51
|
Sornay-Rendu E, Boutroy S, Duboeuf F, Chapurlat RD. Bone Microarchitecture Assessed by HR-pQCT as Predictor of Fracture Risk in Postmenopausal Women: The OFELY Study. J Bone Miner Res 2017; 32:1243-1251. [PMID: 28276092 DOI: 10.1002/jbmr.3105] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 01/19/2017] [Accepted: 02/04/2017] [Indexed: 11/11/2022]
Abstract
Several cross-sectional studies have shown that impairment of bone microarchitecture contributes to skeletal fragility. The aim of this study was to prospectively investigate the prediction of fracture (Fx) by bone microarchitecture assessed by high-resolution peripheral computed tomography (HR- pQCT) in postmenopausal women. We measured microarchitecture at the distal radius and tibia with HR-pQCT in the OFELY study, in addition to areal BMD with dual-energy X-ray absorptiometry (DXA) in 589 women, mean ± SD age 68 ± 9 years. During a median [IQ] 9.4 [1.0] years of follow-up, 135 women sustained an incident fragility Fx, including 81 women with a major osteoporotic Fx (MOP Fx). After adjustment for age, women who sustained Fx had significantly lower total and trabecular volumetric densities (vBMD) at both sites, cortical parameters (area and thickness at the radius, vBMD at the tibia), trabecular number (Tb.N), connectivity density (Conn.D), stiffness, and estimated failure load at both sites, compared with control women. After adjustment for age, current smoking, falls, prior Fx, use of osteoporosis-related drugs, and total hip BMD, each quartile decrease of several baseline values of bone microarchitecture at the radius was associated with significant change of the risk of Fx (HR of 1.39 for Tb.BMD [p = 0.001], 1.32 for Tb.N [p = 0.01], 0.76 for Tb.Sp.SD [p = 0.01], 1.49 [p = 0.01] for Conn.D, and 1.27 for stiffness [p = 0.02]). At the tibia, the association remained significant for stiffness and failure load in the multivariate model for all fragility Fx and for Tt.BMD, stiffness, and failure load for MOP Fx. We conclude that impairment of bone microarchitecture-essentially in the trabecular compartment of the radius-predict the occurrence of incident fracture in postmenopausal women. This assessment may play an important role in identifying women at high risk of fracture who could not be adequately detected by BMD measurement alone, to benefit from a therapeutic intervention. © 2017 American Society for Bone and Mineral Research.
Collapse
|
52
|
Distal skeletal tibia assessed by HR-pQCT is highly correlated with femoral and lumbar vertebra failure loads. J Biomech 2017; 59:43-49. [PMID: 28558915 DOI: 10.1016/j.jbiomech.2017.05.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 05/11/2017] [Accepted: 05/13/2017] [Indexed: 02/04/2023]
Abstract
Dual energy X-ray absorptiometry (DXA) is the standard for assessing fragility fracture risk using areal bone mineral density (aBMD), but only explains 60-70% of the variation in bone strength. High-resolution peripheral quantitative computed tomography (HR-pQCT) provides 3D-measures of bone microarchitecture and volumetric bone mineral density (vBMD), but only at the wrist and ankle. Finite element (FE) models can estimate bone strength with 86-95% precision. The purpose of this study is to determine how well vBMD and FE bone strength at the wrist and ankle relate to fracture strength at the hip and spine, and to compare these relationships with DXA measured directly at those axial sites. Cadaveric samples (radius, tibia, femur and L4 vertebra) were compared within the same body. The radius and tibia specimens were assessed using HR-pQCT to determine vBMD and FE failure load. aBMD from DXA was measured at the femur and L4 vertebra. The femur and L4 vertebra specimens were biomechanically tested to determine failure load. aBMD measures of the axial skeletal sites strongly correlated with the biomechanical strength for the L4 vertebra (r=0.77) and proximal femur (r=0.89). The radius correlated significantly with biomechanical strength of the L4 vertebra for vBMD (r=0.85) and FE-derived strength (r=0.72), but not with femur strength. vBMD at the tibia correlated significantly with femoral biomechanical strength (r=0.74) and FE-estimated strength (r=0.83), and vertebral biomechanical strength for vBMD (r=0.97) and FE-estimated strength (r=0.91). The higher correlations at the tibia compared to radius are likely due to the tibia's weight-bearing function.
Collapse
|
53
|
Hosseini HS, Maquer G, Zysset PK. μCT-based trabecular anisotropy can be reproducibly computed from HR-pQCT scans using the triangulated bone surface. Bone 2017; 97:114-120. [PMID: 28109918 DOI: 10.1016/j.bone.2017.01.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 01/17/2017] [Accepted: 01/17/2017] [Indexed: 10/20/2022]
Abstract
The trabecular structure can be assessed at the wrist or tibia via high-resolution peripheral quantitative computed tomography (HR-pQCT). Yet on this modality, the performance of the existing methods, evaluating trabecular anisotropy is usually overlooked, especially in terms of reproducibility. We thus proposed to compare the TRI routine used by SCANCO Medical AG (Brüttisellen, Switzerland), the classical mean intercept length (MIL), and the grey-level structure tensor (GST) to the mean surface length (MSL), a new method for evaluating a second-order fabric tensor based on the triangulation of the bone surface. The distal radius of 24 fresh-frozen human forearms was scanned three times via HR-pQCT protocols (61μm, 82μm nominal voxel size), dissected, and imaged via micro computed tomography (μCT) at 16μm nominal voxel size. After registering the scans, we compared for each resolution the fabric tensors, determined by the mentioned techniques for 182 trabecular regions of interest. We then evaluated the reproducibility of the fabric information measured by HR-pQCT via precision errors. On μCT, TRI and GST were respectively the best and worst surrogates for MILμCT (MIL computed on μCT) in terms of eigenvalues and main direction of anisotropy. On HR-pQCT, however, MSL provided the best approximation of MILμCT. Surprisingly, surface-based approaches (TRI, MSL) also proved to be more precise than both MIL and GST. Our findings confirm that MSL can reproducibly estimate MILμCT, the current gold standard. MSL thus enables the direct mapping of the fabric-dependent material properties required in homogenised HR-pQCT-based finite element models.
Collapse
Affiliation(s)
- Hadi S Hosseini
- Institute for Surgical Technology and Biomechanics, University of Bern, Stauffacherstr. 78, CH-3014 Bern, Switzerland.
| | - Ghislain Maquer
- Institute for Surgical Technology and Biomechanics, University of Bern, Stauffacherstr. 78, CH-3014 Bern, Switzerland.
| | - Philippe K Zysset
- Institute for Surgical Technology and Biomechanics, University of Bern, Stauffacherstr. 78, CH-3014 Bern, Switzerland
| |
Collapse
|
54
|
Silva BC, Leslie WD. Trabecular Bone Score: A New DXA-Derived Measurement for Fracture Risk Assessment. Endocrinol Metab Clin North Am 2017; 46:153-180. [PMID: 28131130 DOI: 10.1016/j.ecl.2016.09.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Trabecular bone score (TBS) is a novel method that assesses skeletal texture from spine dual-energy X-ray absorptiometry (DXA) images. TBS improves fracture-risk prediction beyond that provided by DXA bone mineral density (BMD) and clinical risk factors, and can be incorporated to the Word Health Organization Fracture Risk Assessment tool (FRAX®) to enhance fracture prediction. There is insufficient evidence that TBS can be used to monitor treatment with bisphosphonates. TBS may be particularly helpful to assess fracture risk in diabetes. This article reviews technical and clinical aspects of TBS and its potential utility as a clinical tool to predict fracture risk.
Collapse
Affiliation(s)
- Barbara C Silva
- Department of Medicine, UNI-BH, Santa Casa Hospital, Uberaba, 370/705, Belo Horizonte, MG 30180-010, Brazil.
| | - William D Leslie
- Department of Medicine, University of Manitoba, (C5121) 409 Tache Avenue, Winnipeg, MB R2H 2A6, Canada
| |
Collapse
|
55
|
Wong AKO. A Comparison of Peripheral Imaging Technologies for Bone and Muscle Quantification: a Mixed Methods Clinical Review. Curr Osteoporos Rep 2016; 14:359-373. [PMID: 27796924 DOI: 10.1007/s11914-016-0334-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE OF REVIEW Bone and muscle peripheral imaging technologies are reviewed for their association with fractures and frailty. A narrative systematized review was conducted for bone and muscle parameters from each imaging technique. In addition, meta-analyses were performed across all bone quality parameters. RECENT FINDINGS The current body of evidence for bone quality's association with fractures is strong for (high-resolution) peripheral quantitative computed tomography (pQCT), with trabecular separation (Tb.Sp) and integral volumetric bone mineral density (vBMD) reporting consistently large associations with various fracture types across studies. Muscle has recently been linked to fractures and frailty, but the quality of evidence remains weaker from studies of small sample sizes. It is increasingly apparent that musculoskeletal tissues have a complex relationship with interrelated clinical endpoints such as fractures and frailty. Future studies must concurrently address these relationships in order to decipher the relative importance of one causal pathway from another.
Collapse
Affiliation(s)
- Andy Kin On Wong
- Joint Department of Medical Imaging, Toronto General Research Institute, University Health Network, Toronto General Hospital, 200 Elizabeth St. 7EN-238, Toronto, ON, M5G 2C4, Canada.
- McMaster University, Department of Medicine, Faculty of Health Sciences, Hamilton, ON, Canada.
| |
Collapse
|
56
|
Burt LA, Liang Z, Sajobi TT, Hanley DA, Boyd SK. Sex- and Site-Specific Normative Data Curves for HR-pQCT. J Bone Miner Res 2016; 31:2041-2047. [PMID: 27192388 DOI: 10.1002/jbmr.2873] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 05/05/2016] [Accepted: 05/15/2016] [Indexed: 12/14/2022]
Abstract
The purpose of this study was to develop age-, site-, and sex-specific centile curves for common high-resolution peripheral quantitative computed tomography (HR-pQCT) and finite-element (FE) parameters for males and females older than 16 years. Participants (n = 866) from the Calgary cohort of the Canadian Multicentre Osteoporosis Study (CaMos) between the ages of 16 and 98 years were included in this study. Participants' nondominant radius and left tibia were scanned using HR-pQCT. Standard and automated segmentation methods were performed and FE analysis estimated apparent bone strength. Centile curves were generated for males and females at the tibia and radius using the generalized additive models for location, scale, and shape (GAMLSS) package in R. After GAMLSS analysis, age-, sex-, and site-specific centiles (10th, 25th, 50th, 75th, 90th) for total bone mineral density and trabecular number as well as failure load have been calculated. Clinicians and researchers can use these reference curves as a tool to assess bone health and changes in bone quality. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Lauren A Burt
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Canada.,McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Canada
| | - Zhiying Liang
- Department of Community Health Sciences, University of Calgary, Calgary, Canada.,O'Brien Institute for Public Health, University of Calgary, Calgary, Canada
| | - Tolulope T Sajobi
- Department of Community Health Sciences, University of Calgary, Calgary, Canada.,O'Brien Institute for Public Health, University of Calgary, Calgary, Canada
| | - David A Hanley
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Canada.,Department of Community Health Sciences, University of Calgary, Calgary, Canada.,Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Steven K Boyd
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Canada.,McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Canada
| |
Collapse
|
57
|
Cooper DML, Kawalilak CE, Harrison K, Johnston BD, Johnston JD. Cortical Bone Porosity: What Is It, Why Is It Important, and How Can We Detect It? Curr Osteoporos Rep 2016; 14:187-98. [PMID: 27623679 DOI: 10.1007/s11914-016-0319-y] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
There is growing recognition of the role of micro-architecture in osteoporotic bone loss and fragility. This trend has been driven by advances in imaging technology, which have enabled a transition from measures of mass to micro-architecture. Imaging trabecular bone has been a key research focus, but advances in resolution have also enabled the detection of cortical bone micro-architecture, particularly the network of vascular canals, commonly referred to as 'cortical porosity.' This review aims to provide an overview of what this level of porosity is, why it is important, and how it can be characterized by imaging. Moving beyond a 'trabeculocentric' view of bone loss holds the potential to improve diagnosis and monitoring of interventions. Furthermore, cortical porosity is intimately linked to the remodeling process, which underpins bone loss, and thus a larger potential exists to improve our fundamental understanding of bone health through imaging of both humans and animal models.
Collapse
Affiliation(s)
- D M L Cooper
- Department of Anatomy and Cell Biology, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK, Canada.
| | - C E Kawalilak
- Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK, Canada
| | - K Harrison
- Department of Anatomy and Cell Biology, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK, Canada
| | - B D Johnston
- Department of Anatomy and Cell Biology, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK, Canada
| | - J D Johnston
- Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK, Canada
| |
Collapse
|
58
|
Kawalilak CE, Kontulainen SA, Amini MA, Lanovaz JL, Olszynski WP, Johnston JD. In vivo precision of three HR-pQCT-derived finite element models of the distal radius and tibia in postmenopausal women. BMC Musculoskelet Disord 2016; 17:389. [PMID: 27619649 PMCID: PMC5020521 DOI: 10.1186/s12891-016-1238-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 08/31/2016] [Indexed: 01/09/2023] Open
Abstract
Background The distal radius is the most common osteoporotic fracture site occurring in postmenopausal women. Finite element (FE) modeling is a non-invasive mathematical technique that can estimate bone strength using inputted geometry/micro-architecture and tissue material properties from computed tomographic images. Our first objective was to define and compare in vivo precision errors for three high-resolution peripheral quantitative computed tomography (HR-pQCT, XtremeCT; Scanco) based FE models of the distal radius and tibia in postmenopausal women. Our second objective was to assess the role of scan interval, scan quality, and common region on precision errors of outcomes for each FE model. Methods Models included: single-tissue model (STM), cortical-trabecular dual-tissue model (DTM), and one scaled model using imaged bone mineral density (E-BMD). Using HR-pQCT, we scanned the distal radius and tibia of 34 postmenopausal women (74 ± 7 years), at two time points. Primary outcomes included: tissue stiffness, apparent modulus, average von Mises stress, and failure load. Precision errors (root-mean-squared coefficient of variation, CV%RMS) were calculated. Multivariate ANOVA was used to compare the mean of individual CV% among the 3 HR-pQCT-based FE models. Spearman correlations were used to characterize the associations between precision errors of all FE model outcomes and scan/time interval, scan quality, and common region. Significance was accepted at P < 0.05. Results At the distal radius, CV%RMS precision errors were <9 % (Range STM: 2.8–5.3 %; DTM: 2.9–5.4 %; E-BMD: 4.4–8.7 %). At the distal tibia, CV%RMS precision errors were <6 % (Range STM: 2.7–4.8 %; DTM: 2.9–3.8 %; E-BMD: 1.8–2.5 %). At the radius, Spearman correlations indicated associations between the common region and associated precision errors of the E-BMD-derived apparent modulus (ρ = −0.392; P < 0.001) and von Mises stress (ρ = −0.297; P = 0.007). Conclusion Results suggest that the STM and DTM are more precise for modeling apparent modulus, average von Mises stress, and failure load at the distal radius. Precision errors were comparable for all three models at the distal tibia. Results indicate that the noted differences in precision error at the distal radius were associated with the common scan region, illustrating the importance of participant repositioning within the cast and reference line placement in the scout view during the scanning process.
Collapse
Affiliation(s)
- C E Kawalilak
- Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK, S7N 5A9, Canada.
| | - S A Kontulainen
- College of Kinesiology, University of Saskatchewan, Saskatoon, Canada
| | - M A Amini
- Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK, S7N 5A9, Canada
| | - J L Lanovaz
- College of Kinesiology, University of Saskatchewan, Saskatoon, Canada
| | - W P Olszynski
- College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | - J D Johnston
- Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK, S7N 5A9, Canada
| |
Collapse
|
59
|
Lespessailles E, Hambli R, Ferrari S. Osteoporosis drug effects on cortical and trabecular bone microstructure: a review of HR-pQCT analyses. BONEKEY REPORTS 2016; 5:836. [PMID: 27617082 DOI: 10.1038/bonekey.2016.59] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 06/27/2016] [Indexed: 12/14/2022]
Abstract
With the development of new non-invasive analytical techniques and particularly the advent of high-resolution peripheral quantitative computed tomography (HRpQCT) it is possible to assess cortical and trabecular bone changes under the effects of ageing, diseases and treatments. In the present study, we reviewed the treatment-related effects on bone parameters assessed by HRpQCT imaging. We identified 12 full-length articles published in peer-reviewed journals describing treatment-induced changes assessed by HRpQCT. The design of these studies varied a lot in terms of duration and methodology: some of them were open-labelled, others were double-blind, placebo-controlled or double-blind, double-dummy, active controlled. In addition, the sample size in these studies ranged from 11 to 324 patients. Motion artifacts occurring during data acquisition were sometimes a real challenge particularly at the radius leading sometimes to exclude the analysis at the radius due to the uninterpretability of microstructural parameters. Responses to therapies were treatment-specific and divergent effects in cortical and trabecular bone with antiresorptive or anabolic agents were observed. Standardization of bone microarchitecture parameters (including porosity) and bone strength estimates by finite element analysis (FEA) are mandatory. The additional value of microarchitecture and FEA estimates changes with therapies in terms of improvement in fracture outcomes which have to be adequately assessed in clinical trials with fracture end point. Data from these reviewed studies advance our understanding of the microstructural consequences of osteoporosis and highlight potential differences in bone quality outcomes within therapies.
Collapse
Affiliation(s)
- Eric Lespessailles
- University Orleans, Orleans, France; Rheumatology Department, Orleans Hospital, Orleans, France
| | | | | |
Collapse
|
60
|
Abstract
Tissue-level mechanical properties characterize mechanical behavior independently of microscopic porosity. Specifically, quasi-static nanoindentation provides measurements of modulus (stiffness) and hardness (resistance to yielding) of tissue at the length scale of the lamella, while dynamic nanoindentation assesses time-dependent behavior in the form of storage modulus (stiffness), loss modulus (dampening), and loss factor (ratio of the two). While these properties are useful in establishing how a gene, signaling pathway, or disease of interest affects bone tissue, they generally do not vary with aging after skeletal maturation or with osteoporosis. Heterogeneity in tissue-level mechanical properties or in compositional properties may contribute to fracture risk, but a consensus on whether the contribution is negative or positive has not emerged. In vivo indentation of bone tissue is now possible, and the mechanical resistance to microindentation has the potential for improving fracture risk assessment, though determinants are currently unknown.
Collapse
Affiliation(s)
- Jeffry S Nyman
- Department of Orthopaedic Surgery and Rehabilitation, Vanderbilt University Medical Center, 1215 21st Ave. S., South Tower, Suite 4200, Nashville, TN, 37232, USA.
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, 37212, USA.
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37232, USA.
| | - Mathilde Granke
- Department of Orthopaedic Surgery and Rehabilitation, Vanderbilt University Medical Center, 1215 21st Ave. S., South Tower, Suite 4200, Nashville, TN, 37232, USA
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, 37212, USA
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Robert C Singleton
- Materials Science and Engineering Department, University of Tennessee, Knoxville, TN, 37996, USA
| | - George M Pharr
- Materials Science and Engineering Department, University of Tennessee, Knoxville, TN, 37996, USA
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| |
Collapse
|
61
|
Chapurlat R. In vivo evaluation of bone microstructure in humans: Clinically useful? BONEKEY REPORTS 2016; 5:813. [PMID: 27347398 DOI: 10.1038/bonekey.2016.40] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 02/13/2016] [Accepted: 02/22/2016] [Indexed: 11/09/2022]
Abstract
In vivo evaluation of bone microstructure with high-resolution peripheral quantitative tomography (HRpQCT) has been used for a decade in research settings. In this review, we examine the value this technique could have in clinical practice. Bone microstructure parameters obtained with HRpQCT are associated with prevalent fracture in men and women. In postmenopausal women, some parameters also predict incident fracture, independently of areal bone mineral density. In specific population groups including patients with diabetes, chronic kidney disease, glucocorticosteroid therapy and rheumatic diseases, abnormal microstructure parameters from HRpQCT have been reported. Findings from HRpQCT studies may also explain ethnic differences in bone fragility. Treatment monitoring has been challenging in the various clinical trials with available HRpQCT data. The improvements were of small magnitude but tended to be proportional to the potency of antiresorptive agents. Microfinite element analysis was a better predictor of treatment efficacy than the microarchitectural parameters. In conclusion, HRpQCT remains a valuable research tool, but more work is needed to be able to use it in clinical practice.
Collapse
Affiliation(s)
- Roland Chapurlat
- INSERM UMR 1033, Université de Lyon, Hôpital E Herriot , Lyon, France
| |
Collapse
|
62
|
Zheng CM, Zheng JQ, Wu CC, Lu CL, Shyu JF, Yung-Ho H, Wu MY, Chiu IJ, Wang YH, Lin YF, Lu KC. Bone loss in chronic kidney disease: Quantity or quality? Bone 2016; 87:57-70. [PMID: 27049042 DOI: 10.1016/j.bone.2016.03.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Revised: 03/18/2016] [Accepted: 03/28/2016] [Indexed: 02/07/2023]
Abstract
Chronic kidney disease (CKD) patients experience bone loss and fracture because of a specific CKD-related systemic disorder known as CKD-mineral bone disorder (CKD-MBD). The bone turnover, mineralization, and volume (TMV) system describes the morphological bone lesions in renal osteodystrophy related to CKD-MBD. Bone turnover and bone volume are defined as high, normal, or low, and bone mineralization is classified as normal or abnormal. All types of bone histology related to TMV are responsible for both bone quantity and bone quality losses in CKD patients. This review focuses on current bone quantity and bone quality losses in CKD patients and finally discusses potential therapeutic measures.
Collapse
Affiliation(s)
- Cai-Mei Zheng
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taiwan; Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taiwan
| | - Jin-Quan Zheng
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taiwan; Division of Pulmonary and Critical Care, Department of Critical Care Medicine, Shuang Ho Hospital, Taipei Medical University, Taiwan
| | - Chia-Chao Wu
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chien-Lin Lu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taiwan
| | - Jia-Fwu Shyu
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Hsu Yung-Ho
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taiwan; Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taiwan
| | - Mei-Yi Wu
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taiwan; Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taiwan
| | - I-Jen Chiu
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taiwan
| | - Yuan-Hung Wang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taiwan; Department of Medical Research, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Yuh-Feng Lin
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taiwan; Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taiwan
| | - Kuo-Cheng Lu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taiwan; Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan; Division of Nephrology, Department of Medicine, Cardinal-Tien Hospital, School of Medicine, Fu-Jen Catholic University, New Taipei City,Taiwan.
| |
Collapse
|
63
|
Manhard MK, Uppuganti S, Granke M, Gochberg DF, Nyman JS, Does MD. MRI-derived bound and pore water concentrations as predictors of fracture resistance. Bone 2016; 87:1-10. [PMID: 26993059 PMCID: PMC4862893 DOI: 10.1016/j.bone.2016.03.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 03/04/2016] [Accepted: 03/14/2016] [Indexed: 10/22/2022]
Abstract
Accurately predicting fracture risk in the clinic is challenging because the determinants are multi-factorial. A common approach to fracture risk assessment is to combine X-ray-based imaging methods such as dual-energy X-ray absorptiometry (DXA) with an online Fracture Risk Assessment Tool (FRAX) that includes additional risk factors such as age, family history, and prior fracture incidents. This approach still does not adequately diagnose many individuals at risk, especially those with certain diseases like type 2 diabetes. As such, this study investigated bound water and pore water concentrations (Cbw and Cpw) from ultra-short echo time (UTE) magnetic resonance imaging (MRI) as new predictors of fracture risk. Ex vivo cadaveric arms were imaged with UTE MRI as well as with DXA and high-resolution micro-computed tomography (μCT), and imaging measures were compared to both whole-bone structural and material properties as determined by three-point bending tests of the distal-third radius. While DXA-derived areal bone mineral density (aBMD) and μCT-derived volumetric BMD correlated well with structural strength, they moderately correlated with the estimate material strength with gender being a significant covariate for aBMD. MRI-derived measures of Cbw and Cpw had a similar predictive ability of material strength as aBMD but did so independently of gender. In addition, Cbw was the only imaging parameter to significantly correlate with toughness, the energy dissipated during fracture. Notably, the strength of the correlations with the material properties of bone tended to be higher when a larger endosteal region was used to determine Cbw and Cpw. These results indicate that MRI measures of Cbw and Cpw have the ability to probe bone material properties independent of bone structure or subject gender. In particular, toughness is a property of fracture resistance that is not explained by X-ray based methods. Thus, these MRI-derived measures of Cbw and Cpw in cortical bone have the potential to be useful in clinical populations for evaluating fracture risk, especially involving diseases that affect material properties of the bone beyond its strength.
Collapse
Affiliation(s)
- Mary Kate Manhard
- Biomedical Engineering, Vanderbilt University, Nashville, TN, United States; Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, United States
| | - Sasidhar Uppuganti
- Department of Orthopaedic Surgery & Rehabilitation, Vanderbilt University, Nashville, TN, United States; Tennessee Valley Healthcare System, Department of Veterans Affairs, Nashville, TN, United States; Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Mathilde Granke
- Department of Orthopaedic Surgery & Rehabilitation, Vanderbilt University, Nashville, TN, United States; Tennessee Valley Healthcare System, Department of Veterans Affairs, Nashville, TN, United States; Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Daniel F Gochberg
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, United States; Radiology & Radiological Sciences, Vanderbilt University, Nashville, TN, United States; Department of Physics and Astronomy, Vanderbilt University, Nashville, TN, United States
| | - Jeffry S Nyman
- Biomedical Engineering, Vanderbilt University, Nashville, TN, United States; Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, United States; Department of Orthopaedic Surgery & Rehabilitation, Vanderbilt University, Nashville, TN, United States; Tennessee Valley Healthcare System, Department of Veterans Affairs, Nashville, TN, United States; Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Mark D Does
- Biomedical Engineering, Vanderbilt University, Nashville, TN, United States; Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, United States; Radiology & Radiological Sciences, Vanderbilt University, Nashville, TN, United States; Electrical Engineering, Vanderbilt University, Nashville, TN, United States.
| |
Collapse
|
64
|
Zhou B, Wang J, Yu YE, Zhang Z, Nawathe S, Nishiyama KK, Rosete FR, Keaveny TM, Shane E, Guo XE. High-resolution peripheral quantitative computed tomography (HR-pQCT) can assess microstructural and biomechanical properties of both human distal radius and tibia: Ex vivo computational and experimental validations. Bone 2016; 86:58-67. [PMID: 26924718 DOI: 10.1016/j.bone.2016.02.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Revised: 01/21/2016] [Accepted: 02/22/2016] [Indexed: 02/06/2023]
Abstract
High-resolution peripheral quantitative computed tomography (HR-pQCT) provides in vivo three-dimensional (3D) imaging at the distal radius and tibia and has been increasingly used to characterize cortical and trabecular bone morphology in clinical studies. In this study, we comprehensively examined the accuracy of HR-pQCT and HR-pQCT based micro finite element (μFE) analysis predicted bone elastic stiffness and strength through comparisons with gold-standard micro computed tomography (μCT) based morphological/μFE measures and direct mechanical testing results. Twenty-six sets of human cadaveric distal radius and tibia segments were imaged by HR-pQCT and μCT. Microstructural analyses were performed for the registered HR-pQCT and μCT images. Bone stiffness and yield strength were determined by both HR-pQCT and μCT based linear and nonlinear μFE predictions and mechanical testing. Our results suggested that strong and significant correlations existed between the HR-pQCT standard, model-independent and corresponding μCT measurements. HR-pQCT based nonlinear μFE overestimated stiffness and yield strength while the linear μFE underestimated yield strength, but both were strongly correlated with those predicted by μCT μFE and measured by mechanical testing at both radius and tibia (R(2)>0.9). The microstructural differences between HR-pQCT and μCT were also examined by the Bland-Altman plots. Our results showed HR-pQCT morphological measurements of BV/TV(d), Tb.Th, and Tb.Sp, can be adjusted by correction values to approach true values measured by gold-standard μCT. In addition, we observed moderate correlations of HR-pQCT biomechanical and microstructural parameters between the distal radius and tibia. We concluded that morphological and mechanical properties of human radius and tibia bone can be assessed by HR-pQCT based measures.
Collapse
Affiliation(s)
- Bin Zhou
- Bone Bioengineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY, U.S.A
| | - Ji Wang
- Bone Bioengineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY, U.S.A
| | - Y Eric Yu
- Bone Bioengineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY, U.S.A
| | - Zhendong Zhang
- Bone Bioengineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY, U.S.A.; Department of Orthopedic Surgery, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Shashank Nawathe
- Orthopaedic Biomechanics Laboratory, Department of Mechanical Engineering, University of California, Berkeley, CA, USA
| | - Kyle K Nishiyama
- Division of Endocrinology, Department of Medicine, Columbia University, New York, NY, USA
| | - Fernando Rey Rosete
- Division of Endocrinology, Department of Medicine, Columbia University, New York, NY, USA
| | - Tony M Keaveny
- Orthopaedic Biomechanics Laboratory, Department of Mechanical Engineering, University of California, Berkeley, CA, USA
| | - Elizabeth Shane
- Division of Endocrinology, Department of Medicine, Columbia University, New York, NY, USA
| | - X Edward Guo
- Bone Bioengineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY, U.S.A..
| |
Collapse
|
65
|
|
66
|
Cervinka T, Sievänen H, Lala D, Cheung AM, Giangregorio L, Hyttinen J. A new algorithm to improve assessment of cortical bone geometry in pQCT. Bone 2015; 81:721-730. [PMID: 26428659 DOI: 10.1016/j.bone.2015.09.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 08/31/2015] [Accepted: 09/25/2015] [Indexed: 11/18/2022]
Abstract
High-resolution peripheral quantitative computed tomography (HR-pQCT) is now considered the leading imaging modality in bone research. However, access to HR-pQCT is limited and image acquisition is mainly constrained only for the distal third of appendicular bones. Hence, the conventional pQCT is still commonly used despite inaccurate threshold-based segmentation of cortical bone that can compromise the assessment of whole bone strength. Therefore, this study addressed whether the use of an advanced image processing algorithm, called OBS, can enhance the cortical bone analysis in pQCT images and provide similar information to HR-pQCT when the same volumes of interest are analyzed. Using pQCT images of European Forearm Phantom (EFP), and pQCT and HR-pQCT images of the distal tibia from 15 cadavers, we compared the results from the OBS algorithm with those obtained from common pQCT analyses, HR-pQCT manual analysis (considered as a gold standard) and common HR-pQCT analysis dual threshold technique.We found that the use of OBS segmentation method for pQCT image analysis of EFP data did not result in any improvement but reached similar performance in cortical bone delineation as did HR-pQCT image analyses. The assessments of cortical cross-sectional bone area and thickness by OBS algorithm were overestimated by less than 4% while area moments of inertia were overestimated by ~5–10%, depending on reference HR-pQCT analysis method. In conclusion, this study showed that the OBS algorithm performed reasonably well and it offers a promising practical tool to enhance the assessment of cortical bone geometry in pQCT.
Collapse
Affiliation(s)
- Tomas Cervinka
- Department of Electronics and Communications Engineering, Tampere University of Technology, Korkeakoulunkatu 3, 33720 Tampere, Finland; Institute of Bioscience and Medical Technology (BioMediTech), Tampere, Finland.
| | - Harri Sievänen
- Bone Research Group, UKK Institute, Kaupinpuistonkatu 1, 33500 Tampere, Finland.
| | - Deena Lala
- Department of Health and Rehabilitation Sciences, Western University, London, Canada.
| | - Angela M Cheung
- Centre of Excellence in Skeletal Health Assessment, University of Toronto, Toronto, Canada.
| | - Lora Giangregorio
- Department of Kinesiology, University of Waterloo, Waterloo, Canada.
| | - Jari Hyttinen
- Department of Electronics and Communications Engineering, Tampere University of Technology, Korkeakoulunkatu 3, 33720 Tampere, Finland; Institute of Bioscience and Medical Technology (BioMediTech), Tampere, Finland.
| |
Collapse
|
67
|
Zwahlen A, Christen D, Ruffoni D, Schneider P, Schmolz W, Muller R. Inverse finite element modeling for characterization of local elastic properties in image-guided failure assessment of human trabecular bone. J Biomech Eng 2015; 137:1930785. [PMID: 25367315 DOI: 10.1115/1.4028991] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 11/05/2014] [Indexed: 12/11/2022]
Abstract
The local interpretation of microfinite element (μFE) simulations plays a pivotal role for studying bone structure–function relationships such as failure processes and bone remodeling.In the past μFE simulations have been successfully validated on the apparent level,however, at the tissue level validations are sparse and less promising. Furthermore,intra trabecular heterogeneity of the material properties has been shown by experimental studies. We proposed an inverse μFE algorithm that iteratively changes the tissue level Young's moduli such that the μFE simulation matches the experimental strain measurements.The algorithm is setup as a feedback loop where the modulus is iteratively adapted until the simulated strain matches the experimental strain. The experimental strain of human trabecular bone specimens was calculated from time-lapsed images that were gained by combining mechanical testing and synchrotron radiation microcomputed tomography(SRlCT). The inverse μFE algorithm was able to iterate the heterogeneous distribution of moduli such that the resulting μFE simulations matched artificially generated and experimentally measured strains.
Collapse
|
68
|
|
69
|
Manske SL, Zhu Y, Sandino C, Boyd SK. Human trabecular bone microarchitecture can be assessed independently of density with second generation HR-pQCT. Bone 2015; 79:213-21. [PMID: 26079995 DOI: 10.1016/j.bone.2015.06.006] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 05/16/2015] [Accepted: 06/09/2015] [Indexed: 12/18/2022]
Abstract
The second generation HR-pQCT scanner (XtremeCTII, Scanco Medical) can assess human bone microarchitecture of peripheral limbs with a 61 μm nominal isotropic voxel size. This is a marked improvement from the first generation HR-pQCT that had a nominal isotropic voxel size of 82 μm, which is at the limit to accurately determine the thickness of individual human trabeculae. We sought to determine the accuracy of a direct morphometric approach to measure trabecular bone microarchitecture with three-dimensional morphological techniques using second generation HR-pQCT, and to compare this with the approach currently applied by the first generation HR-pQCT scanner based on derived indices using ex vivo scans of human cadaveric radii. We also compared images acquired and resampled to mimic the first generation HR-pQCT with those obtained directly from the first generation HR-pQCT. We evaluated 20 human cadaveric radii and a micro-CT performance phantom using the first (XtremeCT, Scanco Medical) and second generation HR-pQCT scanner (XtremeCTII) and compared a patient evaluation (XCTII, 61 μm) with a high resolution ex vivo protocol (HR, 30μm). We generated 82 μm scans of the same specimens to mimic a first-generation HR-pQCT evaluation (XCTIM, 82 μm) and compared these with a first-generation patient evaluation (XCTI, 82 μm). A standard structural extraction approach was applied to both XCTII and HR evaluations for assessment of bone volume fraction (BV/TV), and a distance transform was used to assess trabecular number (Tb.N), trabecular thickness (Tb.Th) and trabecular separation (Tb.Sp). For XCTI and XCTIM evaluations we followed the manufacturer's standard procedure and assessed bone mineral density (BMD), Tb.N with a distance transform, and then derived bone volume ratio (BV/TV(d)), trabecular thickness (Tb.Th(d)) and separation (Tb.Sp(d)). The spatial resolution (10% MTF) was 142.2 μm for XCTI, 108.9 μm for XCTIM, 95.2μm for XCTII, and 55.9 μm for HR. XCTI and XCTIM provided strongly associated measurements of BMD and microarchitectural outcomes (R(2)>0.97), however there were systematic differences in all outcomes. The Tb.N was highly associated with HR by both XCTII (R(2)=0.93, mean error=-0.12 mm(-1)) and XCTIM (R(2)=0.98, mean error=0.25 mm(-1)). Also, both XCTII (R(2)=0.99, mean error=0.20mm) and XCTIM (R(2)=0.99, mean error=-0.18 mm) had Tb.Sp that were strongly related to HR. For Tb.Th, the XCTII was more closely related to HR (R(2)=0.94, mean error=0.04 mm) than the relatively weak XCTIM (R(2)=0.16, mean error=- 0.076 mm). We found that trabecular microarchitecture assessment following the XCTII direct morphometric approach accurately represented the HR data. In particular, the measure of Tb.Th was markedly improved for XCTII compared with the derived approach of XCTIM. These data support the application of analysis techniques in HR-pQCT that are analogous to those traditionally used for micro-CT to assess trabecular microarchitecture. The decreased dependence of structural outcomes on density provides a new, important opportunity to monitor human in vivo bone microarchitecture.
Collapse
Affiliation(s)
- Sarah L Manske
- McCaig Institute for Bone and Joint Health and Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary AB, Canada
| | - Ying Zhu
- McCaig Institute for Bone and Joint Health and Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary AB, Canada
| | - Clara Sandino
- McCaig Institute for Bone and Joint Health and Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary AB, Canada
| | - Steven K Boyd
- McCaig Institute for Bone and Joint Health and Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary AB, Canada.
| |
Collapse
|
70
|
Babayev R, Nickolas TL. Bone Disorders in Chronic Kidney Disease: An Update in Diagnosis and Management. Semin Dial 2015; 28:645-53. [DOI: 10.1111/sdi.12423] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Revekka Babayev
- Department of Medicine; Division of Nephrology; Columbia University Medical Center; New York City New York
| | - Thomas L. Nickolas
- Department of Medicine; Division of Nephrology; Columbia University Medical Center; New York City New York
| |
Collapse
|
71
|
Hung VWY, Zhu TY, Cheung WH, Fong TN, Yu FWP, Hung LK, Leung KS, Cheng JCY, Lam TP, Qin L. Age-related differences in volumetric bone mineral density, microarchitecture, and bone strength of distal radius and tibia in Chinese women: a high-resolution pQCT reference database study. Osteoporos Int 2015; 26:1691-703. [PMID: 25627115 DOI: 10.1007/s00198-015-3045-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Accepted: 01/18/2015] [Indexed: 01/23/2023]
Abstract
UNLABELLED In a cohort of 393 Chinese women, by using high-resolution peripheral quantitative computed tomography (HR-pQCT), we found that significant cortical bone loss occurred after midlife. Prominent increase in cortical porosity began at the fifth decade but reached a plateau before the sixth decade. Trabecular bone loss was already evident in young adulthood and continued throughout life. INTRODUCTION This study aimed to investigate age-related differences in volumetric bone mineral density (vBMD), microarchitecture, and estimated bone strength at peripheral skeleton in Chinese female population. METHODS In a cross-sectional cohort of 393 Chinese women aged 20-90 years, we obtained vBMD, microarchtecture, and micro-finite element-derived bone strength at distal radius and tibia using HR-pQCT. RESULTS The largest predictive age-related difference was found for cortical porosity (Ct.Po) which showed over four-fold and two-fold differences at distal radius and tibia, respectively, over the adulthood. At both sites, cortical bone area, vBMD, and thickness showed significant quadratic association with age with significant decrease beginning after midlife. Change of Ct.Po became more prominent between age of 50 and 57 (0.26 %/year at distal radius, 0.54 %/year at distal tibia, both p ≤ 0.001) but thereafter, reached a plateau (0.015 and 0.028 %/year, both p > 0.05). In contrast, trabecular vBMD and microarchitecture showed linear association with age with significant deterioration observed throughout adulthood. Estimated age of peak was around age of 20 for trabecular vBMD and microarchitecture and Ct.Po and age of 40 for cortical vBMD and microarchitecture. Estimated stiffness and failure load peaked at mid-30s at the distal radius and at age 20 at distal tibia. CONCLUSIONS Age-related differences in vBMD and microarchitecture in Chinese women differed by bone compartments. Significant cortical bone loss occurred after midlife. Prominent increase in Ct.Po began at the fifth decade but appeared to be arrested before the sixth decade. Loss of trabecular bone was already evident in young adulthood and continued throughout life.
Collapse
Affiliation(s)
- V W Y Hung
- Bone Quality and Health Centre, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - T Y Zhu
- Bone Quality and Health Centre, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - W-H Cheung
- Bone Quality and Health Centre, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, SAR, China
- Joint ACC-CUHK Space Medicine Center on Health Maintenance of Musculoskeletal System (Shenzhen Base of ACC-CUHK State Key Lab of Basic and Applied Space Medicine), The Chinese University Shenzhen Research Institute, Shenzhen, China
| | - T-N Fong
- Bone Quality and Health Centre, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - F W P Yu
- Bone Quality and Health Centre, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - L-K Hung
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - K-S Leung
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, SAR, China
- Joint ACC-CUHK Space Medicine Center on Health Maintenance of Musculoskeletal System (Shenzhen Base of ACC-CUHK State Key Lab of Basic and Applied Space Medicine), The Chinese University Shenzhen Research Institute, Shenzhen, China
| | - J C Y Cheng
- Bone Quality and Health Centre, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, SAR, China
- Joint ACC-CUHK Space Medicine Center on Health Maintenance of Musculoskeletal System (Shenzhen Base of ACC-CUHK State Key Lab of Basic and Applied Space Medicine), The Chinese University Shenzhen Research Institute, Shenzhen, China
| | - T-P Lam
- Bone Quality and Health Centre, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, SAR, China.
| | - L Qin
- Bone Quality and Health Centre, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, SAR, China.
- Translational Medicine Research and Development Center, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| |
Collapse
|
72
|
Stein EM, Rogers H, Leib A, McMahon DJ, Young P, Nishiyama K, Guo XE, Lewis S, Green PH, Shane E. Abnormal Skeletal Strength and Microarchitecture in Women With Celiac Disease. J Clin Endocrinol Metab 2015; 100:2347-53. [PMID: 25867815 PMCID: PMC4454795 DOI: 10.1210/jc.2015-1392] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
CONTEXT Osteoporosis is often a presenting sign of celiac disease (CD). Whether skeletal fragility in CD is associated with microarchitectural abnormalities is not known. OBJECTIVE The objective of the study was to evaluate microarchitecture and biomechanical properties of bone in CD. DESIGN This was a case-control study. SETTING The study was conducted at a university hospital outpatient facility. PATIENTS Patients included premenopausal women with newly diagnosed CD (n = 33) and healthy controls (n = 33). MAIN OUTCOME MEASURES Areal bone mineral density by dual-energy x-ray absorptiometry was measured as was trabecular and cortical volumetric bone mineral density (vBMD) and microarchitecture by high-resolution peripheral computed tomography of the distal radius and tibia. Whole-bone stiffness estimated by finite element analysis. PTH, 25-hydroxyvitamin D, and bone turnover markers were also measured. RESULTS Groups had similar age, race, and body mass index. Both groups had sufficient 25-hydroxyvitamin D and normal calcium and PTH. Areal bone mineral density was lower in CD. By high-resolution peripheral computed tomography, CD had lower trabecular vBMD, fewer, more widely, and irregularly spaced trabeculae at both the radius and tibia (8%-33%). At the tibia, they also had lower total density (8%) and thinner cortices (10%). Whole-bone stiffness and failure load were lower (11%-21%) in CD at both sites. Biomechanical deficits were associated with trabecular abnormalities. CONCLUSIONS Women with CD had abnormal vBMD and microarchitecture at both the radius and tibia. Trabecular bone was preferentially affected. These deficits were associated with lower estimates of skeletal strength. These findings suggest a potential structural mechanism for skeletal fragility in CD and support further research into the pathogenesis of fracture in this population.
Collapse
Affiliation(s)
- Emily M Stein
- Divisions of Endocrinology and Gastroenterology (E.M.S., H.R., A.L., D.J.M., P.Y., K.N.,S.L., P.H.G., E.S.), Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York 10032; and Bone Bioengineering Laboratory (X.E.G.), Department of Biomedical Engineering, Columbia University, New York, New York 10027
| | - Halley Rogers
- Divisions of Endocrinology and Gastroenterology (E.M.S., H.R., A.L., D.J.M., P.Y., K.N.,S.L., P.H.G., E.S.), Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York 10032; and Bone Bioengineering Laboratory (X.E.G.), Department of Biomedical Engineering, Columbia University, New York, New York 10027
| | - Alexa Leib
- Divisions of Endocrinology and Gastroenterology (E.M.S., H.R., A.L., D.J.M., P.Y., K.N.,S.L., P.H.G., E.S.), Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York 10032; and Bone Bioengineering Laboratory (X.E.G.), Department of Biomedical Engineering, Columbia University, New York, New York 10027
| | - Donald J McMahon
- Divisions of Endocrinology and Gastroenterology (E.M.S., H.R., A.L., D.J.M., P.Y., K.N.,S.L., P.H.G., E.S.), Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York 10032; and Bone Bioengineering Laboratory (X.E.G.), Department of Biomedical Engineering, Columbia University, New York, New York 10027
| | - Polly Young
- Divisions of Endocrinology and Gastroenterology (E.M.S., H.R., A.L., D.J.M., P.Y., K.N.,S.L., P.H.G., E.S.), Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York 10032; and Bone Bioengineering Laboratory (X.E.G.), Department of Biomedical Engineering, Columbia University, New York, New York 10027
| | - Kyle Nishiyama
- Divisions of Endocrinology and Gastroenterology (E.M.S., H.R., A.L., D.J.M., P.Y., K.N.,S.L., P.H.G., E.S.), Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York 10032; and Bone Bioengineering Laboratory (X.E.G.), Department of Biomedical Engineering, Columbia University, New York, New York 10027
| | - X Edward Guo
- Divisions of Endocrinology and Gastroenterology (E.M.S., H.R., A.L., D.J.M., P.Y., K.N.,S.L., P.H.G., E.S.), Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York 10032; and Bone Bioengineering Laboratory (X.E.G.), Department of Biomedical Engineering, Columbia University, New York, New York 10027
| | - Suzanne Lewis
- Divisions of Endocrinology and Gastroenterology (E.M.S., H.R., A.L., D.J.M., P.Y., K.N.,S.L., P.H.G., E.S.), Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York 10032; and Bone Bioengineering Laboratory (X.E.G.), Department of Biomedical Engineering, Columbia University, New York, New York 10027
| | - Peter H Green
- Divisions of Endocrinology and Gastroenterology (E.M.S., H.R., A.L., D.J.M., P.Y., K.N.,S.L., P.H.G., E.S.), Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York 10032; and Bone Bioengineering Laboratory (X.E.G.), Department of Biomedical Engineering, Columbia University, New York, New York 10027
| | - Elizabeth Shane
- Divisions of Endocrinology and Gastroenterology (E.M.S., H.R., A.L., D.J.M., P.Y., K.N.,S.L., P.H.G., E.S.), Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York 10032; and Bone Bioengineering Laboratory (X.E.G.), Department of Biomedical Engineering, Columbia University, New York, New York 10027
| |
Collapse
|
73
|
Abstract
Fractures are more common and are associated with greater morbidity and morality in patients with kidney disease than in members of the general population. Thus, it is troubling that in chronic kidney disease (CKD) patients there has been a paradoxical increase in fracture rates over the past 20 years compared to the general population. Increased fracture incidence in CKD patients may be driven in part by the lack of screening for fracture risk. In the general population, dual energy X-ray absorptiometry (DXA) is the clinical standard to stratify fracture risk, and its use has contributed to decreases in fracture incidence. In contrast, in CKD, fracture risk screening with DXA has been uncommon due to its unclear efficacy in predicting fracture and its inability to predict type of renal osteodystrophy. Recently, several prospective studies conducted in patients across the spectrum of kidney disease have demonstrated that bone mineral density measured by DXA predicts future fracture risk and that clinically relevant information regarding fracture risk is provided by application of the World Health Organization cutoffs for osteopenia and osteoporosis to DXA measures. Furthermore, novel high-resolution imaging tools, such as high-resolution peripheral quantitative computed tomography (HR-pQCT), have been used to elucidate the effects of kidney disease on cortical and trabecular microarchitecture and bone strength and to identify potential targets for strategies that protect against fractures. This review will discuss the updated epidemiology of fractures in CKD, fracture risk screening by DXA, and the utility of state-of-the art imaging methods to uncover the effects of kidney disease on the skeleton.
Collapse
Affiliation(s)
- Sophie A Jamal
- Women's College Research Institute, University of Toronto, Toronto, Canada
| | | |
Collapse
|
74
|
Chang G, Honig S, Liu Y, Chen C, Chu KK, Rajapakse CS, Egol K, Xia D, Saha PK, Regatte RR. 7 Tesla MRI of bone microarchitecture discriminates between women without and with fragility fractures who do not differ by bone mineral density. J Bone Miner Metab 2015; 33:285-93. [PMID: 24752823 PMCID: PMC4363287 DOI: 10.1007/s00774-014-0588-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 03/17/2014] [Indexed: 01/23/2023]
Abstract
Osteoporosis is a disease of poor bone quality. Bone mineral density (BMD) has limited ability to discriminate between subjects without and with poor bone quality, and assessment of bone microarchitecture may have added value in this regard. Our goals were to use 7 T MRI to: (1) quantify and compare distal femur bone microarchitecture in women without and with poor bone quality (defined clinically by presence of fragility fractures); and (2) determine whether microarchitectural parameters could be used to discriminate between these two groups. This study had institutional review board approval, and we obtained written informed consent from all subjects. We used a 28-channel knee coil to image the distal femur of 31 subjects with fragility fractures and 25 controls without fracture on a 7 T MRI scanner using a 3-D fast low angle shot sequence (0.234 mm × 0.234 mm × 1 mm, parallel imaging factor = 2, acquisition time = 7 min 9 s). We applied digital topological analysis to quantify parameters of bone microarchitecture. All subjects also underwent standard clinical BMD assessment in the hip and spine. Compared to controls, fracture cases demonstrated lower bone volume fraction and markers of trabecular number, plate-like structure, and plate-to-rod ratio, and higher markers of trabecular isolation, rod disruption, and network resorption (p < 0.05 for all). There were no differences in hip or spine BMD T-scores between groups (p > 0.05). In receiver-operating-characteristics analyses, microarchitectural parameters could discriminate cases and controls (AUC = 0.66-0.73, p < 0.05). Hip and spine BMD T-scores could not discriminate cases and controls (AUC = 0.58-0.64, p ≥ 0.08). We conclude that 7 T MRI can detect bone microarchitectural deterioration in women with fragility fractures who do not differ by BMD. Microarchitectural parameters might some day be used as an additional tool to detect patients with poor bone quality who cannot be detected by dual-energy X-ray absorptiometry (DXA).
Collapse
Affiliation(s)
- Gregory Chang
- Department of Radiology, NYU Langone Medical Center, Center for Musculoskeletal Care, 333 E. 38th Street, 6th Floor, Room 6-210, New York, NY, 10016, USA,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Nyman JS, Uppuganti S, Makowski AJ, Rowland BJ, Merkel AR, Sterling JA, Bredbenner TL, Perrien DS. Predicting mouse vertebra strength with micro-computed tomography-derived finite element analysis. BONEKEY REPORTS 2015; 4:664. [PMID: 25908967 DOI: 10.1038/bonekey.2015.31] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 02/04/2015] [Indexed: 12/29/2022]
Abstract
As in clinical studies, finite element analysis (FEA) developed from computed tomography (CT) images of bones are useful in pre-clinical rodent studies assessing treatment effects on vertebral body (VB) strength. Since strength predictions from microCT-derived FEAs (μFEA) have not been validated against experimental measurements of mouse VB strength, a parametric analysis exploring material and failure definitions was performed to determine whether elastic μFEAs with linear failure criteria could reasonably assess VB strength in two studies, treatment and genetic, with differences in bone volume fraction between the control and the experimental groups. VBs were scanned with a 12-μm voxel size, and voxels were directly converted to 8-node, hexahedral elements. The coefficient of determination or R (2) between predicted VB strength and experimental VB strength, as determined from compression tests, was 62.3% for the treatment study and 85.3% for the genetic study when using a homogenous tissue modulus (E t) of 18 GPa for all elements, a failure volume of 2%, and an equivalent failure strain of 0.007. The difference between prediction and measurement (that is, error) increased when lowering the failure volume to 0.1% or increasing it to 4%. Using inhomogeneous tissue density-specific moduli improved the R (2) between predicted and experimental strength when compared with uniform E t=18 GPa. Also, the optimum failure volume is higher for the inhomogeneous than for the homogeneous material definition. Regardless of model assumptions, μFEA can assess differences in murine VB strength between experimental groups when the expected difference in strength is at least 20%.
Collapse
Affiliation(s)
- Jeffry S Nyman
- Department of Veterans Affairs, Tennessee Valley Healthcare System , Nashville, TN, USA ; Department of Orthopaedic Surgery and Rehabilitation, Vanderbilt University, Medical Center East , Nashville, TN, USA ; Department of Biomedical Engineering, Vanderbilt University Medical Center , Nashville, TN, USA ; Center for Bone Biology, Vanderbilt University Medical Center , Nashville, TN, USA
| | - Sasidhar Uppuganti
- Department of Orthopaedic Surgery and Rehabilitation, Vanderbilt University, Medical Center East , Nashville, TN, USA
| | - Alexander J Makowski
- Department of Veterans Affairs, Tennessee Valley Healthcare System , Nashville, TN, USA ; Department of Biomedical Engineering, Vanderbilt University Medical Center , Nashville, TN, USA ; Center for Bone Biology, Vanderbilt University Medical Center , Nashville, TN, USA
| | - Barbara J Rowland
- Department of Veterans Affairs, Tennessee Valley Healthcare System , Nashville, TN, USA ; Center for Bone Biology, Vanderbilt University Medical Center , Nashville, TN, USA
| | - Alyssa R Merkel
- Center for Bone Biology, Vanderbilt University Medical Center , Nashville, TN, USA ; Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center , Nashville, TN, USA
| | - Julie A Sterling
- Department of Veterans Affairs, Tennessee Valley Healthcare System , Nashville, TN, USA ; Center for Bone Biology, Vanderbilt University Medical Center , Nashville, TN, USA ; Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center , Nashville, TN, USA ; Department of Cancer Biology, Vanderbilt University Medical Center , Nashville, TN, USA
| | - Todd L Bredbenner
- Musculoskeletal Biomechanics Section, Southwest Research Institute , San Antonio, TX, USA
| | - Daniel S Perrien
- Department of Veterans Affairs, Tennessee Valley Healthcare System , Nashville, TN, USA ; Department of Orthopaedic Surgery and Rehabilitation, Vanderbilt University, Medical Center East , Nashville, TN, USA ; Center for Bone Biology, Vanderbilt University Medical Center , Nashville, TN, USA ; Vanderbilt University Institute of Imaging Sciences, Vanderbilt University Medical Center , Nashville, TN, USA
| |
Collapse
|
76
|
Zhou B, Zhang Z, Wang J, Yu YE, Liu XS, Nishiyama KK, Rubin MR, Shane E, Bilezikian JP, Guo XE. In Vivo Precision of Digital Topological Skeletonization Based Individual Trabecula Segmentation (ITS) Analysis of Trabecular Microstructure at the Distal Radius and Tibia by HR-pQCT. Pattern Recognit Lett 2015; 76:83-89. [PMID: 27175044 DOI: 10.1016/j.patrec.2015.03.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Trabecular plate and rod microstructure plays a dominant role in the apparent mechanical properties of trabecular bone. With high-resolution computed tomography (CT) images, digital topological analysis (DTA) including skeletonization and topological classification was applied to transform the trabecular three-dimensional (3D) network into surface and curve skeletons. Using the DTA-based topological analysis and a new reconstruction/recovery scheme, individual trabecula segmentation (ITS) was developed to segment individual trabecular plates and rods and quantify the trabecular plate- and rod-related morphological parameters. High-resolution peripheral quantitative computed tomography (HR-pQCT) is an emerging in vivo imaging technique to visualize 3D bone microstructure. Based on HR-pQCT images, ITS was applied to various HR-pQCT datasets to examine trabecular plate- and rod-related microstructure and has demonstrated great potential in cross-sectional and longitudinal clinical applications. However, the reproducibility of ITS has not been fully determined. The aim of the current study is to quantify the precision errors of ITS plate-rod microstructural parameters. In addition, we utilized three different frequently used contour techniques to separate trabecular and cortical bone and to evaluate their effect on ITS measurements. Overall, good reproducibility was found for the standard HR-pQCT parameters with precision errors for volumetric BMD and bone size between 0.2%-2.0%, and trabecular bone microstructure between 4.9%-6.7% at the radius and tibia. High reproducibility was also achieved for ITS measurements using all three different contour techniques. For example, using automatic contour technology, low precision errors were found for plate and rod trabecular number (pTb.N, rTb.N, 0.9% and 3.6%), plate and rod trabecular thickness (pTb.Th, rTb.Th, 0.6% and 1.7%), plate trabecular surface (pTb.S, 3.4%), rod trabecular length (rTb.ℓ, 0.8%), and plate-plate junction density (P-P Junc.D, 2.3%) at the tibia. The precision errors at the radius were similar to those at the tibia. In addition, precision errors were affected by the contour technique. At the tibia, precision error by the manual contour method was significantly different from automatic and standard contour methods for pTb.N, rTb.N and rTb.Th. Precision error using the manual contour method was also significantly different from the standard contour method for rod trabecular number (rTb.N), rod trabecular thickness (rTb.Th), rod-rod and plate-rod junction densities (R-R Junc.D and P-R Junc.D) at the tibia. At the radius, the precision error was similar between the three different contour methods. Image quality was also found to significantly affect the ITS reproducibility. We concluded that ITS parameters are highly reproducible, giving assurance that future cross-sectional and longitudinal clinical HR-pQCT studies are feasible in the context of limited sample sizes.
Collapse
Affiliation(s)
- Bin Zhou
- Bone Bioengineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, New York, U.S.A
| | - Zhendong Zhang
- Bone Bioengineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, New York, U.S.A.; Department of Orthopedic Surgery, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Ji Wang
- Bone Bioengineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, New York, U.S.A
| | - Y Eric Yu
- Bone Bioengineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, New York, U.S.A
| | - Xiaowei Sherry Liu
- Bone Bioengineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, New York, U.S.A.; McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, U.S.A
| | - Kyle K Nishiyama
- Division of Endocrinology, Department of Medicine, Columbia University, New York, New York, U.S.A
| | - Mishaela R Rubin
- Division of Endocrinology, Department of Medicine, Columbia University, New York, New York, U.S.A
| | - Elizabeth Shane
- Division of Endocrinology, Department of Medicine, Columbia University, New York, New York, U.S.A
| | - John P Bilezikian
- Division of Endocrinology, Department of Medicine, Columbia University, New York, New York, U.S.A
| | - X Edward Guo
- Bone Bioengineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, New York, U.S.A
| |
Collapse
|
77
|
Prior JC, Langsetmo L, Lentle BC, Berger C, Goltzman D, Kovacs CS, Kaiser SM, Adachi JD, Papaioannou A, Anastassiades T, Towheed T, Josse RG, Brown JP, Leslie WD, Kreiger N. Ten-year incident osteoporosis-related fractures in the population-based Canadian Multicentre Osteoporosis Study - comparing site and age-specific risks in women and men. Bone 2015; 71:237-43. [PMID: 25451323 PMCID: PMC5092162 DOI: 10.1016/j.bone.2014.10.026] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 10/29/2014] [Accepted: 10/31/2014] [Indexed: 10/24/2022]
Abstract
BACKGROUND Population-based incident fracture data aid fracture prevention and therapy decisions. Our purpose was to describe 10-year site-specific cumulative fracture incidence by sex, age at baseline, and degree of trauma with/without consideration of competing mortality in the Canadian Multicentre Osteoporosis Study adult cohort. METHODS Incident fractures and mortality were identified by annual postal questionnaires to the participant or proxy respondent. Date, site and circumstance of fracture were gathered from structured interviews and medical records. Fracture analyses were stratified by sex and age at baseline and used both Kaplan-Meier and competing mortality methods. RESULTS The baseline (1995-97) cohort included 6314 women and 2789 men (aged 25-84 years; mean±SD 62±12 and 59±14, respectively), with 4322 (68%) women and 1732 (62%) men followed to year-10. At least one incident fracture occurred for 930 women (14%) and 247 men (9%). Competing mortality exceeded fracture risk for men aged 65+years at baseline. Age was a strong predictor of incident fractures especially fragility fractures, with higher age gradients for women vs. men. Major osteoporotic fracture (MOF) (hip, clinical spine, forearm, humerus) accounted for 41-74% of fracture risk by sex/age strata; in women all MOF sites showed age-related increases but in men only hip was clearly age-related. The most common fractures were the forearm for women and the ribs for men. Hip fracture incidence was the highest for the 75-84 year baseline age-group with no significant difference between women 7.0% (95% CI 5.3, 8.9) and men 7.0% (95% CI 4.4, 10.3). INTERPRETATION There are sex differences in the predominant sites and age-gradients of fracture. In older men, competing mortality exceeds cumulative fracture risk.
Collapse
Affiliation(s)
| | - Lisa Langsetmo
- CaMos National Coordinating Centre, McGill University, Montreal, Canada
| | | | - Claudie Berger
- CaMos National Coordinating Centre, McGill University, Montreal, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
van Rietbergen B, Ito K. A survey of micro-finite element analysis for clinical assessment of bone strength: the first decade. J Biomech 2014; 48:832-41. [PMID: 25553670 DOI: 10.1016/j.jbiomech.2014.12.024] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2014] [Indexed: 12/13/2022]
Abstract
Micro-Finite Element (micro-FE) analysis is now widely used in biomedical research as a tool to derive bone mechanical properties as they relate to its microstructure. With the development of in vivo high-resolution peripheral quantitative CT (HR-pQCT) scanners, it can now be applied to analyze bone in-vivo in the peripheral skeleton. In this survey, the results of several experimental and clinical studies are summarized that addressed the feasibility of this approach to predict bone strength in-vivo. Specific questions that will be addressed are: how accurate are strength predictions based on micro-FE; how reproducible are the results; and, is it a better predictor of bone fracture risk than DXA based measures? Based on results of experimental studies, it is first concluded that micro-FE based on HR-pQCT images can accurately predict the strength of the distal radius during a fall on the outstretched hand using either linear elastic analysis, implementing a 'Pistoia criterion' or similar criterion in combination with an 'effective' Young's modulus or using non-linear analyses. When evaluating results of clinical reproducibility studies, it is concluded that for single-center studies, errors at the radius are less than 4.4% and 3.7% and at the tibia less than 3.6% and 2.3% for stiffness and strength, respectively. In multicenter trials, however, these errors can be increased by some 1.8% and 1.4% for stiffness and strength, respectively. Finally, based on the results of large cohort studies, it is concluded that micro-FE calculated stiffness better separates cases from controls than bone density parameters for subjects with fragility fractures at any site, but not for subjects with only radius fractures. In this latter case, however, combinations of micro-FE derived parameters can significantly improve the separation.
Collapse
Affiliation(s)
- B van Rietbergen
- Orthopaedic Biomechanics, Department of Biomedical Engineering, University of Eindhoven, Eindhoven, The Netherlands.
| | - K Ito
- Orthopaedic Biomechanics, Department of Biomedical Engineering, University of Eindhoven, Eindhoven, The Netherlands
| |
Collapse
|
79
|
Kawalilak CE, Johnston JD, Olszynski WP, Leswick DA, Kontulainen SA. Comparison of short-term in vivo precision of bone density and microarchitecture at the distal radius and tibia between postmenopausal women and young adults. J Clin Densitom 2014; 17:510-7. [PMID: 24206866 DOI: 10.1016/j.jocd.2013.09.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 08/31/2013] [Accepted: 09/11/2013] [Indexed: 10/26/2022]
Abstract
The purpose was to assess whether precision of bone properties derived via the use of high-resolution peripheral quantitative computed tomography (HR-pQCT) differs between postmenopausal women and young adults. Using HR-pQCT, we scanned the distal radius and tibia at 2 time points in 34 postmenopausal women (74 ± 7 years) and 30 young adults (mean age ± SD: 27 ± 9 years). Standard protocols were used to acquire bone area, density, and microarchitectural properties. We calculated coefficients of variation (CV; percentage CV and percentage CV of the root mean square) and 95% limits of agreement (95% LOA) to assess precision errors. The 95% LOA is the magnitude of individual change needed to be observed to ensure that a real change has occurred. Multiple Mann-Whitney U-tests (with the use of Bonferroni correction for multiple comparisons) were used to compare percentage CV between the 2 groups. Significance was set to p < 0.004. All standard outcome variables were not significantly different between the groups. The 95% LOA confirmed that the measurement bias between the groups did not differ. These results suggest that short-term precision errors in HR-pQCT-derived bone outcomes are similar between postmenopausal women and young adults.
Collapse
Affiliation(s)
- Chantal E Kawalilak
- College of Kinesiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| | - James D Johnston
- Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Wojciech P Olszynski
- Osteoporosis Centre, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - David A Leswick
- Department of Medical Imaging, College of Medicine, University of Saskatchewan and Saskatoon Health Region, Saskatoon, Saskatchewan, Canada
| | - Saija A Kontulainen
- College of Kinesiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
80
|
Bae WC, Patil S, Biswas R, Li S, Chang EY, Statum S, D'Lima DD, Chung CB, Du J. Magnetic resonance imaging assessed cortical porosity is highly correlated with μCT porosity. Bone 2014; 66:56-61. [PMID: 24928498 PMCID: PMC4125420 DOI: 10.1016/j.bone.2014.06.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 05/29/2014] [Accepted: 06/02/2014] [Indexed: 12/29/2022]
Abstract
Cortical bone is typically regarded as "MR invisible" with conventional clinical magnetic resonance imaging (MRI) pulse sequences. However, recent studies have demonstrated that free water in the microscopic pores of cortical bone has a short T2* but a relatively long T2, and may be detectable with conventional clinical spin echo (SE) or fast spin echo (FSE) sequences. In this study we describe the use of a conventional two-dimensional (2D) FSE sequence to assess cortical bone microstructure and measure cortical porosity using a clinical 3T scanner. Twelve cadaveric human cortical bone samples were studied with MRI and microcomputed tomography (μCT) (downsampled to the same spatial resolution). Preliminary results show that FSE-determined porosity is highly correlated (R(2)=0.83; P<0.0001) with μCT porosity. Bland-Altman analysis suggested a good agreement between FSE and μCT with tight limit of agreement at around 3%. There is also a small bias of -2% for the FSE data, which suggested that the FSE approach slightly underestimated μCT porosity. The results demonstrate that cortical porosity can be directly assessed using conventional clinical FSE sequences. The clinical feasibility of this approach was also demonstrated on six healthy volunteers using 2D FSE sequences as well as 2D ultrashort echo time (UTE) sequences with a minimal echo time (TE) of 8μs, which provide high contrast imaging of cortical bone in vivo.
Collapse
Affiliation(s)
- Won C Bae
- Department of Radiology, University of California, San Diego, CA, USA; Department of Radiology, VA San Diego Healthcare System, La Jolla, CA, USA
| | - Shantanu Patil
- Shiley Center for Orthopaedic Research & Education, Scripps Clinic, La Jolla, CA, USA
| | - Reni Biswas
- Department of Radiology, University of California, San Diego, CA, USA
| | - Shihong Li
- Department of Radiology, University of California, San Diego, CA, USA; Department of Radiology, Hua Dong Hospital, Fudan University, Shanghai, PR China
| | - Eric Y Chang
- Department of Radiology, VA San Diego Healthcare System, La Jolla, CA, USA; Department of Radiology, University of California, San Diego, CA, USA
| | - Sheronda Statum
- Department of Radiology, University of California, San Diego, CA, USA; Department of Radiology, VA San Diego Healthcare System, La Jolla, CA, USA
| | - Darryl D D'Lima
- Shiley Center for Orthopaedic Research & Education, Scripps Clinic, La Jolla, CA, USA
| | - Christine B Chung
- Department of Radiology, VA San Diego Healthcare System, La Jolla, CA, USA; Department of Radiology, University of California, San Diego, CA, USA
| | - Jiang Du
- Department of Radiology, University of California, San Diego, CA, USA; Department of Radiology, VA San Diego Healthcare System, La Jolla, CA, USA.
| |
Collapse
|
81
|
Abstract
PURPOSE OF REVIEW Chronic kidney disease-mineral and bone disorder (CKD-MBD) is a complex disorder of bone and mineral metabolism that results in an excess risk of fractures, cardiovascular events and mortality. The management of the bone disorder aspect of CKD-MBD may require bone biopsy to determine appropriate treatment strategies. However, it is unclear when biopsy may be necessary and whether or not state-of-the art imaging and serologic testing can supplant the bone biopsy as a tool to assist with management decisions. RECENT FINDINGS Advances in imaging methods now permit the noninvasive assessment of structural aspects of bone quality. Furthermore, common bone imaging tools, such as dual-energy X-ray absorptiometry, can be used to stratify for fracture risk. Circulating markers of bone turnover can be used to assess the risk of bone loss and fracture, but they are less useful in diagnosing the type of renal osteodystrophy. SUMMARY Although advances in imaging now permit the assessment of fracture risk more accurately in CKD patients, the assessment of the type of renal osteodystrophy remains poor without bone biopsy. The virtual bone biopsy will be possible only when we are able to noninvasively assess turnover with good accuracy. A bone biopsy is needed when the bone turnover is unclear.
Collapse
Affiliation(s)
- Revekka Babayev
- Department of Medicine, Columbia University Medical Center, New York, New York, USA
| | | |
Collapse
|
82
|
Burt LA, Macdonald HM, Hanley DA, Boyd SK. Bone microarchitecture and strength of the radius and tibia in a reference population of young adults: an HR-pQCT study. Arch Osteoporos 2014; 9:183. [PMID: 24862979 DOI: 10.1007/s11657-014-0183-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 05/05/2014] [Indexed: 02/03/2023]
Abstract
UNLABELLED Within a normative youth cohort (16-29 years) bone parameters for males and females remained stable at the radius. At the tibia, a peak was observed for females at 16-19 years, with bone density and strength decreasing by 29 years. PURPOSE To determine if bone microstructural and strength parameters identified by high-resolution peripheral quantitative computed tomography (HR-pQCT) and finite element analysis (FEA) at the distal radius and tibia, peak within the age range of this youth cohort, and whether the timing of the peaks differ based on sex or skeletal site. METHODS We recruited 251 participants (158 female; 16 to 29 years), grouping them into 5-year age brackets (16-19; 20-24; 25-29 years) assessing microstructural and strength parameters with HR-pQCT and FEA. RESULTS HR-pQCT assessment of males and females (age-matched groups) showed males had higher total area and BMD, trabecular BMD and trabecular number (radius only) cortical thickness and porosity, and failure load, but lower cortical BMD (p < 0.05). Within sex, microstructural and strength parameters remained stable for males, but in females they appeared to peak at 16-19 years at the tibia. Tibia bone strength and trabecular BMD were highest in females 16-19 years (p < 0.05), and tibia cortical porosity was lowest in females 16-19 years (p < 0.001). With the exception of an age-related increase in cortical BMD, all other parameters were stable between 16 and 29 years at the radius for both males and females. We found no peak values for males or females at the radius. At the tibia, a peak was observed for females 16-19 years. CONCLUSION These data provide a population-based assessment of bone microstructural and strength parameters from HR-pQCT and FEA in a youth cohort, showing clear differences in bone quality dependent on sex and skeletal site.
Collapse
Affiliation(s)
- Lauren A Burt
- Department of Radiology, Faculty of Medicine, McCaig Institute for Bone and Joint Health, University of Calgary, Room HRIC 3C49, 3280 Hospital Drive NW, Calgary, AB, T2N 4Z6, Canada,
| | | | | | | |
Collapse
|
83
|
Krause M, Museyko O, Breer S, Wulff B, Duckstein C, Vettorazzi E, Glueer C, Püschel K, Engelke K, Amling M. Accuracy of trabecular structure by HR-pQCT compared to gold standard μCT in the radius and tibia of patients with osteoporosis and long-term bisphosphonate therapy. Osteoporos Int 2014; 25:1595-606. [PMID: 24566588 DOI: 10.1007/s00198-014-2650-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 02/05/2014] [Indexed: 12/27/2022]
Abstract
UNLABELLED Despite an increasing use of high-resolution peripheral quantitative computed tomography (HR-pQCT) to evaluate bone morphology in vivo, there are reservations about its applicability in patients with osteoporosis and antiresorptive therapy. This study shows that HR-pQCT provides acceptable in vivo accuracy for bone volume fraction (BV/TV) in patients with osteoporosis and bisphosphonate (BP) treatment. INTRODUCTION The primary aim was to analyze agreement of trabecular structure between HR-pQCT and gold standard microtomography (μCT) in patients with osteoporosis and long-term BP therapy. METHODS In the BioAsset study, we analyzed cadaver radii and tibiae of 34 postmenopausal females (81.1 ± 7.1 years) with osteoporosis (no BP n = 22, 1-5 years BP n = 5, >5 years BP n = 7). Two HR-pQCT protocols (patient-mode and μCT-mode) were compared with gold standard μCT after image registration. Undecalcified histological sections were obtained to quantify nonmineralized bone matrix. Bland-Altman plots illustrated methodological agreement. Multiple regression analysis was used to test for variables associated with method agreement. RESULTS In the radius and tibia, patient-mode HR-pQCT derived indices including bone volume fraction, trabecular number, and trabecular separation correlated well with gold standard μCT (R(2) = 0.78 - 0.88) except for trabecular thickness (R(2) = 0.11). Bland-Altman plots illustrated adequate agreement for bone volume fraction. Lower agreement of trabecular number and trabecular separation improved with decreasing structural impairment at the tibia only. Trabecular thickness was not appropriately assessed with HR-pQCT at both skeletal sites. Higher agreement for bone volume fraction was associated with increasing tissue mineral density in the tibia. CONCLUSIONS HR-pQCT provides acceptable in vivo accuracy for BV/TV in patients with osteoporosis and BP treatment. Higher TMD was associated with higher BV/TV accuracy in vivo. Overall, methodological agreement got less accurate with increasing structural impairment in the tibia.
Collapse
Affiliation(s)
- M Krause
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Chang G, Honig S, Brown R, Deniz CM, Egol KA, Babb JS, Regatte RR, Rajapakse CS. Finite element analysis applied to 3-T MR imaging of proximal femur microarchitecture: lower bone strength in patients with fragility fractures compared with control subjects. Radiology 2014; 272:464-74. [PMID: 24689884 DOI: 10.1148/radiol.14131926] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE To determine the feasibility of using finite element analysis applied to 3-T magnetic resonance (MR) images of proximal femur microarchitecture for detection of lower bone strength in subjects with fragility fractures compared with control subjects without fractures. MATERIALS AND METHODS This prospective study was institutional review board approved and HIPAA compliant. Written informed consent was obtained. Postmenopausal women with (n = 22) and without (n = 22) fragility fractures were matched for age and body mass index. All subjects underwent standard dual-energy x-ray absorptiometry. Images of proximal femur microarchitecture were obtained by using a high-spatial-resolution three-dimensional fast low-angle shot sequence at 3 T. Finite element analysis was applied to compute elastic modulus as a measure of strength in the femoral head and neck, Ward triangle, greater trochanter, and intertrochanteric region. The Mann-Whitney test was used to compare bone mineral density T scores and elastic moduli between the groups. The relationship (R(2)) between elastic moduli and bone mineral density T scores was assessed. RESULTS Patients with fractures showed lower elastic modulus than did control subjects in all proximal femur regions (femoral head, 8.51-8.73 GPa vs 9.32-9.67 GPa; P = .04; femoral neck, 3.11-3.72 GPa vs 4.39-4.82 GPa; P = .04; Ward triangle, 1.85-2.21 GPa vs 3.98-4.13 GPa; P = .04; intertrochanteric region, 1.62-2.18 GPa vs 3.86-4.47 GPa; P = .006-.007; greater trochanter, 0.65-1.21 GPa vs 1.96-2.62 GPa; P = .01-.02), but no differences in bone mineral density T scores. There were weak relationships between elastic moduli and bone mineral density T scores in patients with fractures (R(2) = 0.25-0.31, P = .02-.04), but not in control subjects. CONCLUSION Finite element analysis applied to high-spatial-resolution 3-T MR images of proximal femur microarchitecture can allow detection of lower elastic modulus, a marker of bone strength, in subjects with fragility fractures compared with control subjects. MR assessment of proximal femur strength may provide information about bone quality that is not provided by dual-energy x-ray absorptiometry.
Collapse
Affiliation(s)
- Gregory Chang
- From the Department of Radiology, Center for Musculoskeletal Care (G.C.), Osteoporosis Center, Hospital for Joint Diseases (S.H.), Department of Orthopaedic Surgery, Hospital for Joint Diseases (K.A.E.), and Department of Radiology, Center for Biomedical Imaging (G.C., R.B., C.M.D., J.S.B., R.R.R.), NYU Langone Medical Center, 550 First Avenue, New York, NY 10016; and Department of Radiology, University of Pennsylvania School of Medicine, 3400 Spruce Street, Philadelphia, PA (C.S.R.)
| | | | | | | | | | | | | | | |
Collapse
|
85
|
Microstructural parameters of bone evaluated using HR-pQCT correlate with the DXA-derived cortical index and the trabecular bone score in a cohort of randomly selected premenopausal women. PLoS One 2014; 9:e88946. [PMID: 24551194 PMCID: PMC3923873 DOI: 10.1371/journal.pone.0088946] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 01/14/2014] [Indexed: 01/23/2023] Open
Abstract
Background Areal bone mineral density is predictive for fracture risk. Microstructural bone parameters evaluated at the appendicular skeleton by high-resolution peripheral quantitative computed tomography (HR-pQCT) display differences between healthy patients and fracture patients. With the simple geometry of the cortex at the distal tibial diaphysis, a cortical index of the tibia combining material and mechanical properties correlated highly with bone strength ex vivo. The trabecular bone score derived from the scan of the lumbar spine by dual-energy X-ray absorptiometry (DXA) correlated ex vivo with the micro architectural parameters. It is unknown if these microstructural correlations could be made in healthy premenopausal women. Methods Randomly selected women between 20–40 years of age were examined by DXA and HR-pQCT at the standard regions of interest and at customized sub regions to focus on cortical and trabecular parameters of strength separately. For cortical strength, at the distal tibia the volumetric cortical index was calculated directly from HR-pQCT and the areal cortical index was derived from the DXA scan using a Canny threshold-based tool. For trabecular strength, the trabecular bone score was calculated based on the DXA scan of the lumbar spine and was compared with the corresponding parameters derived from the HR-pQCT measurements at radius and tibia. Results Seventy-two healthy women were included (average age 33.8 years, average BMI 23.2 kg/m2). The areal cortical index correlated highly with the volumetric cortical index at the distal tibia (R = 0.798). The trabecular bone score correlated moderately with the microstructural parameters of the trabecular bone. Conclusion This study in randomly selected premenopausal women demonstrated that microstructural parameters of the bone evaluated by HR-pQCT correlated with the DXA derived parameters of skeletal regions containing predominantly cortical or cancellous bone. Whether these indexes are suitable for better predictions of the fracture risk deserves further investigation.
Collapse
|
86
|
Nishiyama KK, Ito M, Harada A, Boyd SK. Classification of women with and without hip fracture based on quantitative computed tomography and finite element analysis. Osteoporos Int 2014; 25:619-26. [PMID: 23948875 DOI: 10.1007/s00198-013-2459-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 06/27/2013] [Indexed: 10/26/2022]
Abstract
UNLABELLED We used quantitative computed tomography and finite element analysis to classify women with and without hip fracture. Highly accurate classifications were achieved indicating the potential for these methods to be used for subject-specific assessment of fracture risk. INTRODUCTION Areal bone mineral density (aBMD) is the current clinical diagnostic standard for assessing fracture risk; however, many fractures occur in people not defined as osteoporotic by aBMD. Finite element (FE) analysis based on quantitative computed tomography (QCT) images takes into account both bone material and structural properties to provide subject-specific estimates of bone strength. Thus, our objective was to determine if FE estimates of bone strength could classify women with and without hip fracture. METHODS Twenty women with femoral neck fracture and 15 women with trochanteric fractures along with 35 age-matched controls were scanned with QCT at the hip. Since it is unknown how a specific subject will fall, FE analysis was used to estimate bone stiffness and bone failure load under loading configurations with femoral neck internal rotation angles ranging from -30° to 45° with 15° intervals. Support vector machine (SVM) models and a tenfold cross-validation scheme were used to classify the subjects with and without fracture. RESULTS High accuracy was achieved when using only FE analysis for classifying the women with and without fracture both when the fracture types were pooled (82.9 %) and when analyzed separately by femoral neck fracture (87.5 %) and trochanteric fracture (80.0 %). The accuracy was further increased when FE analysis was combined with volumetric BMD (pooled fractures accuracy, 91.4 %) CONCLUSIONS While larger prospective studies are needed, these results demonstrate that FE analysis using multiple loading configurations together with SVM models can accurately classify individuals with previous hip fracture.
Collapse
Affiliation(s)
- K K Nishiyama
- Department of Medicine, Columbia University, New York, NY, USA
| | | | | | | |
Collapse
|
87
|
Stein EM, Kepley A, Walker M, Nickolas TL, Nishiyama K, Zhou B, Liu XS, McMahon DJ, Zhang C, Boutroy S, Cosman F, Nieves J, Guo XE, Shane E. Skeletal structure in postmenopausal women with osteopenia and fractures is characterized by abnormal trabecular plates and cortical thinning. J Bone Miner Res 2014; 29:1101-9. [PMID: 24877245 PMCID: PMC4084559 DOI: 10.1002/jbmr.2144] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The majority of fragility fractures occur in women with osteopenia rather than osteoporosis as determined by dual‐energy X‐ray absorptiometry (DXA). However, it is difficult to identify which women with osteopenia are at greatest risk. We performed this study to determine whether osteopenic women with and without fractures had differences in trabecular morphology and biomechanical properties of bone. We hypothesized that women with fractures would have fewer trabecular plates, less trabecular connectivity, and lower stiffness. We enrolled 117 postmenopausal women with osteopenia by DXA (mean age 66 years; 58 with fragility fractures and 59 nonfractured controls). All had areal bone mineral density (aBMD) measured by DXA. Trabecular and cortical volumetric bone mineral density (vBMD), trabecular microarchitecture, and cortical porosity were measured by high‐resolution peripheral computed tomography (HR‐pQCT) of the distal radius and tibia. HR‐pQCT scans were subjected to finite element analysis to estimate whole bone stiffness and individual trabecula segmentation (ITS) to evaluate trabecular type (as plate or rod), orientation, and connectivity.Groups had similar age, race, body mass index (BMI), and mean T‐scores. Fracture subjects had lower cortical and trabecular vBMD, thinner cortices, and thinner, more widely separated trabeculae. By ITS, fracture subjects had fewer trabecular plates, less axially aligned trabeculae, and less trabecular connectivity. Whole bone stiffness was lower in women with fractures. Cortical porosity did not differ. Differences in cortical bone were found at both sites, whereas trabecular differences were more pronounced at the radius.In summary, postmenopausal women with osteopenia and fractures had lower cortical and trabecular vBMD; thinner, more widely separated and rodlike trabecular structure; less trabecular connectivity; and lower whole bone stiffness compared with controls,despite similar aBMD by DXA. Our results suggest that in addition to trabecular and cortical bone loss, changes in plate and rod structure may be important mechanisms of fracture in postmenopausal women with osteopenia.
Collapse
Affiliation(s)
- Emily M Stein
- Department of Medicine; Columbia University College of Physicians and Surgeons; New York NY USA
| | - Anna Kepley
- Department of Medicine; Columbia University College of Physicians and Surgeons; New York NY USA
| | - Marcella Walker
- Department of Medicine; Columbia University College of Physicians and Surgeons; New York NY USA
| | - Thomas L Nickolas
- Department of Medicine; Columbia University College of Physicians and Surgeons; New York NY USA
| | - Kyle Nishiyama
- Department of Medicine; Columbia University College of Physicians and Surgeons; New York NY USA
| | - Bin Zhou
- Bone Bioengineering Laboratory, Department of Biomedical Engineering; Columbia University; New York NY USA
| | - X Sherry Liu
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery; University of Pennsylvania; Philadelphia PA USA
| | - Donald J McMahon
- Department of Medicine; Columbia University College of Physicians and Surgeons; New York NY USA
| | - Chiyuan Zhang
- Department of Medicine; Columbia University College of Physicians and Surgeons; New York NY USA
| | | | - Felicia Cosman
- Department of Medicine; Columbia University College of Physicians and Surgeons; New York NY USA
- Helen Hayes Hospital; West Haverstraw; NY USA
| | - Jeri Nieves
- Department of Medicine; Columbia University College of Physicians and Surgeons; New York NY USA
- Helen Hayes Hospital; West Haverstraw; NY USA
| | - X Edward Guo
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery; University of Pennsylvania; Philadelphia PA USA
| | - Elizabeth Shane
- Department of Medicine; Columbia University College of Physicians and Surgeons; New York NY USA
| |
Collapse
|
88
|
Abstract
Osteoporotic fracture carries an enormous public health burden in terms of mortality and morbidity. Current approaches to identify individuals at high risk for fracture are based on assessment of bone mineral density and presence of other osteoporosis risk factors. Bone mineral density and susceptibility to osteoporotic fractures are highly heritable, and over 60 loci have been robustly associated with one or both traits through genome-wide association studies carried out over the past 7 years. In this review, we discuss opportunities and challenges for incorporating these genetic discoveries into strategies to prevent osteoporotic fracture and translating new insights obtained from these discoveries into development of new therapeutic targets.
Collapse
Affiliation(s)
- Braxton D Mitchell
- Department of Medicine and Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, and Geriatric Research and Education Clinical Center, Veterans Administration Medical Center, Baltimore, MD, USA
| | - Elizabeth A Streeten
- Department of Medicine and Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, and Geriatric Research and Education Clinical Center, Veterans Administration Medical Center, Baltimore, MD, USA
| |
Collapse
|
89
|
Engelke K, Libanati C, Fuerst T, Zysset P, Genant HK. Advanced CT based in vivo methods for the assessment of bone density, structure, and strength. Curr Osteoporos Rep 2013; 11:246-55. [PMID: 23712690 DOI: 10.1007/s11914-013-0147-2] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Based on spiral 3D tomography a large variety of applications have been developed during the last decade to asses bone mineral density, bone macro and micro structure, and bone strength. Quantitative computed tomography (QCT) using clinical whole body scanners provides separate assessment of trabecular, cortical, and subcortical bone mineral density (BMD) and content (BMC) principally in the spine and hip, although the distal forearm can also be assessed. Further bone macrostructure, for example bone geometry or cortical thickness can be quantified. Special high resolution peripheral CT (hr-pQCT) devices have been introduced to measure bone microstructure for example the trabecular architecture or cortical porosity at the distal forearm or tibia. 3D CT is also the basis for finite element analysis (FEA) to determine bone strength. QCT, hr-pQCT, and FEM are increasingly used in research as well as in clinical trials to complement areal BMD measurements obtained by the standard densitometric technique of dual x-ray absorptiometry (DXA). This review explains technical developments and demonstrates how QCT based techniques advanced our understanding of bone biology.
Collapse
Affiliation(s)
- K Engelke
- Institute of Medical Physics, University of Erlangen, Henkestr. 91, 91052, Erlangen, Germany,
| | | | | | | | | |
Collapse
|
90
|
Abstract
Osteoporosis, a disease characterized by loss of bone mass and structural deterioration, is currently diagnosed by dual-energy x-ray absorptiometry (DXA). However, DXA does not provide information about bone microstructure, which is a key determinant of bone strength. Recent advances in imaging permit the assessment of bone microstructure in vivo using high-resolution peripheral quantitative computed tomography (HR-pQCT). From these data, novel image processing techniques can be applied to characterize bone quality and strength. To date, most HR-pQCT studies are cross-sectional comparing subjects with and without fracture. These studies have shown that HR-pQCT is capable of discriminating fracture status independent of DXA. Recent longitudinal studies present new challenges in terms of analyzing the same region of interest and multisite calibrations. Careful application of analysis techniques and educated clinical interpretation of HR-pQCT results have improved our understanding of various bone-related diseases and will no doubt continue to do so in the future.
Collapse
Affiliation(s)
- Kyle K Nishiyama
- Metabolic Bone Diseases Unit, Division of Endocrinology, Department of Medicine, College of Physicians and Surgeons, 630 West 168th Street, PH8 West 864, New York, NY 10032, USA
| | | |
Collapse
|
91
|
Cheung AM, Adachi JD, Hanley DA, Kendler DL, Davison KS, Josse R, Brown JP, Ste-Marie LG, Kremer R, Erlandson MC, Dian L, Burghardt AJ, Boyd SK. High-resolution peripheral quantitative computed tomography for the assessment of bone strength and structure: a review by the Canadian Bone Strength Working Group. Curr Osteoporos Rep 2013; 11:136-46. [PMID: 23525967 PMCID: PMC3641288 DOI: 10.1007/s11914-013-0140-9] [Citation(s) in RCA: 140] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bone structure is an integral determinant of bone strength. The availability of high resolution peripheral quantitative computed tomography (HR-pQCT) has made it possible to measure three-dimensional bone microarchitecture and volumetric bone mineral density in vivo, with accuracy previously unachievable and with relatively low-dose radiation. Recent studies using this novel imaging tool have increased our understanding of age-related changes and sex differences in bone microarchitecture, as well as the effect of different pharmacological therapies. One advantage of this novel tool is the use of finite element analysis modelling to non-invasively estimate bone strength and predict fractures using reconstructed three-dimensional images. In this paper, we describe the strengths and limitations of HR-pQCT and review the clinical studies using this tool.
Collapse
Affiliation(s)
- Angela M. Cheung
- Centre of Excellence in Skeletal Health Assessment, Department of Medicine and Joint Department of Medical Imaging, University Health Network, University of Toronto, Toronto, ON Canada
| | - Jonathan D. Adachi
- Department of Medicine, Michael G. DeGroote School of Medicine, St. Joseph’s Healthcare – McMaster University, Hamilton, ON Canada
| | - David A. Hanley
- Department of Medicine, University of Calgary, Calgary, AB Canada
| | - David L. Kendler
- Department of Medicine, University of British Columbia, Vancouver, BC Canada
| | | | - Robert Josse
- Department of Medicine, University of Toronto, Toronto, ON Canada
| | - Jacques P. Brown
- Department of Medicine, Laval University, Quebec City, PQ Canada
| | | | - Richard Kremer
- Department of Medicine, McGill University, Montreal, PQ Canada
| | - Marta C. Erlandson
- Department of Medicine, University of Toronto, Toronto, ON Canada
- Osteoporosis and Women’s Health Programs, University Health Network, Toronto, Canada
| | - Larry Dian
- Department of Medicine, University of British Columbia, Vancouver, BC Canada
| | - Andrew J. Burghardt
- Musculoskeletal Quantitative Imaging Research Group, Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA USA
| | - Steven K. Boyd
- McCaig Institute for Bone and Joint Health, Department of Radiology, University of Calgary, 3280 Hospital Drive, NW, Calgary, Alberta T2N 4Z6 Canada
| |
Collapse
|
92
|
Das S, Crockett JC. Osteoporosis - a current view of pharmacological prevention and treatment. DRUG DESIGN DEVELOPMENT AND THERAPY 2013; 7:435-48. [PMID: 23807838 PMCID: PMC3686324 DOI: 10.2147/dddt.s31504] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Indexed: 12/12/2022]
Abstract
Postmenopausal osteoporosis is the most common bone disease, associated with low bone mineral
density (BMD) and pathological fractures which lead to significant morbidity. It is defined
clinically by a BMD of 2.5 standard deviations or more below the young female adult mean (T-score
=−2.5). Osteoporosis was a huge global problem both socially and economically
– in the UK alone, in 2011 £6 million per day was spent on treatment and social care
of the 230,000 osteoporotic fracture patients – and therefore viable preventative and
therapeutic approaches are key to managing this problem within the aging population of today. One of
the main issues surrounding the potential of osteoporosis management is diagnosing patients at risk
before they develop a fracture. We discuss the current and future possibilities for identifying
susceptible patients, from fracture risk assessment to shape modeling and in relation to the high
heritability of osteoporosis now that a plethora of genes have been associated with low BMD and
osteoporotic fracture. This review highlights the current therapeutics in clinical use (including
bisphosphonates, anti-RANKL [receptor activator of NF-κB ligand],
intermittent low dose parathyroid hormone, and strontium ranelate) and some of those in development
(anti-sclerostin antibodies and cathepsin K inhibitors). By highlighting the intimate relationship
between the activities of bone forming (osteoblasts) and bone-resorbing (osteoclasts) cells, we
include an overview and comparison of the molecular mechanisms exploited in each therapy.
Collapse
Affiliation(s)
- Subhajit Das
- Musculoskeletal Research Programme, School of Medicine and Dentistry, University of Aberdeen, Aberdeen, UK
| | | |
Collapse
|