• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (5057402)   Today's Articles (25)
For: Ugga L, Cuocolo R, Solari D, Guadagno E, D'Amico A, Somma T, Cappabianca P, Del Basso de Caro ML, Cavallo LM, Brunetti A. Prediction of high proliferative index in pituitary macroadenomas using MRI-based radiomics and machine learning. Neuroradiology 2019;61:1365-1373. [PMID: 31375883 DOI: 10.1007/s00234-019-02266-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 07/15/2019] [Indexed: 12/18/2022]
Number Cited by Other Article(s)
51
Zhang Y, Luo Y, Kong X, Wan T, Long Y, Ma J. A Preoperative MRI-Based Radiomics-Clinicopathological Classifier to Predict the Recurrence of Pituitary Macroadenoma Within 5 Years. Front Neurol 2021. [PMID: 35069413 DOI: 10.3389/fneur.2021.780628/full] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]  Open
52
Hong N, Park Y, You SC, Rhee Y. AIM in Endocrinology. Artif Intell Med 2021. [DOI: 10.1007/978-3-030-58080-3_328-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
53
Zhang Y, Ko CC, Chen JH, Chang KT, Chen TY, Lim SW, Tsui YK, Su MY. Radiomics Approach for Prediction of Recurrence in Non-Functioning Pituitary Macroadenomas. Front Oncol 2020;10:590083. [PMID: 33392084 PMCID: PMC7775655 DOI: 10.3389/fonc.2020.590083] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/19/2020] [Indexed: 02/06/2023]  Open
54
Park YW, Kang Y, Ahn SS, Ku CR, Kim EH, Kim SH, Lee EJ, Kim SH, Lee SK. Radiomics model predicts granulation pattern in growth hormone-secreting pituitary adenomas. Pituitary 2020;23:691-700. [PMID: 32851505 DOI: 10.1007/s11102-020-01077-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
55
Lo Vercio L, Amador K, Bannister JJ, Crites S, Gutierrez A, MacDonald ME, Moore J, Mouches P, Rajasheka D, Schimert S, Subbanna N, Tuladhar A, Wang N, Wilms M, Winder A, Forkert ND. Supervised machine learning tools: a tutorial for clinicians. J Neural Eng 2020;17. [PMID: 33036008 DOI: 10.1088/1741-2552/abbff2] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 10/09/2020] [Indexed: 12/13/2022]
56
MacFarlane J, Bashari WA, Senanayake R, Gillett D, van der Meulen M, Powlson AS, Kolias A, Koulouri O, Gurnell M. Advances in the Imaging of Pituitary Tumors. Endocrinol Metab Clin North Am 2020;49:357-373. [PMID: 32741476 DOI: 10.1016/j.ecl.2020.06.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
57
Guerriero E, Ugga L, Cuocolo R. Artificial intelligence and pituitary adenomas: A review. Artif Intell Med Imaging 2020;1:70-77. [DOI: 10.35711/aimi.v1.i2.70] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/15/2020] [Accepted: 08/21/2020] [Indexed: 02/06/2023]  Open
58
Prediction of pituitary adenoma surgical consistency: radiomic data mining and machine learning on T2-weighted MRI. Neuroradiology 2020;62:1649-1656. [PMID: 32705290 PMCID: PMC7666676 DOI: 10.1007/s00234-020-02502-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/17/2020] [Indexed: 12/16/2022]
59
Soldozy S, Farzad F, Young S, Yağmurlu K, Norat P, Sokolowski J, Park MS, Jane JA, Syed HR. Pituitary Tumors in the Computational Era, Exploring Novel Approaches to Diagnosis, and Outcome Prediction with Machine Learning. World Neurosurg 2020;146:315-321.e1. [PMID: 32711142 DOI: 10.1016/j.wneu.2020.07.104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/15/2020] [Accepted: 07/17/2020] [Indexed: 12/31/2022]
60
Conficoni A, Feraco P, Mazzatenta D, Zoli M, Asioli S, Zenesini C, Fabbri VP, Cellerini M, Bacci A. Biomarkers of pituitary macroadenomas aggressive behaviour: a conventional MRI and DWI 3T study. Br J Radiol 2020;93:20200321. [PMID: 32628097 DOI: 10.1259/bjr.20200321] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]  Open
61
Saha A, Tso S, Rabski J, Sadeghian A, Cusimano MD. Machine learning applications in imaging analysis for patients with pituitary tumors: a review of the current literature and future directions. Pituitary 2020;23:273-293. [PMID: 31907710 DOI: 10.1007/s11102-019-01026-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
62
Fan Y, Chai Y, Li K, Fang H, Mou A, Feng S, Feng M, Wang R. Non-invasive and real-time proliferative activity estimation based on a quantitative radiomics approach for patients with acromegaly: a multicenter study. J Endocrinol Invest 2020;43:755-765. [PMID: 31849000 DOI: 10.1007/s40618-019-01159-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 12/08/2019] [Indexed: 12/17/2022]
63
Gitto S, Cuocolo R, Albano D, Chianca V, Messina C, Gambino A, Ugga L, Cortese MC, Lazzara A, Ricci D, Spairani R, Zanchetta E, Luzzati A, Brunetti A, Parafioriti A, Sconfienza LM. MRI radiomics-based machine-learning classification of bone chondrosarcoma. Eur J Radiol 2020;128:109043. [PMID: 32438261 DOI: 10.1016/j.ejrad.2020.109043] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 04/06/2020] [Accepted: 04/28/2020] [Indexed: 12/14/2022]
64
Staalduinen EK, Bangiyev L. Editorial for “Texture Analysis of High b‐value Diffusion‐Weighted Imaging for Evaluating Consistency of Pituitary Macroadenomas”. J Magn Reson Imaging 2020;51:1514-1515. [DOI: 10.1002/jmri.27130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 02/27/2020] [Indexed: 01/17/2023]  Open
65
Burcea I, Poiana C. UPDATES IN AGGRESSIVE PITUITARY TUMORS. ACTA ENDOCRINOLOGICA (BUCHAREST, ROMANIA : 2005) 2020;16:267-273. [PMID: 33029249 PMCID: PMC7535899 DOI: 10.4183/aeb.2020.267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
66
Comelli A, Stefano A, Coronnello C, Russo G, Vernuccio F, Cannella R, Salvaggio G, Lagalla R, Barone S. Radiomics: A New Biomedical Workflow to Create a Predictive Model. COMMUNICATIONS IN COMPUTER AND INFORMATION SCIENCE 2020. [DOI: 10.1007/978-3-030-52791-4_22] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
67
Fan Y, Feng M, Wang R. Application of Radiomics in Central Nervous System Diseases: a Systematic literature review. Clin Neurol Neurosurg 2019;187:105565. [DOI: 10.1016/j.clineuro.2019.105565] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 10/12/2019] [Accepted: 10/13/2019] [Indexed: 01/01/2023]
PrevPage 2 of 2 12Next
© 2004-2025 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA