51
|
Perdomo-Abúndez FC, Vallejo-Castillo L, Vázquez-Leyva S, López-Morales CA, Velasco-Velázquez M, Pavón L, Pérez-Tapia SM, Medina-Rivero E. Development and validation of a mass spectrometric method to determine the identity of rituximab based on its microheterogeneity profile. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1139:121885. [PMID: 31806401 DOI: 10.1016/j.jchromb.2019.121885] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 11/10/2019] [Accepted: 11/14/2019] [Indexed: 11/19/2022]
Abstract
Analytical methods have been considered the "eyes" for development, characterization and batch releasing of biotherapeutics over the past 40 years. One of the most powerful analytical platform for biotherapeutic analysis is mass spectrometry coupled to liquid chromatography (LC-MS). Due to its wide flexibility and instrumental configurations, LC-MS can determine different physicochemical attributes of proteins, e.g. molecular mass, primary sequence, and posttranslational modifications. Intact molecular mass analysis of therapeutic proteins is essential to confirm their identity. Analytical methods must be validated to support drug quality information during its approval process. Although there are international guidelines that provide general information on validation of analytical methods, practical examples about the design, selection of validation attributes and acceptance criteria of identity LC-MS methods are scarce. Here, according to the recommendations of Q2R1 ICH guideline, we showcase the validation of an LC-MS-TOF method to identity rituximab by determining its intact and deglycosylated molecular mass profiles. The proposed method specifically identified the m/z profile and deconvoluted mass profile of rituximab from deglycosylated rituximab and from excipient blank (specificity) with a maximum error of 76.63 ppm (accuracy) and a maximum Relative Standard Deviation (RSD) of 0.00315% (precision). Besides, the system suitability test, which was based on the expected mass value of the mass calibrator, confirmed the reliability of the analytical results. In summary, validation showed that the proposed method is suitable for identifying rituximab based on its glycosylated (intact) and deglycosylated mass profile.
Collapse
Affiliation(s)
- Francisco C Perdomo-Abúndez
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico.
| | - Luis Vallejo-Castillo
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico.
| | - Said Vázquez-Leyva
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico.
| | - Carlos A López-Morales
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico.
| | - Marco Velasco-Velázquez
- Departamento de Farmacología y Unidad Periférica de Investigación en Biomedicina Translacional (CMN 20 de noviembre, ISSSTE), Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México 04510, Mexico.
| | - Lenin Pavón
- Laboratorio de Psicoinmunología, Dirección de Investigaciones en Neurociencias del Instituto Nacional de Psiquiatría Ramón de la Fuente, Ciudad de México 14370, Mexico.
| | - Sonia Mayra Pérez-Tapia
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico; Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I+D+i) para Farmoquímicos y Biotecnológicos, LANSEIDI-FarBiotec-CONACyT, Ciudad de México 11340, Mexico; Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico.
| | - Emilio Medina-Rivero
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico.
| |
Collapse
|
52
|
Mandeep, Sinha R, Shukla P. Protein Engineering for Improved Health: Technological Perspectives. Curr Protein Pept Sci 2020; 20:856-860. [PMID: 31566124 DOI: 10.2174/138920372009190917095307] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Protein engineering has enabled development of novel proteins aimed at disease diagnosis, alleviation and improved health attributes. The present article provides an overview of recent approaches and techniques used to modify proteins at diverse levels, which find therapeutically relevant applications. There is immense interest among researchers to discover new and increasingly valuable solutions for various health related issues and protein engineering could be a possible venue to sort out such problems. In this mini review we have tried to decipher some of the novel aspects of protein engineering in terms of protein-based therapeutics and diagnostics, in-silico tools and related approaches. A special emphasis has been given for some innovative aspects of protein-nanoparticle conjugates; use of artificial intelligence (AI)- based tools and post-translational modifications. Utilization of such approaches in protein engineering might be ground breaking in future research endeavor of researchers across the world.
Collapse
Affiliation(s)
- Mandeep
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak-124001, Haryana, India
| | | | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak-124001, Haryana, India
| |
Collapse
|
53
|
Keating CL, Kuhn E, Bals J, Cocco AR, Yousif AS, Matysiak C, Sangesland M, Ronsard L, Smoot M, Moreno TB, Okonkwo V, Setliff I, Georgiev I, Balazs AB, Carr SA, Lingwood D. Spontaneous Glycan Reattachment Following N-Glycanase Treatment of Influenza and HIV Vaccine Antigens. J Proteome Res 2020; 19:733-743. [PMID: 31913636 DOI: 10.1021/acs.jproteome.9b00620] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In cells, asparagine/N-linked glycans are added to glycoproteins cotranslationally, in an attachment process that supports proper folding of the nascent polypeptide. We found that following pruning of N-glycan by the amidase PNGase F, the principal influenza vaccine antigen and major viral spike protein hemagglutinin (HA) spontaneously reattached N-glycan to its de-N-glycosylated positions when the amidase was removed from solution. This reaction, which we term N-glycanation, was confirmed by site-specific analysis of HA glycoforms by mass spectrometry prior to PNGase F exposure, during exposure to PNGase F, and after amidase removal. Iterative rounds of de-N-glycosylation followed by N-glycanation could be repeated at least three times and were observed for other viral glycoproteins/vaccine antigens, including the envelope glycoprotein (Env) from HIV. Covalent N-glycan reattachment was nonenzymatic as it occurred in the presence of metal ions that inhibit PNGase F activity. Rather, N-glycanation relied on a noncovalent assembly between protein and glycan, formed in the presence of the amidase, where linearization of the glycoprotein prevented this retention and subsequent N-glycanation. This reaction suggests that under certain experimental conditions, some glycoproteins can organize self-glycan addition, highlighting a remarkable self-assembly principle that may prove useful for re-engineering therapeutic glycoproteins such as influenza HA or HIV Env, where glycan sequence and structure can markedly affect bioactivity and vaccine efficacy.
Collapse
Affiliation(s)
- Celina L Keating
- The Ragon Institute of Massachusetts General Hospital , The Massachusetts Institute of Technology and Harvard University , 400 Technology Square , Cambridge , Massachusetts 02139 , United States of America
| | - Eric Kuhn
- The Broad Institute of The Massachusetts Institute of Technology and Harvard University , 415 Main Street , Cambridge , Massachusetts 02142 , United States of America
| | - Julia Bals
- The Ragon Institute of Massachusetts General Hospital , The Massachusetts Institute of Technology and Harvard University , 400 Technology Square , Cambridge , Massachusetts 02139 , United States of America
| | - Alexandra R Cocco
- The Broad Institute of The Massachusetts Institute of Technology and Harvard University , 415 Main Street , Cambridge , Massachusetts 02142 , United States of America
| | - Ashraf S Yousif
- The Ragon Institute of Massachusetts General Hospital , The Massachusetts Institute of Technology and Harvard University , 400 Technology Square , Cambridge , Massachusetts 02139 , United States of America
| | - Colette Matysiak
- The Ragon Institute of Massachusetts General Hospital , The Massachusetts Institute of Technology and Harvard University , 400 Technology Square , Cambridge , Massachusetts 02139 , United States of America
| | - Maya Sangesland
- The Ragon Institute of Massachusetts General Hospital , The Massachusetts Institute of Technology and Harvard University , 400 Technology Square , Cambridge , Massachusetts 02139 , United States of America
| | - Larance Ronsard
- The Ragon Institute of Massachusetts General Hospital , The Massachusetts Institute of Technology and Harvard University , 400 Technology Square , Cambridge , Massachusetts 02139 , United States of America
| | - Matthew Smoot
- The Ragon Institute of Massachusetts General Hospital , The Massachusetts Institute of Technology and Harvard University , 400 Technology Square , Cambridge , Massachusetts 02139 , United States of America
| | - Thalia Bracamonte Moreno
- The Ragon Institute of Massachusetts General Hospital , The Massachusetts Institute of Technology and Harvard University , 400 Technology Square , Cambridge , Massachusetts 02139 , United States of America
| | - Vintus Okonkwo
- The Ragon Institute of Massachusetts General Hospital , The Massachusetts Institute of Technology and Harvard University , 400 Technology Square , Cambridge , Massachusetts 02139 , United States of America
| | - Ian Setliff
- Program in Chemical & Physical Biology , Vanderbilt University Medical Center , 340 Light Hall , Nashville 37232-0301 , United States of America.,Vanderbilt Vaccine Center , Vanderbilt University , 2213 Garland Avenue , Nashville , Tennessee 37232-0417 , United States of America
| | - Ivelin Georgiev
- Program in Chemical & Physical Biology , Vanderbilt University Medical Center , 340 Light Hall , Nashville 37232-0301 , United States of America.,Vanderbilt Vaccine Center , Vanderbilt University , 2213 Garland Avenue , Nashville , Tennessee 37232-0417 , United States of America.,Department of Pathology, Microbiology, and Immunology , Vanderbilt University Medical Center , C-3322 Medical Center North , Nashville , Tennessee 37232-2561 , United States of America.,Department of Electrical Engineering and Computer Science , Vanderbilt University , 2301 Vanderbilt Place , Nashville , Tennessee 37235-1826 , United States of America
| | - Alejandro B Balazs
- The Ragon Institute of Massachusetts General Hospital , The Massachusetts Institute of Technology and Harvard University , 400 Technology Square , Cambridge , Massachusetts 02139 , United States of America
| | - Steven A Carr
- The Broad Institute of The Massachusetts Institute of Technology and Harvard University , 415 Main Street , Cambridge , Massachusetts 02142 , United States of America
| | - Daniel Lingwood
- The Ragon Institute of Massachusetts General Hospital , The Massachusetts Institute of Technology and Harvard University , 400 Technology Square , Cambridge , Massachusetts 02139 , United States of America
| |
Collapse
|
54
|
Tripathi NK, Shrivastava A. Recent Developments in Bioprocessing of Recombinant Proteins: Expression Hosts and Process Development. Front Bioeng Biotechnol 2019; 7:420. [PMID: 31921823 PMCID: PMC6932962 DOI: 10.3389/fbioe.2019.00420] [Citation(s) in RCA: 278] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 11/29/2019] [Indexed: 12/22/2022] Open
Abstract
Infectious diseases, along with cancers, are among the main causes of death among humans worldwide. The production of therapeutic proteins for treating diseases at large scale for millions of individuals is one of the essential needs of mankind. Recent progress in the area of recombinant DNA technologies has paved the way to producing recombinant proteins that can be used as therapeutics, vaccines, and diagnostic reagents. Recombinant proteins for these applications are mainly produced using prokaryotic and eukaryotic expression host systems such as mammalian cells, bacteria, yeast, insect cells, and transgenic plants at laboratory scale as well as in large-scale settings. The development of efficient bioprocessing strategies is crucial for industrial production of recombinant proteins of therapeutic and prophylactic importance. Recently, advances have been made in the various areas of bioprocessing and are being utilized to develop effective processes for producing recombinant proteins. These include the use of high-throughput devices for effective bioprocess optimization and of disposable systems, continuous upstream processing, continuous chromatography, integrated continuous bioprocessing, Quality by Design, and process analytical technologies to achieve quality product with higher yield. This review summarizes recent developments in the bioprocessing of recombinant proteins, including in various expression systems, bioprocess development, and the upstream and downstream processing of recombinant proteins.
Collapse
Affiliation(s)
- Nagesh K. Tripathi
- Bioprocess Scale Up Facility, Defence Research and Development Establishment, Gwalior, India
| | - Ambuj Shrivastava
- Division of Virology, Defence Research and Development Establishment, Gwalior, India
| |
Collapse
|
55
|
de Oliveira TA, Silva WD, da Rocha Torres N, Badaró de Moraes JV, Senra RL, de Oliveira Mendes TA, Júnior AS, Bressan GC, Fietto JLR. Application of the LEXSY Leishmania tarentolae system as a recombinant protein expression platform: A review. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.08.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
56
|
Shukla P. Synthetic Biology Perspectives of Microbial Enzymes and Their Innovative Applications. Indian J Microbiol 2019; 59:401-409. [PMID: 31762501 DOI: 10.1007/s12088-019-00819-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 08/19/2019] [Indexed: 11/29/2022] Open
Abstract
Microbial enzymes are high in demand and there is focus on their efficient, cost effective and eco-friendly production. The relevant microbial enzymes for respective industries needs to be identified but the conventional technologies don't have much edge over it. So, there is more attention towards high throughput methods for production of efficient enzymes. The enzymes produced by microbes need to be modified to bear the extreme conditions of the industries in order to get prolific outcomes and here the synthetic biology tools may be augmented to modify such microbes and enzymes. These tools are applied to synthesize novel and efficient enzymes. Use of computational tools for enzyme modification has provided new avenues for faster and specific modification of enzymes in a shorter time period. This review focuses on few important enzymes and their modification through synthetic biology tools including genetic modification, nanotechnology, post translational modification.
Collapse
Affiliation(s)
- Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana 124001 India
| |
Collapse
|
57
|
Bonzom C, Hüttner S, Mirgorodskaya E, Chong SL, Uthoff S, Steinbüchel A, Verhaert RMD, Olsson L. Glycosylation influences activity, stability and immobilization of the feruloyl esterase 1a from Myceliophthora thermophila. AMB Express 2019; 9:126. [PMID: 31407106 PMCID: PMC6691016 DOI: 10.1186/s13568-019-0852-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 08/02/2019] [Indexed: 11/26/2022] Open
Abstract
Heterologous protein production is widely used in industrial biotechnology. However, using non-native production hosts can lead to enzymes with altered post-translational modifications, such as glycosylation. We have investigated how production in a non-native host affects the physicochemical properties and enzymatic activity of a feruloyl esterase from Myceliophthora thermophila, MtFae1a. The enzyme was produced in two microorganisms that introduce glycosylation (M. thermophila and Pichia pastoris) and in Escherichia coli (non-glycosylated). Mass spectrometric analysis confirmed the presence of glycosylation and revealed differences in the lengths of glycan chains between the enzymes produced in M. thermophila and P. pastoris. The melting temperature and the optimal temperature for activity of the non-glycosylated enzyme were considerably lower than those of the glycosylated enzymes. The three MtFae1a versions also exhibited differences in specific activity and specificity. The catalytic efficiency of the glycosylated enzymes were more than 10 times higher than that of the non-glycosylated one. In biotechnology, immobilization is often used to allow reusing enzyme and was investigated on mesoporous silica particles. We found the binding kinetics and immobilization yield differed between the enzyme versions. The largest differences were observed when comparing enzymes with and without glycosylation, but significant variations were also observed between the two differently glycosylated enzymes. We conclude that the biotechnological value of an enzyme can be optimized for a specific application by carefully selecting the production host.
Collapse
|
58
|
An HER2-Displaying Virus-Like Particle Vaccine Protects from Challenge with Mammary Carcinoma Cells in a Mouse Model. Vaccines (Basel) 2019; 7:vaccines7020041. [PMID: 31137559 PMCID: PMC6631560 DOI: 10.3390/vaccines7020041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/10/2019] [Accepted: 05/15/2019] [Indexed: 12/18/2022] Open
Abstract
Human epidermal growth factor receptor-2 (HER2) is upregulated in 20% to 30% of breast cancers and is a marker of a poor outcome. Due to the development of resistance to passive immunotherapy with Trastuzumab, active anti-HER2 vaccination strategies that could potentially trigger durable tumor-specific immune responses have become an attractive research area. Recently, we have shown that budded virus-like particles (VLPs) produced in Sf9 insect cells are an ideal platform for the expression of complex membrane proteins. To assess the efficacy of antigen-displaying VLPs as active cancer vaccines, BALB/c mice were immunized with insect cell glycosylated and mammalian-like glycosylated HER2-displaying VLPs in combination with two different adjuvants and were challenged with HER2-positive tumors. Higher HER2-specific antibody titers and effector functions were induced in mice vaccinated with insect cell glycosylated HER2 VLPs compared to mammalian-like glycosylated counterparts. Moreover, insect cell glycosylated HER2 VLPs elicited a protective effect in mice grafted with HER2-positive mammary carcinoma cells. Interestingly, no protection was observed in mice that were adjuvanted with Poly (I:C). Here, we show that antigen-displaying VLPs produced in Sf9 insect cells were able to induce robust and durable immune responses in vivo and have the potential to be utilized as active cancer vaccines.
Collapse
|
59
|
Seo Y, Oh MJ, Park JY, Ko JK, Kim JY, An HJ. Comprehensive Characterization of Biotherapeutics by Selective Capturing of Highly Acidic Glycans Using Stepwise PGC-SPE and LC/MS/MS. Anal Chem 2019; 91:6064-6071. [DOI: 10.1021/acs.analchem.9b00603] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Youngsuk Seo
- Asia
Glycomics
Reference Site, Daejeon 34134, Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 34134, Korea
| | - Myung Jin Oh
- Asia
Glycomics
Reference Site, Daejeon 34134, Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 34134, Korea
| | - Jin Young Park
- Asia
Glycomics
Reference Site, Daejeon 34134, Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 34134, Korea
| | - Jae Kyoung Ko
- Asia
Glycomics
Reference Site, Daejeon 34134, Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 34134, Korea
| | - Jin Young Kim
- Department of Mass Spectrometry, Korea Basic Science Institute, Ochang 28119, Korea
| | - Hyun Joo An
- Asia
Glycomics
Reference Site, Daejeon 34134, Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
60
|
HEK293 Cells Overexpressing Nuclear Factor E2-Related Factor-2 Improve Expression of Recombinant Coagulation Factor VII. Mol Biotechnol 2019; 61:317-324. [DOI: 10.1007/s12033-019-00160-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|