51
|
Nrf2-driven TERT regulates pentose phosphate pathway in glioblastoma. Cell Death Dis 2016; 7:e2213. [PMID: 27148686 PMCID: PMC4917655 DOI: 10.1038/cddis.2016.117] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 04/01/2016] [Accepted: 04/05/2016] [Indexed: 01/09/2023]
Abstract
Given the involvement of telomerase activation and dysregulated metabolism in glioma progression, the connection between these two critical players was investigated. Pharmacological inhibition of human Telomerase reverse transcriptase (hTERT) by Costunolide induced glioma cell apoptosis in a reactive oxygen species (ROS)-dependent manner. Costunolide induced an ROS-dependent increase in p53 abrogated telomerase activity. Costunolide decreased Nrf2 level; and ectopic Nrf2 expression decreased Costunolide-induced ROS generation. While TERT knock-down abrogated Nrf2 levels, overexpression of Nrf2 increased TERT expression. Inhibition of hTERT either by Costunolide, or by siRNA or dominant-negative hTERT (DN-hTERT) abrogated (i) expression of Glucose-6-phosphate dehydrogenase (G6PD) and Transketolase (TKT) – two major nodes in the pentose phosphate (PPP) pathway; and (ii) phosphorylation of glycogen synthase (GS). hTERT knock-down decreased TKT activity and increased glycogen accumulation. Interestingly, siRNA-mediated knock-down of TKT elevated glycogen accumulation. Coherent with the in vitro findings, Costunolide reduced tumor burden in heterotypic xenograft glioma mouse model. Costunolide-treated tumors exhibited diminished TKT activity, heightened glycogen accumulation, and increased senescence. Importantly, glioblastoma multiforme (GBM) patient tumors bearing TERT promoter mutations (C228T and C250T) known to be associated with increased telomerase activity; exhibited elevated Nrf2 and TKT expression and decreased glycogen accumulation. Taken together, our findings highlight the previously unknown (i) role of telomerase in the regulation of PPP and glycogen accumulation and (ii) the involvement of Nrf2-TERT loop in maintaining oxidative defense responses in glioma cells.
Collapse
|
52
|
Alvarado AG, Lathia JD. Taking a Toll on Self-Renewal: TLR-Mediated Innate Immune Signaling in Stem Cells. Trends Neurosci 2016; 39:463-471. [PMID: 27155992 DOI: 10.1016/j.tins.2016.04.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 04/07/2016] [Accepted: 04/11/2016] [Indexed: 02/07/2023]
Abstract
Innate immunity has evolved as the front-line cellular defense mechanism to acutely sense and decisively respond to microenvironmental alterations. The Toll-like receptor (TLR) family activates signaling pathways in response to stimuli and is well-characterized in both resident and infiltrating immune cells during neural inflammation, injury, and degeneration. Innate immune signaling has also been observed in neural cells during development and disease, including in the stem and progenitor cells that build the brain and are responsible for its homeostasis. Recently, the activation of developmental programs in malignant brain tumors has emerged as a driver for growth via cancer stem cells. In this review we discuss how innate immune signaling interfaces with stem cell maintenance in the normal and neoplastic brain.
Collapse
Affiliation(s)
- Alvaro G Alvarado
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
| | - Justin D Lathia
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA; Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, OH, USA; Case Comprehensive Cancer Center, Cleveland, OH, USA.
| |
Collapse
|
53
|
Dixit D, Ahmad F, Ghildiyal R, Joshi SD, Sen E. CK2 inhibition induced PDK4-AMPK axis regulates metabolic adaptation and survival responses in glioma. Exp Cell Res 2016; 344:132-142. [PMID: 27001465 DOI: 10.1016/j.yexcr.2016.03.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 03/16/2016] [Accepted: 03/17/2016] [Indexed: 12/31/2022]
Abstract
Understanding mechanisms that link aberrant metabolic adaptation and pro-survival responses in glioma cells is crucial towards the development of new anti-glioma therapies. As we have previously reported that CK2 is associated with glioma cell survival, we evaluated its involvement in the regulation of glucose metabolism. Inhibition of CK2 increased the expression of metabolic regulators, PDK4 and AMPK along with the key cellular energy sensor CREB. This increase was concomitant with altered metabolic profile as characterized by decreased glucose uptake in a PDK4 and AMPK dependent manner. Increased PDK4 expression was CREB dependent, as exogenous inhibition of CREB functions abrogated CK2 inhibitor mediated increase in PDK4 expression. Interestingly, PDK4 regulated AMPK phosphorylation which in turn affected cell viability in CK2 inhibitor treated glioma cells. CK2 inhibitor 4,5,6,7-Tetrabromobenzotriazole (TBB) significantly retarded the growth of glioma xenografts in athymic nude mouse model. Coherent with the in vitro findings, elevated senescence, pAMPK and PDK4 levels were also observed in TBB-treated xenograft tissue. Taken together, CK2 inhibition in glioma cells drives the PDK4-AMPK axis to affect metabolic profile that has a strong bearing on their survival.
Collapse
Affiliation(s)
- Deobrat Dixit
- National Brain Research Centre, Manesar, Haryana, India
| | - Fahim Ahmad
- National Brain Research Centre, Manesar, Haryana, India
| | | | | | - Ellora Sen
- National Brain Research Centre, Manesar, Haryana, India.
| |
Collapse
|
54
|
Balamurugan K. HIF-1 at the crossroads of hypoxia, inflammation, and cancer. Int J Cancer 2016; 138:1058-66. [PMID: 25784597 PMCID: PMC4573780 DOI: 10.1002/ijc.29519] [Citation(s) in RCA: 431] [Impact Index Per Article: 47.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 02/24/2015] [Accepted: 03/11/2015] [Indexed: 12/14/2022]
Abstract
The complex cross-talk of intricate intercellular signaling networks between the tumor and stromal cells promotes cancer progression. Hypoxia is one of the most common conditions encountered within the tumor microenvironment that drives tumorigenesis. Most responses to hypoxia are elicited by a family of transcription factors called hypoxia-inducible factors (HIFs), which induce expression of a diverse set of genes that assist cells to adapt to hypoxic environments. Among the three HIF protein family members, the role of HIF-1 is well established in cancer progression. HIF-1 functions as a signaling hub to coordinate the activities of many transcription factors and signaling molecules that impact tumorigenesis. This mini review discusses the complex role of HIF-1 and its context-dependent partners under various cancer-promoting events including inflammation and generation of cancer stem cells, which are implicated in tumor metastasis and relapse. In addition, the review highlights the importance of therapeutic targeting of HIF-1 for cancer prevention.
Collapse
Affiliation(s)
- Kuppusamy Balamurugan
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute, Frederick, MD
| |
Collapse
|
55
|
Shafik NM, Mohamed DA, Bedder AE, El-Gendy AM. Significance of Tissue Expression and Serum Levels of Angiopoietin-like Protein 4 in Breast Cancer Progression: Link to NF-κB /P65 Activity and Pro-Inflammatory Cytokines. Asian Pac J Cancer Prev 2016; 16:8579-87. [DOI: 10.7314/apjcp.2015.16.18.8579] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
56
|
PPARγ regulated CIDEA affects pro-apoptotic responses in glioblastoma. Cell Death Discov 2015; 1:15038. [PMID: 27551468 PMCID: PMC4979534 DOI: 10.1038/cddiscovery.2015.38] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 08/19/2015] [Indexed: 02/07/2023] Open
Abstract
Refractoriness of glioblastoma multiforme (GBM) to current treatment paradigms has necessitated identification of new targets to better the existing therapeutic strategies. One such target is peroxisome proliferator-activated receptor gamma (PPARγ) - a transcription factor involved in regulation of lipid metabolism and inflammation. Expression of PPARγ, a known regulator of cell death-inducing DFFA-like effector (CIDEA), is modulated by hypoxia inducible factor (HIF-1α). While the involvement of CIDEA in lipid metabolism is known, its role in malignancies remains largely unknown. An elevated PPARγ and low CIDEA level was observed in GBM tumors as compared with surrounding non-neoplastic tissue. As reciprocal relation exists between PPAR and HIF-1α: and as HIF-1α is a key component in glioma progression, their role in regulating CIDEA expression in glioblastoma was investigated. Although HIF-1α inhibition had no effect on CIDEA expression, pharmacological inhibition of PPARγ elevated CIDEA levels. PPARγ mediated upregulation of CIDEA was accompanied by decreased recruitment of NFκB and SP1 to their predicted binding sites on CIDEA promoter. Ectopic expression of CIDEA triggered apoptosis, activated JNK, decreased HIF-1α activation and increased PPARγ levels in glioma cells. While CIDEA overexpression induced actin cytoskeletal disruption, cell cycle arrest, release of pro-inflammatory cytokine IL-6 in a JNK-dependent manner; CIDEA mediated apoptotic cell death, decreased STAT3 phosphorylation and increased p53 acetylation was JNK independent. This study highlights for the first time the existence of (i) PPARγ-CIDEA regulatory loop in glioma and (ii) novel function of CIDEA as regulator of glioma cell survival.
Collapse
|
57
|
Ghosh S, Gupta P, Sen E. TNFα driven HIF-1α-hexokinase II axis regulates MHC-I cluster stability through actin cytoskeleton. Exp Cell Res 2015; 340:116-24. [PMID: 26597758 DOI: 10.1016/j.yexcr.2015.11.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 11/14/2015] [Accepted: 11/15/2015] [Indexed: 12/24/2022]
Abstract
Hypoxia-inducible Factor-1α (HIF-1α)-regulated expression of Hexokinase-II (HKII) remains a cornerstone in the maintenance of high metabolic demands subserving various pro-tumor functions including immune evasion in gliomas. Since inflammation-induced HIF-1α regulates Major Histocompatibility Complex class I (MHC-I) gene expression, and as cytoskeletal dynamics affect MHC-I membrane clusters, we investigated the involvement of HIF-1α-HKII axis in Tumor Necrosis Factor-α (TNFα)-mediated MHC-I membrane cluster stability in glioma cells and the involvement of actin cytoskeleton in the process. TNFα increased the clustering and colocalization of MHC-I with cortical actin in a HIF-1α dependent manner. siRNA mediated knockdown of HIF-1α as well as enzymatic inhibition of HK II by Lonidamine, delocalized mitochondrially bound HKII. This altered subcellular HKII localization affected TNFα-induced cofilin activation and actin turnover, as pharmacological inhibition of HKII by Lonidamine decreased Actin-related protein 2 (ARP2)/cofilin interaction. Photobleaching studies revealed destabilization of TNFα- induced stable MHC-I membrane clusters in the presence of Lonidamine and ARP2 inhibitor CK666. This work highlights how TNFα triggers a previously unknown function of metabolic protein HKII to influence an immune related outcome. Our study establishes the importance of inflammation induced HIF-1α in integrating two crucial components- the metabolic and immune, through reorganization of cytoskeleton.
Collapse
Affiliation(s)
- Sadashib Ghosh
- Molecular & Cellular Neuroscience Division, National Brain Research Centre, Manesar, Haryana 122051, India.
| | - Piyushi Gupta
- Molecular & Cellular Neuroscience Division, National Brain Research Centre, Manesar, Haryana 122051, India
| | - Ellora Sen
- Molecular & Cellular Neuroscience Division, National Brain Research Centre, Manesar, Haryana 122051, India
| |
Collapse
|
58
|
Ding Z, Liu Y, Yao L, Wang D, Zhang J, Cui G, Yang X, Huang X, Liu F, Shen A. Spy1 induces de-ubiquitinating of RIP1 arrest and confers glioblastoma's resistance to tumor necrosis factor (TNF-α)-induced apoptosis through suppressing the association of CLIPR-59 and CYLD. Cell Cycle 2015; 14:2149-59. [PMID: 26017671 DOI: 10.1080/15384101.2015.1041688] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Glioblastoma multiforme (GBM), a grade-IV glioma, is resistant to TNF-α induced apoptosis. CLIPR-59 modulates ubiquitination of RIP1, thus promoting Caspase-8 activation to induce apoptosis by TNF-α. Here we reported that CLIPR-59 was down-regulated in GBM cells and high-grade glioma tumor samples, which was associated with decreased cancer-free survival. In GBM cells, CLIPR-59 interacts with Spy1, resulting in its decreased association with CYLD, a de-ubiquitinating enzyme. Moreover, experimental reduction of Spy1 levels decreased GBM cells viability, while increased the lysine-63-dependent de-ubiquitinating activity of RIP1 via enhancing the binding ability of CLIPR-59 and CYLD in GBM, thus promoting Caspase-8 and Caspase-3 activation to induce apoptosis by TNF-α. These findings have identified a novel Spy1-CLIPR-59 interplay in GBM cell's resistance to TNF-α-induced apoptosis revealing a potential target in the intervention of malignant brain tumors.
Collapse
Affiliation(s)
- Zongmei Ding
- a Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target; Nantong University ; Nantong , Jiangsu , PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Rossi AH, Farias A, Fernández JE, Bonomi HR, Goldbaum FA, Berguer PM. Brucella spp. Lumazine Synthase Induces a TLR4-Mediated Protective Response against B16 Melanoma in Mice. PLoS One 2015; 10:e0126827. [PMID: 25973756 PMCID: PMC4431812 DOI: 10.1371/journal.pone.0126827] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 04/07/2015] [Indexed: 02/03/2023] Open
Abstract
Brucella Lumazine Synthase (BLS) is a highly immunogenic decameric protein which can accept the fusion of foreign proteins at its ten N-termini. These chimeras are very efficient to elicit systemic and oral immunity without adjuvants. BLS signaling via Toll-Like Receptor 4 (TLR4) regulates innate and adaptive immune responses, inducing dendritic cell maturation and CD8+ T-cell cytotoxicity. In this work we study the effect induced by BLS in TLR4-expressing B16 melanoma. In order to evaluate the effectiveness of BLS as a preventive vaccine, C57BL/6J mice were immunized with BLS or BLS-OVA, and 35 days later were subcutaneously inoculated with B16-OVA melanoma. BLS or BLS-OVA induced a significant inhibition of tumor growth, and 50% of mice immunized with the highest dose of BLS did not develop visible tumors. This effect was not observed in TLR4-deficient mice. For treatment experiments, mice were injected with BLS or BLS-OVA 2 days after the inoculation of B16 cells. Both treatments induced significant and equal tumor growth delay and increased survival. Moreover, BLS and BLS-OVA stimulation were also effective in TLR4-deficient mice. In order to study whether BLS has a direct effect on tumor cells, B16 cells were preincubated with BLS, and after 48h, cells were inoculated. Tumors induced by BLS-stimulated cells had inhibited growth and survival was increased. In the BLS group, 40% of mice did not develop tumors. This effect was abolished by the addition of TLR4/MD2 blocking antibody to cells before BLS stimulation. Our work demonstrates that BLS immunization induces a preventive antitumor response that depends on mice TLR4. We also show that BLS generates a therapeutic effect in mice inoculated with B16 cells. Our results show that BLS acts directly in cultured tumor cells via TLR4, highly suggesting that BLS elicits its therapeutic effects acting on the TLR4 from B16 melanoma cells.
Collapse
Affiliation(s)
- Andrés H. Rossi
- Fundación Instituto Leloir, IIBBA, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Ana Farias
- Fundación Instituto Leloir, IIBBA, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Javier E. Fernández
- Fundación Instituto Leloir, IIBBA, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Hernán R. Bonomi
- Fundación Instituto Leloir, IIBBA, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Fernando A. Goldbaum
- Fundación Instituto Leloir, IIBBA, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Paula M. Berguer
- Fundación Instituto Leloir, IIBBA, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
60
|
Wang LM, Zhong NZ, Liu SJ, Zhu XY, Liu YJ. Hypoxia-induced acute lung injury is aggravated in Streptozotocin diabetic mice. Exp Lung Res 2014; 41:146-54. [DOI: 10.3109/01902148.2014.983280] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
61
|
Recent advances in the role of toll-like receptors and TLR agonists in immunotherapy for human glioma. Protein Cell 2014; 5:899-911. [PMID: 25411122 PMCID: PMC4259890 DOI: 10.1007/s13238-014-0112-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 09/30/2014] [Indexed: 02/06/2023] Open
Abstract
Gliomas are extremely aggressive brain tumors with a very poor prognosis. One of the more promising strategies for the treatment of human gliomas is targeted immunotherapy where antigens that are unique to the tumors are exploited to generate vaccines. The approach, however, is complicated by the fact that human gliomas escape immune surveillance by creating an immune suppressed microenvironment. In order to oppose the glioma imposed immune suppression, molecules and pathways involved in immune cell maturation, expansion, and migration are under intensive clinical investigation as adjuvant therapy. Toll-like receptors (TLRs) mediate many of these functions in immune cell types, and TLR agonists, thus, are currently primary candidate molecules to be used as important adjuvants in a variety of cancers. In animal models for glioma, TLR agonists have exhibited antitumor properties by facilitating antigen presentation and stimulating innate and adaptive immunity. In clinical trials, several TLR agonists have achieved survival benefit, and many more trials are recruiting or ongoing. However, a second complicating factor is that TLRs are also expressed on cancer cells where they can participate instead in a variety of tumor promoting activities including cell growth, proliferation, invasion, migration, and even stem cell maintenance. TLR agonists can, therefore, possibly play dual roles in tumor biology. Here, how TLRs and TLR agonists function in glioma biology and in anti-glioma therapies is summarized in an effort to provide a current picture of the sophisticated relationship of glioma with the immune system and the implications for immunotherapy.
Collapse
|
62
|
Ahmad F, Ghosh S, Sinha S, Joshi SD, Mehta VS, Sen E. TGF-β-induced hCG-β regulates redox homeostasis in glioma cells. Mol Cell Biochem 2014; 399:105-12. [PMID: 25300619 DOI: 10.1007/s11010-014-2237-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 10/01/2014] [Indexed: 12/14/2022]
Abstract
Transforming growth factor (TGF-β) is associated with the progression of glioblastoma multiforme (GBM)-the most malignant of brain tumors. Since there is a structural homology between TGF-β and human chorionic gonadotropin (hCG) and as both TGF-β and hCG-β are known regulators of oxidative stress and survival responses in a variety of tumors, the role of TGF-β in the regulation of hCG-β and its consequences on redox modulation of glioblastoma cells was investigated. A heightened hCG-β level was observed in GBM tumors. TGF-β treatment increased hCG-β expression in glioma cell lines, and this heightened hCG-β was found to regulate redox homeostasis in TGF-β-treated glioma cells, as siRNA-mediated knockdown of hCG-β (i) elevated reactive oxygen species (ROS) generation, (ii) decreased thioredoxin Trx1 expression and thioredoxin reductase (TrxR) activity, and (iii) abrogated expression of TP53-induced glycolysis and apoptosis regulator (TIGAR). Silencing of hCG-β abrogated Smad2/3 levels, suggesting the existence of TGF-β-hCG-β cross-talk in glioma cells. siRNA-mediated inhibition of elevated TIGAR levels in TGF-β-treated glioma cells was accompanied by an increase in ROS levels. As a farnesyltransferase inhibitor, Manumycin is known to induce glioma cell apoptosis in a ROS-dependent manner, and we investigated whether Manumycin could induce apoptosis in TGF-β-treated cells with elevated hCG-β exhibiting ROS-scavenging property. Manumycin-induced apoptosis in TGF-β-treated cells was accompanied by elevated ROS levels and decreased expression of hCG-β, Trx1, Smad2/3, and TIGAR. These findings indicate the existence of a previously unknown TGF-β-hCG-β link that regulates redox homeostasis in glioma cells.
Collapse
Affiliation(s)
- Fahim Ahmad
- National Brain Research Centre, Manesar, 122 051, Haryana, India
| | | | | | | | | | | |
Collapse
|
63
|
Xia MX, Ding X, Qi J, Gu J, Hu G, Sun XL. Inhaled budesonide protects against chronic asthma-induced neuroinflammation in mouse brain. J Neuroimmunol 2014; 273:53-7. [PMID: 24993070 DOI: 10.1016/j.jneuroim.2014.06.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 06/05/2014] [Accepted: 06/10/2014] [Indexed: 12/21/2022]
Abstract
Chronic asthma is one of the most common respiratory diseases, characterized by airway inflammation. However, little is known whether asthma-induced airway inflammation might influence the brain. We found that chronic asthma not only resulted in peripheral inflammation, but also induced neuroinflammation which was characterized by microglial activations and increased levels of TNFα and IL-1β in the hippocampus and prefrontal cortex. Simultaneously, we found that there was significant neuronal loss in the asthmatic mouse brain. Inhaled budesonide, the classic therapeutic drug for chronic asthma, could inhibit asthma-induced microglial activation, down-regulate TNFα and IL-1β but up-regulate TGFβ and IL-10 of mouse brain, and thereby attenuate neuronal loss. Further study showed that chronic asthma increased the expressions of TLR4 and p65/NFκB in the brain, which could be reversed by budesonide treatment. Therefore, the present study reveals that inhaled budesonide protects against asthma-induced neuroinflammation in mouse brain, which might be contributed to attenuate neuronal loss.
Collapse
Affiliation(s)
- Ming-Xu Xia
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029, China
| | - Xu Ding
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029, China
| | - Jun Qi
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029, China
| | - Jun Gu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029, China
| | - Gang Hu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029, China
| | - Xiu-Lan Sun
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029, China.
| |
Collapse
|
64
|
Chaetocin-induced ROS-mediated apoptosis involves ATM-YAP1 axis and JNK-dependent inhibition of glucose metabolism. Cell Death Dis 2014; 5:e1212. [PMID: 24810048 PMCID: PMC4047915 DOI: 10.1038/cddis.2014.179] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 03/24/2014] [Accepted: 03/26/2014] [Indexed: 12/23/2022]
Abstract
Oxidative stress serves as an important regulator of both apoptosis and metabolic reprogramming in tumor cells. Chaetocin, a histone methyltransferase inhibitor, is known to induce ROS generation. As elevating basal ROS level sensitizes glioma cells to apoptosis, the ability of Chaetocin in regulating apoptotic and metabolic adaptive responses in glioma was investigated. Chaetocin induced glioma cell apoptosis in a ROS-dependent manner. Increased intracellular ROS induced (i) Yes-associated protein 1 (YAP1) expression independent of the canonical Hippo pathway as well as (ii) ATM and JNK activation. Increased interaction of YAP1 with p73 and p300 induced apoptosis in an ATM-dependent manner. Chaetocin induced JNK modulated several metabolic parameters like glucose uptake, lactate production, ATP generation, and activity of glycolytic enzymes hexokinase and pyruvate kinase. However, JNK had no effect on ATM or YAP1 expression. Coherent with the in vitro findings, Chaetocin reduced tumor burden in heterotypic xenograft glioma mouse model. Chaetocin-treated tumors exhibited heightened ROS, pATM, YAP1 and pJNK levels. Our study highlights the coordinated control of glioma cell proliferation and metabolism by ROS through (i) ATM-YAP1-driven apoptotic pathway and (ii) JNK-regulated metabolic adaptation. The elucidation of these newfound connections and the roles played by ROS to simultaneously shift metabolic program and induce apoptosis could provide insights toward the development of new anti-glioma strategies.
Collapse
|
65
|
Ramakrishnan S, Anand V, Roy S. Vascular endothelial growth factor signaling in hypoxia and inflammation. J Neuroimmune Pharmacol 2014; 9:142-60. [PMID: 24610033 PMCID: PMC4048289 DOI: 10.1007/s11481-014-9531-7] [Citation(s) in RCA: 274] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 02/11/2014] [Indexed: 12/22/2022]
Abstract
Infection, cancer and cardiovascular diseases are the major causes for morbidity and mortality in the United States according to the Center for Disease Control. The underlying etiology that contributes to the severity of these diseases is either hypoxia induced inflammation or inflammation resulting in hypoxia. Therefore, molecular mechanisms that regulate hypoxia-induced adaptive responses in cells are important areas of investigation. Oxygen availability is sensed by molecular switches which regulate synthesis and secretion of growth factors and inflammatory mediators. As a consequence, tissue microenvironment is altered by re-programming metabolic pathways, angiogenesis, vascular permeability, pH homeostasis to facilitate tissue remodeling. Hypoxia inducible factor (HIF) is the central mediator of hypoxic response. HIF regulates several hundred genes and vascular endothelial growth factor (VEGF) is one of the primary target genes. Understanding the regulation of HIF and its influence on inflammatory response offers unique opportunities for drug development to modulate inflammation and ischemia in pathological conditions.
Collapse
Affiliation(s)
- S Ramakrishnan
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA,
| | | | | |
Collapse
|
66
|
Magaña-Maldonado R, Manoutcharian K, Hernández-Pedro NY, Rangel-López E, Pérez-De la Cruz V, Rodríguez-Balderas C, Sotelo J, Pineda B. Concomitant treatment with pertussis toxin plus temozolomide increases the survival of rats bearing intracerebral RG2 glioma. J Cancer Res Clin Oncol 2014; 140:291-301. [PMID: 24337403 DOI: 10.1007/s00432-013-1565-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 12/04/2013] [Indexed: 01/22/2023]
Abstract
PURPOSE Glioblastoma multiforme is the most frequent primary brain tumor, it has poor prognosis, and it remains refractory to current treatment. The success of temozolomide (TMZ) appears to be limited by the occurrence of chemoresistance. Recently, we report the use of pertussis toxin as adjuvant immunotherapy in a C6 glioma model; showing a decrease in tumoral size, it induced selective cell death in Treg cells, and it elicited less infiltration of tumoral macrophages. Here, we evaluated the cytotoxic effect of pertussis toxin in combination with TMZ for glioma treatment, both in vitro and in vivo RG2 glioma model. METHODS We determined cell viability, cell cycle, apoptosis, and autophagy on treated RG2 cells through flow cytometry, immunofluorescence, and Western blot assays. Twenty-eight rats were divided in four groups (n = 7) for each treatment. After intracranial implantation of RG2 cells, animals were treated with TMZ (10 mg/Kg/200 μl of apple juice), PTx (2 μg/200 μl of saline solution), and TMZ + PTx. Animals without treatment were considered as control. RESULTS We found an induction of apoptosis in around 20 % of RG2 cells, in both single treatments and in their combination. Also, we determined the presence of autophagy vesicles, without any modifications in the cell cycle in the TMZ - PTx-treated groups. The survival analyses showed an increase due to individual treatments; while in the group treated with the combination TMZ - PTx, this effect was enhanced. CONCLUSION We show that the concomitant use of pertussis toxin plus TMZ could represent an advantage to improve the glioma treatment.
Collapse
Affiliation(s)
- Roxana Magaña-Maldonado
- Neuroimmunology and Neuro-Oncology Unit, Instituto Nacional de Neurología y Neurocirugía (INNN), Insurgentes Sur 3877, 14269, Mexico City, Mexico
| | | | | | | | | | | | | | | |
Collapse
|
67
|
Vetreno RP, Qin L, Crews FT. Increased receptor for advanced glycation end product expression in the human alcoholic prefrontal cortex is linked to adolescent drinking. Neurobiol Dis 2013; 59:52-62. [PMID: 23867237 PMCID: PMC3775891 DOI: 10.1016/j.nbd.2013.07.002] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 06/21/2013] [Accepted: 07/08/2013] [Indexed: 02/06/2023] Open
Abstract
Adolescence is characterized behaviorally by increased impulsivity and risk-taking that declines in parallel with maturation of the prefrontal cortex and executive function. In the brain, the receptor for advanced glycation end products (RAGE) is critically involved in neurodevelopment and neuropathology. In humans, the risk of alcoholism is greatly increased in those who begin drinking between 13 and 15years of age, and adolescents binge drink more than any other age group. We have previously found that alcoholism is associated with increased expression of neuroimmune genes. This manuscript tested the hypothesis that adolescent binge drinking upregulates RAGE and Toll-like receptor (TLR) 4 as well as their endogenous agonist, high-mobility group box 1 (HMGB1). Immunohistochemistry, Western blot, and mRNA analyses found that RAGE expression was increased in the human post-mortem alcoholic orbitofrontal cortex (OFC). Further, an earlier age of drinking onset correlated with increased expression of RAGE, TLR4, and HMGB1. To determine if alcohol contributed to these changes, we used an adolescent binge ethanol model in rats (5.0g/kg, i.g., 2-day on/2-day off from postnatal day [P] 25 to P55) and assessed neuroimmune gene expression. We found an age-associated decline of RAGE expression from late adolescence (P56) to young adulthood (P80). Adolescent intermittent ethanol exposure did not alter RAGE expression at P56, but increased RAGE in the young adult PFC (P80). Adolescent intermittent ethanol exposure also increased TLR4 and HMGB1 expression at P56 that persisted into young adulthood (P80). Assessment of young adult frontal cortex mRNA (RT-PCR) found increased expression of proinflammatory cytokines, oxidases, and neuroimmune agonists at P80, 25days after ethanol treatment. Together, these human and animal data support the hypothesis that an early age of drinking onset upregulates RAGE/TLR4-HMGB1 and other neuroimmune genes that persist into young adulthood and could contribute to risk of alcoholism or other brain diseases associated with neuroinflammation.
Collapse
Affiliation(s)
- Ryan P Vetreno
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | | | | |
Collapse
|
68
|
Harberts E, Fishelevich R, Liu J, Atamas SP, Gaspari AA. MyD88 mediates the decision to die by apoptosis or necroptosis after UV irradiation. Innate Immun 2013; 20:529-39. [PMID: 24048771 DOI: 10.1177/1753425913501706] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 07/24/2013] [Indexed: 12/17/2022] Open
Abstract
UV irradiation-induced cellular damage is classically associated with apoptosis and is known to result in systemic immunosuppression. How the decision to undergo apoptosis is made following UV is not fully understood. We hypothesize that a central mediator of TLR signaling, MyD88, determines cell fate after UV exposure. Survival after UV of immortalized bone marrow-derived macrophages (BMDM) and ex vivo peritoneal macrophages (PM) from MyD88 germline-deficient mice (MyD88(-/-)) was significantly higher than wild type (WT) PM. UV-induced apoptosis (DNA laddering) in PM and epidermis of MyD88(-/-) animals versus WT was decreased. In MyD88(-/-) PM, decreased cleavage of caspase 3, as well as pro-necroptotic protein, RIP1, and a significant increase in transcription and release of pro-inflammatory TNF-α, suggest that necroptosis, rather than apoptosis, has been initiated. In vivo studies confirm this hypothesis after UV, showing low apoptosis by TUNEL and inflammation in MyD88(-/-) skin sections. Considering that MyD88 participates in many TLR pathways, BMDM from TLR2(-/-), TLR4(-/-) and WT mice were compared for evidence of UV-induced apoptosis. Only TLR4(-/-) BMDM and PM had a similar phenotype to MyD88(-/-), suggesting that the TLR4-MyD88 axis importantly contributes to cell fate decision. Our study describes a new cellular consequence of MyD88 signaling after UV, and may provide rationale for therapies to mitigate UV-induced immunosuppression.
Collapse
Affiliation(s)
- Erin Harberts
- Department of Molecular Microbiology and Immunology, University of Maryland, Baltimore, MD, USA
| | - Rita Fishelevich
- Department of Dermatology, University of Maryland, Baltimore, MD, USA
| | - Juan Liu
- Department of Dermatology, University of Maryland, Baltimore, MD, USA
| | - Sergei P Atamas
- Department of Medicine, University of Maryland, Baltimore, MD, USA VA Medical Center, Baltimore, MD, USA
| | - Anthony A Gaspari
- Department of Molecular Microbiology and Immunology, University of Maryland, Baltimore, MD, USA Department of Dermatology, University of Maryland, Baltimore, MD, USA
| |
Collapse
|
69
|
Tumor necrosis factor α-induced hypoxia-inducible factor 1α-β-catenin axis regulates major histocompatibility complex class I gene activation through chromatin remodeling. Mol Cell Biol 2013; 33:2718-31. [PMID: 23671189 DOI: 10.1128/mcb.01254-12] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Hypoxia-inducible factor 1α (HIF-1α) plays a crucial role in the progression of glioblastoma multiforme tumors, which are characterized by their effective immune escape mechanisms. As major histocompatibility complex class I (MHC-I) is involved in glioma immune evasion and since HIF-1α is a pivotal link between inflammation and glioma progression, the role of tumor necrosis factor alpha (TNF-α)-induced inflammation in MHC-I gene regulation was investigated. A TNF-α-induced increase in MHC-I expression and transcriptional activation was concurrent with increased HIF-1α, ΝF-κΒ, and β-catenin activities. While knockdown of HIF-1α and β-catenin abrogated TNF-α-induced MHC-I activation, NF-κB had no effect. β-Catenin inhibition abrogated HIF-1α activation and vice versa, and this HIF-1α-β-catenin axis positively regulated CREB phosphorylation. Increased CREB activation was accompanied by its increased association with β-catenin and CBP. Chromatin immunoprecipitation revealed increased CREB enrichment at CRE/site α on the MHC-I promoter in a β-catenin-dependent manner. β-Catenin replaced human Brahma (hBrm) with Brg1 as the binding partner for CREB at the CRE site. The hBrm-to-Brg1 switch is crucial for MHC-I regulation, as ATPase-deficient Brg1 abolished TNF-α-induced MHC-I expression. β-Catenin also increased the association of MHC-I enhanceosome components RFX5 and NF-YB at the SXY module. CREB acts as a platform for assembling coactivators and chromatin remodelers required for MHC-I activation in a HIF-1α/β-catenin-dependent manner.
Collapse
|
70
|
Sinha S, Ghildiyal R, Mehta VS, Sen E. ATM-NFκB axis-driven TIGAR regulates sensitivity of glioma cells to radiomimetics in the presence of TNFα. Cell Death Dis 2013; 4:e615. [PMID: 23640457 PMCID: PMC3674344 DOI: 10.1038/cddis.2013.128] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Gliomas are resistant to radiation therapy, as well as to TNFα induced killing. Radiation-induced TNFα triggers Nuclear factor κB (NFκB)-mediated radioresistance. As inhibition of NFκB activation sensitizes glioma cells to TNFα-induced apoptosis, we investigated whether TNFα modulates the responsiveness of glioma cells to ionizing radiation-mimetic Neocarzinostatin (NCS). TNFα enhanced the ability of NCS to induce glioma cell apoptosis. NCS-mediated death involved caspase-9 activation, reduction of mitochondrial copy number and lactate production. Death was concurrent with NFκB, Akt and Erk activation. Abrogation of Akt and NFκB activation further potentiated the death inducing ability of NCS in TNFα cotreated cells. NCS-induced p53 expression was accompanied by increase in TP53-induced glycolysis and apoptosis regulator (TIGAR) levels and ATM phosphorylation. siRNA-mediated knockdown of TIGAR abrogated NCS-induced apoptosis. While DN-IκB abrogated NCS-induced TIGAR both in the presence and absence of TNFα, TIGAR had no effect on NFκB activation. Transfection with TIGAR mutant (i) decreased apoptosis and γH2AX foci formation (ii) decreased p53 (iii) elevated ROS and (iv) increased Akt/Erk activation in cells cotreated with NCS and TNFα. Heightened TIGAR expression was observed in GBM tumors. While NCS induced ATM phosphorylation in a NFκB independent manner, ATM inhibition abrogated TIGAR and NFκB activation. Metabolic gene profiling indicated that TNFα affects NCS-mediated regulation of several genes associated with glycolysis. The existence of ATM-NFκB axis that regulate metabolic modeler TIGAR to overcome prosurvival response in NCS and TNFα cotreated cells, suggests mechanisms through which inflammation could affect resistance and adaptation to radiomimetics despite concurrent induction of death.
Collapse
Affiliation(s)
- S Sinha
- Cellular and Molecular Neuroscience Division, National Brain Research Centre, Manesar, Haryana, India
| | | | | | | |
Collapse
|
71
|
Ridnour LA, Cheng RYS, Switzer CH, Heinecke JL, Ambs S, Glynn S, Young HA, Trinchieri G, Wink DA. Molecular pathways: toll-like receptors in the tumor microenvironment--poor prognosis or new therapeutic opportunity. Clin Cancer Res 2012; 19:1340-6. [PMID: 23271799 DOI: 10.1158/1078-0432.ccr-12-0408] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Numerous reports have described Toll-like receptor (TLR) expression in the tumor microenvironment as it relates to cancer progression, as well as their involvement in inflammation. While TLRs mediate immune surveillance, clinical studies have associated TLR expression in the tumor with poor patient survival, indicating that TLR expression may affect cancer treatment and survival. This review will examine mechanisms in which TLR activation upregulates protumorigenic pathways, including the induction of inducible nitric oxide synthase (iNOS2) and COX2, which in turn increase TLR expression and promote a feed-forward loop leading to tumor progression and the development of more aggressive tumor phenotypes. These propagating loops involve cancer cell, stroma, and/or immune cell TLR expression. Because of abundant TLR expression in many human tumors, several TLR agonists are now in clinical and preclinical trials and some have shown enhanced efficacy when used as adjuvant with radiation, chemotherapy, or cancer vaccines. These findings suggest that TLR expression influences cancer biology and therapeutic response, which may involve specific interactions within the tumor microenvironment, including mediators of inflammation such as nitric oxide and the arachidonic acid signaling pathways.
Collapse
Affiliation(s)
- Lisa A Ridnour
- Radiation Biology Branch, National Cancer Institute, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Dikshit B, Irshad K, Madan E, Aggarwal N, Sarkar C, Chandra PS, Gupta DK, Chattopadhyay P, Sinha S, Chosdol K. FAT1 acts as an upstream regulator of oncogenic and inflammatory pathways, via PDCD4, in glioma cells. Oncogene 2012; 32:3798-808. [DOI: 10.1038/onc.2012.393] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
73
|
Ghildiyal R, Dixit D, Sen E. EGFR inhibitor BIBU induces apoptosis and defective autophagy in glioma cells. Mol Carcinog 2012; 52:970-82. [PMID: 22753156 DOI: 10.1002/mc.21938] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 06/04/2012] [Accepted: 06/04/2012] [Indexed: 01/17/2023]
Abstract
The importance of aberrant EGFR signaling in glioblastoma progression and the promise of EGFR-specific therapies, prompted us to determine the efficacy of novel EGFR inhibitor BIBU-1361 [(3-chloro-4-fluoro-phenyl)-[6-(4-diethylaminomethyl-piperidin-1-yl)-pyrimido [5,4-d]pyrimidin-4-yl]-amine] in affecting glioma survival. BIBU induced apoptosis in a caspase-dependent manner and induced cell cycle arrest in glioma cells. Apoptosis was accompanied by decreased EGFR levels and its increased distribution towards caveolin rich lipid raft microdomains. BIBU inhibited pro-survival pathways Akt/mTOR and gp130/JAK/STAT3; and decreased levels of pro-inflammatory cytokine IL-6. BIBU caused increased LC3-I to LC3-II conversion and triggered the internalization of EGFR within vacuoles along with its increased co-localization with LC3-II. BIBU caused accumulation of p62 and increased levels of cleaved forms of Beclin-1 in all the cell lines tested. Importantly, BIBU failed to initiate execution of autophagy as pharmacological inhibition of autophagy with 3-Methyladenine or Bafilomycin failed to rescue BIBU mediated death. The ability of BIBU to abrogate Akt and STAT3 activation, induce apoptosis and prevent execution of autophagy warrants its investigation as a potent anti-glioma target.
Collapse
Affiliation(s)
- Ruchi Ghildiyal
- National Brain Research Centre, Manesar, Gurgaon, Haryana, India
| | | | | |
Collapse
|
74
|
TNFα regulates the localization of CD40 in lipid rafts of glioma cells. Mol Biol Rep 2012; 39:8695-9. [PMID: 22699883 DOI: 10.1007/s11033-012-1726-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 06/06/2012] [Indexed: 10/28/2022]
Abstract
Resistance of glioblastoma multiforme (GBM) to TNFα induced apoptosis is attributed to NFκB activation. As TNF-receptor family member CD40 regulates NFκB activation, we investigated the role of CD40 in NFκB activation in GBM. We observed elevated CD40 levels in human glioma samples as compared to the surrounding normal tissue. Treatment with TNFα elevated CD40 levels in glioma cells and inhibition of CD40 signaling failed to abrogate TNFα induced NFκΒ activity. While TNFα increased the interaction between TRAF2/6, IκBα, IKKα/β in the CD40 signalosome, the level of CD40 in the signalosome remained unaffected upon TNFα treatment. Interestingly, TNFα decreased the spatial localization of CD40 and increased TRAF2/6 co-localization with lipid raft marker Caveolin. As localization of CD40 signalosome in lipid raft is crucial for NFκB activation, TNFα mediated decreased clustering of CD40 in lipid rafts could have possibly contributed to its non-involvement in NFκB activation.
Collapse
|
75
|
Inhibition of Casein kinase-2 induces p53-dependent cell cycle arrest and sensitizes glioblastoma cells to tumor necrosis factor (TNFα)-induced apoptosis through SIRT1 inhibition. Cell Death Dis 2012; 3:e271. [PMID: 22318540 PMCID: PMC3288342 DOI: 10.1038/cddis.2012.10] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Glioblastoma multiforme (GBM) are resistant to TNFα-induced apoptosis and blockade of TNFα-induced NF-κB activation sensitizes glioma cells to apoptosis. As Casein kinase-2 (CK2) induces aberrant NF-κB activation and as we observed elevated CK2 levels in GBM tumors, we investigated the potential of CK2 inhibitors (CK2-Is) - DRB and Apigenin in sensitizing glioma cells to TNFα-induced apoptosis. CK2-Is and CK2 small interfering RNA (siRNA) reduced glioma cell viability, inhibited TNFα-mediated NF-κB activation, and sensitized cell to TNFα-induced apoptosis. Importantly, CK2-Is activated p53 function in wild-type but not in p53 mutant cells. Activation of p53 function involved its increased transcriptional activation, DNA-binding ability, increased expression of p53 target genes associated with cell cycle progression and apoptosis. Moreover, CK2-Is decreased telomerase activity and increased senescence in a p53-dependent manner. Apoptotic gene profiling indicated that CK2-Is differentially affect p53 and TNFα targets in p53 wild-type and mutant glioma cells. CK2-I decreased MDM2-p53 association and p53 ubiquitination to enhance p53 levels. Interestingly, CK2-Is downregulated SIRT1 activity and over-expression of SIRT1 decreased p53 transcriptional activity and rescued cells from CK2-I-induced apoptosis. This ability of CK2-Is to sensitize glioma to TNFα-induced death via multiple mechanisms involving abrogation of NF-κB activation, reactivation of wild-type p53 function and SIRT1 inhibition warrants investigation.
Collapse
|