The fully sequenced Arabidopsis thaliana genome contains 120 UGTs including 8 apparent pseudogenes. The phylogeny of plant glycosyltransferases is substantiated with complete phylogenetic analysis of the A. thaliana UGT multigene family, including intron-exon organization and chromosomal localization.
Collapse
Affiliation(s)
- Suzanne Paquette
- Department of Biological Structure, HSBG-514, Box 357420, University of Washington Medical School, Seattle, WA 98145-9420, USA
| | | | | |
Collapse
|
56
|
Gutiérrez G, Sánchez D, Marín A. A reanalysis of the ancient mitochondrial DNA sequences recovered from Neandertal bones. Mol Biol Evol 2002; 19:1359-66. [PMID: 12140248 DOI: 10.1093/oxfordjournals.molbev.a004197] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Recent reports analyzing mitochondrial DNA sequences from Neandertal bones have claimed that Neandertals and modern humans are different species. The phylogenetic analyses carried out in these articles did not take into account the high substitution rate variation among sites observed in the human mitochondrial D-loop region and also lack an estimation of the parameters of the nucleotide substitution model. The separate phylogenetic position of Neandertals is not supported when these factors are considered. Our analysis shows that Neandertal-Human and Human-Human pairwise distance distributions overlap more than what previous studies suggested. We also show that the most ancient Neandertal HVI region is the most divergent when compared with modern human sequences. However, the opposite would be expected if the sequence had not been modified since the death of the specimen. Such incongruence is discussed in the light of diagenetic modifications in ancient Neandertal DNA sequences.
Collapse
|
57
|
Karlin S, Brocchieri L, Trent J, Blaisdell BE, Mrázek J. Heterogeneity of genome and proteome content in bacteria, archaea, and eukaryotes. Theor Popul Biol 2002; 61:367-90. [PMID: 12167359 DOI: 10.1006/tpbi.2002.1606] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Our analysis compares bacteria, archaea, and eukaryota with respect to a wide assortment of genome and proteome properties. These properties include ribosomal protein gene distributions, chaperone protein contrasts, major variation of transcription/translation factors, gene encoding pathways of energy metabolism, and predicted protein expression levels. Significant differences within and between the three domains of life include protein lengths, information processing procedures, many metabolic and lipid biosynthesis pathways, cellular controls, and regulatory proteins. Differences among genomes are influenced by lifestyle, habitat, physiology, energy sources, and other factors.
Collapse
Affiliation(s)
- Samuel Karlin
- Department of Mathematics, Stanford University, California 94305-2125, USA
| | | | | | | | | |
Collapse
|
58
|
Abstract
An increasingly comprehensive assessment is being developed of the extent and potential significance of lateral gene transfer among microbial genomes. Genomic sequences can be identified as being of putatively lateral origin by their unexpected phyletic distribution, atypical sequence composition, differential presence or absence in closely related genomes, or incongruent phylogenetic trees. These complementary approaches sometimes yield inconsistent results. Not only more data but also quantitative models and simulations are needed urgently.
Collapse
Affiliation(s)
- M A Ragan
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
59
|
Abstract
Adaptins are subunits of adaptor protein (AP) complexes involved in the formation of intracellular transport vesicles and in the selection of cargo for incorporation into the vesicles. In this article, we report the results of a survey for adaptins from sequenced genomes including those of man, mouse, the fruit fly Drosophila melanogaster, the nematode Caenorhabditis elegans, the plant Arabidopsis thaliana, and the yeasts, Saccharomyces cerevisiae and Schizosaccharomyces pombe. We find that humans, mice, and Arabidopsis thaliana have four AP complexes (AP-1, AP-2, AP-3, and AP-4), whereas D. melanogaster, C. elegans, S. cerevisiae, and S. pombe have only three (AP-1, AP-2, and AP-3). Additional diversification of AP complexes arises from the existence of adaptin isoforms encoded by distinct genes or resulting from alternative splicing of mRNAs. We complete the assignment of adaptins to AP complexes and provide information on the chromosomal localization, exon-intron structure, and pseudogenes for the different adaptins. In addition, we discuss the structural and evolutionary relationships of the adaptins and the genetic analyses of their function. Finally, we extend our survey to adaptin-related proteins such as the GGAs and stonins, which contain domains homologous to the adaptins.
Collapse
Affiliation(s)
- M Boehm
- Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
60
|
Abstract
A gene in a genome is defined as putative alien (pA) if its codon usage difference from the average gene exceeds a high threshold and codon usage differences from ribosomal protein genes, chaperone genes and protein-synthesis-processing factors are also high. pA gene clusters in bacterial genomes are relevant for detecting genomic islands (GIs), including pathogenicity islands (PAIs). Four other analyses appropriate to this task are G+C genome variation (the standard method); genomic signature divergences (dinucleotide bias); extremes of codon bias; and anomalies of amino acid usage. For example, the cagA domain of Helicobacter pylori is highly deviant in its genome signature and codon bias from the rest of the genome. Using these methods we can detect two potential PAIs in the Neisseria meningitidis genome, which contain hemagglutinin and/or hemolysin-related genes. Additionally, G+C variation and genome signature differences of the Mycobacterium tuberculosis genome indicate two pA gene clusters.
Collapse
Affiliation(s)
- S Karlin
- Dept of Mathematics, Stanford University, 94305-2125, Stanford, CA, USA.
| |
Collapse
|