51
|
Vizeli P, Meyer Zu Schwabedissen HE, Liechti ME. No major role of norepinephrine transporter gene variations in the cardiostimulant effects of MDMA. Eur J Clin Pharmacol 2018; 74:275-283. [PMID: 29198060 PMCID: PMC5808057 DOI: 10.1007/s00228-017-2392-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 11/27/2017] [Indexed: 12/11/2022]
Abstract
PURPOSE Methylenedioxymethamphetamine (MDMA, ecstasy) is used recreationally and frequently leads to sympathomimetic toxicity. MDMA produces cardiovascular and subjective stimulant effects that were shown to partially depend on the norepinephrine transporter (NET)-mediated release of norepinephrine and stimulation of α1-adrenergic receptors. Genetic variants, such as single-nucleotide polymorphisms (SNPs), of the NET gene (SLC6A2) may explain interindividual differences in the acute stimulant-type responses to MDMA in humans. METHODS We characterized the effects of common genetic variants of the SLC6A2 gene (rs168924, rs47958, rs1861647, rs2242446, and rs36029) on cardiovascular and subjective stimulation after MDMA administration in 124 healthy subjects in a pooled analysis of eight double-blind, placebo-controlled studies. RESULTS Carriers of the GG genotype of the SLC6A2 rs1861647 SNP presented higher elevations of heart rate and rate-pressure product after MDMA than subjects with one or no G alleles. Subjects with a C allele in the SLC6A2 rs2242446 SNP presented higher elevations of the heart rate after MDMA administration compared with the TT genotype. Subjects with the AA genotype of the SLC6A2 rs36029 SNP presented higher elevations of mean arterial pressure and rate pressure product after MDMA administration than carriers of the G allele. The SLC6A2 rs168924 and rs47958 SNPs did not alter the response to MDMA. CONCLUSIONS Genetic polymorphisms of the SLC6A2 gene weakly moderated the acute cardiovascular response to MDMA in controlled studies and may play a minor role in adverse cardiovascular events when MDMA is used recreationally.
Collapse
Affiliation(s)
- Patrick Vizeli
- Division of Clinical Pharmacology and Toxicology, Department of Biomedicine, Department of Clinical Research, University Hospital Basel, University of Basel, Schanzenstrasse 55, 4056, Basel, Switzerland
| | | | - Matthias E Liechti
- Division of Clinical Pharmacology and Toxicology, Department of Biomedicine, Department of Clinical Research, University Hospital Basel, University of Basel, Schanzenstrasse 55, 4056, Basel, Switzerland.
| |
Collapse
|
52
|
(±)-MDMA and its enantiomers: potential therapeutic advantages of R(-)-MDMA. Psychopharmacology (Berl) 2018; 235:377-392. [PMID: 29248945 DOI: 10.1007/s00213-017-4812-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 12/06/2017] [Indexed: 10/18/2022]
Abstract
The use of (±)-3,4-methylenedioxymethamphetamine ((±)-MDMA) as an adjunct to psychotherapy in the treatment of psychiatric and behavioral disorders dates back over 50 years. Only in recent years have controlled and peer-reviewed preclinical and clinical studies lent support to (±)-MDMA's hypothesized clinical utility. However, the clinical utility of (±)-MDMA is potentially mitigated by a range of demonstrated adverse effects. One potential solution could lie in the individual S(+) and R(-) enantiomers that comprise (±)-MDMA. Individual enantiomers of racemic compounds have been employed in psychiatry to improve a drug's therapeutic index. Although no research has explored the individual effects of either S(+)-MDMA or R(-)-MDMA in humans in a controlled manner, preclinical research has examined similarities and differences between the two molecules and the racemic compound. This review addresses information related to the pharmacodynamics, neurotoxicity, physiological effects, and behavioral effects of S(+)-MDMA and R(-)-MDMA that might guide preclinical and clinical research. The current preclinical evidence suggests that R(-)-MDMA may provide an improved therapeutic index, maintaining the therapeutic effects of (±)-MDMA with a reduced side effect profile, and that future investigations should investigate the therapeutic potential of R(-)-MDMA.
Collapse
|
53
|
Progress and promise for the MDMA drug development program. Psychopharmacology (Berl) 2018; 235:561-571. [PMID: 29152674 DOI: 10.1007/s00213-017-4779-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 11/01/2017] [Indexed: 12/23/2022]
Abstract
Pharmacotherapy is often used to target symptoms of posttraumatic stress disorder (PTSD), but does not provide definitive treatment, and side effects of daily medication are often problematic. Trauma-focused psychotherapies are more likely than drug treatment to achieve PTSD remission, but have high dropout rates and ineffective for a large percentage of patients. Therefore, research into drugs that might increase the effectiveness of psychotherapy is a logical avenue of investigation. The most promising drug studied as a catalyst to psychotherapy for PTSD thus far is 3,4-methylenedioxymethamphetamine (MDMA), commonly known as the recreational drug "Ecstasy." MDMA stimulates the release of hormones and neurochemicals that affect key brain areas for emotion and memory processing. A series of recently completed phase 2 clinical trials of MDMA-assisted psychotherapy for treatment of PTSD show favorable safety outcomes and large effect sizes that warrant expansion into multi-site phase 3 trials, set to commence in 2018. The nonprofit sponsor of the MDMA drug development program, the Multidisciplinary Association for Psychedelic Studies (MAPS), is supporting these trials to explore whether MDMA, administered on only a few occasions, can increase the effectiveness of psychotherapy. Brain imaging techniques and animal models of fear extinction are elucidating neural mechanisms underlying the robust effects of MDMA on psychological processing; however, much remains to be learned about the complexities of MDMA effects as well as the complexities of PTSD itself.
Collapse
|
54
|
Serotonergic targets for the treatment of L-DOPA-induced dyskinesia. J Neural Transm (Vienna) 2018; 125:1203-1216. [PMID: 29305656 DOI: 10.1007/s00702-017-1837-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 12/28/2017] [Indexed: 12/31/2022]
Abstract
Dopamine (DA) replacement therapy with L-3,4-dihydroxyphenylalanine (L-DOPA) continues to be the gold-standard treatment for Parkinson's disease (PD). Despite clear symptomatic benefit, long-term L-DOPA use often results in the development of L-DOPA-induced dyskinesia (LID), significantly reducing quality of life and increasing costs for PD patients and their caregivers. Accumulated research has demonstrated that several pre- and post-synaptic mechanisms contribute to LID development and expression. In particular, raphe-striatal hyperinnervation and unregulated DA release from 5-HT terminals is postulated to play a central role in LID manifestation. As such, manipulation of the 5-HT system has garnered considerable attention. Both pre-clinical and clinical research has supported the potential of modulating the 5-HT system for LID prevention and treatment. This review discusses the rationale for continued investigation of several potential anti-dyskinetic strategies including 5-HT stimulation of 5-HT1A and 5-HT1B receptors and blockade of 5-HT2A receptors and SERT. We present the latest findings from experimental and clinical investigations evaluating these 5-HT targets with the goal of identifying those with translational promise and the challenges associated with each.
Collapse
|
55
|
The central serotonin2B receptor as a new pharmacological target for the treatment of dopamine-related neuropsychiatric disorders: Rationale and current status of research. Pharmacol Ther 2018; 181:143-155. [DOI: 10.1016/j.pharmthera.2017.07.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
56
|
Simmler LD, Liechti ME. Pharmacology of MDMA- and Amphetamine-Like New Psychoactive Substances. Handb Exp Pharmacol 2018; 252:143-164. [PMID: 29633178 DOI: 10.1007/164_2018_113] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
New psychoactive substances (NPS) with amphetamine-, aminoindan-, and benzofuran basic chemical structures have recently emerged for recreational drug use. Detailed information about their psychotropic effects and health risks is often limited. At the same time, it emerged that the pharmacological profiles of these NPS resemble those of amphetamine or 3,4-methylenedioxymethamphetamine (MDMA). Amphetamine-like NPS induce psychostimulation and euphoria mediated predominantly by norepinephrine (NE) and dopamine (DA) transporter (NET and DAT) inhibition and transporter-mediated release of NE and DA, thus showing a more catecholamine-selective profile. MDMA-like NPS frequently induce well-being, empathy, and prosocial effects and have only moderate psychostimulant properties. These MDMA-like substances primarily act by inhibiting the serotonin (5-HT) transporter (SERT) and NET, also inducing 5-HT and NE release. Monoamine receptor interactions vary considerably among amphetamine- and MDMA-like NPS. Clinically, amphetamine- and MDMA-like NPS can induce sympathomimetic toxicity. The aim of this chapter is to review the state of knowledge regarding these substances with a focus on the description of the in vitro pharmacology of selected amphetamine- and MDMA-like NPS. In addition, it is aimed to provide links between pharmacological profiles and in vivo effects and toxicity, which leads to the conclusion that abuse liability for amphetamine-like NPS may be higher than for MDMA-like NPS, but that the risk for developing the life-threatening serotonin syndrome may be increased for MDMA-like NPS.
Collapse
Affiliation(s)
- Linda D Simmler
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland.
| | - Matthias E Liechti
- Division of Clinical Pharmacology and Toxicology, University Hospital Basel, Basel, Switzerland.
| |
Collapse
|
57
|
MACÚCHOVÁ E, ŠLAMBEROVÁ R. Does Prenatal Methamphetamine Exposure Induce Sensitization to Drugs in Adulthood? Physiol Res 2017; 66:S457-S467. [DOI: 10.33549/physiolres.933803] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Behavioral sensitization is defined as augmented psychomotor activity, which can be observed after drug re-administration following withdrawal of repeated drug exposure. It has been shown that abuse of one drug can lead to increased sensitivity to certain other drugs. This effect of developed general drug sensitivity is called cross-sensitization and has been reported between drugs with similar as well as different mechanisms of action. There is growing evidence that exposure to drugs in utero not only causes birth defects and delays in infant development, but also impairs the neural reward pathways, in the brains of developing offspring, in such a way that it can increase the tendency for drug addiction later in life. This review summarizes the results of preclinical studies that focused on testing behavioral cross-sensitization, after prenatal methamphetamine exposure, to drugs administered in adulthood, with both similar and different mechanisms of action. Traditionally, behavioral sensitization has been examined using the Open field or the Laboras Test to record locomotor activity, and the Conditioned Place Preference and Self-administration test to examine drug-seeking behavior. However, it seems that prenatal drug exposure can sensitize animals not only to the locomotor-stimulating and conditioning effects of drugs, but may also be responsible for modified responses to various drug effects.
Collapse
Affiliation(s)
| | - R. ŠLAMBEROVÁ
- Department of Normal, Pathological and Clinical Physiology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
58
|
Mobaraki F, Seghatoleslam M, Fazel A, Ebrahimzadeh-Bideskan A. Effects of MDMA (ecstasy) on apoptosis and heat shock protein (HSP70) expression in adult rat testis. Toxicol Mech Methods 2017; 28:219-229. [DOI: 10.1080/15376516.2017.1388461] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Fahimeh Mobaraki
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Masoumeh Seghatoleslam
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Microanatomy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Fazel
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Microanatomy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Ebrahimzadeh-Bideskan
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Microanatomy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
59
|
Hondebrink L, Zwartsen A, Westerink RHS. Effect fingerprinting of new psychoactive substances (NPS): What can we learn from in vitro data? Pharmacol Ther 2017; 182:193-224. [PMID: 29097307 DOI: 10.1016/j.pharmthera.2017.10.022] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The use of new psychoactive substances (NPS) is increasing and currently >600 NPS have been reported. However, limited information on neuropharmacological and toxicological effects of NPS is available, hampering risk characterization. We reviewed the literature on the in vitro neuronal modes of action to obtain effect fingerprints of different classes of illicit drugs and NPS. The most frequently reported NPS were selected for review: cathinones (MDPV, α-PVP, mephedrone, 4-MEC, pentedrone, methylone), cannabinoids (JWH-018), (hallucinogenic) phenethylamines (4-fluoroamphetamine, benzofurans (5-APB, 6-APB), 2C-B, NBOMes (25B-NBOMe, 25C-NBOMe, 25I-NBOMe)), arylcyclohexylamines (methoxetamine) and piperazine derivatives (mCPP, TFMPP, BZP). Our effect fingerprints highlight the main modes of action for the different NPS studied, including inhibition and/or reversal of monoamine reuptake transporters (cathinones and non-hallucinogenic phenethylamines), activation of 5-HT2receptors (hallucinogenic phenethylamines and piperazines), activation of cannabinoid receptors (cannabinoids) and inhibition of NDMA receptors (arylcyclohexylamines). Importantly, we identified additional targets by relating reported effect concentrations to the estimated human brain concentrations during recreational use. These additional targets include dopamine receptors, α- and β-adrenergic receptors, GABAAreceptors and acetylcholine receptors, which may all contribute to the observed clinical symptoms following exposure. Additional data is needed as the number of NPS continues to increase. Also, the effect fingerprints we have obtained are still incomplete and suffer from a large variation in the reported effects and effect sizes. Dedicated in vitro screening batteries will aid in complementing specific effect fingerprints of NPS. These fingerprints can be implemented in the risk assessments of NPS that are necessary for eventual control measures to reduce Public Health risks.
Collapse
Affiliation(s)
- Laura Hondebrink
- Dutch Poisons Information Center (DPIC), University Medical Center Utrecht, Utrecht University, The Netherlands
| | - Anne Zwartsen
- Dutch Poisons Information Center (DPIC), University Medical Center Utrecht, Utrecht University, The Netherlands; Neurotoxicology Research Group, Division Toxicology, Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, P.O. Box 80.177, NL-3508 TD, Utrecht, The Netherlands
| | - Remco H S Westerink
- Neurotoxicology Research Group, Division Toxicology, Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, P.O. Box 80.177, NL-3508 TD, Utrecht, The Netherlands.
| |
Collapse
|
60
|
Neuropharmacological characterization of the new psychoactive substance methoxetamine. Neuropharmacology 2017; 123:1-9. [DOI: 10.1016/j.neuropharm.2017.04.035] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 04/22/2017] [Accepted: 04/24/2017] [Indexed: 01/11/2023]
|
61
|
Boxler MI, Liechti ME, Schmid Y, Kraemer T, Steuer AE. First Time View on Human Metabolome Changes after a Single Intake of 3,4-Methylenedioxymethamphetamine in Healthy Placebo-Controlled Subjects. J Proteome Res 2017; 16:3310-3320. [DOI: 10.1021/acs.jproteome.7b00294] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Martina I. Boxler
- Department of Forensic Pharmacology & Toxicology, Zurich Institute of Forensic Medicine, University of Zurich,Winterthurerstrasse 190/52, 8057 Zurich, Switzerland
| | - Matthias E. Liechti
- Psychopharmacology
Research, Division of Clinical Pharmacology and Toxicology, Department
of Biomedicine, Department of Clinical Research, University Hospital Basel, 4031 Basel, Switzerland
| | - Yasmin Schmid
- Psychopharmacology
Research, Division of Clinical Pharmacology and Toxicology, Department
of Biomedicine, Department of Clinical Research, University Hospital Basel, 4031 Basel, Switzerland
| | - Thomas Kraemer
- Department of Forensic Pharmacology & Toxicology, Zurich Institute of Forensic Medicine, University of Zurich,Winterthurerstrasse 190/52, 8057 Zurich, Switzerland
| | - Andrea E. Steuer
- Department of Forensic Pharmacology & Toxicology, Zurich Institute of Forensic Medicine, University of Zurich,Winterthurerstrasse 190/52, 8057 Zurich, Switzerland
| |
Collapse
|
62
|
Simmler LD, Liechti ME. Interactions of Cathinone NPS with Human Transporters and Receptors in Transfected Cells. Curr Top Behav Neurosci 2017; 32:49-72. [PMID: 27272068 DOI: 10.1007/7854_2016_20] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Pharmacological assays carried out in transfected cells have been very useful for describing the mechanism of action of cathinone new psychoactive substances (NPS). These in vitro characterizations provide fast and reliable information on psychoactive substances soon after they emerge for recreational use. Well-investigated comparator compounds, such as methamphetamine, 3,4-methylenedioxymethamphetamine, cocaine, and lysergic acid diethylamide, should always be included in the characterization to enhance the translation of the in vitro data into clinically useful information. We classified cathinone NPS according to their pharmacology at monoamine transporters and receptors. Cathinone NPS are monoamine uptake inhibitors and most induce transporter-mediated monoamine efflux with weak to no activity at pre- or postsynaptic receptors. Cathinones with a nitrogen-containing pyrrolidine ring emerged as NPS that are extremely potent transporter inhibitors but not monoamine releasers. Cathinones exhibit clinically relevant differences in relative potencies at serotonin vs. dopamine transporters. Additionally, cathinone NPS have more dopaminergic vs. serotonergic properties compared with their non-β-keto amphetamine analogs, suggesting more stimulant and reinforcing properties. In conclusion, in vitro pharmacological assays in heterologous expression systems help to predict the psychoactive and toxicological effects of NPS.
Collapse
Affiliation(s)
- Linda D Simmler
- Division of Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, Basel, Switzerland
| | - Matthias E Liechti
- Division of Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, Basel, Switzerland.
| |
Collapse
|
63
|
Costa G, Morelli M, Simola N. Progression and Persistence of Neurotoxicity Induced by MDMA in Dopaminergic Regions of the Mouse Brain and Association with Noradrenergic, GABAergic, and Serotonergic Damage. Neurotox Res 2017; 32:563-574. [PMID: 28597409 DOI: 10.1007/s12640-017-9761-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/17/2017] [Accepted: 05/24/2017] [Indexed: 02/06/2023]
Abstract
The amphetamine-related drug 3,4-methylenedioxymethamphetamine (MDMA) is known to induce neurotoxic damage in dopaminergic regions of the mouse brain. In order to characterize how the number of administrations influenced the severity of MDMA-induced dopaminergic damage and to describe the localization and persistence of this damage, we evaluated the changes in tyrosine hydroxylase (TH) and dopamine transporter (DAT) in different regions of the mouse brain. Moreover, we investigated whether dopaminergic damage was associated with noradrenergic, GABAergic, and serotonergic damage, by evaluating the changes in noradrenaline transporter (NET), glutamic acid decarboxylase-67 (GAD-67), and serotonin transporter (SERT). Mice received 14, 28, or 36 MDMA administrations (10 mg/kg twice a week) and were sacrificed at different time points (postnatal days 85, 110, 138, or 214) for immunohistochemical evaluation. Mice receiving 28 administrations showed reduced levels of DAT-positive fibers in caudate-putamen (CPu) and medial prefrontal cortex (mPFC) and reduced levels of TH-positive nigral neurons. These mice also displayed increased NET-positive hippocampal fibers, reduced GAD-67-positive neurons in CPu and hippocampus, and reduced GAD-67-positive fibers in mPFC. Similar effects of MDMA on DAT, TH, and GAD-67 were found in mice receiving 36 administrations, which also displayed reduced levels of striatal, cortical, and hippocampal TH-immunoreactive fibers. The reductions in dopaminergic markers and GAD-67 persisted at 3 months after MDMA discontinuation. Finally, MDMA never modified the levels of SERT. These results provide further insight into the localization and persistence of MDMA-induced dopaminergic damage and show that this effect may associate with GABAergic but not noradrenergic or serotonergic damage.
Collapse
Affiliation(s)
- Giulia Costa
- Department of Biomedical Sciences, Section of Neuropsychopharmacology, University of Cagliari, Via Ospedale 72, 09124, Cagliari, Italy
| | - Micaela Morelli
- Department of Biomedical Sciences, Section of Neuropsychopharmacology, University of Cagliari, Via Ospedale 72, 09124, Cagliari, Italy. .,National Research Council of Italy, Neuroscience Institute, Cagliari, Italy.
| | - Nicola Simola
- Department of Biomedical Sciences, Section of Neuropsychopharmacology, University of Cagliari, Via Ospedale 72, 09124, Cagliari, Italy
| |
Collapse
|
64
|
Measuring inhibition of monoamine reuptake transporters by new psychoactive substances (NPS) in real-time using a high-throughput, fluorescence-based assay. Toxicol In Vitro 2017; 45:60-71. [PMID: 28506818 DOI: 10.1016/j.tiv.2017.05.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 04/03/2017] [Accepted: 05/11/2017] [Indexed: 12/12/2022]
Abstract
The prevalence and use of new psychoactive substances (NPS) is increasing and currently over 600 NPS exist. Many illicit drugs and NPS increase brain monoamine levels by inhibition and/or reversal of monoamine reuptake transporters (DAT, NET and SERT). This is often investigated using labor-intensive, radiometric endpoint measurements. We investigated the applicability of a novel and innovative assay that is based on a fluorescent monoamine mimicking substrate. DAT, NET or SERT-expressing human embryonic kidney (HEK293) cells were exposed to common drugs (cocaine, dl-amphetamine or MDMA), NPS (4-fluoroamphetamine, PMMA, α-PVP, 5-APB, 2C-B, 25B-NBOMe, 25I-NBOMe or methoxetamine) or the antidepressant fluoxetine. We demonstrate that this fluorescent microplate reader-based assay detects inhibition of different transporters by various drugs and discriminates between drugs. Most IC50 values were in line with previous results from radiometric assays and within estimated human brain concentrations. However, phenethylamines showed higher IC50 values on hSERT, possibly due to experimental differences. Compared to radiometric assays, this high-throughput fluorescent assay is uncomplicated, can measure at physiological conditions, requires no specific facilities and allows for kinetic measurements, enabling detection of transient effects. This assay is therefore a good alternative for radiometric assays to investigate effects of illicit drugs and NPS on monoamine reuptake transporters.
Collapse
|
65
|
Abstract
Thanks to advances in neuroscience, addiction is now recognized as a chronic brain disease with genetic, developmental, and cultural components. Drugs of abuse, including alcohol, are able to produce significant neuroplastic changes responsible for the profound disturbances shown by drug addicted individuals. The current lack of efficacious pharmacological treatments for substance use disorders has encouraged the search for novel and more effective pharmacotherapies. Growing evidence strongly suggests that Sigma Receptors are involved in the addictive and neurotoxic properties of abused drugs, including cocaine , methamphetamine , and alcohol. The present chapter will review the current scientific knowledge on the role of the Sigma Receptor system in the effects of drugs and alcohol, and proposes that this receptor system may represent a novel therapeutic target for the treatment of substance use disorders and associated neurotoxicity.
Collapse
|
66
|
Neurochemical substrates of the rewarding effects of MDMA: implications for the development of pharmacotherapies to MDMA dependence. Behav Pharmacol 2016; 27:116-32. [PMID: 26650254 DOI: 10.1097/fbp.0000000000000210] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In recent years, studies with animal models of reward, such as the intracranial self-stimulation, self-administration, and conditioned place preference paradigms, have increased our knowledge on the neurochemical substrates of the rewarding effects of 3,4-methylenedioxymetamphetamine (MDMA) in rodents. However, pharmacological and neuroimaging studies with human participants are scarce. Serotonin [5-hydroxytryptamine (5-HT)], dopamine (DA), endocannabinoids, and endogenous opiates are the main neurotransmitter systems involved in the rewarding effects of MDMA in rodents, but other neurotransmitters such as glutamate, acetylcholine, adenosine, and neurotensin are also involved. The most important finding of recent research is the demonstration of differential involvement of specific neurotransmitter receptor subtypes (5-HT2, 5-HT3, DA D1, DA D2, CB1, μ and δ opioid, etc.) and extracellular proteins (DA and 5-HT transporters) in the acquisition, expression, extinction, and reinstatement of MDMA self-administration and conditioned place preference. It is important to extend the research on the effects of different compounds acting on these receptors/transporters in animal models of reward, especially in priming-induced, cue-induced, and stress-induced reinstatement. Increase in knowledge of the neurochemical substrates of the rewarding effects of MDMA may contribute to the design of new pharmacological treatments for individuals who develop MDMA dependence.
Collapse
|
67
|
Tyrkkö E, Andersson M, Kronstrand R. The Toxicology of New Psychoactive Substances: Synthetic Cathinones and Phenylethylamines. Ther Drug Monit 2016; 38:190-216. [PMID: 26587869 DOI: 10.1097/ftd.0000000000000263] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND New psychoactive substances (NPSs) are substitutes for classical drugs of abuse and there are now compounds available from all groups of classical drugs of abuse. During 2014, the number of synthetic cathinones increased dramatically and, together with phenylethylamines, they dominate the NPS markets in the European Union. In total, 31 cathinones and 9 phenylethylamines were encountered in 2014. The aim of this article was to summarize the existing knowledge about the basic pharmacology, metabolism, and human toxicology of relevant synthetic cathinones and phenylethylamines. Compared with existing reviews, we have also compiled the existing case reports from both fatal and nonfatal intoxications. METHODS We performed a comprehensive literature search using bibliographic databases PubMed and Web of Science, complemented with Google Scholar. The focus of the literature search was on original articles, case reports, and previously published review articles published in 2014 or earlier. RESULTS The rapid increase of NPSs is a growing concern and sets new challenges not only for societies in drug prevention and legislation but also in clinical and forensic toxicology. In vivo and in vitro studies have demonstrated that the pharmacodynamic profile of cathinones is similar to that of other psychomotor stimulants. Metabolism studies show that cathinones and phenylethylamines are extensively metabolized; however, the parent compound is usually detectable in human urine. In vitro studies have shown that many cathinones and phenylethylamines are metabolized by CYP2D6 enzymes. This indicates that these drugs may have many possible drug-drug interactions and that genetic polymorphism may influence their toxicity. However, the clinical and toxicological relevance of CYP2D6 in adverse effects of cathinones and phenylethylamines is questionable, because these compounds are metabolized by other enzymes as well. The toxidromes commonly encountered after ingestion of cathinones and phenylethylamines are mainly of sympathomimetic and hallucinogenic character with a risk of excited delirium and life-threatening cardiovascular effects. CONCLUSIONS The acute and chronic toxicity of many NPSs is unknown or very sparsely investigated. There is a need for evidence-based-treatment recommendations for acute intoxications and a demand for new strategies to analyze these compounds in clinical and forensic cases.
Collapse
Affiliation(s)
- Elli Tyrkkö
- Department of Forensic Genetics and Forensic Toxicology, National Board of Forensic Medicine, Linköping, Sweden
| | | | | |
Collapse
|
68
|
Bershad AK, Miller MA, Baggott MJ, de Wit H. The effects of MDMA on socio-emotional processing: Does MDMA differ from other stimulants? J Psychopharmacol 2016; 30:1248-1258. [PMID: 27562198 PMCID: PMC8753974 DOI: 10.1177/0269881116663120] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
±3,4-Methylenedioxymethamphetamine (MDMA) is a popular recreational drug that enhances sociability and feelings of closeness with others. These "prosocial" effects appear to motivate the recreational use of MDMA and may also form the basis of its potential as an adjunct to psychotherapy. However, the extent to which MDMA differs from prototypic stimulant drugs, such as dextroamphetamine, methamphetamine, and methylphenidate, in either its behavioral effects or mechanisms of action, is not fully known. The purpose of this review is to evaluate human laboratory findings of the social effects of MDMA compared to other stimulants, ranging from simple subjective ratings of sociability to more complex elements of social processing and behavior. We also review the neurochemical mechanisms by which these drugs may impact sociability. Together, the findings reviewed here lay the groundwork for better understanding the socially enhancing effects of MDMA that distinguish it from other stimulant drugs, especially as these effects relate to the reinforcing and potentially therapeutic effects of the drug.
Collapse
Affiliation(s)
- Anya K Bershad
- Department of Psychiatry and Behavioral Neuroscience,Interdisciplinary Scientist Training Program; University of Chicago, Chicago, IL, USA
| | | | | | | |
Collapse
|
69
|
Popova D, Forsblad A, Hashemian S, Jacobsson SOP. Non-Serotonergic Neurotoxicity by MDMA (Ecstasy) in Neurons Derived from Mouse P19 Embryonal Carcinoma Cells. PLoS One 2016; 11:e0166750. [PMID: 27861613 PMCID: PMC5115802 DOI: 10.1371/journal.pone.0166750] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 11/03/2016] [Indexed: 11/18/2022] Open
Abstract
3,4-methylenedioxymethamphetamine (MDMA; ecstasy) is a commonly abused recreational drug that causes neurotoxic effects in both humans and animals. The mechanism behind MDMA-induced neurotoxicity is suggested to be species-dependent and needs to be further investigated on the cellular level. In this study, the effects of MDMA in neuronally differentiated P19 mouse embryonal carcinoma cells have been examined. MDMA produces a concentration-, time- and temperature-dependent toxicity in differentiated P19 neurons, as measured by intracellular MTT reduction and extracellular LDH activity assays. The P19-derived neurons express both the serotonin reuptake transporter (SERT), that is functionally active, and the serotonin metabolizing enzyme monoamine oxidase A (MAO-A). The involvement of these proteins in the MDMA-induced toxicity was investigated by a pharmacological approach. The MAO inhibitors clorgyline and deprenyl, and the SERT inhibitor fluoxetine, per se or in combination, were not able to mimic the toxic effects of MDMA in the P19-derived neurons or block the MDMA-induced cell toxicity. Oxidative stress has been implicated in MDMA-induced neurotoxicity, but pre-treatment with the antioxidants α-tocopherol or N-acetylcysteine did not reveal any protective effects in the P19 neurons. Involvement of mitochondria in the MDMA-induced cytotoxicity was also examined, but MDMA did not alter the mitochondrial membrane potential (ΔΨm) in the P19 neurons. We conclude that MDMA produce a concentration-, time- and temperature-dependent neurotoxicity and our results suggest that the mechanism behind MDMA-induced toxicity in mouse-derived neurons do not involve the serotonergic system, oxidative stress or mitochondrial dysfunction.
Collapse
Affiliation(s)
- Dina Popova
- Department of Pharmacology and Clinical Neuroscience, Umeå University, Umeå, Sweden
| | - Andréas Forsblad
- Department of Pharmacology and Clinical Neuroscience, Umeå University, Umeå, Sweden
| | - Sanaz Hashemian
- Department of Pharmacology and Clinical Neuroscience, Umeå University, Umeå, Sweden
| | - Stig O. P. Jacobsson
- Department of Pharmacology and Clinical Neuroscience, Umeå University, Umeå, Sweden
- * E-mail:
| |
Collapse
|
70
|
Shimshoni JA, Winkler I, Golan E, Nutt D. Neurochemical binding profiles of novel indole and benzofuran MDMA analogues. Naunyn Schmiedebergs Arch Pharmacol 2016; 390:15-24. [PMID: 27650729 DOI: 10.1007/s00210-016-1297-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 09/02/2016] [Indexed: 12/11/2022]
Abstract
3,4-Methylenedioxy-N-methylamphetamine (MDMA) has been shown to be effective in the treatment of post-traumatic stress disorder (PTSD) in numerous clinical trials. In the present study, we have characterized the neurochemical binding profiles of three MDMA-benzofuran analogues (1-(benzofuran-5-yl)-propan-2-amine, 5-APB; 1-(benzofuran-6-yl)-N-methylpropan-2-amine, 6-MAPB; 1-(benzofuran-5-yl)-N-methylpropan-2-amine, 5-MAPB) and one MDMA-indole analogue (1-(1H-indol-5-yl)-2-methylamino-propan-1-ol, 5-IT). These compounds were screened as potential second-generation anti-PTSD drugs, against a battery of human and non-human receptors, transporters, and enzymes, and their potencies as 5-HT2 receptor agonist and monoamine uptake inhibitors determined. All MDMA analogues displayed high binding affinities for 5-HT2a,b,c and NEα2 receptors, as well as significant 5-HT, DA, and NE uptake inhibition. 5-APB revealed significant agonist activity at the 5-HT2a,b,c receptors, while 6-MAPB, 5-MAPB, and 5-IT exhibited significant agonist activity at the 5-HT2c receptor. There was a lack of correlation between the results of functional uptake and the monoamine transporter binding assay. MDMA analogues emerged as potent and selective monoamine oxidase A inhibitors. Based on 6-MAPB favorable pharmacological profile, it was further subjected to IC50 determination for monoamine transporters. Overall, all MDMA analogues displayed higher monoamine receptor/transporter binding affinities and agonist activity at the 5-HT2a,c receptors as compared to MDMA.
Collapse
Affiliation(s)
- Jakob A Shimshoni
- Department of Toxicology, Kimron Veterinary Institute, Bet Dagan, Israel.
| | | | | | - David Nutt
- Neuropsychopharmacology Unit, Imperial College London, London, UK
| |
Collapse
|
71
|
Reyes-Parada M, Iturriaga-Vasquez P. The development of novel polypharmacological agents targeting the multiple binding sites of nicotinic acetylcholine receptors. Expert Opin Drug Discov 2016; 11:969-81. [DOI: 10.1080/17460441.2016.1227317] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
72
|
Silva S, Carvalho F, Fernandes E, Antunes MJ, Cotrim MD. Contractile effects of 3,4-methylenedioxymethamphetamine on the human internal mammary artery. Toxicol In Vitro 2016; 34:187-193. [PMID: 27079619 DOI: 10.1016/j.tiv.2016.04.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 03/24/2016] [Accepted: 04/04/2016] [Indexed: 11/26/2022]
Abstract
Since the late 1980s numerous reports have detailed adverse reactions to the use of 3,4-methylenedioxymethamphetamine (MDMA) associated with cardiovascular collapse and sudden death, following ventricular tachycardia and hypertension. For a better understanding of the effects of MDMA on the cardiovascular system, it is critical to determine their effects at the vasculature level, including the transporter or neurotransmitter systems that are most affected at the whole range of drug doses. With this purpose in mind, the aim of our study was to evaluate the contractile effect of MDMA in the human internal mammary artery, the contribution of SERT for this effect and the responsiveness of this artery to 5-HT in the presence of MDMA. We have also studied the possible involvement of 5-HT2 receptors on the MDMA contractile effect in this human blood vessel using ketanserin. Our results showed that MDMA contracted the studied human's internal mammary artery in a SERT-independent form, through activation of 5-HT2A receptors. Considering the high plasma concentrations achieved in heavy users or in situations of acute exposure to drugs, this effect is probably involved in the cardiovascular risk profile of this psychostimulant, especially in subjects with pre-existing cardiovascular disease.
Collapse
Affiliation(s)
- Sónia Silva
- Group of Pharmacology and Pharmaceutical Care, Faculty of Pharmacy, University of Coimbra, Portugal.
| | - Félix Carvalho
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Portugal
| | - Eduarda Fernandes
- UCIBIO-REQUIMTE, Laboratory of Applied Chemistry, Department of Chemistry, Faculty of Pharmacy, University of Porto, Portugal
| | - Manuel J Antunes
- Cardiothoracic Surgery, University Hospital of Coimbra, Coimbra, Portugal
| | - Maria Dulce Cotrim
- Group of Pharmacology and Pharmaceutical Care, Faculty of Pharmacy, University of Coimbra, Portugal
| |
Collapse
|
73
|
Ghaderi M, Rezayof A, Vousooghi N, Zarrindast MR. Dorsal hippocampal NMDA receptors mediate the interactive effects of arachidonylcyclopropylamide and MDMA/ecstasy on memory retrieval in rats. Prog Neuropsychopharmacol Biol Psychiatry 2016; 66:41-47. [PMID: 26612394 DOI: 10.1016/j.pnpbp.2015.11.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 11/15/2015] [Accepted: 11/19/2015] [Indexed: 12/13/2022]
Abstract
A combination of cannabis and ecstasy may change the cognitive functions more than either drug alone. The present study was designed to investigate the possible involvement of dorsal hippocampal NMDA receptors in the interactive effects of arachidonylcyclopropylamide (ACPA) and ecstasy/MDMA on memory retrieval. Adult male Wistar rats were cannulated into the CA1 regions of the dorsal hippocampus (intra-CA1) and memory retrieval was examined using the step-through type of passive avoidance task. Intra-CA1 microinjection of a selective CB1 receptor agonist, ACPA (0.5-4ng/rat) immediately before the testing phase (pre-test), but not after the training phase (post-training), impaired memory retrieval. In addition, pre-test intra-CA1 microinjection of MDMA (0.5-1μg/rat) dose-dependently decreased step-through latency, indicating an amnesic effect of the drug by itself. Interestingly, pre-test microinjection of a higher dose of MDMA into the CA1 regions significantly improved ACPA-induced memory impairment. Moreover, pre-test intra-CA1 microinjection of a selective NMDA receptor antagonist, D-AP5 (1 and 2μg/rat) inhibited the reversal effect of MDMA on the impairment of memory retrieval induced by ACPA. Pre-test intra-CA1 microinjection of the same doses of D-AP5 had no effect on memory retrieval alone. These findings suggest that ACPA or MDMA consumption can induce memory retrieval impairment, while their co-administration improves this amnesic effect through interacting with hippocampal glutamatergic-NMDA receptor mechanism. Thus, it seems that the tendency to abuse cannabis with ecstasy may be for avoiding cognitive dysfunction.
Collapse
Affiliation(s)
- Marzieh Ghaderi
- Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ameneh Rezayof
- Department of Animal Biology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | - Nasim Vousooghi
- Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad-Reza Zarrindast
- Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine and Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran; School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran.
| |
Collapse
|
74
|
Roberts CA, Jones A, Montgomery C. Meta-analysis of molecular imaging of serotonin transporters in ecstasy/polydrug users. Neurosci Biobehav Rev 2016; 63:158-67. [DOI: 10.1016/j.neubiorev.2016.02.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 01/11/2016] [Accepted: 02/02/2016] [Indexed: 10/22/2022]
|
75
|
Bershad AK, Weafer JJ, Kirkpatrick MG, Wardle MC, Miller MA, de Wit H. Oxytocin receptor gene variation predicts subjective responses to MDMA. Soc Neurosci 2016; 11:592-9. [DOI: 10.1080/17470919.2016.1143026] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
76
|
Ray TS. Constructing the ecstasy of MDMA from its component mental organs: Proposing the primer/probe method. Med Hypotheses 2015; 87:48-60. [PMID: 26826641 DOI: 10.1016/j.mehy.2015.12.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 12/05/2015] [Accepted: 12/17/2015] [Indexed: 10/22/2022]
Abstract
The drug MDMA, commonly known as ecstasy, produces a specific and distinct open hearted mental state, which led to the creation of a new pharmacological class, "entactogens". Extensive literature on its mechanisms of action has come to characterize MDMA as a "messy" drug with multiple mechanisms, but the consensus is that the distinctive entactogenic effects arise from the release of neurotransmitters, primarily serotonin. I propose an alternative hypothesis: The entactogenic mental state is due to the simultaneous direct activation of imidazoline-1 (I1) and serotonin-2 (5-HT2) receptors by MDMA. This hypothesis emerges from "mental organ" theory, which embodies many hypotheses, the most relevant of which are: "Mental organs" are populations of neurons that all express their defining metabotropic receptor, and each mental organ plays a distinct role in the mind, a role shaped by evolution as mental organs evolve by duplication and divergence. Mental organs are the mechanism by which evolution sculpts the mind. Mental organs can be in or out of consciousness. In order for a mental organ to enter consciousness, three things must happen: The mental organ must be activated directly at its defining receptor. 5-HT2 must be simultaneously activated. One of the functions of activated 5-HT2 is to load other simultaneously activated mental organs fully into consciousness. In some cases THC must be introduced to remove long-term blocks mediated by the cannabinoid system. I propose the "primer/probe" method to test these hypotheses. A "primer" is a drug that selectively activates 5-HT2 (e.g. DOB or MEM) or serotonin-1 (5-HT1) and 5-HT2 (e.g. DOET or 2C-B-fly). A "probe" is a drug that activates a receptor whose corresponding mental organ we wish to load into consciousness in order to understand its role in the mind. The mental organ is loaded into consciousness when the primer and probe are taken together, but not when taken separately. For example, the blood pressure medications rilmenidine and moxonidine are selective for imidazoline-1 and can be used to test the hypothesis that the entactogenic mental effects of MDMA are due to loading the imidazoline-1 mental organ into consciousness. The primer/probe method is not limited to testing the specific hypothesis about MDMA and imidazoline, but is a general method for studying the role of mental organs in the mind. For example, the role of dopamine mental organs can be studied by using Parkinson's drugs such as ropinirole or pramipexole as probes.
Collapse
Affiliation(s)
- Thomas S Ray
- Department of Biology, University of Oklahoma, Norman, OK 73069, United States.
| |
Collapse
|
77
|
Moratalla R, Khairnar A, Simola N, Granado N, García-Montes JR, Porceddu PF, Tizabi Y, Costa G, Morelli M. Amphetamine-related drugs neurotoxicity in humans and in experimental animals: Main mechanisms. Prog Neurobiol 2015; 155:149-170. [PMID: 26455459 DOI: 10.1016/j.pneurobio.2015.09.011] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 09/04/2015] [Accepted: 09/15/2015] [Indexed: 12/13/2022]
Abstract
Amphetamine-related drugs, such as 3,4-methylenedioxymethamphetamine (MDMA) and methamphetamine (METH), are popular recreational psychostimulants. Several preclinical studies have demonstrated that, besides having the potential for abuse, amphetamine-related drugs may also elicit neurotoxic and neuroinflammatory effects. The neurotoxic potentials of MDMA and METH to dopaminergic and serotonergic neurons have been clearly demonstrated in both rodents and non-human primates. This review summarizes the species-specific cellular and molecular mechanisms involved in MDMA and METH-mediated neurotoxic and neuroinflammatory effects, along with the most important behavioral changes elicited by these substances in experimental animals and humans. Emphasis is placed on the neuropsychological and neurological consequences associated with the neuronal damage. Moreover, we point out the gap in our knowledge and the need for developing appropriate therapeutic strategies to manage the neurological problems associated with amphetamine-related drug abuse.
Collapse
Affiliation(s)
- Rosario Moratalla
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, CSIC, Madrid, Spain; CIBERNED, ISCIII, Madrid, Spain.
| | - Amit Khairnar
- Applied Neuroscience Research Group, CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Nicola Simola
- Department of Biomedical Sciences, Section of Neuropsychopharmacology, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy
| | - Noelia Granado
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, CSIC, Madrid, Spain; CIBERNED, ISCIII, Madrid, Spain
| | - Jose Ruben García-Montes
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, CSIC, Madrid, Spain; CIBERNED, ISCIII, Madrid, Spain
| | - Pier Francesca Porceddu
- Department of Biomedical Sciences, Section of Neuropsychopharmacology, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy
| | - Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, USA
| | - Giulia Costa
- Department of Biomedical Sciences, Section of Neuropsychopharmacology, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy
| | - Micaela Morelli
- Department of Biomedical Sciences, Section of Neuropsychopharmacology, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy; Centre of Excellence for Neurobiology of Dependence, University of Cagliari, Cagliari, Italy; National Research Council (CNR), Institute of Neuroscience, Cagliari, Italy
| |
Collapse
|
78
|
Coman D, Sanganahalli BG, Jiang L, Hyder F, Behar KL. Distribution of temperature changes and neurovascular coupling in rat brain following 3,4-methylenedioxymethamphetamine (MDMA, "ecstasy") exposure. NMR IN BIOMEDICINE 2015; 28:1257-66. [PMID: 26286889 PMCID: PMC4573923 DOI: 10.1002/nbm.3375] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 06/22/2015] [Accepted: 07/19/2015] [Indexed: 05/05/2023]
Abstract
(+/-)3,4-methylenedioxymethamphetamine (MDMA, "ecstasy") is an abused psychostimulant that produces strong monoaminergic stimulation and whole-body hyperthermia. MDMA-induced thermogenesis involves activation of uncoupling proteins (UCPs), primarily a type specific to skeletal muscle (UCP-3) and absent from the brain, although other UCP types are expressed in the brain (e.g. thalamus) and might contribute to thermogenesis. Since neuroimaging of brain temperature could provide insights into MDMA action, we measured spatial distributions of systemically administered MDMA-induced temperature changes and dynamics in rat cortex and subcortex using a novel magnetic resonance method, Biosensor Imaging of Redundant Deviation in Shifts (BIRDS), with an exogenous temperature-sensitive probe (thulium ion and macrocyclic chelate 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetramethyl-1,4,7,10-tetraacetate (DOTMA(4-))). The MDMA-induced temperature rise was greater in the cortex than in the subcortex (1.6 ± 0.4 °C versus 1.3 ± 0.4 °C) and occurred more rapidly (2.0 ± 0.2 °C/h versus 1.5 ± 0.2 °C/h). MDMA-induced temperature changes and dynamics in the cortex and body were correlated, although the body temperature exceeded the cortex temperature before and after MDMA. Temperature, neuronal activity, and blood flow (CBF) were measured simultaneously in the cortex and subcortex (i.e. thalamus) to investigate possible differences of MDMA-induced warming across brain regions. MDMA-induced warming correlated with increases in neuronal activity and blood flow in the cortex, suggesting that the normal neurovascular response to increased neural activity was maintained. In contrast to the cortex, a biphasic relationship was seen in the subcortex (i.e. thalamus), with a decline in CBF as temperature and neural activity rose, transitioning to a rise in CBF for temperature above 37 °C, suggesting that MDMA affected CBF and neurovascular coupling differently in subcortical regions. Considering that MDMA effects on CBF and heat dissipation (as well as potential heat generation) may vary regionally, neuroprotection may require different cooling strategies.
Collapse
Affiliation(s)
- Daniel Coman
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT 06520, USA
- Core Center for Quantitative Neuroscience with Magnetic Resonance (QNMR), Yale University, New Haven, CT 06520, USA
- Department of Diagnostic Radiology, Yale University, New Haven, CT 06520, USA
| | - Basavaraju G. Sanganahalli
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT 06520, USA
- Core Center for Quantitative Neuroscience with Magnetic Resonance (QNMR), Yale University, New Haven, CT 06520, USA
- Department of Diagnostic Radiology, Yale University, New Haven, CT 06520, USA
| | - Lihong Jiang
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT 06520, USA
- Department of Diagnostic Radiology, Yale University, New Haven, CT 06520, USA
| | - Fahmeed Hyder
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT 06520, USA
- Core Center for Quantitative Neuroscience with Magnetic Resonance (QNMR), Yale University, New Haven, CT 06520, USA
- Department of Diagnostic Radiology, Yale University, New Haven, CT 06520, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Kevin L. Behar
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT 06520, USA
- Department of Psychiatry, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
79
|
Korpi ER, den Hollander B, Farooq U, Vashchinkina E, Rajkumar R, Nutt DJ, Hyytiä P, Dawe GS. Mechanisms of Action and Persistent Neuroplasticity by Drugs of Abuse. Pharmacol Rev 2015; 67:872-1004. [PMID: 26403687 DOI: 10.1124/pr.115.010967] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025] Open
Abstract
Adaptation of the nervous system to different chemical and physiologic conditions is important for the homeostasis of brain processes and for learning and remembering appropriate responses to challenges. Although processes such as tolerance and dependence to various drugs of abuse have been known for a long time, it was recently discovered that even a single pharmacologically relevant dose of various drugs of abuse induces neuroplasticity in selected neuronal populations, such as the dopamine neurons of the ventral tegmental area, which persist long after the drug has been excreted. Prolonged (self-) administration of drugs induces gene expression, neurochemical, neurophysiological, and structural changes in many brain cell populations. These region-specific changes correlate with addiction, drug intake, and conditioned drugs effects, such as cue- or stress-induced reinstatement of drug seeking. In rodents, adolescent drug exposure often causes significantly more behavioral changes later in adulthood than a corresponding exposure in adults. Clinically the most impairing and devastating effects on the brain are produced by alcohol during fetal development. In adult recreational drug users or in medicated patients, it has been difficult to find persistent functional or behavioral changes, suggesting that heavy exposure to drugs of abuse is needed for neurotoxicity and for persistent emotional and cognitive alterations. This review describes recent advances in this important area of research, which harbors the aim of translating this knowledge to better treatments for addictions and related neuropsychiatric illnesses.
Collapse
Affiliation(s)
- Esa R Korpi
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| | - Bjørnar den Hollander
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| | - Usman Farooq
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| | - Elena Vashchinkina
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| | - Ramamoorthy Rajkumar
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| | - David J Nutt
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| | - Petri Hyytiä
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| | - Gavin S Dawe
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| |
Collapse
|
80
|
Amphetamine action at the cocaine- and antidepressant-sensitive serotonin transporter is modulated by αCaMKII. J Neurosci 2015; 35:8258-71. [PMID: 26019340 DOI: 10.1523/jneurosci.4034-14.2015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Serotonergic neurotransmission is terminated by reuptake of extracellular serotonin (5-HT) by the high-affinity serotonin transporter (SERT). Selective 5-HT reuptake inhibitors (SSRIs) such as fluoxetine or escitalopram inhibit SERT and are currently the principal treatment for depression and anxiety disorders. In addition, SERT is a major molecular target for psychostimulants such as cocaine and amphetamines. Amphetamine-induced transport reversal at the closely related dopamine transporter (DAT) has been shown previously to be contingent upon modulation by calmodulin kinase IIα (αCaMKII). Here, we show that not only DAT, but also SERT, is regulated by αCaMKII. Inhibition of αCaMKII activity markedly decreased amphetamine-triggered SERT-mediated substrate efflux in both cells coexpressing SERT and αCaMKII and brain tissue preparations. The interaction between SERT and αCaMKII was verified using biochemical assays and FRET analysis and colocalization of the two molecules was confirmed in primary serotonergic neurons in culture. Moreover, we found that genetic deletion of αCaMKII impaired the locomotor response of mice to 3,4-methylenedioxymethamphetamine (also known as "ecstasy") and blunted d-fenfluramine-induced prolactin release, substantiating the importance of αCaMKII modulation for amphetamine action at SERT in vivo as well. SERT-mediated substrate uptake was neither affected by inhibition of nor genetic deficiency in αCaMKII. This finding supports the concept that uptake and efflux at monoamine transporters are asymmetric processes that can be targeted separately. Ultimately, this may provide a molecular mechanism for putative drug developments to treat amphetamine addiction.
Collapse
|
81
|
Wright NE, Strong JA, Gilbart ER, Shollenbarger SG, Lisdahl KM. 5-HTTLPR Genotype Moderates the Effects of Past Ecstasy Use on Verbal Memory Performance in Adolescent and Emerging Adults: A Pilot Study. PLoS One 2015; 10:e0134708. [PMID: 26231032 PMCID: PMC4521717 DOI: 10.1371/journal.pone.0134708] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 07/13/2015] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE Ecstasy use is associated with memory deficits. Serotonin transporter gene (5-HTTLPR) polymorphisms have been linked with memory function in healthy samples. The present pilot study investigated the influence of 5-HTTLPR polymorphisms on memory performance in ecstasy users, marijuana-using controls, and non-drug-using controls, after a minimum of 7 days of abstinence. METHOD Data were collected from 116 young adults (18-25 years-old), including 45 controls, 42 marijuana users, and 29 ecstasy users, and were balanced for 5-HTTLPR genotype. Participants were abstinent seven days prior to completing memory testing. Three MANCOVAs and one ANCOVA were run to examine whether drug group, 5-HTTLPR genotype, and their interactions predicted verbal and visual memory after controlling for gender, past year alcohol use, other drug use, and nicotine cotinine levels. RESULTS MANCOVA and ANCOVA analysis revealed a significant interaction between drug group and genotype (p = .03) such that ecstasy users with the L/L genotype performed significantly worse on CVLT-2 total recall (p = .05), short (p = .008) and long delay free recall (p = .01), and recognition (p = .006), with the reverse pattern found in controls. Ecstasy did not significantly predict visual memory. 5-HTTLPR genotype significantly predicted memory for faces (p = .02); short allele carriers performed better than those with L/L genotype. CONCLUSIONS 5-HTTLPR genotype moderated the effects of ecstasy on verbal memory, with L/L carriers performing worse compared to controls. Future research should continue to examine individual differences in ecstasy's impact on neurocognitive performance as well as relationships with neuronal structure. Additional screening and prevention efforts focused on adolescents and emerging adults are necessary to prevent ecstasy consumption.
Collapse
Affiliation(s)
- Natasha E. Wright
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, United States of America
| | - Judith A. Strong
- Department of Anesthesiology, University of Cincinnati, Cincinnati, OH, United States of America
| | - Erika R. Gilbart
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, United States of America
| | - Skyler G. Shollenbarger
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, United States of America
| | - Krista M. Lisdahl
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, United States of America
| |
Collapse
|
82
|
Changes in serotonin transporter (5-HTT) gene expression in peripheral blood cells after MDMA intake. Psychopharmacology (Berl) 2015; 232:1921-9. [PMID: 25524139 DOI: 10.1007/s00213-014-3827-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 11/19/2014] [Indexed: 10/24/2022]
Abstract
RATIONALE 3,4-Methylenedioxymethamphetamine (MDMA, ecstasy) is an amphetamine derivative abused worldwide. Although data report that relatively high doses of MDMA deplete serotonin (5-HT) content and decrease the availability of serotonin transporters (5-HTT), there is no available evidence as to the adaptive mechanisms taking place in 5-HTT gene expression following MDMA intake in humans. OBJECTIVE To evaluate the pharmacological effects of MDMA on 5-HTT gene expression, using peripheral mononuclear cells as a biomarker of the central nervous system, and study whether an association exists between 5-HTT gene expression and psychobiological scores. METHODS A randomized, double-blind, controlled trial was conducted in 18 (nine women) healthy recreational MDMA users. Subjects were genotyped for 5-HTT linked polymorphism region (5-HTTLPR). MDMA 75 mg or placebo was administered; Profile of Mood States (POMS) and 5-HTT gene expression measures were performed at baseline, 90, and 165 min post administration. POMS scores were correlated with changes in gene expression. RESULTS The administration of 75 mg MDMA induced a significant twofold increase in 5-HTT gene expression after 165 min of drug administration. Significant associations were found between gene expression and POMS scores after MDMA administration. Results for each gender and 5-HTTLPR genotype are also reported. CONCLUSIONS Preliminary results show that MDMA causes substantial regulatory changes in the expression of serotonergic markers, likely being modulated by the 5-HTTLPR polymorphism. Changes in 5-HTT gene expression may play an important role in the regulation of mood state.
Collapse
|
83
|
Schmid Y, Rickli A, Schaffner A, Duthaler U, Grouzmann E, Hysek CM, Liechti ME. Interactions between bupropion and 3,4-methylenedioxymethamphetamine in healthy subjects. J Pharmacol Exp Ther 2015; 353:102-11. [PMID: 25655950 DOI: 10.1124/jpet.114.222356] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2025] Open
Abstract
3,4-Methylenedioxymethamphetamine (MDMA; "ecstasy") is a popular recreational drug. The aim of the present study was to explore the role of dopamine in the psychotropic effects of MDMA using bupropion to inhibit the dopamine and norepinephrine transporters through which MDMA releases dopamine and norepinephrine by investigating. The pharmacodynamic and pharmacokinetic interactions between bupropion and MDMA in 16 healthy subjects were investigated using a double-blind, placebo-controlled, crossover design. Bupropion reduced the MDMA-induced elevations in plasma norepinephrine concentrations and the heart rate response to MDMA. In contrast, bupropion increased plasma MDMA concentrations and prolonged its subjective effects. Conversely, MDMA increased plasma bupropion concentrations. These results indicate a role for the transporter-mediated release of norepinephrine in the cardiostimulant effects of MDMA but do not support a modulatory role for dopamine in the mood effects of MDMA. These results also indicate that the use of MDMA during therapy with bupropion may result in higher plasma concentrations of both MDMA and bupropion and enhanced mood effects but also result in lower cardiac stimulation.
Collapse
Affiliation(s)
- Yasmin Schmid
- Division of Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, Basel, Switzerland (Y.S., A.R., A.S., U.D., C.M.H., M.E.L.); and Biomedicine Service, University Hospital Lausanne, Lausanne, Switzerland (E.G.)
| | - Anna Rickli
- Division of Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, Basel, Switzerland (Y.S., A.R., A.S., U.D., C.M.H., M.E.L.); and Biomedicine Service, University Hospital Lausanne, Lausanne, Switzerland (E.G.)
| | - Antonia Schaffner
- Division of Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, Basel, Switzerland (Y.S., A.R., A.S., U.D., C.M.H., M.E.L.); and Biomedicine Service, University Hospital Lausanne, Lausanne, Switzerland (E.G.)
| | - Urs Duthaler
- Division of Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, Basel, Switzerland (Y.S., A.R., A.S., U.D., C.M.H., M.E.L.); and Biomedicine Service, University Hospital Lausanne, Lausanne, Switzerland (E.G.)
| | - Eric Grouzmann
- Division of Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, Basel, Switzerland (Y.S., A.R., A.S., U.D., C.M.H., M.E.L.); and Biomedicine Service, University Hospital Lausanne, Lausanne, Switzerland (E.G.)
| | - Cédric M Hysek
- Division of Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, Basel, Switzerland (Y.S., A.R., A.S., U.D., C.M.H., M.E.L.); and Biomedicine Service, University Hospital Lausanne, Lausanne, Switzerland (E.G.)
| | - Matthias E Liechti
- Division of Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, Basel, Switzerland (Y.S., A.R., A.S., U.D., C.M.H., M.E.L.); and Biomedicine Service, University Hospital Lausanne, Lausanne, Switzerland (E.G.)
| |
Collapse
|
84
|
Oh S, Choi SC. Acute carbon monoxide poisoning and delayed neurological sequelae: a potential neuroprotection bundle therapy. Neural Regen Res 2015; 10:36-8. [PMID: 25788913 PMCID: PMC4357109 DOI: 10.4103/1673-5374.150644] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2014] [Indexed: 11/12/2022] Open
Affiliation(s)
- Sungho Oh
- Department of Emergency Medicine, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Sang-Cheon Choi
- Department of Emergency Medicine, Ajou University School of Medicine, Suwon, Republic of Korea
| |
Collapse
|
85
|
Huot P, Fox SH, Brotchie JM. Monoamine reuptake inhibitors in Parkinson's disease. PARKINSON'S DISEASE 2015; 2015:609428. [PMID: 25810948 PMCID: PMC4355567 DOI: 10.1155/2015/609428] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 12/26/2014] [Indexed: 12/13/2022]
Abstract
The motor manifestations of Parkinson's disease (PD) are secondary to a dopamine deficiency in the striatum. However, the degenerative process in PD is not limited to the dopaminergic system and also affects serotonergic and noradrenergic neurons. Because they can increase monoamine levels throughout the brain, monoamine reuptake inhibitors (MAUIs) represent potential therapeutic agents in PD. However, they are seldom used in clinical practice other than as antidepressants and wake-promoting agents. This review article summarises all of the available literature on use of 50 MAUIs in PD. The compounds are divided according to their relative potency for each of the monoamine transporters. Despite wide discrepancy in the methodology of the studies reviewed, the following conclusions can be drawn: (1) selective serotonin transporter (SERT), selective noradrenaline transporter (NET), and dual SERT/NET inhibitors are effective against PD depression; (2) selective dopamine transporter (DAT) and dual DAT/NET inhibitors exert an anti-Parkinsonian effect when administered as monotherapy but do not enhance the anti-Parkinsonian actions of L-3,4-dihydroxyphenylalanine (L-DOPA); (3) dual DAT/SERT inhibitors might enhance the anti-Parkinsonian actions of L-DOPA without worsening dyskinesia; (4) triple DAT/NET/SERT inhibitors might exert an anti-Parkinsonian action as monotherapy and might enhance the anti-Parkinsonian effects of L-DOPA, though at the expense of worsening dyskinesia.
Collapse
Affiliation(s)
- Philippe Huot
- Toronto Western Research Institute, Toronto Western Hospital, University Health Network, 399 Bathurst Street, Toronto, ON, Canada M5T 2S8
- Division of Neurology, Movement Disorder Clinic, Toronto Western Hospital, University Health Network, University of Toronto, 399 Bathurst Street, Toronto, ON, Canada M5T 2S8
- Department of Pharmacology and Division of Neurology, Faculty of Medicine, Université de Montréal and Centre Hospitalier de l'Université de Montréal, Montréal, QC, Canada
| | - Susan H. Fox
- Toronto Western Research Institute, Toronto Western Hospital, University Health Network, 399 Bathurst Street, Toronto, ON, Canada M5T 2S8
- Division of Neurology, Movement Disorder Clinic, Toronto Western Hospital, University Health Network, University of Toronto, 399 Bathurst Street, Toronto, ON, Canada M5T 2S8
| | - Jonathan M. Brotchie
- Toronto Western Research Institute, Toronto Western Hospital, University Health Network, 399 Bathurst Street, Toronto, ON, Canada M5T 2S8
| |
Collapse
|
86
|
Bearn J, O'Brien M. “Addicted to Euphoria”. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2015; 120:205-33. [DOI: 10.1016/bs.irn.2015.02.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
87
|
Price JS, Shear P, Lisdahl KM. Ecstasy exposure & gender: examining components of verbal memory functioning. PLoS One 2014; 9:e115645. [PMID: 25545890 PMCID: PMC4278706 DOI: 10.1371/journal.pone.0115645] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 11/25/2014] [Indexed: 12/03/2022] Open
Abstract
OBJECTIVE Studies have demonstrated verbal memory deficits associated with past year ecstasy use, although specific underlying components of these deficits are less understood. Further, prior research suggests potential gender differences in ecstasy-induced serotonergic changes. Therefore, the current study investigated whether gender moderated the relationship between ecstasy exposure and components of verbal memory after controlling for polydrug use and confounding variables. METHOD Data were collected from 65 polydrug users with a wide range of ecstasy exposure (ages 18-35; 48 ecstasy and 17 marijuana users; 0-2310 ecstasy tablets). Participants completed a verbal learning and memory task, psychological questionnaires, and a drug use interview. RESULTS Increased past year ecstasy exposure predicted poorer short and long delayed free and cued recalls, retention, and recall discrimination. Male ecstasy users were more susceptible to dose-dependent deficits in retention than female users. CONCLUSION Past year ecstasy consumption was associated with verbal memory retrieval, retention, and discrimination deficits in a dose-dependent manner in a sample of healthy young adult polydrug users. Male ecstasy users were at particular risk for deficits in retention following a long delay. Gender difference may be reflective of different patterns of polydrug use as well as increased hippocampal sensitivity. Future research examining neuronal correlates of verbal memory deficits in ecstasy users are needed.
Collapse
Affiliation(s)
- Jenessa S. Price
- McLean Hospital – Harvard Medical School, Belmont, Massachusetts, United States of America
| | - Paula Shear
- Department of Psychology, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Krista M. Lisdahl
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States of America
| |
Collapse
|
88
|
Liechti ME. Effects of MDMA on body temperature in humans. Temperature (Austin) 2014; 1:192-200. [PMID: 27626046 PMCID: PMC5008716 DOI: 10.4161/23328940.2014.955433] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Revised: 07/12/2014] [Accepted: 07/28/2014] [Indexed: 01/05/2023] Open
Abstract
Hyperthermia is a severe complication associated with the recreational use of 3,4-methylenedioxymethamphetamine (MDMA, Ecstasy). In this review, the clinical laboratory studies that tested the effects of MDMA on body temperature are summarized. The mechanisms that underlie the hyperthermic effects of MDMA in humans and treatment of severe hyperthermia are presented. The data show that MDMA produces an acute and dose-dependent rise in core body temperature in healthy subjects. The increase in body temperature is in the range of 0.2-0.8°C and does not result in hyperpyrexia (>40°C) in a controlled laboratory setting. However, moderately hyperthermic body temperatures >38.0°C occur frequently at higher doses, even in the absence of physical activity and at room temperature. MDMA primarily releases serotonin and norepinephrine. Mechanistic clinical studies indicate that the MDMA-induced elevations in body temperature in humans partially depend on the MDMA-induced release of norepinephrine and involve enhanced metabolic heat generation and cutaneous vasoconstriction, resulting in impaired heat dissipation. The mediating role of serotonin is unclear. The management of sympathomimetic toxicity and associated hyperthermia mainly includes sedation with benzodiazepines and intravenous fluid replacement. Severe hyperthermia should primarily be treated with additional cooling and mechanical ventilation.
Collapse
Affiliation(s)
- Matthias E Liechti
- Division of Clinical Pharmacology and Toxicology; Department of Biomedicine and Department of Clinical Research; University Hospital and University of Basel ; Switzerland
| |
Collapse
|
89
|
Liebig L, von Ameln-Mayerhofer A, Hentschke H. MDMA modulates spontaneous firing of subthalamic nucleus neurons in vitro. Exp Brain Res 2014; 233:137-47. [PMID: 25234400 DOI: 10.1007/s00221-014-4095-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Accepted: 09/05/2014] [Indexed: 10/24/2022]
Abstract
3,4-Methylene-dioxy-N-methylamphetamine (MDMA, 'ecstasy') has a broad spectrum of molecular targets in the brain, among them receptors and transporters of the serotonergic (5-hydroxytryptamine, 5-HT) and noradrenergic systems. Its action on the serotonergic system modulates motor systems in rodents and humans. Although parts of the basal ganglia could be identified as mediators of the motor effects of MDMA, very little is known about the role of the subthalamic nucleus (STN). Therefore, this study investigated the modulation of spontaneous action potential activity of the STN by MDMA (2.5-20 µM) in vitro. MDMA had very heterogeneous effects, ranging from a complete but reversible inhibition to a more than twofold increase in firing at 5 µM. On average, MDMA excited STN neurons moderately, but lost its excitatory effect in the presence of the 5-HT(2A) antagonist MDL 11,939. 5-HT(1A) receptors did not appear to play a major role. Effects of MDMA on transporters for serotonin (SERT) and norepinephrine (NET) were investigated by coapplication of the reuptake inhibitors citalopram and desipramine, respectively. Similar to the effects of 5-HT(2A) receptor blockade, antagonism of SERT and NET bestowed an inhibitory effect on MDMA. From these results, we conclude that both the 5-HT and the noradrenergic system mediate MDMA-induced effects on STN neurons.
Collapse
Affiliation(s)
- Luise Liebig
- Experimental Anaesthesiology Section, University Hospital Tübingen, Waldhörnlestr. 22, 72072, Tübingen, Germany
| | | | | |
Collapse
|
90
|
Vijay N, Morris ME. Effect of 3,4-methylenedioxymethamphetamine on the toxicokinetics and sedative effects of the drug of abuse, γ-hydroxybutyric acid. J Pharm Sci 2014; 103:3310-5. [PMID: 25174723 DOI: 10.1002/jps.24122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 07/28/2014] [Accepted: 07/30/2014] [Indexed: 11/12/2022]
Abstract
γ-Hydroxybutyric acid (GHB) is widely abused in combination with other club drugs such as 3,4-methylenedioxymethamphetamine (MDMA). The objectives of this study were to characterize the effects of MDMA on GHB toxicokinetics/toxicodynamics (TK/TD) and evaluate the use of monocarboxylate transporter (MCT) inhibition as a potential treatment strategy for GHB overdose when GHB is abused with MDMA. Rats were administered GHB 400 mg/kg i.v. alone or with MDMA (5 mg/kg i.v). Effects of MDMA and of the MCT inhibitor, l-lactate, on GHB TK and sedative effects were evaluated. The results of this study demonstrated no significant effect of MDMA on GHB TK or TD. GHB plasma concentrations were unchanged, and GHB concentration-effect relationships, based on plasma and brain concentrations and the return-to-righting reflex (RRR), were similar in the presence and absence of MDMA. l-Lactate administration resulted in a significant decrease in the sedative effect (RRR) of GHB when it was coadministered with MDMA. Our results indicate that MDMA does not affect the TK/TD of GHB at the doses used in this study, and MCT inhibition using l-lactate, an effective overdose treatment strategy for GHB alone, is also effective for GHB overdose when GHB is coingested with MDMA.
Collapse
Affiliation(s)
- Nisha Vijay
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, SUNY, Buffalo, New York, 14214-8033
| | | |
Collapse
|
91
|
Kirkpatrick MG, Francis SM, Lee R, de Wit H, Jacob S. Plasma oxytocin concentrations following MDMA or intranasal oxytocin in humans. Psychoneuroendocrinology 2014; 46:23-31. [PMID: 24882155 PMCID: PMC4088952 DOI: 10.1016/j.psyneuen.2014.04.006] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 04/01/2014] [Accepted: 04/07/2014] [Indexed: 01/09/2023]
Abstract
MDMA (±3,4-methylenedioxymethamphetamine, 'ecstasy') is reportedly used recreationally because it increases feelings of sociability and interpersonal closeness. Prior work suggests that the pro-social effects of MDMA may be mediated by release of oxytocin. A direct examination of plasma levels of oxytocin after acute doses of oxytocin and MDMA, in the same individuals, would provide further evidence for the idea that MDMA produces its pro-social effects by increasing oxytocin. Fourteen healthy MDMA users participated in a 4-session, double-blind study in which they received oral MDMA (0.75 and 1.5mg/kg), intranasal oxytocin (20IU or 40IU), and placebo. Plasma oxytocin concentrations, as well as cardiovascular and subjective effects were assessed before and at several time points after drug administration. MDMA (1.5mg/kg only) increased plasma oxytocin levels to a mean peak of 83.7pg/ml at approximately 90-120min, compared to 18.6pg/ml after placebo. Intranasal oxytocin (40IU, but not 20IU) increased plasma oxytocin levels to 48.0pg/ml, 30-60min after nasal spray administration. MDMA dose-dependently increased heart rate, blood pressure, feelings of euphoria (e.g., 'High' and 'Like Drug'), and feelings of sociability, whereas oxytocin had no cardiovascular or subjective effects. The subjective and cardiovascular responses to MDMA were not related to plasma oxytocin levels, although the N was small for this analysis. Future studies examining the effects of oxytocin antagonists on responses to MDMA will help to determine the mechanism by which MDMA produces pro-social effects.
Collapse
Affiliation(s)
- Matthew G. Kirkpatrick
- Department of Psychiatry and Behavioral Neurosciences, University of Chicago, Chicago, IL, USA
| | - Sunday M. Francis
- Department of Psychiatry, University of Minnesota, Minneapolis, MN, USA
| | - Royce Lee
- Department of Psychiatry and Behavioral Neurosciences, University of Chicago, Chicago, IL, USA
| | - Harriet de Wit
- Department of Psychiatry and Behavioral Neurosciences, University of Chicago, Chicago, IL, USA.
| | - Suma Jacob
- Department of Psychiatry, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
92
|
Park EJ, Min YG, Kim GW, Cho JP, Maeng WJ, Choi SC. Pathophysiology of brain injuries in acute carbon monoxide poisoning: A novel hypothesis. Med Hypotheses 2014; 83:186-9. [DOI: 10.1016/j.mehy.2014.04.032] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 04/19/2014] [Accepted: 04/29/2014] [Indexed: 11/28/2022]
|
93
|
Repeated exposure to MDMA triggers long-term plasticity of noradrenergic and serotonergic neurons. Mol Psychiatry 2014; 19:823-33. [PMID: 23958955 DOI: 10.1038/mp.2013.97] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 06/28/2013] [Accepted: 07/10/2013] [Indexed: 11/08/2022]
Abstract
3,4-Methylenedioxymethamphetamine (MDMA or 'ecstasy') is a psychostimulant drug, widely used recreationally among young people in Europe and North America. Although its neurotoxicity has been extensively described, little is known about its ability to strengthen neural circuits when administered in a manner that reproduces human abuse (i.e. repeated exposure to a low dose). C57BL/6J mice were repeatedly injected with MDMA (10 mg kg(-1), intraperitoneally) and studied after a 4-day or a 1-month withdrawal. We show, using in vivo microdialysis and locomotor activity monitoring, that repeated injections of MDMA induce a long-term sensitization of noradrenergic and serotonergic neurons, which correlates with behavioral sensitization. The development of this phenomenon, which lasts for at least 1 month after withdrawal, requires repeated stimulation of α(1B)-adrenergic and 5-hydroxytryptamine (5-HT)(2A) receptors. Moreover, behavioral and neuroendocrine assays indicate that hyper-reactivity of noradrenergic and serotonergic networks is associated with a persistent desensitization of somatodendritic α(2A)-adrenergic and 5-HT1A autoreceptor function. Finally, molecular analysis including radiolabeling, western blot and quantitative reverse transcription-polymerase chain reaction reveals that mice repeatedly treated with MDMA exhibit normal α(2A)-adrenergic and 5-HT(1A) receptor binding, but a long-lasting downregulation of Gαi proteins expression in both locus coeruleus and dorsal raphe nucleus. Altogether, our results show that repeated MDMA exposure causes strong neural and behavioral adaptations and that inhibitory feedback mediated by α(2A)-adrenergic and 5-HT(1A) autoreceptors has an important role in the physiopathology of addictive behaviors.
Collapse
|
94
|
Vakde T, Diaz M, Uday K, Duncalf R. Rapidly reversible multiorgan failure after ingestion of "Molly" (pure 3,4-methylenedioxymethamphetamine): a case report. J Med Case Rep 2014; 8:204. [PMID: 24942782 PMCID: PMC4082171 DOI: 10.1186/1752-1947-8-204] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Accepted: 04/21/2014] [Indexed: 11/25/2022] Open
Abstract
Introduction “Molly” is a street name for pure 3,4-methylenedioxymethamphetamine, an amphetamine derivative which acts by enhancing the release of neurotransmitters such as serotonin, dopamine and norepinephrine. This produces euphoria, increased sensory awareness and central stimulation that make it a popular club drug. Nevertheless, it is also associated with serious side effects. We report an unusual case of rapid multiorgan failure after ingestion of “Molly”. Unlike previously described patterns of 3,4-methylenedioxymethamphetamine-related organ failure, our case does not appear to be related to hyperthermia, rhabdomyolysis or hyponatremia. Case presentation A 24-year-old Hispanic man presented to our hospital with an episode of seizure and subsequently developed acute kidney injury, respiratory failure requiring mechanical ventilation and congestive heart failure after ingestion of “Molly”. He rapidly recovered with supportive care and was discharged home. Conclusions The spectrum of complications associated with 3,4-methylenedioxymethamphetamine is wide and patient presentation may vary. Moreover, there appears to be multiple mechanisms involved in organ failure. Drug toxicity should be suspected while evaluating a patient with multisystem organ failure of unclear etiology. Treatment is generally supportive sometimes requiring mechanical ventilation and hemodialysis. Nevertheless, complete reversal of organ failure can be expected.
Collapse
Affiliation(s)
- Trupti Vakde
- Division of Pulmonary and Critical Care Medicine, Bronx Lebanon Hospital Center, Bronx, NY, USA.
| | | | | | | |
Collapse
|
95
|
Kirkpatrick MG, Lee R, Wardle MC, Jacob S, de Wit H. Effects of MDMA and Intranasal oxytocin on social and emotional processing. Neuropsychopharmacology 2014; 39:1654-63. [PMID: 24448644 PMCID: PMC4023138 DOI: 10.1038/npp.2014.12] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 01/11/2014] [Accepted: 01/15/2014] [Indexed: 11/09/2022]
Abstract
MDMA (± 3,4-methylenedioxymethamphetamine, 'ecstasy') is used recreationally, reportedly because it increases feelings of empathy, sociability, and interpersonal closeness. One line of evidence suggests that MDMA produces these effects by releasing oxytocin, a peptide involved in social bonding. In the current study, we investigated the acute effects of MDMA and oxytocin on social and emotional processing in healthy human volunteers. MDMA users (N = 65) participated in a 4-session, within-between-subjects study in which they received oral MDMA (0.75, 1.5 mg/kg), intranasal oxytocin (20 or 40 IU), or placebo under double-blind conditions. The primary outcomes included measures of emotion recognition and sociability (desire to be with others). Cardiovascular and subjective effects were also assessed. As expected, MDMA dose-dependently increased heart rate and blood pressure and feelings of euphoria (eg, 'High' and 'Like Drug'). On measures of social function, MDMA impaired recognition of angry and fearful facial expressions, and the larger dose (1.5 mg/kg) increased desire to be with others, compared with placebo. Oxytocin produced small but significant increases in feelings of sociability and enhanced recognition of sad facial expressions. Additionally, responses to oxytocin were related to responses to MDMA with subjects on two subjective measures of sociability. Thus, MDMA increased euphoria and feelings of sociability, perhaps by reducing sensitivity to subtle signs of negative emotions in others. The present findings provide only limited support for the idea that oxytocin produces the prosocial effects of MDMA.
Collapse
Affiliation(s)
- Matthew G Kirkpatrick
- Department of Psychiatry and Behavioral Neurosciences, University of Chicago, Chicago, IL, USA
| | - Royce Lee
- Department of Psychiatry and Behavioral Neurosciences, University of Chicago, Chicago, IL, USA
| | - Margaret C Wardle
- Department of Psychiatry and Behavioral Neurosciences, University of Chicago, Chicago, IL, USA
| | - Suma Jacob
- Department of Psychiatry, University of Minnesota, Chicago, IL, USA
| | - Harriet de Wit
- Department of Psychiatry and Behavioral Neurosciences, University of Chicago, Chicago, IL, USA,Department of Psychiatry and Behavioral Neuroscience, MC 3077, University of Chicago, 5841 South Maryland Avenue, Chicago, IL 60637, USA, Tel: +1 773 702 5855, Fax: +1 773 834 7698, E-mail:
| |
Collapse
|
96
|
Downey C, Daly F, O’Boyle K. An in vitro approach to assessing a potential drug interaction between MDMA (ecstasy) and caffeine. Toxicol In Vitro 2014; 28:231-9. [DOI: 10.1016/j.tiv.2013.10.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 10/24/2013] [Accepted: 10/30/2013] [Indexed: 11/27/2022]
|
97
|
Concheiro M, Baumann MH, Scheidweiler KB, Rothman RB, Marrone GF, Huestis MA. Nonlinear pharmacokinetics of (+/-)3,4-methylenedioxymethamphetamine (MDMA) and its pharmacodynamic consequences in the rat. Drug Metab Dispos 2014; 42:119-25. [PMID: 24141857 PMCID: PMC3876787 DOI: 10.1124/dmd.113.053678] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 10/18/2013] [Indexed: 02/03/2023] Open
Abstract
3,4-Methylenedioxymethamphetamine (MDMA) is a widely abused illicit drug that can cause severe and even fatal adverse effects. However, interest remains for its possible clinical applications in posttraumatic stress disorder and anxiety treatment. Preclinical studies to determine MDMA's safety are needed. We evaluated MDMA's pharmacokinetics and metabolism in male rats receiving 2.5, 5, and 10 mg/kg s.c. MDMA, and the associated pharmacodynamic consequences. Blood was collected via jugular catheter at 0, 0.5, 1, 2, 4, 6, 8, 16, and 24 hours, with simultaneous serotonin (5-HT) behavioral syndrome and core temperature monitoring. Plasma specimens were analyzed for MDMA and the metabolites (±)-3,4-dihydroxymethamphetamine (HHMA), (±)-4-hydroxy-3-methoxymethamphetamine (HMMA), and (±)-3,4-methylenedioxyamphetamine (MDA) by liquid chromatography-tandem mass spectrometry. After 2.5 mg/kg MDMA, mean MDMA Cmax was 164 ± 47.1 ng/ml, HHMA and HMMA were major metabolites, and <20% of MDMA was metabolized to MDA. After 5- and 10-mg/kg doses, MDMA areas under the curve (AUCs) were 3- and 10-fold greater than those after 2.5 mg/kg; HHMA and HMMA AUC values were relatively constant across doses; and MDA AUC values were greater than dose-proportional. Our data provide decisive in vivo evidence that MDMA and MDA display nonlinear accumulation via metabolic autoinhibition in the rat. Importantly, 5-HT syndrome severity correlated with MDMA concentrations (r = 0.8083; P < 0.0001) and core temperature correlated with MDA concentrations (r = 0.7595; P < 0.0001), suggesting that MDMA's behavioral and hyperthermic effects may involve distinct mechanisms. Given key similarities between MDMA pharmacokinetics in rats and humans, data from rats can be useful when provided at clinically relevant doses.
Collapse
Affiliation(s)
- Marta Concheiro
- Chemistry and Drug Metabolism Section (M.C., K.B.S., M.A.H.), and Designer Drug Research Unit (M.H.B., R.B.R.), Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland; and Department of Neuroscience, Weill Cornell Medical College, New York, New York (G.F.M.)
| | | | | | | | | | | |
Collapse
|
98
|
Simmler LD, Rickli A, Hoener MC, Liechti ME. Monoamine transporter and receptor interaction profiles of a new series of designer cathinones. Neuropharmacology 2013; 79:152-60. [PMID: 24275046 DOI: 10.1016/j.neuropharm.2013.11.008] [Citation(s) in RCA: 160] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 11/11/2013] [Accepted: 11/13/2013] [Indexed: 01/28/2023]
Abstract
Psychoactive β-keto amphetamines (cathinones) are sold as "bath salts" or "legal highs" and recreationally abused. We characterized the pharmacology of a new series of cathinones, including methedrone, 4-methylethcathinone (4-MEC), 3-fluoromethcathinone (3-FMC), pentylone, ethcathinone, buphedrone, pentedrone, and N,N-dimethylcathinone. We investigated norepinephrine (NE), dopamine (DA), and serotonin (5-HT) uptake inhibition using human embryonic kidney 293 (HEK 293) cells that express the respective human monoamine transporter, the drug-induced efflux of NE, DA, and 5-HT from monoamine-preloaded cells, and binding affinity to monoamine transporters and receptors. All of the cathinones were potent NE uptake inhibitors but differed in their DA vs. 5-HT transporter inhibition profiles and monoamine release effects. Methedrone was a more potent 5-HT than DA transporter inhibitor and released NE and 5-HT similar to para-methoxymethamphetamine (PMMA), para-methoxyamphetamine (PMA), 4-methylthioamphetamine (4-MTA), and 3,4-methylenedioxymethamphetamine (MDMA). 4-MEC and pentylone equipotently inhibited all of the monoamine transporters and released 5-HT. Ethcathinone and 3-FMC inhibited NE and DA uptake and released NE, and 3-FMC also released DA similar to N-ethylamphetamine and methamphetamine. Pentedrone and N,N-dimethylcathinone were non-releasing NE and DA uptake inhibitors as previously shown for pyrovalerone cathinones. Buphedrone preferentially inhibited NE and DA uptake and also released NE. None of the cathinones bound to rodent trace amine-associated receptor 1, in contrast to the non-β-keto-amphetamines. None of the cathinones exhibited relevant binding to other monoamine receptors. In summary, we found considerable differences in the monoamine transporter interaction profiles among different cathinones and compared with related amphetamines.
Collapse
Affiliation(s)
- L D Simmler
- Division of Clinical Pharmacology and Toxicology, Department of Biomedicine, University Hospital Basel and University of Basel, Hebelstrasse 2, Basel CH-4031, Switzerland
| | - A Rickli
- Division of Clinical Pharmacology and Toxicology, Department of Biomedicine, University Hospital Basel and University of Basel, Hebelstrasse 2, Basel CH-4031, Switzerland
| | - M C Hoener
- Neuroscience Research, Pharmaceuticals Division, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - M E Liechti
- Division of Clinical Pharmacology and Toxicology, Department of Biomedicine, University Hospital Basel and University of Basel, Hebelstrasse 2, Basel CH-4031, Switzerland.
| |
Collapse
|
99
|
Abstract
Ecstasy is a widely used recreational drug that usually consists primarily of 3,4-methylenedioxymethamphetamine (MDMA). Most ecstasy users consume other substances as well, which complicates the interpretation of research in this field. The positively rated effects of MDMA consumption include euphoria, arousal, enhanced mood, increased sociability, and heightened perceptions; some common adverse reactions are nausea, headache, tachycardia, bruxism, and trismus. Lowering of mood is an aftereffect that is sometimes reported from 2 to 5 days after a session of ecstasy use. The acute effects of MDMA in ecstasy users have been attributed primarily to increased release and inhibited reuptake of serotonin (5-HT) and norepinephrine, along with possible release of the neuropeptide oxytocin. Repeated or high-dose MDMA/ecstasy use has been associated with tolerance, depressive symptomatology, and persisting cognitive deficits, particularly in memory tests. Animal studies have demonstrated that high doses of MDMA can lead to long-term decreases in forebrain 5-HT concentrations, tryptophan hydroxylase activity, serotonin transporter (SERT) expression, and visualization of axons immunoreactive for 5-HT or SERT. These neurotoxic effects may reflect either a drug-induced degeneration of serotonergic fibers or a long-lasting downregulation in 5-HT and SERT biosynthesis. Possible neurotoxicity in heavy ecstasy users has been revealed by neuroimaging studies showing reduced SERT binding and increased 5-HT2A receptor binding in several cortical and/or subcortical areas. MDMA overdose or use with certain other drugs can also cause severe morbidity and even death. Repeated use of MDMA may lead to dose escalation and the development of dependence, although such dependence is usually not as profound as is seen with many other drugs of abuse. MDMA/ecstasy-dependent patients are treated with standard addiction programs, since there are no specific programs for this substance and no proven medications. Finally, even though MDMA is listed as a Schedule I compound by the Drug Enforcement Agency, MDMA-assisted psychotherapy for patients with chronic, treatment-resistant posttraumatic stress disorder is currently under investigation. Initial results show efficacy for this treatment approach, although considerably more research must be performed to confirm such efficacy and to ensure that the benefits of MDMA-assisted therapy outweigh the risks to the patients.
Collapse
Affiliation(s)
- Jerrold S Meyer
- Department of Psychology, Neuroscience and Behavior Program, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
100
|
α₁-Adrenergic receptors contribute to the acute effects of 3,4-methylenedioxymethamphetamine in humans. J Clin Psychopharmacol 2013; 33:658-66. [PMID: 23857311 DOI: 10.1097/jcp.0b013e3182979d32] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Preclinical studies implicate a role for α₁-noradrenergic receptors in the effects of psychostimulants, including 3,4-methylenedioxymethamphetamine (MDMA, "ecstasy"). The present study evaluated the effects of the α₁-noradrenergic receptor antagonist doxazosin on the acute pharmacodynamic and pharmacokinetic response to MDMA in 16 healthy subjects. Doxazosin (8 mg/d) or placebo was administered for 3 days before MDMA (125 mg) or placebo using a randomized, double-blind, placebo-controlled, 4-session, crossover design. Doxazosin reduced MDMA-induced elevations in blood pressure, body temperature, and moderately attenuated positive mood but enhanced tachycardia associated with MDMA. The results indicate that α₁-adrenergic receptors contribute to the acute cardiostimulant and to a minor extent possibly also to the thermogenic and euphoric effects of MDMA in humans.
Collapse
|