51
|
Michaud L, Bantilan K, Mauguen A, Moskowitz CH, Zelenetz AD, Schöder H. Prognostic Value of 18F-FDG PET/CT in Diffuse Large B-Cell Lymphoma Treated with a Risk-Adapted Immunochemotherapy Regimen. J Nucl Med 2023; 64:536-541. [PMID: 36549918 PMCID: PMC10071786 DOI: 10.2967/jnumed.122.264740] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/04/2022] [Accepted: 10/04/2022] [Indexed: 12/24/2022] Open
Abstract
Early identification of patients with diffuse large B-cell lymphoma (DLBCL) who are likely to experience disease recurrence or refractory disease after rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP) would be useful for improving risk-adapted treatment strategies. We aimed to assess the prognostic value of 18F-FDG PET/CT parameters at baseline, interim, and end of treatment (EOT). Methods: We analyzed the prognostic impact of 18F-FDG PET/CT in 166 patients with DLBCL treated with a risk-adapted immunochemotherapy regimen. Scans were obtained at baseline, after 4 cycles of R-CHOP or 3 cycles of RR-CHOP (double dose of R) and 1 cycle of CHOP alone (interim) and 6 wk after completing therapy (EOT). Progression-free survival (PFS) and overall survival (OS) were estimated using Kaplan-Meier and the impact of clinical/PET factors assessed with Cox models. We also assessed the predictive ability of the recently proposed International Metabolic Prognostic Index (IMPI). Results: The median follow-up was 7.9 y. International Prognostic Index (IPI), baseline metabolic tumor volume (MTV), and change in maximum SUV (ΔSUVmax) at interim scans were statistically significant predictors for OS. Baseline MTV, interim ΔSUVmax, and EOT Deauville score were statistically significant predictors of PFS. Combining interim PET parameters demonstrated that patients with Deauville 4-5 and positive ΔSUVmax ≤ 70% at restaging (∼10% of the cohort) had extremely poor prognosis. The IMPI had limited discrimination and slightly overestimated the event rate in our cohort. Conclusion: Baseline MTV and interim ΔSUVmax predicted both PFS and OS with this sequential immunochemotherapy program. Combining interim Deauville score with interim ΔSUVmax may identify an extremely high-risk DLBCL population.
Collapse
Affiliation(s)
- Laure Michaud
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kurt Bantilan
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Audrey Mauguen
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York; and
| | - Craig H Moskowitz
- Department of Medicine, University of Miami Health System, Miami, Florida
| | - Andrew D Zelenetz
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Heiko Schöder
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York;
| |
Collapse
|
52
|
Ortega C, Eshet Y, Prica A, Anconina R, Johnson S, Constantini D, Keshavarzi S, Kulanthaivelu R, Metser U, Veit-Haibach P. Combination of FDG PET/CT Radiomics and Clinical Parameters for Outcome Prediction in Patients with Hodgkin’s Lymphoma. Cancers (Basel) 2023; 15:cancers15072056. [PMID: 37046717 PMCID: PMC10093084 DOI: 10.3390/cancers15072056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/06/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Purpose: The aim of the study is to evaluate the prognostic value of a joint evaluation of PET and CT radiomics combined with standard clinical parameters in patients with HL. Methods: Overall, 88 patients (42 female and 46 male) with a median age of 43.3 (range 21–85 years) were included. Textural analysis of the PET/CT images was performed using freely available software (LIFE X). 65 radiomic features (RF) were evaluated. Univariate and multivariate models were used to determine the value of clinical characteristics and FDG PET/CT radiomics in outcome prediction. In addition, a binary logistic regression model was used to determine potential predictors for radiotherapy treatment and odds ratios (OR), with 95% confidence intervals (CI) reported. Features relevant to survival outcomes were assessed using Cox proportional hazards to calculate hazard ratios with 95% CI. Results: albumin (p = 0.034) + ALP (p = 0.028) + CT radiomic feature GLRLM GLNU mean (p = 0.012) (Area under the curve (AUC): 95% CI (86.9; 100.0)—Brier score: 3.9, 95% CI (0.1; 7.8) remained significant independent predictors for PFS outcome. PET-SHAPE Sphericity (p = 0.033); CT grey-level zone length matrix with high gray-level zone emphasis (GLZLM SZHGE mean (p = 0.028)); PARAMS XSpatial Resampling (p = 0.0091) as well as hemoglobin results (p = 0.016) remained as independent factors in the final model for a binary outcome as predictors of the need for radiotherapy (AUC = 0.79). Conclusion: We evaluated the value of baseline clinical parameters as well as combined PET and CT radiomics in HL patients for survival and the prediction of the need for radiotherapy treatment. We found that different combinations of all three factors/features were independently predictive of the here evaluated endpoints.
Collapse
|
53
|
Korsholm K, Overbeck N, Dias AH, Loft A, Andersen FL, Fischer BM. Impact of Reduced Image Noise on Deauville Scores in Patients with Lymphoma Scanned on a Long-Axial Field-of-View PET/CT-Scanner. Diagnostics (Basel) 2023; 13:diagnostics13050947. [PMID: 36900090 PMCID: PMC10000539 DOI: 10.3390/diagnostics13050947] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
BACKGROUND Total body and long-axial field-of-view (LAFOV) PET/CT represent visionary innovations in imaging enabling either improved image quality, reduction in injected activity-dose or decreased acquisition time. An improved image quality may affect visual scoring systems, including the Deauville score (DS), which is used for clinical assessment of patients with lymphoma. The DS compares SUVmax in residual lymphomas with liver parenchyma, and here we investigate the impact of reduced image noise on the DS in patients with lymphomas scanned on a LAFOV PET/CT. METHODS Sixty-eight patients with lymphoma underwent a whole-body scan on a Biograph Vision Quadra PET/CT-scanner, and images were evaluated visually with regard to DS for three different timeframes of 90, 300, and 600 s. SUVmax and SUVmean were calculated from liver and mediastinal blood pool, in addition to SUVmax from residual lymphomas and measures of noise. RESULTS SUVmax in liver and in mediastinal blood pool decreased significantly with increasing acquisition time, whereas SUVmean remained stable. In residual tumor, SUVmax was stable during different acquisition times. As a result, the DS was subject to change in three patients. CONCLUSIONS Attention should be drawn towards the eventual impact of improvements in image quality on visual scoring systems such as the DS.
Collapse
Affiliation(s)
- Kirsten Korsholm
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, 2100 Copenhagen, Denmark
- Correspondence:
| | - Nanna Overbeck
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, 2100 Copenhagen, Denmark
| | - André H. Dias
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Annika Loft
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, 2100 Copenhagen, Denmark
| | - Flemming Littrup Andersen
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, 2100 Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Barbara Malene Fischer
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, 2100 Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
54
|
Xie Y, Teng Y, Jiang C, Ding C, Zhou Z. Prognostic value of 18F-FDG lesion dissemination features in patients with peripheral T-cell lymphoma (PTCL). Jpn J Radiol 2023:10.1007/s11604-023-01398-y. [PMID: 36752954 DOI: 10.1007/s11604-023-01398-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/23/2023] [Indexed: 02/09/2023]
Abstract
PURPOSE To explore the prognostic value of the distance between the two lesions that were farthest apart (Dmax) on baseline 18F-FDG PET/CT in peripheral T lymphoma (PTCL) and establish a new prognostic model for predicting the survival outcomes of patients with PTCL. METHODS In this study, a retrospective analysis of 95 patients with PTCL who underwent baseline 18F-FDG PET/CT was performed to assess the predictive value of Dmax. The total metabolic tumour volume (TMTV), total lesion glycolysis (TLG), standardized uptake value (SUV), and Dmax were calculated with LIFEx software. Progression-free survival (PFS) and overall survival (OS) were used as endpoints. The prognostic model was developed based on the results of the multivariate analysis. The time-dependent area under the ROC curve (tdAUC), calibration curves, Harrell C-index, and decision curve analysis (DCA) were used to assess the model. RESULTS Patients were followed up for a median of 17.0 months. Multivariate analysis showed that bone marrow biopsy (BMB) and Dmax were independent predictors of PFS (HR: 1.889, P = 0.039; HR: 1.965, P = 0.047) and OS (HR: 1.923, P = 0.031; HR: 1.982, P = 0.034). The model consisting of Dmax, TMTV, and BMB had substantial prognostic value for survival outcomes of PTCL and could successfully identify four groups of patients with significantly different prognoses (χ2 = 13.731, P = 0.003 for PFS; χ2 = 11.841, P = 0.008 for OS). The tdAUC, C-index, calibration curves, and DCA supported that the model was superior to the prognostic index for T-cell lymphoma (PIT) and International Prognostic Index (IPI) scores. CONCLUSION BMB and Dmax were independent predictors of PTCL in our study. Moreover, a prognostic model based on the Dmax, TMTV, and BMB could be useful for predicting the survival outcomes of patients with PTCL.
Collapse
Affiliation(s)
- Yiting Xie
- Nanjing Drum Tower Hospital, Clinical College of Jiangsu University, Nanjing, China
| | - Yue Teng
- Department of Nuclear Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210000, China
| | - Chong Jiang
- Department of Nuclear Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210000, China
| | - Chongyang Ding
- Department of Nuclear Medicine, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China.
| | - Zhengyang Zhou
- Department of Radiology, Nanjing Drum Tower Hospital, Clinical College of Jiangsu University, Nanjing, China.
| |
Collapse
|
55
|
Gong H, Tang B, Li T, Li J, Tang L, Ding C. The added prognostic values of baseline PET dissemination parameter in patients with angioimmunoblastic T-cell lymphoma. EJHAEM 2023; 4:67-77. [PMID: 36819177 PMCID: PMC9928789 DOI: 10.1002/jha2.610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/13/2022] [Accepted: 10/20/2022] [Indexed: 11/30/2022]
Abstract
To explore the prognostic values of baseline 2-deoxy-2-[18F] fluoro-D-glucose (FDG) positron emission tomography/computed tomography (PET/CT) dissemination parameter in angioimmunoblastic T-cell lymphoma (AITL) and its added values to total metabolic tumour volume (TMTV). Eighty-one AITL patients with at least two FDG-avid lesions in baseline PET/CT were retrospectively included. PET parameters including TMTV and the distance between the two lesions that are the furthest apart (Dmax) were obtained. Univariate Cox analysis showed that both Dmax and TMTV were risk factors for progression-free survival (PFS) and overall survival (OS). Multivariate Cox analysis models of different combinations showed that high Dmax (> 65.7 cm) could independently predict both PFS and OS, while high TMTV (>456.6 cm3) was only significant for OS. A concise PET model based on TMTV and Dmax can effectively risk-stratify patients. PFS and OS rates were significantly lower in patients with high Dmax and high TMTV than in patients with low Dmax and low TMTV (3-year PFS rate: 15.0% vs. 48.7%, p = 0.001; 3-year OS rate: 27.6% vs. 79.0%, p < 0.001). Dmax can directly reflect the disease dissemination characteristic and has a significant prognostic value for FDG-avid AITL patients. It has the potential to be introduced into new risk stratification models for tailored treatment.
Collapse
Affiliation(s)
- Huanyu Gong
- Department of Nuclear MedicineJiangsu Province HospitalThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Bo Tang
- Department of RadiologyShuyang Hospital of Traditional Chinese MedicineSuqianChina
| | - Tiannv Li
- Department of Nuclear MedicineJiangsu Province HospitalThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Jianyong Li
- Department of HematologyJiangsu Province HospitalThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Lijun Tang
- Department of Nuclear MedicineJiangsu Province HospitalThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Chongyang Ding
- Department of Nuclear MedicineJiangsu Province HospitalThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| |
Collapse
|
56
|
Ferrer-Lores B, Lozano J, Fuster-Matanzo A, Mayorga-Ruiz I, Moreno-Ruiz P, Bellvís F, Teruel AB, Saus A, Ortiz A, Villamón-Ribate E, Serrano-Alcalá A, Piñana JL, Sopena P, Dosdá R, Solano C, Alberich-Bayarri Á, Terol MJ. Prognostic value of genetic alterations and 18F-FDG PET/CT imaging features in diffuse large B cell lymphoma. Am J Cancer Res 2023; 13:509-525. [PMID: 36895981 PMCID: PMC9989608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/03/2022] [Indexed: 03/11/2023] Open
Abstract
The current standard front-line therapy for patients with diffuse large-B cell lymphoma (DLBCL)-rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP)-is found to be ineffective in up to one-third of them. Thus, their early identification is an important step towards testing alternative treatment options. In this retrospective study, we assessed the ability of 18F-FDG PET/CT imaging features (radiomic + PET conventional parameters) plus clinical data, alone or in combination with genomic parameters to predict complete response to first-line treatment. Imaging features were extracted from images prior treatment. Lesions were segmented as a whole to reflect tumor burden. Multivariate logistic regression predictive models for response to first-line treatment trained with clinical and imaging features, or with clinical, imaging, and genomic features were developed. For imaging feature selection, a manual selection approach or a linear discriminant analysis (LDA) for dimensionality reduction were applied. Confusion matrices and performance metrics were obtained to assess model performance. Thirty-three patients (median [range] age, 58 [49-69] years) were included, of whom 23 (69.69%) achieved long-term complete response. Overall, the inclusion of genomic features improved prediction ability. The best performance metrics were obtained with the combined model including genomic data and built applying the LDA method (AUC of 0.904, and 90% of balanced accuracy). The amplification of BCL6 was found to significantly contribute to explain response to first-line treatment in both manual and LDA models. Among imaging features, radiomic features reflecting lesion distribution heterogeneity (GLSZM_GrayLevelVariance, Sphericity and GLCM_Correlation) were predictors of response in manual models. Interestingly, when the dimensionality reduction was applied, the whole set of imaging features-mostly composed of radiomic features-significantly contributed to explain response to front-line therapy. A nomogram predictive for response to first-line treatment was constructed. In summary, a combination of imaging features, clinical variables and genomic data was able to successfully predict complete response to first-line treatment in DLBCL patients, with the amplification of BCL6 as the genetic marker retaining the highest predictive value. Additionally, a panel of imaging features may provide important information when predicting treatment response, with lesion dissemination-related radiomic features deserving especial attention.
Collapse
Affiliation(s)
- Blanca Ferrer-Lores
- Hematology Department, Hospital Clínico Universitario-INCLIVA Valencia, Spain
| | - Jose Lozano
- Quantitative Imaging Biomarkers in Medicine, Quibim Valencia, Spain
| | | | | | | | | | | | - Ana Saus
- Hematology Department, Hospital Clínico Universitario-INCLIVA Valencia, Spain
| | - Alfonso Ortiz
- Hematology Department, Hospital Clínico Universitario-INCLIVA Valencia, Spain
| | - Eva Villamón-Ribate
- Hematology Department, Hospital Clínico Universitario-INCLIVA Valencia, Spain
| | | | - José L Piñana
- Hematology Department, Hospital Clínico Universitario-INCLIVA Valencia, Spain
| | - Pablo Sopena
- Nuclear Medicine Department, Área Clínica de Imagen Médica, La Fe Hospital Valencia, Spain
| | - Rosa Dosdá
- Department of Radiology, Hospital Clínico Universitario Valencia Valencia, Spain
| | | | | | - María José Terol
- Hematology Department, Hospital Clínico Universitario-INCLIVA Valencia, Spain.,University of Valencia Valencia, Spain
| |
Collapse
|
57
|
Zwezerijnen GJC, Eertink JJ, Ferrández MC, Wiegers SE, Burggraaff CN, Lugtenburg PJ, Heymans MW, de Vet HCW, Zijlstra JM, Boellaard R. Reproducibility of [18F]FDG PET/CT liver SUV as reference or normalisation factor. Eur J Nucl Med Mol Imaging 2023; 50:486-493. [PMID: 36166080 PMCID: PMC9816285 DOI: 10.1007/s00259-022-05977-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/15/2022] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Although visual and quantitative assessments of [18F]FDG PET/CT studies typically rely on liver uptake value as a reference or normalisation factor, consensus or consistency in measuring [18F]FDG uptake is lacking. Therefore, we evaluate the variation of several liver standardised uptake value (SUV) measurements in lymphoma [18F]FDG PET/CT studies using different uptake metrics. METHODS PET/CT scans from 34 lymphoma patients were used to calculate SUVmaxliver, SUVpeakliver and SUVmeanliver as a function of (1) volume-of-interest (VOI) size, (2) location, (3) imaging time point and (4) as a function of total metabolic tumour volume (MTV). The impact of reconstruction protocol on liver uptake is studied on 15 baseline lymphoma patient scans. The effect of noise on liver SUV was assessed using full and 25% count images of 15 lymphoma scans. RESULTS Generally, SUVmaxliver and SUVpeakliver were 38% and 16% higher compared to SUVmeanliver. SUVmaxliver and SUVpeakliver increased up to 31% and 15% with VOI size while SUVmeanliver remained unchanged with the lowest variability for the largest VOI size. Liver uptake metrics were not affected by VOI location. Compared to baseline, liver uptake metrics were 15-18% and 9-18% higher at interim and EoT PET, respectively. SUVliver decreased with larger total MTVs. SUVmaxliver and SUVpeakliver were affected by reconstruction protocol up to 62%. SUVmax and SUVpeak moved 22% and 11% upward between full and 25% count images. CONCLUSION SUVmeanliver was most robust against VOI size, location, reconstruction protocol and image noise level, and is thus the most reproducible metric for liver uptake. The commonly recommended 3 cm diameter spherical VOI-based SUVmeanliver values were only slightly more variable than those seen with larger VOI sizes and are sufficient for SUVmeanliver measurements in future studies. TRIAL REGISTRATION EudraCT: 2006-005,174-42, 01-08-2008.
Collapse
Affiliation(s)
- Gerben J C Zwezerijnen
- Radiology and Nuclear Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Jakoba J Eertink
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Hematology, Amsterdam, The Netherlands
| | - Maria C Ferrández
- Radiology and Nuclear Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Sanne E Wiegers
- Radiology and Nuclear Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Coreline N Burggraaff
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Hematology, Amsterdam, The Netherlands
| | | | - Martijn W Heymans
- Epidemiology and Data Science, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Methodology, Amsterdam, The Netherlands
| | - Henrica C W de Vet
- Epidemiology and Data Science, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Methodology, Amsterdam, The Netherlands
| | - Josée M Zijlstra
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Hematology, Amsterdam, The Netherlands
| | - Ronald Boellaard
- Radiology and Nuclear Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands.
| |
Collapse
|
58
|
Deng H, Zhou Y, Lu W, Chen W, Yuan Y, Li L, Shu H, Zhang P, Ye X. Development and validation of nomograms by radiomic features on ultrasound imaging for predicting overall survival in patients with primary nodal diffuse large B-cell lymphoma. Front Oncol 2022; 12:991948. [PMID: 36568168 PMCID: PMC9768489 DOI: 10.3389/fonc.2022.991948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022] Open
Abstract
Objectives To develop and validate a nomogram to predict the overall survival (OS) of patients with primary nodal diffuse large B-cell lymphoma(N-DLBCL) based on radiomic features and clinical features. Materials and methods A retrospective analysis was performed on 145 patients confirmed with N-DLBCL and they were randomly assigned to training set(n=78), internal validation set(n=33), external validation set(n=34). First, a clinical model (model 1) was established according to clinical features and ultrasound (US) results. Then, based on the radiomics features extracted from conventional ultrasound images, a radiomic signature was constructed (model 2), and the radiomics score (Rad-Score) was calculated. Finally, a comprehensive model was established (model 3) combined with Rad-score and clinical features. Receiver operating characteristic (ROC) curves were employed to evaluate the performance of model 1, model 2 and model 3. Based on model 3, we plotted a nomogram. Calibration curves were used to test the effectiveness of the nomogram, and decision curve analysis (DCA) was used to asset the nomogram in clinical use. Results According to multivariate analysis, 3 clinical features and Rad-score were finally selected to construct the model 3, which showed better predictive value for OS in patients with N-DLBCL than mode 1 and model 2 in training (AUC,0. 891 vs. 0.779 vs.0.756), internal validation (AUC, 0.868 vs. 0.713, vs.0.756) and external validation (AUC, 914 vs. 0.866, vs.0.789) sets. Decision curve analysis demonstrated that the nomogram based on model 3 was more clinically useful than the other two models. Conclusion The developed nomogram is a useful tool for precisely analyzing the prognosis of N-DLBCL patients, which could help clinicians in making personalized survival predictions and assessing individualized clinical options.
Collapse
Affiliation(s)
- Hongyan Deng
- Department of Ultrasound, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yasu Zhou
- Department of Ultrasound, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wenjuan Lu
- Department of Ultrasound, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wenqin Chen
- Department of Ultrasound, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ya Yuan
- Department of Ultrasound, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lu Li
- Department of Ultrasound, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hua Shu
- Department of Ultrasound, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Pingyang Zhang
- Department of Cardiovascular Ultrasound, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China,*Correspondence: Xinhua Ye, ; Pingyang Zhang,
| | - Xinhua Ye
- Department of Ultrasound, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China,*Correspondence: Xinhua Ye, ; Pingyang Zhang,
| |
Collapse
|
59
|
Driessen J, Kersten MJ, Visser L, van den Berg A, Tonino SH, Zijlstra JM, Lugtenburg PJ, Morschhauser F, Hutchings M, Amorim S, Gastinne T, Nijland M, Zwezerijnen GJC, Boellaard R, de Vet HCW, Arens AIJ, Valkema R, Liu RDK, Drees EEE, de Jong D, Plattel WJ, Diepstra A. Prognostic value of TARC and quantitative PET parameters in relapsed or refractory Hodgkin lymphoma patients treated with brentuximab vedotin and DHAP. Leukemia 2022; 36:2853-2862. [PMID: 36241696 DOI: 10.1038/s41375-022-01717-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 08/20/2022] [Accepted: 09/26/2022] [Indexed: 11/08/2022]
Abstract
Risk-stratified treatment strategies have the potential to increase survival and lower toxicity in relapsed/refractory classical Hodgkin lymphoma (R/R cHL) patients. This study investigated the prognostic value of serum (s)TARC, vitamin D and lactate dehydrogenase (LDH), TARC immunohistochemistry and quantitative PET parameters in 65 R/R cHL patients who were treated with brentuximab vedotin (BV) and DHAP followed by autologous stem-cell transplantation (ASCT) within the Transplant BRaVE study (NCT02280993). At a median follow-up of 40 months, the 3-year progression free survival (PFS) was 77% (95% CI: 67-88%) and the overall survival was 95% (90-100%). Significant adverse prognostic markers for progression were weak/negative TARC staining of Hodgkin Reed-Sternberg cells in the baseline biopsy, and a high standard uptake value (SUV)mean or SUVpeak on the baseline PET scan. After one cycle of BV-DHAP, sTARC levels were strongly associated with the risk of progression using a cutoff of 500 pg/ml. On the pre-ASCT PET scan, SUVpeak was highly prognostic for progression post-ASCT. Vitamin D, LDH and metabolic tumor volume had low prognostic value. In conclusion, we established the prognostic impact of sTARC, TARC staining, and quantitative PET parameters for R/R cHL, allowing the use of these parameters in prospective risk-stratified clinical trials. Trial registration: NCT02280993.
Collapse
Affiliation(s)
- Julia Driessen
- Department of Hematology, Amsterdam UMC, University of Amsterdam, LYMMCARE, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Marie José Kersten
- Department of Hematology, Amsterdam UMC, University of Amsterdam, LYMMCARE, Cancer Center Amsterdam, Amsterdam, The Netherlands.
| | - Lydia Visser
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Anke van den Berg
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Sanne H Tonino
- Department of Hematology, Amsterdam UMC, University of Amsterdam, LYMMCARE, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Josée M Zijlstra
- Department of Hematology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Pieternella J Lugtenburg
- Department of Hematology, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, The Netherlands
| | | | | | - Sandy Amorim
- Department of Hematology, Hopital Saint Louis, Paris, France
| | - Thomas Gastinne
- Department of Hematology, Centre Hospitalier Universitaire, Nantes, France
| | - Marcel Nijland
- Department of Hematology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Gerben J C Zwezerijnen
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Ronald Boellaard
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Henrica C W de Vet
- Department of Epidemiology and Data Science, Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Anne I J Arens
- Department of Radiology, Nuclear Medicine and Anatomy, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Roelf Valkema
- Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Roberto D K Liu
- Department of Hematology, Amsterdam UMC, University of Amsterdam, LYMMCARE, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Esther E E Drees
- Department of Pathology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Daphne de Jong
- Department of Pathology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Wouter J Plattel
- Department of Hematology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Arjan Diepstra
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
60
|
Imaging-based representation and stratification of intra-tumor heterogeneity via tree-edit distance. Sci Rep 2022; 12:19607. [PMID: 36380083 PMCID: PMC9666477 DOI: 10.1038/s41598-022-23752-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/04/2022] [Indexed: 11/17/2022] Open
Abstract
Personalized medicine is the future of medical practice. In oncology, tumor heterogeneity assessment represents a pivotal step for effective treatment planning and prognosis prediction. Despite new procedures for DNA sequencing and analysis, non-invasive methods for tumor characterization are needed to impact on daily routine. On purpose, imaging texture analysis is rapidly scaling, holding the promise to surrogate histopathological assessment of tumor lesions. In this work, we propose a tree-based representation strategy for describing intra-tumor heterogeneity of patients affected by metastatic cancer. We leverage radiomics information extracted from PET/CT imaging and we provide an exhaustive and easily readable summary of the disease spreading. We exploit this novel patient representation to perform cancer subtyping according to hierarchical clustering technique. To this purpose, a new heterogeneity-based distance between trees is defined and applied to a case study of prostate cancer. Clusters interpretation is explored in terms of concordance with severity status, tumor burden and biological characteristics. Results are promising, as the proposed method outperforms current literature approaches. Ultimately, the proposed method draws a general analysis framework that would allow to extract knowledge from daily acquired imaging data of patients and provide insights for effective treatment planning.
Collapse
|
61
|
Baseline radiomics features and MYC rearrangement status predict progression in aggressive B-cell lymphoma. Blood Adv 2022; 7:214-223. [PMID: 36306337 PMCID: PMC9841040 DOI: 10.1182/bloodadvances.2022008629] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/20/2022] [Accepted: 09/26/2022] [Indexed: 01/21/2023] Open
Abstract
We investigated whether the outcome prediction of patients with aggressive B-cell lymphoma can be improved by combining clinical, molecular genotype, and radiomics features. MYC, BCL2, and BCL6 rearrangements were assessed using fluorescence in situ hybridization. Seventeen radiomics features were extracted from the baseline positron emission tomography-computed tomography of 323 patients, which included maximum standardized uptake value (SUVmax), SUVpeak, SUVmean, metabolic tumor volume (MTV), total lesion glycolysis, and 12 dissemination features pertaining to distance, differences in uptake and volume between lesions, respectively. Logistic regression with backward feature selection was used to predict progression after 2 years. The predictive value of (1) International Prognostic Index (IPI); (2) IPI plus MYC; (3) IPI, MYC, and MTV; (4) radiomics; and (5) MYC plus radiomics models were tested using the cross-validated area under the curve (CV-AUC) and positive predictive values (PPVs). IPI yielded a CV-AUC of 0.65 ± 0.07 with a PPV of 29.6%. The IPI plus MYC model yielded a CV-AUC of 0.68 ± 0.08. IPI, MYC, and MTV yielded a CV-AUC of 0.74 ± 0.08. The highest model performance of the radiomics model was observed for MTV combined with the maximum distance between the largest lesion and another lesion, the maximum difference in SUVpeak between 2 lesions, and the sum of distances between all lesions, yielding an improved CV-AUC of 0.77 ± 0.07. The same radiomics features were retained when adding MYC (CV-AUC, 0.77 ± 0.07). PPV was highest for the MYC plus radiomics model (50.0%) and increased by 20% compared with the IPI (29.6%). Adding radiomics features improved model performance and PPV and can, therefore, aid in identifying poor prognosis patients.
Collapse
|
62
|
Eertink JJ, Heymans MW, Zwezerijnen GJC, Zijlstra JM, de Vet HCW, Boellaard R. External validation: a simulation study to compare cross-validation versus holdout or external testing to assess the performance of clinical prediction models using PET data from DLBCL patients. EJNMMI Res 2022; 12:58. [PMID: 36089634 PMCID: PMC9464671 DOI: 10.1186/s13550-022-00931-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/27/2022] [Indexed: 11/16/2022] Open
Abstract
Aim Clinical prediction models need to be validated. In this study, we used simulation data to compare various internal and external validation approaches to validate models. Methods Data of 500 patients were simulated using distributions of metabolic tumor volume, standardized uptake value, the maximal distance between the largest lesion and another lesion, WHO performance status and age of 296 diffuse large B cell lymphoma patients. These data were used to predict progression after 2 years based on an existing logistic regression model. Using the simulated data, we applied cross-validation, bootstrapping and holdout (n = 100). We simulated new external datasets (n = 100, n = 200, n = 500) and simulated stage-specific external datasets (1), varied the cut-off for high-risk patients (2) and the false positive and false negative rates (3) and simulated a dataset with EARL2 characteristics (4). All internal and external simulations were repeated 100 times. Model performance was expressed as the cross-validated area under the curve (CV-AUC ± SD) and calibration slope. Results The cross-validation (0.71 ± 0.06) and holdout (0.70 ± 0.07) resulted in comparable model performances, but the model had a higher uncertainty using a holdout set. Bootstrapping resulted in a CV-AUC of 0.67 ± 0.02. The calibration slope was comparable for these internal validation approaches. Increasing the size of the test set resulted in more precise CV-AUC estimates and smaller SD for the calibration slope. For test datasets with different stages, the CV-AUC increased as Ann Arbor stages increased. As expected, changing the cut-off for high risk and false positive- and negative rates influenced the model performance, which is clearly shown by the low calibration slope. The EARL2 dataset resulted in similar model performance and precision, but calibration slope indicated overfitting. Conclusion In case of small datasets, it is not advisable to use a holdout or a very small external dataset with similar characteristics. A single small testing dataset suffers from a large uncertainty. Therefore, repeated CV using the full training dataset is preferred instead. Our simulations also demonstrated that it is important to consider the impact of differences in patient population between training and test data, which may ask for adjustment or stratification of relevant variables.
Collapse
|
63
|
Driessen J, Zwezerijnen GJ, Schöder H, Drees EE, Kersten MJ, Moskowitz AJ, Moskowitz CH, Eertink JJ, de Vet HC, Hoekstra OS, Zijlstra JM, Boellaard R. The Impact of Semiautomatic Segmentation Methods on Metabolic Tumor Volume, Intensity, and Dissemination Radiomics in 18F-FDG PET Scans of Patients with Classical Hodgkin Lymphoma. J Nucl Med 2022; 63:1424-1430. [PMID: 34992152 PMCID: PMC9454468 DOI: 10.2967/jnumed.121.263067] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 12/28/2021] [Indexed: 01/26/2023] Open
Abstract
Consensus about a standard segmentation method to derive metabolic tumor volume (MTV) in classical Hodgkin lymphoma (cHL) is lacking, and it is unknown how different segmentation methods influence quantitative PET features. Therefore, we aimed to evaluate the delineation and completeness of lesion selection and the need for manual adaptation with different segmentation methods, and to assess the influence of segmentation methods on the prognostic value of MTV, intensity, and dissemination radiomics features in cHL patients. Methods: We analyzed a total of 105 18F-FDG PET/CT scans from patients with newly diagnosed (n = 35) and relapsed/refractory (n = 70) cHL with 6 segmentation methods: 2 fixed thresholds on SUV4.0 and SUV2.5, 2 relative methods of 41% of SUVmax (41max) and a contrast-corrected 50% of SUVpeak (A50P), and 2 combination majority vote (MV) methods (MV2, MV3). Segmentation quality was assessed by 2 reviewers on the basis of predefined quality criteria: completeness of selection, the need for manual adaptation, and delineation of lesion borders. Correlations and prognostic performance of resulting radiomics features were compared among the methods. Results: SUV4.0 required the least manual adaptation but tended to underestimate MTV and often missed small lesions with low 18F-FDG uptake. SUV2.5 most frequently included all lesions but required minor manual adaptations and generally overestimated MTV. In contrast, few lesions were missed when using 41max, A50P, MV2, and MV3, but these segmentation methods required extensive manual adaptation and overestimated MTV in most cases. MTV and dissemination features significantly differed among the methods. However, correlations among methods were high for MTV and most intensity and dissemination features. There were no significant differences in prognostic performance for all features among the methods. Conclusion: A high correlation existed between MTV, intensity, and most dissemination features derived with the different segmentation methods, and the prognostic performance is similar. Despite frequently missing small lesions with low 18F-FDG avidity, segmentation with a fixed threshold of SUV4.0 required the least manual adaptation, which is critical for future research and implementation in clinical practice. However, the importance of small, low 18F-FDG-avidity lesions should be addressed in a larger cohort of cHL patients.
Collapse
Affiliation(s)
- Julia Driessen
- Department of Hematology, Amsterdam UMC, University of Amsterdam, LYMMCARE (Lymphoma and Myeloma Center, Amsterdam), Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Gerben J.C. Zwezerijnen
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Heiko Schöder
- Department of Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Esther E.E. Drees
- Department of Pathology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Marie José Kersten
- Department of Hematology, Amsterdam UMC, University of Amsterdam, LYMMCARE (Lymphoma and Myeloma Center, Amsterdam), Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Alison J. Moskowitz
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Craig H. Moskowitz
- Department of Medicine, Sylvester Comprehensive Cancer Center, Miami, Florida
| | - Jakoba J. Eertink
- Department of Hematology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands; and
| | - Henrica C.W. de Vet
- Department of Epidemiology and Data Science, Amsterdam Public Health research institute, Amsterdam, Netherlands
| | - Otto S. Hoekstra
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Josée M. Zijlstra
- Department of Hematology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands; and
| | - Ronald Boellaard
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands;
| |
Collapse
|
64
|
Lau CY, Adan MA, Earhart J, Seamon C, Nguyen T, Savramis A, Adams L, Zipparo ME, Madeen E, Huik K, Grossman Z, Chimukangara B, Wulan WN, Millo C, Nath A, Smith BR, Ortega-Villa AM, Proschan M, Wood BJ, Hammoud DA, Maldarelli F. Imaging and biopsy of HIV-infected individuals undergoing analytic treatment interruption. Front Med (Lausanne) 2022; 9:979756. [PMID: 36072945 PMCID: PMC9441850 DOI: 10.3389/fmed.2022.979756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
Background HIV persistence during antiretroviral therapy (ART) is the principal obstacle to cure. Lymphoid tissue is a compartment for HIV, but mechanisms of persistence during ART and viral rebound when ART is interrupted are inadequately understood. Metabolic activity in lymphoid tissue of patients on long-term ART is relatively low, and increases when ART is stopped. Increases in metabolic activity can be detected by 18F-fluorodeoxyglucose Positron Emission Tomography (FDG-PET) and may represent sites of HIV replication or immune activation in response to HIV replication. Methods FDG-PET imaging will be used to identify areas of high and low metabolic uptake in lymphoid tissue of individuals undergoing long-term ART. Baseline tissue samples will be collected. Participants will then be randomized 1:1 to continue or interrupt ART via analytic treatment interruption (ATI). Image-guided biopsy will be repeated 10 days after ATI initiation. After ART restart criteria are met, image-guided biopsy will be repeated once viral suppression is re-achieved. Participants who continued ART will have a second FDG-PET and biopsies 12–16 weeks after the first. Genetic characteristics of HIV populations in areas of high and low FDG uptake will be assesed. Optional assessments of non-lymphoid anatomic compartments may be performed to evaluate HIV populations in distinct anatomic compartments. Anticipated results We anticipate that PET standardized uptake values (SUV) will correlate with HIV viral RNA in biopsies of those regions and that lymph nodes with high SUV will have more viral RNA than those with low SUV within a patient. Individuals who undergo ATI are expected to have diverse viral populations upon viral rebound in lymphoid tissue. HIV populations in tissues may initially be phylogenetically diverse after ATI, with emergence of dominant viral species (clone) over time in plasma. Dominant viral species may represent the same HIV population seen before ATI. Discussion This study will allow us to explore utility of PET for identification of HIV infected cells and determine whether high FDG uptake respresents areas of HIV replication, immune activation or both. We will also characterize HIV infected cell populations in different anatomic locations. The protocol will represent a platform to investigate persistence and agents that may target HIV populations. Study protocol registration Identifier: NCT05419024.
Collapse
Affiliation(s)
- Chuen-Yen Lau
- HIV Dynamics and Replication Program, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, United States
- *Correspondence: Chuen-Yen Lau
| | - Matthew A. Adan
- HIV Dynamics and Replication Program, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Jessica Earhart
- HIV Dynamics and Replication Program, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Cassie Seamon
- Critical Care Medicine Department, Clinical Center (CC), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Thuy Nguyen
- HIV Dynamics and Replication Program, National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD, United States
| | - Ariana Savramis
- HIV Dynamics and Replication Program, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Lindsey Adams
- HIV Dynamics and Replication Program, National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD, United States
| | - Mary-Elizabeth Zipparo
- HIV Dynamics and Replication Program, National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD, United States
| | - Erin Madeen
- HIV Dynamics and Replication Program, National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD, United States
| | - Kristi Huik
- HIV Dynamics and Replication Program, National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD, United States
| | - Zehava Grossman
- HIV Dynamics and Replication Program, National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD, United States
| | - Benjamin Chimukangara
- Critical Care Medicine Department, Clinical Center (CC), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Wahyu Nawang Wulan
- HIV Dynamics and Replication Program, National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD, United States
| | - Corina Millo
- PET Department, Clinical Center (CC), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Avindra Nath
- Division of Neuroimmunology and Neurovirology, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Bryan R. Smith
- Division of Neuroimmunology and Neurovirology, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Ana M. Ortega-Villa
- Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Michael Proschan
- Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Bradford J. Wood
- Interventional Radiology, Radiology and Imaging Sciences, Clinical Center (CC), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Dima A. Hammoud
- Radiology and Imaging Sciences, Clinical Center (CC), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Frank Maldarelli
- HIV Dynamics and Replication Program, National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD, United States
| |
Collapse
|
65
|
Monitoring of Current Cancer Therapy by Positron Emission Tomography and Possible Role of Radiomics Assessment. Int J Mol Sci 2022; 23:ijms23169394. [PMID: 36012657 PMCID: PMC9409366 DOI: 10.3390/ijms23169394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/31/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
Evaluation of cancer therapy with imaging is crucial as a surrogate marker of effectiveness and survival. The unique response patterns to therapy with immune-checkpoint inhibitors have facilitated the revision of response evaluation criteria using FDG-PET, because the immune response recalls reactive cells such as activated T-cells and macrophages, which show increased glucose metabolism and apparent progression on morphological imaging. Cellular metabolism and function are critical determinants of the viability of active cells in the tumor microenvironment, which would be novel targets of therapies, such as tumor immunity, metabolism, and genetic mutation. Considering tumor heterogeneity and variation in therapy response specific to the mechanisms of therapy, appropriate response evaluation is required. Radiomics approaches, which combine objective image features with a machine learning algorithm as well as pathologic and genetic data, have remarkably progressed over the past decade, and PET radiomics has increased quality and reliability based on the prosperous publications and standardization initiatives. PET and multimodal imaging will play a definitive role in personalized therapeutic strategies by the precise monitoring in future cancer therapy.
Collapse
|
66
|
Eertink JJ, Zwezerijnen GJC, Cysouw MCF, Wiegers SE, Pfaehler EAG, Lugtenburg PJ, van der Holt B, Hoekstra OS, de Vet HCW, Zijlstra JM, Boellaard R. Comparing lesion and feature selections to predict progression in newly diagnosed DLBCL patients with FDG PET/CT radiomics features. Eur J Nucl Med Mol Imaging 2022; 49:4642-4651. [PMID: 35925442 PMCID: PMC9606052 DOI: 10.1007/s00259-022-05916-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 07/14/2022] [Indexed: 01/06/2023]
Abstract
PURPOSE Biomarkers that can accurately predict outcome in DLBCL patients are urgently needed. Radiomics features extracted from baseline [18F]-FDG PET/CT scans have shown promising results. This study aims to investigate which lesion- and feature-selection approaches/methods resulted in the best prediction of progression after 2 years. METHODS A total of 296 patients were included. 485 radiomics features (n = 5 conventional PET, n = 22 morphology, n = 50 intensity, n = 408 texture) were extracted for all individual lesions and at patient level, where all lesions were aggregated into one VOI. 18 features quantifying dissemination were extracted at patient level. Several lesion selection approaches were tested (largest or hottest lesion, patient level [all with/without dissemination], maximum or median of all lesions) and compared to the predictive value of our previously published model. Several data reduction methods were applied (principal component analysis, recursive feature elimination (RFE), factor analysis, and univariate selection). The predictive value of all models was tested using a fivefold cross-validation approach with 50 repeats with and without oversampling, yielding the mean cross-validated AUC (CV-AUC). Additionally, the relative importance of individual radiomics features was determined. RESULTS Models with conventional PET and dissemination features showed the highest predictive value (CV-AUC: 0.72-0.75). Dissemination features had the highest relative importance in these models. No lesion selection approach showed significantly higher predictive value compared to our previous model. Oversampling combined with RFE resulted in highest CV-AUCs. CONCLUSION Regardless of the applied lesion selection or feature selection approach and feature reduction methods, patient level conventional PET features and dissemination features have the highest predictive value. Trial registration number and date: EudraCT: 2006-005174-42, 01-08-2008.
Collapse
Affiliation(s)
- Jakoba J Eertink
- Department of Hematology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands. .,Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands.
| | - Gerben J C Zwezerijnen
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands.,Radiology and Nuclear Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Matthijs C F Cysouw
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands.,Radiology and Nuclear Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Sanne E Wiegers
- Department of Hematology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.,Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | | | - Pieternella J Lugtenburg
- Department of Hematology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Wytemaweg 80, 3015 CN, Rotterdam, the Netherlands
| | - Bronno van der Holt
- Department of Hematology, HOVON Data Center, Erasmus MC Cancer Institute, Dr. Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands
| | - Otto S Hoekstra
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands.,Radiology and Nuclear Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Henrica C W de Vet
- Epidemiology and Data Science, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Amsterdam Public Health Research Institute, Methodology, Amsterdam, The Netherlands
| | - Josée M Zijlstra
- Department of Hematology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.,Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Ronald Boellaard
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands.,Radiology and Nuclear Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
67
|
Ferrández MC, Eertink JJ, Golla SSV, Wiegers SE, Zwezerijnen GJC, Pieplenbosch S, Zijlstra JM, Boellaard R. Combatting the effect of image reconstruction settings on lymphoma [ 18F]FDG PET metabolic tumor volume assessment using various segmentation methods. EJNMMI Res 2022; 12:44. [PMID: 35904645 PMCID: PMC9338209 DOI: 10.1186/s13550-022-00916-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/18/2022] [Indexed: 11/15/2022] Open
Abstract
Background [18F]FDG PET-based metabolic tumor volume (MTV) is a promising prognostic marker for lymphoma patients. The aim of this study is to assess the sensitivity of several MTV segmentation methods to variations in image reconstruction methods and the ability of ComBat to improve MTV reproducibility. Methods Fifty-six lesions were segmented from baseline [18F]FDG PET scans of 19 lymphoma patients. For each scan, EARL1 and EARL2 standards and locally clinically preferred reconstruction protocols were applied. Lesions were delineated using 9 semiautomatic segmentation methods: fixed threshold based on standardized uptake value (SUV), (SUV = 4, SUV = 2.5), relative threshold (41% of SUVmax [41M], 50% of SUVpeak [A50P]), majority vote-based methods that select voxels detected by at least 2 (MV2) and 3 (MV3) out of the latter 4 methods, Nestle thresholding, and methods that identify the optimal method based on SUVmax (L2A, L2B). MTVs from EARL2 and locally clinically preferred reconstructions were compared to those from EARL1. Finally, different versions of ComBat were explored to harmonize the data.
Results MTVs from the SUV4.0 method were least sensitive to the use of different reconstructions (MTV ratio: median = 1.01, interquartile range = [0.96–1.10]). After ComBat harmonization, an improved agreement of MTVs among different reconstructions was found for most segmentation methods. The regular implementation of ComBat (‘Regular ComBat’) using non-transformed distributions resulted in less accurate and precise MTV alignments than a version using log-transformed datasets (‘Log-transformed ComBat’). Conclusion MTV depends on both segmentation method and reconstruction methods. ComBat reduces reconstruction dependent MTV variability, especially when log-transformation is used to account for the non-normal distribution of MTVs. Supplementary Information The online version contains supplementary material available at 10.1186/s13550-022-00916-9.
Collapse
Affiliation(s)
- Maria C Ferrández
- Cancer Center Amsterdam, Department of Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands.
| | - Jakoba J Eertink
- Cancer Center Amsterdam, Department of Hematology, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Sandeep S V Golla
- Cancer Center Amsterdam, Department of Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Sanne E Wiegers
- Cancer Center Amsterdam, Department of Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Gerben J C Zwezerijnen
- Cancer Center Amsterdam, Department of Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Simone Pieplenbosch
- Cancer Center Amsterdam, Department of Hematology, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Josée M Zijlstra
- Cancer Center Amsterdam, Department of Hematology, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Ronald Boellaard
- Cancer Center Amsterdam, Department of Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| |
Collapse
|
68
|
Li H, Wang M, Zhang Y, Hu F, Wang K, Wang C, Gao Z. Prediction of prognosis and pathologic grade in follicular lymphoma using 18F-FDG PET/CT. Front Oncol 2022; 12:943151. [PMID: 35965552 PMCID: PMC9366037 DOI: 10.3389/fonc.2022.943151] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/06/2022] [Indexed: 11/24/2022] Open
Abstract
Purpose We investigated the utility of a new baseline PET parameter expressing lesion dissemination and metabolic parameters for predicting progression-free survival (PFS) and pathologic grade in follicular lymphoma (FL). Methods The baseline 18F-FDG PET/CT images of 126 patients with grade 1–3A FL were retrospectively analyzed. A novel PET/CT parameter characterizing lesion dissemination, the distance between two lesions that were furthest apart (Dmax), was calculated. The total metabolic tumor volume and total lesion glycolysis (TLG) were computed by using 41% of the maximum standardized uptake value (SUVmax) thresholding method. Results The 5-year PFS rate was 51.9% for all patients. In the multivariate analysis, high Dmax [P = 0.046; hazard ratio (HR) = 2.877], high TLG (P = 0.004; HR = 3.612), and elevated serum lactate dehydrogenase (P = 0.041; HR = 2.287) were independent predictors of PFS. A scoring system for prognostic stratification was established based on these three adverse factors, and the patients were classified into three risk categories: low risk (zero to one factor, n = 75), intermediate risk (two adverse factors, n = 29), and high risk (three adverse factors, n = 22). Patients in the high-risk group had a shorter 3-year PFS (21.7%) than those in the low- and intermediate-risk groups (90.6 and 44.6%, respectively) (P < 0.001). The C-index of our scoring system for PFS (0.785) was superior to the predictive capability of the Follicular Lymphoma International Prognostic Index (FLIPI), FLIPI2, and PRIMA-Prognostic Index (C-index: 0.628–0.701). The receiver operating characteristic curves and decision curve analysis demonstrated that the scoring system had better differentiation and clinical utility than these existing indices. In addition, the median SUVmax was significantly higher in grade 3A (36 cases) than in grades 1 and 2 FL (90 cases) (median: 13.63 vs. 11.45, P = 0.013), but a substantial overlap existed (range: 2.25–39.62 vs. 3.17–39.80). Conclusion TLG and Dmax represent two complementary aspects of the disease, capturing the tumor burden and lesion dissemination. TLG and Dmax are promising metrics for identifying patients at a high risk of progression or relapse. Additionally, SUVmax seems to have some value for distinguishing grade 3A from low-grade FL but cannot substitute for biopsy.
Collapse
Affiliation(s)
- Hongyan Li
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Min Wang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Yajing Zhang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Fan Hu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Kun Wang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Chenyang Wang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Zairong Gao
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
- *Correspondence: Zairong Gao,
| |
Collapse
|
69
|
Mikhaeel NG, Heymans MW, Eertink JJ, de Vet HC, Boellaard R, Dührsen U, Ceriani L, Schmitz C, Wiegers SE, Hüttmann A, Lugtenburg PJ, Zucca E, Zwezerijnen GJ, Hoekstra OS, Zijlstra JM, Barrington SF. Proposed New Dynamic Prognostic Index for Diffuse Large B-Cell Lymphoma: International Metabolic Prognostic Index. J Clin Oncol 2022; 40:2352-2360. [PMID: 35357901 PMCID: PMC9287279 DOI: 10.1200/jco.21.02063] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 01/23/2022] [Accepted: 02/09/2022] [Indexed: 02/06/2023] Open
Abstract
PURPOSE Baseline metabolic tumor volume (MTV) is a promising biomarker in diffuse large B-cell lymphoma (DLBCL). Our aims were to determine the best statistical relationship between MTV and survival and to compare MTV with the International Prognostic Index (IPI) and its individual components to derive the best prognostic model. METHODS PET scans and clinical data were included from five published studies in newly diagnosed diffuse large B-cell lymphoma. Transformations of MTV were compared with the primary end points of 3-year progression-free survival (PFS) and overall survival (OS) to derive the best relationship for further analyses. MTV was compared with IPI categories and individual components to derive the best model. Patients were grouped into three groups for survival analysis using Kaplan-Meier analysis; 10% at highest risk, 30% intermediate risk, and 60% lowest risk, corresponding with expected clinical outcome. Validation of the best model was performed using four studies as a test set and the fifth study for validation and repeated five times. RESULTS The best relationship for MTV and survival was a linear spline model with one knot located at the median MTV value of 307.9 cm3. MTV was a better predictor than IPI for PFS and OS. The best model combined MTV with age as continuous variables and individual stage as I-IV. The MTV-age-stage model performed better than IPI and was also better at defining a high-risk group (3-year PFS 46.3% v 58.0% and 3-year OS 51.5% v 66.4% for the new model and IPI, respectively). A regression formula was derived to estimate individual patient survival probabilities. CONCLUSION A new prognostic index is proposed using MTV, age, and stage, which outperforms IPI and enables individualized estimates of patient outcome.
Collapse
Affiliation(s)
- N. George Mikhaeel
- Department of Clinical Oncology, Guy's Cancer Centre and School of Cancer and Pharmaceutical Sciences, King's College London University, London, United Kingdom
| | - Martijn W. Heymans
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Epidemiology and Data Science, Amsterdam Public Health Research Institute, Amsterdam, the Netherlands
| | - Jakoba J. Eertink
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Hematology, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Henrica C.W. de Vet
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Epidemiology and Data Science, Amsterdam Public Health Research Institute, Amsterdam, the Netherlands
| | - Ronald Boellaard
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Ulrich Dührsen
- Department of Hematology, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Luca Ceriani
- Department of Oncology, IOSI—Oncology Institute of Southern Switzerland, Bellinzona; Università della Svizzera Italiana, Bellinzona, Switzerland
- SAKK—Swiss Group for Clinical Cancer Research, Bern, Switzerland
| | - Christine Schmitz
- Department of Hematology, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Sanne E. Wiegers
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Hematology, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Andreas Hüttmann
- Department of Hematology, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Pieternella J. Lugtenburg
- Department of Hematology, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, the Netherlands
| | - Emanuele Zucca
- Department of Oncology, IOSI—Oncology Institute of Southern Switzerland, Bellinzona; Università della Svizzera Italiana, Bellinzona, Switzerland
- SAKK—Swiss Group for Clinical Cancer Research, Bern, Switzerland
| | - Gerben J.C. Zwezerijnen
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Otto S. Hoekstra
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Josée M. Zijlstra
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Hematology, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Sally F. Barrington
- King's College London and Guy's and St Thomas' PET Centre, School of Biomedical Engineering and Imaging Sciences, King's Health Partners, Kings College London, London, United Kingdom
| |
Collapse
|
70
|
Mikhaeel NG, Heymans MW, Eertink JJ, de Vet HCW, Boellaard R, Dührsen U, Ceriani L, Schmitz C, Wiegers SE, Hüttmann A, Lugtenburg PJ, Zucca E, Zwezerijnen GJC, Hoekstra OS, Zijlstra JM, Barrington SF. Proposed New Dynamic Prognostic Index for Diffuse Large B-Cell Lymphoma: International Metabolic Prognostic Index. J Clin Oncol 2022; 40:2352-2360. [PMID: 35357901 DOI: 10.1200/jco.21.02063:jco2102063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023] Open
Abstract
PURPOSE Baseline metabolic tumor volume (MTV) is a promising biomarker in diffuse large B-cell lymphoma (DLBCL). Our aims were to determine the best statistical relationship between MTV and survival and to compare MTV with the International Prognostic Index (IPI) and its individual components to derive the best prognostic model. METHODS PET scans and clinical data were included from five published studies in newly diagnosed diffuse large B-cell lymphoma. Transformations of MTV were compared with the primary end points of 3-year progression-free survival (PFS) and overall survival (OS) to derive the best relationship for further analyses. MTV was compared with IPI categories and individual components to derive the best model. Patients were grouped into three groups for survival analysis using Kaplan-Meier analysis; 10% at highest risk, 30% intermediate risk, and 60% lowest risk, corresponding with expected clinical outcome. Validation of the best model was performed using four studies as a test set and the fifth study for validation and repeated five times. RESULTS The best relationship for MTV and survival was a linear spline model with one knot located at the median MTV value of 307.9 cm3. MTV was a better predictor than IPI for PFS and OS. The best model combined MTV with age as continuous variables and individual stage as I-IV. The MTV-age-stage model performed better than IPI and was also better at defining a high-risk group (3-year PFS 46.3% v 58.0% and 3-year OS 51.5% v 66.4% for the new model and IPI, respectively). A regression formula was derived to estimate individual patient survival probabilities. CONCLUSION A new prognostic index is proposed using MTV, age, and stage, which outperforms IPI and enables individualized estimates of patient outcome.
Collapse
Affiliation(s)
- N George Mikhaeel
- Department of Clinical Oncology, Guy's Cancer Centre and School of Cancer and Pharmaceutical Sciences, King's College London University, London, United Kingdom
| | - Martijn W Heymans
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Epidemiology and Data Science, Amsterdam Public Health Research Institute, Amsterdam, the Netherlands
| | - Jakoba J Eertink
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Hematology, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Henrica C W de Vet
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Epidemiology and Data Science, Amsterdam Public Health Research Institute, Amsterdam, the Netherlands
| | - Ronald Boellaard
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Ulrich Dührsen
- Department of Hematology, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Luca Ceriani
- Department of Oncology, IOSI-Oncology Institute of Southern Switzerland, Bellinzona; Università della Svizzera Italiana, Bellinzona, Switzerland
- SAKK-Swiss Group for Clinical Cancer Research, Bern, Switzerland
| | - Christine Schmitz
- Department of Hematology, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Sanne E Wiegers
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Hematology, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Andreas Hüttmann
- Department of Hematology, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Pieternella J Lugtenburg
- Department of Hematology, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, the Netherlands
| | - Emanuele Zucca
- Department of Oncology, IOSI-Oncology Institute of Southern Switzerland, Bellinzona; Università della Svizzera Italiana, Bellinzona, Switzerland
- SAKK-Swiss Group for Clinical Cancer Research, Bern, Switzerland
| | - Gerben J C Zwezerijnen
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Otto S Hoekstra
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Josée M Zijlstra
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Hematology, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Sally F Barrington
- King's College London and Guy's and St Thomas' PET Centre, School of Biomedical Engineering and Imaging Sciences, King's Health Partners, Kings College London, London, United Kingdom
| |
Collapse
|
71
|
Feng L, Qian L, Yang S, Ren Q, Zhang S, Qin H, Wang W, Wang C, Zhang H, Yang J. Clinical parameters combined with radiomics features of PET/CT can predict recurrence in patients with high-risk pediatric neuroblastoma. BMC Med Imaging 2022; 22:102. [PMID: 35643445 PMCID: PMC9148481 DOI: 10.1186/s12880-022-00828-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 05/17/2022] [Indexed: 02/03/2023] Open
Abstract
Background This retrospective study aimed to develop and validate a combined model based [18F]FDG PET/CT radiomics and clinical parameters for predicting recurrence in high-risk pediatric neuroblastoma patients. Methods Eighty-four high-risk neuroblastoma patients were retrospectively enrolled and divided into training and test sets according to the ratio of 3:2. [18F]FDG PET/CT images of the tumor were segmented by 3D Slicer software and the radiomics features were extracted. The effective features were selected by the least absolute shrinkage and selection operator to construct the radiomics score (Rad_score). And the radiomics model (R_model) was constructed based on Rad_score for prediction of recurrence. Then, univariate and multivariate analyses were used to screen out the independent clinical risk parameters and construct the clinical model (C_model). A combined model (RC_model) was developed based on the Rad_score and independent clinical risk parameters and presented as radiomics nomogram. The performance of the above three models was assessed by the area under the receiver operating characteristic curve (AUC) and decision curve analysis (DCA). Results Seven radiomics features were selected for building the R_model. The AUCs of the C_model in training and test sets were 0.744 (95% confidence interval [CI], 0.595–0.874) and 0.750 (95% CI, 0.577–0.904), respectively. The R_model yielded AUCs of 0.813 (95% CI, 0.685–0.916) and 0.869 (95% CI, 0.715–0.985) in the training and test sets, respectively. The RC_model demonstrated the largest AUCs of 0.889 (95% CI, 0.794–0.963) and 0.892 (95% CI, 0.758–0.992) in the training and test sets, respectively. DCA demonstrated that RC_model added more net benefits than either the C_model or the R_model for predicting recurrence in high-risk pediatric neuroblastoma. Conclusions The combined model performed well for predicting recurrence in high-risk pediatric neuroblastoma, which can facilitate disease follow-up and management in clinical practice.
Collapse
|
72
|
Morland D, Triumbari EKA, Boldrini L, Gatta R, Pizzuto D, Annunziata S. Radiomics in Oncological PET Imaging: A Systematic Review-Part 2, Infradiaphragmatic Cancers, Blood Malignancies, Melanoma and Musculoskeletal Cancers. Diagnostics (Basel) 2022; 12:diagnostics12061330. [PMID: 35741139 PMCID: PMC9222024 DOI: 10.3390/diagnostics12061330] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 12/04/2022] Open
Abstract
The objective of this review was to summarize published radiomics studies dealing with infradiaphragmatic cancers, blood malignancies, melanoma, and musculoskeletal cancers, and assess their quality. PubMed database was searched from January 1990 to February 2022 for articles performing radiomics on PET imaging of at least 1 specified tumor type. Exclusion criteria includd: non-oncological studies; supradiaphragmatic tumors; reviews, comments, cases reports; phantom or animal studies; technical articles without a clinically oriented question; studies including <30 patients in the training cohort. The review database contained PMID, first author, year of publication, cancer type, number of patients, study design, independent validation cohort and objective. This database was completed twice by the same person; discrepant results were resolved by a third reading of the articles. A total of 162 studies met inclusion criteria; 61 (37.7%) studies included >100 patients, 13 (8.0%) were prospective and 61 (37.7%) used an independent validation set. The most represented cancers were esophagus, lymphoma, and cervical cancer (n = 24, n = 24 and n = 19 articles, respectively). Most studies focused on 18F-FDG, and prognostic and response to treatment objectives. Although radiomics and artificial intelligence are technically challenging, new contributions and guidelines help improving research quality over the years and pave the way toward personalized medicine.
Collapse
Affiliation(s)
- David Morland
- Unità di Medicina Nucleare, TracerGLab, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (E.K.A.T.); (D.P.); (S.A.)
- Service de Médecine Nucléaire, Institut Godinot, 51100 Reims, France
- Laboratoire de Biophysique, UFR de Médecine, Université de Reims Champagne-Ardenne, 51100 Reims, France
- CReSTIC (Centre de Recherche en Sciences et Technologies de l’Information et de la Communication), EA 3804, Université de Reims Champagne-Ardenne, 51100 Reims, France
- Correspondence:
| | - Elizabeth Katherine Anna Triumbari
- Unità di Medicina Nucleare, TracerGLab, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (E.K.A.T.); (D.P.); (S.A.)
| | - Luca Boldrini
- Unità di Radioterapia Oncologica, Radiomics, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (L.B.); (R.G.)
| | - Roberto Gatta
- Unità di Radioterapia Oncologica, Radiomics, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (L.B.); (R.G.)
- Department of Clinical and Experimental Sciences, University of Brescia, 25121 Brescia, Italy
- Department of Oncology, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Daniele Pizzuto
- Unità di Medicina Nucleare, TracerGLab, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (E.K.A.T.); (D.P.); (S.A.)
| | - Salvatore Annunziata
- Unità di Medicina Nucleare, TracerGLab, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (E.K.A.T.); (D.P.); (S.A.)
| |
Collapse
|
73
|
Jiang C, Huang X, Li A, Teng Y, Ding C, Chen J, Xu J, Zhou Z. Radiomics signature from [ 18F]FDG PET images for prognosis predication of primary gastrointestinal diffuse large B cell lymphoma. Eur Radiol 2022; 32:5730-5741. [PMID: 35298676 DOI: 10.1007/s00330-022-08668-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 02/13/2022] [Accepted: 02/17/2022] [Indexed: 11/26/2022]
Abstract
OBJECTIVES To investigate the prognostic value of PET radiomics feature in the prognosis of patients with primary gastrointestinal diffuse large B cell lymphoma (PGI-DLBCL) treated with R-CHOP-like regimen. METHODS A total of 140 PGI-DLBCL patients who underwent pre-therapy [18F] FDG PET/CT were enrolled in this retrospective analysis. PET radiomics features obtained from patients in the training cohort were subjected to three machine learning methods and Pearson's correlation test for feature selection. Support vector machine (SVM) was used to build a radiomics signature classifier associated with progression-free survival (PFS) and overall survival (OS). A multivariate Cox proportional hazards regression model was established to predict survival outcomes. RESULTS A total of 1421 PET radiomics features were extracted and reduced to 5 features to build a radiomics signature which was significantly associated with PFS and OS (p < 0.05). The combined model incorporating radiomics signatures, metabolic metrics, and clinical risk factors showed high C-indices in both the training (PFS: 0.825, OS: 0.834) and validation sets (PFS: 0.831, OS: 0.877). Decision curve analysis (DCA) demonstrated that the combined models achieved the most net benefit across a wider reasonable range of threshold probabilities for predicting PFS and OS. CONCLUSION The newly developed radiomics signatures obtained by the ensemble strategy were independent predictors of PFS and OS for PGI-DLBCL patients. Moreover, the combined model with clinical and metabolic factors was able to predict patient prognosis and may enable personalized treatment decision-making. KEY POINTS • Radiomics signatures generated from the optimal radiomics feature set from the [18F]FDG PET images can predict the survival of PGI-DLBCL patients. • The optimal radiomics feature set is constructed by integrating the feature selection outputs of LASSO, RF, Xgboost, and PC methods. • Combined models incorporating radiomics signatures from18F-FDG PET images, metabolic parameters, and clinical factors outperformed clinical models, and NCCN-IPI.
Collapse
Affiliation(s)
- Chong Jiang
- Department of Nuclear Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210000, China
| | - Xiangjun Huang
- The Key Laboratory of Broadband Wireless Communication and Sensor Network Technology (Ministry of Education), Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Ang Li
- The Key Laboratory of Broadband Wireless Communication and Sensor Network Technology (Ministry of Education), Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Yue Teng
- Department of Nuclear Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210000, China
| | - Chongyang Ding
- Department of Nuclear Medicine, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Jianxin Chen
- The Key Laboratory of Broadband Wireless Communication and Sensor Network Technology (Ministry of Education), Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Jingyan Xu
- Department of Hematology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, No. 321, Zhongshan Road, Nanjing City, Jiangsu Province, 210008, China.
| | - Zhengyang Zhou
- Department of Nuclear Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210000, China.
| |
Collapse
|
74
|
Jiang C, Li A, Teng Y, Huang X, Ding C, Chen J, Xu J, Zhou Z. Optimal PET-based radiomic signature construction based on the cross-combination method for predicting the survival of patients with diffuse large B-cell lymphoma. Eur J Nucl Med Mol Imaging 2022; 49:2902-2916. [PMID: 35146578 DOI: 10.1007/s00259-022-05717-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 02/01/2022] [Indexed: 12/12/2022]
Abstract
PURPOSE To develop and externally validate models incorporating a PET radiomics signature (R-signature) obtained by the cross-combination method for predicting the survival of patients with diffuse large B-cell lymphoma (DLBCL). METHODS A total of 383 patients with DLBCL from two medical centres between 2011 and 2019 were included. The cross-combination method was used on three types of PET radiomics features from the training cohort to generate 49 feature selection-classification candidates based on 7 different machine learning models. The R-signature was then built by selecting the optimal candidates based on their progression-free survival (PFS) and overall survival (OS). Cox regression analysis was used to develop the survival prediction models. The calibration, discrimination, and clinical utility of the models were assessed and externally validated. RESULTS The R-signatures determined by 12 and 31 radiomics features were significantly associated with PFS and OS, respectively (P<0.05). The combined models that incorporated R-signatures, metabolic metrics, and clinical risk factors exhibited significant prognostic superiority over the clinical models, PET-based models, and the National Comprehensive Cancer Network International Prognostic Index in terms of both PFS (C-index: 0.801 vs. 0.732 vs. 0.785 vs. 0.720, respectively) and OS (C-index: 0.807 vs. 0.740 vs. 0.773 vs. 0.726, respectively). For external validation, the C-indices were 0.758 vs. 0.621 vs. 0.732 vs. 0.673 and 0.794 vs. 0.696 vs. 0.781 vs. 0.708 in the PFS and OS analyses, respectively. The calibration curves showed good consistency, and the decision curve analysis supported the clinical utility of the combined model. CONCLUSION The R-signature could be used as a survival predictor for DLBCL, and its combination with clinical factors may allow for accurate risk stratification.
Collapse
Affiliation(s)
- Chong Jiang
- Department of Nuclear Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210000, China
| | - Ang Li
- The Key Laboratory of Broadband Wireless Communication and Sensor Network Technology (Ministry of Education), Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Yue Teng
- Department of Nuclear Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210000, China
| | - Xiangjun Huang
- The Key Laboratory of Broadband Wireless Communication and Sensor Network Technology (Ministry of Education), Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Chongyang Ding
- Department of Nuclear Medicine, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Jianxin Chen
- The Key Laboratory of Broadband Wireless Communication and Sensor Network Technology (Ministry of Education), Nanjing University of Posts and Telecommunications, Nanjing, China.
| | - Jingyan Xu
- Department of Hematology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210000, China.
| | - Zhengyang Zhou
- Department of Nuclear Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210000, China.
| |
Collapse
|
75
|
Zhou Y, Li J, Zhang X, Jia T, Zhang B, Dai N, Sang S, Deng S. Prognostic Value of Radiomic Features of 18F-FDG PET/CT in Patients With B-Cell Lymphoma Treated With CD19/CD22 Dual-Targeted Chimeric Antigen Receptor T Cells. Front Oncol 2022; 12:834288. [PMID: 35198451 PMCID: PMC8858981 DOI: 10.3389/fonc.2022.834288] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/12/2022] [Indexed: 12/24/2022] Open
Abstract
ObjectiveIn the present study, we aimed to evaluate the prognostic value of PET/CT-derived radiomic features for patients with B-cell lymphoma (BCL), who were treated with CD19/CD22 dual-targeted chimeric antigen receptor (CAR) T cells. Moreover, we explored the relationship between baseline radiomic features and the occurrence probability of cytokine release syndrome (CRS).MethodsA total of 24 BCL patients who received 18F-FDG PET/CT before CAR T-cell infusion were enrolled in the present study. Radiomic features from PET and CT images were extracted using LIFEx software, and the least absolute shrinkage and selection operator (LASSO) regression was used to select the most useful predictive features of progression-free survival (PFS) and overall survival (OS). Receiver operating characteristic curves, Cox proportional hazards model, and Kaplan-Meier curves were conducted to assess the potential prognostic value.ResultsContrast extracted from neighbourhood grey-level different matrix (NGLDM) was an independent predictor of PFS (HR = 15.16, p = 0.023). MYC and BCL2 double-expressor (DE) was of prognostic significance for PFS (HR = 7.02, p = 0.047) and OS (HR = 10.37, p = 0.041). The combination of NGLDM_ContrastPET and DE yielded three risk groups with zero (n = 7), one (n = 11), or two (n = 6) factors (p < 0.0001 and p = 0.0004, for PFS and OS), respectively. The PFS was 85.7%, 63.6%, and 0%, respectively, and the OS was 100%, 90.9%, and 16.7%, respectively. Moreover, there was no significant association between PET/CT variables and CRS.ConclusionsIn conclusion, radiomic features extracted from baseline 18F-FDG PET/CT images in combination with genomic factors could predict the survival outcomes of BCL patients receiving CAR T-cell therapy.
Collapse
Affiliation(s)
- Yeye Zhou
- Department of Nuclear Medicine, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jihui Li
- Department of Nuclear Medicine, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaoyi Zhang
- Department of Nuclear Medicine, Changshu No. 2 People’s Hospital, Changshu, China
| | - Tongtong Jia
- Department of Nuclear Medicine, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Bin Zhang
- Department of Nuclear Medicine, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Na Dai
- Department of Nuclear Medicine, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Shibiao Sang
- Department of Nuclear Medicine, the First Affiliated Hospital of Soochow University, Suzhou, China
- *Correspondence: Shengming Deng, ; Shibiao Sang,
| | - Shengming Deng
- Department of Nuclear Medicine, the First Affiliated Hospital of Soochow University, Suzhou, China
- Nuclear Medicine Laboratory of Mianyang Central Hospital, Mianyang, China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
- *Correspondence: Shengming Deng, ; Shibiao Sang,
| |
Collapse
|
76
|
Hasani N, Paravastu SS, Farhadi F, Yousefirizi F, Morris MA, Rahmim A, Roschewski M, Summers RM, Saboury B. Artificial Intelligence in Lymphoma PET Imaging:: A Scoping Review (Current Trends and Future Directions). PET Clin 2022; 17:145-174. [PMID: 34809864 PMCID: PMC8735853 DOI: 10.1016/j.cpet.2021.09.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Malignant lymphomas are a family of heterogenous disorders caused by clonal proliferation of lymphocytes. 18F-FDG-PET has proven to provide essential information for accurate quantification of disease burden, treatment response evaluation, and prognostication. However, manual delineation of hypermetabolic lesions is often a time-consuming and impractical task. Applications of artificial intelligence (AI) may provide solutions to overcome this challenge. Beyond segmentation and detection of lesions, AI could enhance tumor characterization and heterogeneity quantification, as well as treatment response prediction and recurrence risk stratification. In this scoping review, we have systematically mapped and discussed the current applications of AI (such as detection, classification, segmentation as well as the prediction and prognostication) in lymphoma PET.
Collapse
Affiliation(s)
- Navid Hasani
- Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 9000 Rockville Pike, Building 10, Room 1C455, Bethesda, MD 20892, USA; University of Queensland Faculty of Medicine, Ochsner Clinical School, New Orleans, LA 70121, USA
| | - Sriram S Paravastu
- Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 9000 Rockville Pike, Building 10, Room 1C455, Bethesda, MD 20892, USA
| | - Faraz Farhadi
- Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 9000 Rockville Pike, Building 10, Room 1C455, Bethesda, MD 20892, USA
| | - Fereshteh Yousefirizi
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Michael A Morris
- Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 9000 Rockville Pike, Building 10, Room 1C455, Bethesda, MD 20892, USA; Department of Computer Science and Electrical Engineering, University of Maryland-Baltimore Country, Baltimore, MD, USA
| | - Arman Rahmim
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada; Department of Radiology, BC Cancer Research Institute, University of British Columbia, 675 West 10th Avenue, Vancouver, British Columbia, V5Z 1L3, Canada
| | - Mark Roschewski
- Lymphoid Malignancies Branch, Center for Cancer Research, National Institutes of Health, Bethesda, MD, USA
| | - Ronald M Summers
- Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 9000 Rockville Pike, Building 10, Room 1C455, Bethesda, MD 20892, USA.
| | - Babak Saboury
- Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 9000 Rockville Pike, Building 10, Room 1C455, Bethesda, MD 20892, USA; Department of Computer Science and Electrical Engineering, University of Maryland-Baltimore Country, Baltimore, MD, USA; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
77
|
Eertink JJ, Pfaehler EAG, Wiegers SE, van de Brug T, Lugtenburg PJ, Hoekstra OS, Zijlstra JM, de Vet HCW, Boellaard R. Quantitative radiomics features in diffuse large B-cell lymphoma: does segmentation method matter? J Nucl Med 2021; 63:389-395. [PMID: 34272315 DOI: 10.2967/jnumed.121.262117] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 06/03/2021] [Indexed: 11/16/2022] Open
Abstract
INTRODUCTION Radiomics features may predict outcome in diffuse large B-cell lymphoma (DLBCL). Currently, multiple segmentation methods are used to calculate metabolic tumor volume (MTV). We assessed the influence of segmentation method on the discriminative power of radiomics features in DLBCL for patient level and for the largest lesion. Methods: 50 baseline 18F-fluorodeoxyglucose positron emission tomography computed tomography (PET/CT) scans of DLBCL patients who progressed or relapsed within 2 years after diagnosis were matched on uptake time and reconstruction method with 50 baseline PET/CT scans of DLBCL patients without progression. Scans were analysed using 6 semi-automatic segmentation methods (standardized uptake value (SUV)4.0, SUV2.5, 41% of the maximum SUV, 50% of the SUVpeak, majority vote (MV)2 and MV3, respectively). Based on these segmentations, 490 radiomics features were extracted at patient level and 486 features for the largest lesion. To quantify the agreement between features extracted from different segmentation methods, the intra-class correlation (ICC) agreement was calculated for each method compared to SUV4.0. The feature space was reduced by deleting features that had high Pearson correlations (≥0.7) with the previously established predictors MTV and/or SUVpeak. Model performance was assessed using stratified repeated cross-validation with 5 folds and 2000 repeats yielding the mean receiver-operating characteristics curve integral (CV-AUC) for all segmentation methods using logistic regression with backward feature selection. Results: The percentage of features yielding an ICC ≥0.75 compared to the SUV4.0 segmentation was lowest for A50P both at patient level and for the largest lesion, with 77.3% and 66.7% of the features yielding an ICC ≥0.75, respectively. Features were not highly correlated with MTV, with at least 435 features at patient level and 409 features for the largest lesion for all segmentation methods with a correlation coefficient <0.7. Features were highly correlated with SUVpeak (at least 190 and 134 were uncorrelated, respectively). CV-AUCs ranged between 0.69±0.11 and 0.84±0.09 for patient level, and between 0.69±0.11 and 0.73±0.10 for lesion level. Conclusion: Even though there are differences in the actual radiomics feature values derived and selected features between segmentation methods, there is no substantial difference in the discriminative power of radiomics features between segmentation methods.
Collapse
Affiliation(s)
- Jakoba J Eertink
- Amsterdam UMC, Vrije Universiteit Amsterdam, department of Hematology, Cancer Center Amsterdam, Netherlands
| | | | - Sanne E Wiegers
- Amsterdam UMC, Vrije Universiteit Amsterdam, department of Hematology, Cancer Center Amsterdam, Netherlands
| | - Tim van de Brug
- Amsterdam UMC, Vrije Universiteit Amsterdam, department of Epidemiology and Data Science, Amsterdam Public Health research institute, Netherlands
| | - Pieternella J Lugtenburg
- Erasmus MC Cancer Institute, University Medical Center Rotterdam, department of Hematology, Netherlands
| | - Otto S Hoekstra
- Amsterdam UMC, Vrije Universiteit Amsterdam, department of Radiology and Nuclear Medicine, Netherlands
| | - Josee M Zijlstra
- Amsterdam UMC, Vrije Universiteit Amsterdam, department of Hematology, Cancer Center Amsterdam, Netherlands
| | - Henrica C W de Vet
- Amsterdam UMC, Vrije Universiteit Amsterdam, department of Epidemiology and Data Science, Amsterdam Public Health research institute, Netherlands
| | - Ronald Boellaard
- Amsterdam UMC, Vrije Universiteit Amsterdam, department of Radiology and Nuclear Medicine, Cancer Center Amsterdam, Netherlands
| |
Collapse
|