51
|
Bonger KM, Hoogendoorn S, van Koppen CJ, Timmers CM, van der Marel GA, Overkleeft HS. Development of Selective LH Receptor Agonists by Heterodimerization with a FSH Receptor Antagonist. ACS Med Chem Lett 2011; 2:85-9. [PMID: 24900256 DOI: 10.1021/ml100229v] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Accepted: 11/01/2010] [Indexed: 11/28/2022] Open
Abstract
The structural resemblance of the luteinizing hormone receptor (LHR) and follicle-stimulating hormone receptor (FSHR) impedes selective agonistic targeting of one of those by low molecular weight (LMW) ligands. In the present study, we describe a series of dimeric ligands consisting of a LMW agonist with dual activity on the FSHR and the LHR linked to a selective FSHR antagonist. Biological evaluation shows these compounds to be potent and selective LHR agonists, since no agonistic activity on the FSHR was observed. Equimolar mixing of the monomeric counterparts did not yield the pharmacological profile observed for the heterodimeric ligands, and FSHR agonism of the monomeric LHR agonist was still observed. The here-described results show that ligands with unique pharmacological profiles can be obtained by dimerizing monomeric molecules with distinct apposite properties.
Collapse
Affiliation(s)
- Kimberly M. Bonger
- Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Sascha Hoogendoorn
- Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | | | | | | | - Herman S. Overkleeft
- Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| |
Collapse
|
52
|
Shpakov AO, Shpakova EA. [Low-molecular regulators of polypeptide hormones receptors containing LGR repeats]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2010; 56:303-18. [PMID: 20695210 DOI: 10.18097/pbmc20105603303] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
During the last years the low-molecular non-peptidic regulators of the polypeptide hormones receptors containing LGR-repeats were identified. In the review the data on the structure and the molecular mechanisms of action of these regulators as agonists and antagonists of the luteinizing, follicle-stimulating and thyrotropin hormones are analyzed and systematized. The regulators interact with the serpentine domain of LGR-receptor and trigger the signaling cascades coupled with the receptor. Low-molecular agonists and antagonists of the LGR-receptors are considered as a new generation of the drugs that regulates the functional activity of sensitive to pituitary glycoprotein hormones signaling systems with high efficiency and selectivity. These regulators are more accessible compared to the hormones and can be use orally.
Collapse
|
53
|
van Zeijl CJJ, Fliers E, van Koppen CJ, Surovtseva OV, de Gooyer ME, Mourits MP, Wiersinga WM, Miltenburg AMM, Boelen A. Effects of thyrotropin and thyrotropin-receptor-stimulating Graves' disease immunoglobulin G on cyclic adenosine monophosphate and hyaluronan production in nondifferentiated orbital fibroblasts of Graves' ophthalmopathy patients. Thyroid 2010; 20:535-44. [PMID: 20384487 DOI: 10.1089/thy.2009.0447] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
BACKGROUND Orbital fibroblasts are involved in the pathogenesis of Graves' ophthalmopathy (GO) by producing hyaluronan (HA), synthesized by three types of hyaluronan synthases (HAS1, HAS2, and HAS3). Thyrotropin receptors (TSHR) expressed in orbital fibroblasts activate the cyclic adenosine monophosphate (cAMP) pathway. Only sparse data are available at present supporting a role for TSHR activation in the regulation of HA in GO orbital fibroblasts. We hypothesize that TSHR activation, via cAMP signaling, results in induction of HAS1-3 mRNA expression and HA production by nondifferentiated GO orbital fibroblasts. METHODS Cultured nondifferentiated orbital fibroblasts obtained during orbital decompression surgery from 15 GO patients were stimulated with recombinant human TSH (rhTSH), TSHR-stimulating Graves' disease immunoglobulin G (GD-IgG) or forskolin (FSK), or interleukin-1beta (IL-1beta). RESULTS FSK significantly stimulated cAMP production, HAS1 and HAS3 mRNA expression, and HA secretion in orbital fibroblasts. IL-1beta slightly induced cAMP production, but induced HAS mRNA expression of all three isoforms and HA secretion. In contrast, the effects of rhTSH and GD-IgG on cAMP were modest and absent, respectively, and on HAS mRNA and HA synthesis were completely absent. CONCLUSIONS The strong increase in cAMP synthesis by FSK in nondifferentiated GO orbital fibroblasts results in increased HA synthesis, but TSHR activation by rhTSH or GD-IgG does not result in altered HA synthesis. Our results do not support a predominant role for GD-IgGs in the accumulation of orbital glycosaminoglycans; cytokines like IL-1beta seem largely responsible for excessive glycosaminoglycan production by nondifferentiated orbital fibroblasts in early immunopathogenesis of GO.
Collapse
Affiliation(s)
- Clementine J J van Zeijl
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Kleinau G, Jaeschke H, Worth CL, Mueller S, Gonzalez J, Paschke R, Krause G. Principles and determinants of G-protein coupling by the rhodopsin-like thyrotropin receptor. PLoS One 2010; 5:e9745. [PMID: 20305779 PMCID: PMC2841179 DOI: 10.1371/journal.pone.0009745] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Accepted: 02/19/2010] [Indexed: 11/23/2022] Open
Abstract
In this study we wanted to gain insights into selectivity mechanisms between G-protein-coupled receptors (GPCR) and different subtypes of G-proteins. The thyrotropin receptor (TSHR) binds G-proteins promiscuously and activates both Gs (cAMP) and Gq (IP). Our goal was to dissect selectivity patterns for both pathways in the intracellular region of this receptor. We were particularly interested in the participation of poorly investigated receptor parts. We systematically investigated the amino acids of intracellular loop (ICL) 1 and helix 8 using site-directed mutagenesis alongside characterization of cAMP and IP accumulation. This approach was guided by a homology model of activated TSHR in complex with heterotrimeric Gq, using the X-ray structure of opsin with a bound G-protein peptide as a structural template. We provide evidence that ICL1 is significantly involved in G-protein activation and our model suggests potential interactions with subunits Gα as well as Gβγ. Several amino acid substitutions impaired both IP and cAMP accumulation. Moreover, we found a few residues in ICL1 (L440, T441, H443) and helix 8 (R687) that are sensitive for Gq but not for Gs activation. Conversely, not even one residue was found that selectively affects cAMP accumulation only. Together with our previous mutagenesis data on ICL2 and ICL3 we provide here the first systematically completed map of potential interfaces between TSHR and heterotrimeric G-protein. The TSHR/Gq-heterotrimer complex is characterized by more selective interactions than the TSHR/Gs complex. In fact the receptor interface for binding Gs is a subset of that for Gq and we postulate that this may be true for other GPCRs coupling these G-proteins. Our findings support that G-protein coupling and preference is dominated by specific structural features at the intracellular region of the activated GPCR but is completed by additional complementary recognition patterns between receptor and G-protein subtypes.
Collapse
Affiliation(s)
- Gunnar Kleinau
- Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Holger Jaeschke
- Department for Internal Medicine, Neurology and Dermatology, University of Leipzig, Leipzig, Germany
| | | | - Sandra Mueller
- Department for Internal Medicine, Neurology and Dermatology, University of Leipzig, Leipzig, Germany
| | - Jorge Gonzalez
- Department for Internal Medicine, Neurology and Dermatology, University of Leipzig, Leipzig, Germany
| | - Ralf Paschke
- Department for Internal Medicine, Neurology and Dermatology, University of Leipzig, Leipzig, Germany
| | - Gerd Krause
- Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany
- * E-mail:
| |
Collapse
|
55
|
Bonger KM, Kapoerchan VV, Grotenbreg GM, van Koppen CJ, Timmers CM, van der Marel GA, Overkleeft HS. Oligoproline helices as structurally defined scaffolds for oligomeric G protein-coupled receptor ligands. Org Biomol Chem 2010; 8:1881-4. [DOI: 10.1039/b923556f] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
56
|
Shpakov AO, Shpakova EA. Low-molecular regulators of polypeptide hormone receptors containing LGR-repeats. BIOCHEMISTRY (MOSCOW) SUPPLEMENT SERIES B: BIOMEDICAL CHEMISTRY 2009. [DOI: 10.1134/s1990750809040040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
57
|
Bonger K, Hoogendoorn S, van Koppen C, Timmers C, Overkleeft H, van der Marel G. Synthesis and Pharmacological Evaluation of Dimeric Follicle-Stimulating Hormone Receptor Antagonists. ChemMedChem 2009; 4:2098-102. [DOI: 10.1002/cmdc.200900344] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
58
|
Neumann S, Raaka BM, Gershengorn MC. Human TSH receptor ligands as pharmacological probes with potential clinical application. Expert Rev Endocrinol Metab 2009; 4:669. [PMID: 20161662 PMCID: PMC2819035 DOI: 10.1586/eem.09.36] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The biologic role of thyroid-stimulating hormone (TSH; thyrotropin) as an activator (agonist) of the TSH receptor (TSHR) in the hypothalamic-pituitary-thyroid axis is well known and activation of TSHR by recombinant human TSH is used clinically in patients with thyroid cancer. TSHR ligands other than TSH could be used to probe TSHR biology in thyroidal and extrathyroidal tissues, and potentially be employed in patients. A number of different TSHR ligands have been reported, including TSH analogs, antibodies and small-molecule, drug-like compounds. In this review, we will provide an update on all these classes of TSHR agonists and antagonists but place emphasis on small-molecule ligands.
Collapse
Affiliation(s)
- Susanne Neumann
- Clinical Endocrinology Branch, NIDDK, NIH, 50 South Drive, Bethesda, MD 20892-28029, USA, Tel.: +1 301 451 6324, Fax: +1 301 480 4214
| | - Bruce M Raaka
- Clinical Endocrinology Branch, NIDDK, NIH, 50 South Drive, Bethesda, MD 20892-28029, USA, Tel.: +1 301 451 6307, Fax: +1 301 480 4214
| | - Marvin C Gershengorn
- Clinical Endocrinology Branch, NIDDK, NIH, 50 South Drive, Bethesda, MD 20892-28029, USA, Tel.: +1 301 451 6305, Fax: +1 301 480 4214
| |
Collapse
|
59
|
Small-molecule agonists for the thyrotropin receptor stimulate thyroid function in human thyrocytes and mice. Proc Natl Acad Sci U S A 2009; 106:12471-6. [PMID: 19592511 DOI: 10.1073/pnas.0904506106] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Seven-transmembrane-spanning receptors (7TMRs) are prominent drug targets. However, small-molecule ligands for 7-transmembrane-spanning receptors for which the natural ligands are large, heterodimeric glycoprotein hormones, like thyroid-stimulating hormone (TSH; thyrotropin), have only recently been reported, and none are approved for human use. We have used quantitative high-throughput screening to identify a small-molecule TSH receptor (TSHR) agonist that was modified to produce a second agonist with increased potency. We show that these agonists are highly selective for human TSHR versus other glycoprotein hormone receptors and interact with the receptor's serpentine domain. A binding pocket within the transmembrane domain was defined by docking into a TSHR homology model and was supported by site-directed mutagenesis. In primary cultures of human thyrocytes, both TSH and the agonists increase mRNA levels for thyroglobulin, thyroperoxidase, sodium iodide symporter, and deiodinase type 2, and deiodinase type 2 enzyme activity. Moreover, oral administration of the agonist stimulated thyroid function in mice, resulting in increased serum thyroxine and thyroidal radioiodide uptake. Thus, we discovered a small molecule that activates human TSHR in vitro, is orally active in mice, and could be a lead for development of drugs to use in place of recombinant human TSH in patients with thyroid cancer.
Collapse
|
60
|
Bonger K, van den Berg RJ, Knijnenburg A, Heitman L, van Koppen C, Timmers C, Overkleeft H, van der Marel G. Discovery of Selective Luteinizing Hormone Receptor Agonists Using the Bivalent Ligand Method. ChemMedChem 2009; 4:1189-95. [DOI: 10.1002/cmdc.200900058] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
61
|
Heitman LH, Narlawar R, de Vries H, Willemsen MN, Wolfram D, Brussee J, Ijzerman AP. Substituted terphenyl compounds as the first class of low molecular weight allosteric inhibitors of the luteinizing hormone receptor. J Med Chem 2009; 52:2036-42. [PMID: 19296599 DOI: 10.1021/jm801561h] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The luteinizing hormone (LH) receptor plays an important role in fertility and certain cancers. The endogenous ligands human chorionic gonadotropin (hCG) and LH bind to the large N terminal domain of the receptor. We recently reported on the first radiolabeled low molecular weight (LMW) agonist for this receptor, [(3)H]Org 43553, which was now used to screen for new LMW ligands. We identified a terphenyl derivative that inhibited [(3)H]Org 43553 binding to the receptor, which led us to synthesize a number of derivatives. The most potent compound of this terphenyl series, 24 (LUF5771), was able to increase the dissociation rate of [(3)H]Org 43553 by 3.3-fold (at 10 muM). In a functional assay, the presence of 24 resulted in a 2- to 3-fold lower potency of both Org 43553 and LH. Thus, the compounds presented in this paper are the first LMW ligands that allosterically inhibit the LH receptor.
Collapse
Affiliation(s)
- Laura H Heitman
- Division of Medicinal Chemistry, Leiden/Amsterdam Center for Drug Research, Leiden University, RA Leiden, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
62
|
van Straten N, Timmers M. Chapter 8 Non-Peptide Ligands for the Gonadotropin Receptors. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2009. [DOI: 10.1016/s0065-7743(09)04408-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
63
|
van de Lagemaat R, Timmers C, Kelder J, van Koppen C, Mosselman S, Hanssen R. Induction of ovulation by a potent, orally active, low molecular weight agonist (Org 43553) of the luteinizing hormone receptor. Hum Reprod 2008; 24:640-8. [DOI: 10.1093/humrep/den412] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|