51
|
Vukicevic S, Grgurevic L, Erjavec I, Pecin M, Bordukalo-Niksic T, Stokovic N, Lipar M, Capak H, Maticic D, Windhager R, Sampath TK, Gupta M. Autologous blood coagulum is a physiological carrier for BMP6 to induce new bone formation and promote posterolateral lumbar spine fusion in rabbits. J Tissue Eng Regen Med 2019; 14:147-159. [PMID: 31671243 PMCID: PMC7027565 DOI: 10.1002/term.2981] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 09/27/2019] [Accepted: 10/17/2019] [Indexed: 12/22/2022]
Abstract
In the present study, we describe autologous blood coagulum (ABC) as a physiological carrier for BMP6 to induce new bone formation. Recombinant human BMP6 (rhBMP6), dispersed within ABC and formed as an autologous bone graft substitute (ABGS), was evaluated either with or without allograft bone particles (ALLO) in rat subcutaneous implants and in a posterolateral lumbar fusion (PLF) model in rabbits. ABGS induced endochondral bone differentiation in rat subcutaneous implants. Coating ALLO by ABC significantly decreased the formation of multinucleated foreign body giant cells (FBGCs) in implants, as compared with ALLO alone. However, addition of rhBMP6 to ABC/ALLO induced a robust endochondral bone formation with little or no FBGCs in the implant. In rabbit PLF model, ABGS induced new bone formation uniformly within the implant resulting in a complete fusion when placed between two lumbar transverse processes in the posterolateral gutter with an optimum dose of 100‐μg rhBMP6 per ml of ABC. ABGS containing ALLO also resulted in a fusion where the ALLO was replaced by the newly formed bone via creeping substitution. Our findings demonstrate for the first time that rhBMP6, with ABC as a carrier, induced a robust bone formation with a complete spinal fusion in a rabbit PLF model. RhBMP6 was effective at low doses with ABC serving as a physiological substratum providing a permissive environment by protecting against foreign body reaction elicited by ALLO.
Collapse
Affiliation(s)
- Slobodan Vukicevic
- Laboratory for Mineralized Tissues, Centre for Translational and Clinical Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Lovorka Grgurevic
- Laboratory for Mineralized Tissues, Centre for Translational and Clinical Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Igor Erjavec
- Laboratory for Mineralized Tissues, Centre for Translational and Clinical Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Marko Pecin
- Clinics for Surgery, Orthopedics and Ophthalmology, School of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Tatjana Bordukalo-Niksic
- Laboratory for Mineralized Tissues, Centre for Translational and Clinical Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Nikola Stokovic
- Laboratory for Mineralized Tissues, Centre for Translational and Clinical Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Marija Lipar
- Clinics for Surgery, Orthopedics and Ophthalmology, School of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Hrvoje Capak
- Department of Radiology, School of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Drazen Maticic
- Clinics for Surgery, Orthopedics and Ophthalmology, School of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Reinhard Windhager
- Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
| | | | - Munish Gupta
- Department of Orthopedic Surgery, Washington University, St. Louis, MO
| |
Collapse
|
52
|
Teng F, Yu D, Wei L, Su N, Liu Y. Preclinical application of recombinant human bone morphogenetic protein 2 on bone substitutes for vertical bone augmentation: A systematic review and meta-analysis. J Prosthet Dent 2019; 122:355-363. [PMID: 30782462 DOI: 10.1016/j.prosdent.2018.09.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 09/11/2018] [Accepted: 09/11/2018] [Indexed: 12/09/2022]
Abstract
STATEMENT OF PROBLEM Recombinant human bone morphogenetic protein 2 (rhBMP-2) has been introduced to clinical practice because of its osteoinductive capacity. However, the evidence of its efficacy in vertical bone augmentation procedures is not clear. PURPOSE The purpose of this systematic review and meta-analysis was to investigate the efficacy of rhBMP-2 in vertical bone augmentation and to establish whether its addition in preclinical experiments (animal studies) would be sufficient to justify further clinical and histometric studies. MATERIAL AND METHODS An electronic search of 3 databases, PubMed/MEDLINE, EMBASE, and Web of Science, and a manual search of the reference list of relevant studies were performed. Only randomized controlled trials regarding animal studies comparing the efficacy of bone grafts supplemented with and without rhBMP-2 in vertical bone augmentation procedures were included and reviewed. RESULTS Nine studies were included. The results of the meta-analysis showed that the pooled weighted mean difference (WMD) of the percentage of newly formed bone was 9.97% (95% confidence interval [CI]=-0.79% to 20.72%; P=.070), the WMD of the percentage of residual materials was -21.31% (95% CI=-70.62% to 28.00%; P=.400), the WMD of the augmented bone height was 1.70 mm (95% CI=-0.23 to 3.63 mm; P=.080), the WMD of the augmented bone height for studies with space-providing barriers was 1.00 mm (95% CI=0.43 to 1.57 mm; P<.001), and the WMD of the percentage of regenerated tissue was 17.07% (95% CI=8.52% to 25.62%; P<.001). CONCLUSIONS The application of rhBMP-2 in bone substitutes did not enhance new bone formation and residual graft resorption in vertical bone augmentation procedures. Tissue regeneration and the augmented bone height were significantly improved by the additional use of BMP-2.
Collapse
Affiliation(s)
- Fei Teng
- Doctoral student, Department of Oral Implantology and Prosthetic Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Dedong Yu
- Attending Doctor, Shanghai Key Laboratory of Stomatology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Lingfei Wei
- Doctoral student, Department of Oral Implantology and Prosthetic Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Resident Doctor, Department of Oral Implantology, Yantai Stomatological Hospital, Yantai, PR China
| | - Naichuan Su
- Doctoral student, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; West China School of Stomatology, Sichuan University, Chengdu, PR China
| | - Yuelian Liu
- Associate Professor, Department of Oral Implantology and Prosthetic Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
53
|
Porwal K, Pal S, Tewari D, Pal China S, Singh P, Chandra Tewari M, Prajapati G, Singh P, Cheruvu S, Khan YA, Sanyal S, Gayen JR, Ampapathi R, Mridha AR, Chattopadhyay N. Increased Bone Marrow-Specific Adipogenesis by Clofazimine Causes Impaired Fracture Healing, Osteopenia, and Osteonecrosis Without Extraskeletal Effects in Rats. Toxicol Sci 2019; 172:167-180. [PMID: 31393584 DOI: 10.1093/toxsci/kfz172] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 07/12/2019] [Accepted: 07/12/2019] [Indexed: 12/18/2022] Open
Abstract
AbstractMycobacterium leprae infection causes bone lesions and osteoporosis, however, the effect of antileprosy drugs on the bone is unknown. We, therefore, set out to address it by investigating osteogenic differentiation from bone marrow (BM)-derived mesenchymal stem cells (MSCs). Out of 7 antileprosy drugs, only clofazimine (CFZ) reduced MSCs viability (IC50 ∼ 1 μM) and their osteogenic differentiation but increased adipogenic differentiation on a par with rosiglitazone, and this effect was blocked by a peroxisome proliferator-activated receptor gamma antagonist, GW9662. CFZ also decreased osteoblast viability and resulted in impaired bone regeneration in a rat femur osteotomy model at one-third human drug dose owing to increased callus adipogenesis as GW9662 prevented this effect. CFZ treatment decreased BM MSC population and homing of MSC to osteotomy site despite drug levels in BM being much less than its in vitro IC50 value. In adult rats, CFZ caused osteopenia in long bones marked by suppressed osteoblast function due to enhanced adipogenesis and increased osteoclast functions. A robust increase in marrow adipose tissue (MAT) by CFZ did not alter the hematologic parameters but likely reduced BM vascular bed leading to osteonecrosis (ON) characterized by empty osteocyte lacunae. However, CFZ had no effect on visceral fat content and was not associated with any metabolic and hematologic changes. Levels of unsaturated fatty acids in MAT were higher than saturated fatty acids and CFZ further increased the former. From these data, we conclude that CFZ has adverse skeletal effects and could be used for creating a rodent ON model devoid of extraskeletal effects.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Sabyasachi Sanyal
- Division of Biochemistry, CSIR-Central Drug Research Institute, Lucknow 226 031, India
| | | | | | - Asit R Mridha
- Department of Pathology, All India Institute of Medical Sciences, New Delhi 110023, India
| | | |
Collapse
|
54
|
Vukicevic S, Stokovic N, Pecina M. Is ceramics an appropriate bone morphogenetic protein delivery system for clinical use? INTERNATIONAL ORTHOPAEDICS 2019; 43:1275-1276. [PMID: 30877358 DOI: 10.1007/s00264-019-04322-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 03/05/2019] [Indexed: 10/27/2022]
Affiliation(s)
- Slobodan Vukicevic
- Laboratory for Mineralized Tissues, Center of Excellence for Reproductive and Regenerative Medicine, Centre for Translational and Clinical Research, University of Zagreb School of Medicine, Salata 11, 10000, Zagreb, Croatia.
| | - Nikola Stokovic
- Laboratory for Mineralized Tissues, Center of Excellence for Reproductive and Regenerative Medicine, Centre for Translational and Clinical Research, University of Zagreb School of Medicine, Salata 11, 10000, Zagreb, Croatia
| | - Marko Pecina
- Department of Orthopaedic Surgery, School of Medicine University of Zagreb, 10000, Zagreb, Croatia
| |
Collapse
|
55
|
Reconstruction of a Calvarial Wound Complicated by Infection: Comparing the Effects of Biopatterned Bone Morphogenetic Protein 2 and Vascular Endothelial Growth Factor. J Craniofac Surg 2019; 30:260-264. [PMID: 30339591 DOI: 10.1097/scs.0000000000004779] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Bone morphogenetic protein 2 (BMP2) bioprinted on biological matrix induces osseous regeneration in large calvarial defects in rabbits, both uncomplicated and scarred. Healing in unfavorable defects scarred from previous infection is decreased due in part to the lack of vascularity. This impedes the access of mesenchymal stem cells, key to osseous regeneration and the efficacy of BMP2, to the wound bed. The authors hypothesized that bioprinted vascular endothelial growth factor (VEGF) would augment the osseous regeneration achieved with low dose biopatterned BMP2 alone. Thirteen New Zealand white rabbits underwent subtotal calvariectomy using a dental cutting burr. Care was taken to preserve the underlying dura. A 15 mm × 15 mm flap of bone was cut away and incubated in a 1 × 108 cfu/mL planktonic solution of S aureus before reimplantation. After 2 weeks of subsequent infection the flap was removed and the surgical wound debrided followed by 10 days of antibiotic treatment. On postoperative day 42 the calvarial defects were treated with acellular dermal matrix bioprinted with nothing (control), VEGF, BMP2, BMP2/VEGF combined. Bone growth was analyzed with serial CT and postmortem histology. Defects treated with BMP2 (BMP2 alone and BMP2/VEGF combination) showed significantly greater healing than control and VEGF treated defect (P < 0.5). Vascular endothelial growth factor treated defect demonstrated less healing than control and VEGF/BMP2 combination treatments achieved less healing than BMP2 alone though these differences were nonsignificant. Low dose BMP2-patterned acellular dermal matrix improves healing of scarred calvarial defects. Vascular endothelial growth factor at the doses applied in this study failed to increase healing.
Collapse
|
56
|
Li X, Zhang R, Tan X, Li B, Liu Y, Wang X. Synthesis and Evaluation of BMMSC-seeded BMP-6/nHAG/GMS Scaffolds for Bone Regeneration. Int J Med Sci 2019; 16:1007-1017. [PMID: 31341414 PMCID: PMC6643122 DOI: 10.7150/ijms.31966] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 05/11/2019] [Indexed: 12/28/2022] Open
Abstract
Bioactive scaffolding materials and efficient osteoinductive factors are key factors for bone tissue engineering. The present study aimed to mimic the natural bone repair process using an osteoinductive bone morphogenetic protein (BMP)-6-loaded nano-hydroxyapatite (nHA)/gelatin (Gel)/gelatin microsphere (GMS) scaffold pre-seeded with bone marrow mesenchymal stem cells (BMMSCs). BMP-6-loaded GMSs were prepared by cross-linking and BMP-6/nHAG/GMS scaffolds were fabricated by a combination of blending and freeze-drying techniques. Scanning electron microscopy, confocal laser scanning microscopy, and CCK-8 assays were carried out to determine the biocompatibility of the composite scaffolds in vitro. Alkaline phosphatase (ALP) activity was measured to evaluate the osteoinductivity of the composite scaffolds. For in vivo examination, critical-sized calvarial bone defects in Sprague-Dawley rats were randomly implanted with BMMSC/nHAG/GMS and BMMSC/BMP-6/nHAG/GMS scaffolds, and compared with a control group with untreated empty defects. The BMP-6-loaded scaffolds showed cytocompatibility by favoring BMMSC attachment, proliferation, and osteogenic differentiation. In radiological and histological analyses, the BMMSC-seeded scaffolds, especially the BMMSC-seeded BMP-6/nHAG/GMS scaffolds, significantly accelerated new bone formation. It is concluded that the BMP-6/nHAG/GMS scaffold possesses excellent biocompatibility and good osteogenic induction activity in vitro and in vivo, and could be an ideal bioactive substitute for bone tissue engineering.
Collapse
Affiliation(s)
- Xuewen Li
- Department of Oral Anatomy and Physiology, School of Stomatology, China Medical University, Shenyang, China
| | - Ran Zhang
- Department of Oral and Maxillofacial Surgery, School of Stomatology, China Medical University, Shenyang, China
| | - Xuexin Tan
- Department of Oral and Maxillofacial Surgery, School of Stomatology, China Medical University, Shenyang, China
| | - Bo Li
- Department of Oral Anatomy and Physiology, School of Stomatology, China Medical University, Shenyang, China
| | - Yao Liu
- Department of Pediatric Dentistry, School of Stomatology, China Medical University, Shenyang, China
| | - Xukai Wang
- Department of Oral and Maxillofacial Surgery, School of Stomatology, China Medical University, Shenyang, China
| |
Collapse
|
57
|
Grgurevic L, Oppermann H, Pecin M, Erjavec I, Capak H, Pauk M, Karlovic S, Kufner V, Lipar M, Bubic Spoljar J, Bordukalo-Niksic T, Maticic D, Peric M, Windhager R, Sampath TK, Vukicevic S. Recombinant Human Bone Morphogenetic Protein 6 Delivered Within Autologous Blood Coagulum Restores Critical Size Segmental Defects of Ulna in Rabbits. JBMR Plus 2018; 3:e10085. [PMID: 31131338 DOI: 10.1002/jbm4.10085] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/29/2018] [Accepted: 12/16/2018] [Indexed: 12/21/2022] Open
Abstract
BMP2 and BMP7, which use bovine Achilles tendon-derived absorbable collagen sponge and bovine bone collagen as scaffold, respectively, have been approved as bone graft substitutes for orthopedic and dental indications. Here, we describe an osteoinductive autologous bone graft substitute (ABGS) that contains recombinant human BMP6 (rhBMP6) dispersed within autologous blood coagulum (ABC) scaffold. The ABGS is created as an injectable or implantable coagulum gel with rhBMP6 binding tightly to plasma proteins within fibrin meshwork, as examined by dot-blot assays, and is released slowly as an intact protein over 6 to 8 days, as assessed by ELISA. The biological activity of ABGS was examined in vivo in rats (Rattus norvegicus) and rabbits (Oryctolagus cuniculus). In a rat subcutaneous implant assay, ABGS induced endochondral bone formation, as observed by histology and micro-CT analyses. In the rabbit ulna segmental defect model, a reproducible and robust bone formation with complete bridging and restoration of the defect was observed, which is dose dependent, as determined by radiographs, micro-CT, and histological analyses. In ABGS, ABC scaffold provides a permissive environment for bone induction and contributes to the use of lower doses of rhBMP6 compared with BMP7 in bovine bone collagen as scaffold. The newly formed bone undergoes remodeling and establishes cortices uniformly that is restricted to implant site by bridging with host bone. In summary, ABC carrier containing rhBMP6 may serve as an osteoinductive autologous bone graft substitute for several orthopedic applications that include delayed and nonunion fractures, anterior and posterior lumbar interbody fusion, trauma, and nonunions associated with neurofibromatosis type I.
Collapse
Affiliation(s)
- Lovorka Grgurevic
- Laboratory for Mineralized Tissues School of Medicine University of Zagreb Zagreb Croatia
| | | | - Marko Pecin
- Clinics for Surgery, Orthopedics, and Ophthalmology School of Veterinary Medicine University of Zagreb Zagreb Croatia
| | - Igor Erjavec
- Laboratory for Mineralized Tissues School of Medicine University of Zagreb Zagreb Croatia
| | - Hrvoje Capak
- Department of Radiology School of Veterinary Medicine University of Zagreb Zagreb Croatia
| | - Martina Pauk
- Laboratory for Mineralized Tissues School of Medicine University of Zagreb Zagreb Croatia
| | - Sven Karlovic
- Faculty of Food Technology and Biotechnology University of Zagreb Zagreb Croatia
| | - Vera Kufner
- Laboratory for Mineralized Tissues School of Medicine University of Zagreb Zagreb Croatia
| | - Marija Lipar
- Clinics for Surgery, Orthopedics, and Ophthalmology School of Veterinary Medicine University of Zagreb Zagreb Croatia
| | - Jadranka Bubic Spoljar
- Laboratory for Mineralized Tissues School of Medicine University of Zagreb Zagreb Croatia
| | | | - Drazen Maticic
- Clinics for Surgery, Orthopedics, and Ophthalmology School of Veterinary Medicine University of Zagreb Zagreb Croatia
| | - Mihaela Peric
- Laboratory for Mineralized Tissues School of Medicine University of Zagreb Zagreb Croatia
| | - Reinhard Windhager
- Department of Orthopedics and Trauma Surgery Medical University of Vienna Vienna Austria
| | | | - Slobodan Vukicevic
- Laboratory for Mineralized Tissues School of Medicine University of Zagreb Zagreb Croatia
| |
Collapse
|
58
|
Ji W, Kerckhofs G, Geeroms C, Marechal M, Geris L, Luyten FP. Deciphering the combined effect of bone morphogenetic protein 6 and calcium phosphate on bone formation capacity of periosteum derived cells-based tissue engineering constructs. Acta Biomater 2018; 80:97-107. [PMID: 30267882 DOI: 10.1016/j.actbio.2018.09.046] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/18/2018] [Accepted: 09/25/2018] [Indexed: 12/19/2022]
Abstract
Cell based combination products with growth factors on optimal carriers represent a promising tissue engineering strategy to treat large bone defects. In this concept, bone morphogenetic protein (BMP) and calcium phosphate (CaP)-based scaffolds can act as potent components of the constructs to steer stem cell specification, differentiation and initiate subsequent in vivo bone formation. However, limited insight into BMP dosage and the cross-talk between BMP and CaP materials, hampers the optimization of in vivo bone formation and subsequent clinical translation. Herein, we combined human periosteum derived progenitor cells with different doses of BMP6 and with three types of clinical grade CaP-scaffolds (ChronOs®, ReproBone™, & CopiOs®). Comprehensive cellular and molecular analysis was performed based on in vitro cell metabolic activity and signaling pathway activation, as well as in vivo ectopic bone forming capacity after 2 weeks and 5 weeks in nude mice. Our data showed that cells seeded on CaP scaffolds with an intermediate Ca2+ release rate combined with low or medium dosage of BMP6 demonstrated a robust new bone formation after 5 weeks, which was contributed by both donor and host cells. This phenomenon might be due to the delicate balance between Ca2+ and BMP pathways, allowing an appropriate activation of the canonical BMP signaling pathway that is required for in vivo bone formation. For high BMP6 dosage, we found that the BMP6 dosage overrides the effect of the Ca2+ release rate and this appeared to be a dominant factor for ectopic bone formation. Taken together, this study illustrates the importance of matching BMP dosage and CaP properties to allow an appropriate activation of canonical BMP signaling that is crucial for in vivo bone formation. It also provides insightful knowledge with regard to clinical translation of cell-based constructs for bone regeneration. STATEMENT OF SIGNIFICANCE: The combination of bone morphogenetic proteins (BMP) and calcium phosphate (CaP)-based biomaterials with mesenchymal stromal cells represents a promising therapeutic strategy to treat large bone defects, an unmet medical need. However, there is limited insight into the optimization of these combination products, which hampers subsequent successful clinical translation. Our data reveal a delicate balance between Ca2+ and BMP pathways, allowing an appropriate activation of canonical BMP signaling required for in vivo bone formation. Our findings illustrate the importance of matching BMP dosage and CaP properties in the development of cell-based constructs for bone regeneration.
Collapse
Affiliation(s)
- Wei Ji
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium; Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Greet Kerckhofs
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium; Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium; Biomechanics Lab, Institute of Mechanics, Materials, and Civil Engineering, UCLouvain, Belgium
| | - Carla Geeroms
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium; Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Marina Marechal
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium; Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Liesbet Geris
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium; Biomechanics Research Unit, GIGA In silico Medicine, University of Liege, Liege, Belgium
| | - Frank P Luyten
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium; Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium.
| |
Collapse
|
59
|
Ho-Shui-Ling A, Bolander J, Rustom LE, Johnson AW, Luyten FP, Picart C. Bone regeneration strategies: Engineered scaffolds, bioactive molecules and stem cells current stage and future perspectives. Biomaterials 2018; 180:143-162. [PMID: 30036727 PMCID: PMC6710094 DOI: 10.1016/j.biomaterials.2018.07.017] [Citation(s) in RCA: 570] [Impact Index Per Article: 81.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 07/06/2018] [Accepted: 07/10/2018] [Indexed: 12/25/2022]
Abstract
Bone fractures are the most common traumatic injuries in humans. The repair of bone fractures is a regenerative process that recapitulates many of the biological events of embryonic skeletal development. Most of the time it leads to successful healing and the recovery of the damaged bone. Unfortunately, about 5-10% of fractures will lead to delayed healing or non-union, more so in the case of co-morbidities such as diabetes. In this article, we review the different strategies to heal bone defects using synthetic bone graft substitutes, biologically active substances and stem cells. The majority of currently available reviews focus on strategies that are still at the early stages of development and use mostly in vitro experiments with cell lines or stem cells. Here, we focus on what is already implemented in the clinics, what is currently in clinical trials, and what has been tested in animal models. Treatment approaches can be classified in three major categories: i) synthetic bone graft substitutes (BGS) whose architecture and surface can be optimized; ii) BGS combined with bioactive molecules such as growth factors, peptides or small molecules targeting bone precursor cells, bone formation and metabolism; iii) cell-based strategies with progenitor cells combined or not with active molecules that can be injected or seeded on BGS for improved delivery. We review the major types of adult stromal cells (bone marrow, adipose and periosteum derived) that have been used and compare their properties. Finally, we discuss the remaining challenges that need to be addressed to significantly improve the healing of bone defects.
Collapse
Affiliation(s)
- Antalya Ho-Shui-Ling
- Grenoble Institute of Technology, Univ. Grenoble Alpes, 38000 Grenoble, France; CNRS, LMGP, 3 Parvis Louis Néel, 38031 Grenoble Cedex 01, France
| | - Johanna Bolander
- Tissue Engineering Laboratory, Skeletal Biology and Engineering Research Center, KU Leuven, Belgium; Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Belgium
| | - Laurence E Rustom
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 1304 West Springfield Avenue, Urbana, IL 61801, USA
| | - Amy Wagoner Johnson
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, 1206 West Green Street, Urbana, IL 61081, USA; Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL 61801, USA
| | - Frank P Luyten
- Tissue Engineering Laboratory, Skeletal Biology and Engineering Research Center, KU Leuven, Belgium; Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Belgium.
| | - Catherine Picart
- Grenoble Institute of Technology, Univ. Grenoble Alpes, 38000 Grenoble, France; CNRS, LMGP, 3 Parvis Louis Néel, 38031 Grenoble Cedex 01, France.
| |
Collapse
|
60
|
Bone morphogenetic proteins in fracture repair. INTERNATIONAL ORTHOPAEDICS 2018; 42:2619-2626. [DOI: 10.1007/s00264-018-4153-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 09/07/2018] [Indexed: 12/19/2022]
|
61
|
Clinical need for bone morphogenetic proteins. INTERNATIONAL ORTHOPAEDICS 2017; 41:2415-2416. [DOI: 10.1007/s00264-017-3550-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 06/19/2017] [Indexed: 10/19/2022]
|
62
|
Synergistic effects of BMP-2, BMP-6 or BMP-7 with human plasma fibronectin onto hydroxyapatite coatings: A comparative study. Acta Biomater 2017; 55:481-492. [PMID: 28434979 DOI: 10.1016/j.actbio.2017.04.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 03/20/2017] [Accepted: 04/11/2017] [Indexed: 01/07/2023]
Abstract
Design of new osteoinductive biomaterials to reproduce an optimized physiological environment capable of recruiting stem cells and instructing their fate towards the osteoblastic lineage has become a priority in orthopaedic surgery. This work aims at evaluating the bioactivity of BMP combined with human plasma fibronectin (FN/BMP) delivered in solution or coated onto titanium-hydroxyapatite (TiHA) surfaces. Herein, we focus on the comparison of in vitro osteogenic efficacy in mouse C2C12 pre-osteoblasts of three BMP members, namely: BMP-2, BMP-6 and BMP-7. In parallel, we evaluated the molecular binding strength between each BMP with FN using the Surface Plasmon Resonance (SPR) technology. The affinity of BMPs for FN was found totally different and dependent on BMP type. Indeed, the combination of FN with BMP-2 on TiHA surfaces potentiates the burst of gene-mediated osteogenic induction, while it prolongs the osteogenic activity of BMP-6 and surprisingly annihilates the BMP-7 one. These results correlate with FN/BMP affinity for TiHA, since BMP-6>BMP-2>BMP-7. In addition, by analyzing the osteogenic activity in the peri-implant environment, we showed that osteoinductive paracrine effects were significantly decreased upon (FN/BMP-6), as opposed to (FN/BMP-2) coatings. Altogether, our results support the use of FN/BMP-6 to develop a biomimetic microenvironment capable to induce osteogenic activity under physiological conditions, with minimum paracrine signalization. STATEMENT OF SIGNIFICANCE The originality of our paper relies on the first direct comparison of the in vitro osteogenic potential of three osteogenic BMPs (BMP-2, -6 and -7) combined with native human plasma fibronectin delivered in solution or coated by laser transfer onto titanium hydroxyapatite surfaces. We confirm that BMP association with fibronectin enhances the osteogenic activity of BMP-2, -6 and -7, but with essential discrepancies, depending on the BMP member, and in agreement with the affinity of BMPs for fibronectin. Moreover, we bring elements to explain the origin of the BMP-2 medical life-threatening side-effects by analyzing in vitro paracrine effects. Finally, this work supports the alternative use of FN/BMP-6 to induce osteogenic activity under physiological conditions, with minimum side effects.
Collapse
|
63
|
Induced membrane technique: Advances in the management of bone defects. Int J Surg 2017; 42:110-116. [DOI: 10.1016/j.ijsu.2017.04.064] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 04/19/2017] [Accepted: 04/30/2017] [Indexed: 12/31/2022]
|
64
|
Poorman GW, Jalai CM, Boniello A, Worley N, McClelland S, Passias PG. Bone morphogenetic protein in adult spinal deformity surgery: a meta-analysis. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2017; 26:2094-2102. [DOI: 10.1007/s00586-016-4841-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 10/03/2016] [Accepted: 10/23/2016] [Indexed: 12/16/2022]
|
65
|
Marshall R. Urist and the discovery of bone morphogenetic proteins. INTERNATIONAL ORTHOPAEDICS 2017; 41:1065-1069. [DOI: 10.1007/s00264-017-3402-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 01/03/2017] [Indexed: 02/07/2023]
|
66
|
Paarmann P, Dörpholz G, Fiebig J, Amsalem AR, Ehrlich M, Henis YI, Müller T, Knaus P. Dynamin-dependent endocytosis of Bone Morphogenetic Protein2 (BMP2) and its receptors is dispensable for the initiation of Smad signaling. Int J Biochem Cell Biol 2016; 76:51-63. [PMID: 27113717 DOI: 10.1016/j.biocel.2016.04.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 03/18/2016] [Accepted: 04/21/2016] [Indexed: 01/07/2023]
Abstract
Bone Morphogenetic Protein (BMP) signal transduction via the canonical Smad158 pathway has previously been linked to dynamin-dependent endocytosis, since the application of chemical inhibitors of clathrin or dynamin in functional cell culture based assays negatively affects initiation and propagation of the Smad response. More recent studies, however, demonstrated efficient Smad signaling by non-internalizable BMP2. The role of endocytosis in BMP signal transduction thus remained controversial. In our study we aimed to refine cell biological assays and to apply novel tools, including a new site-directed fluorescently labeled BMP2 ligand, to revisit key steps in BMP Smad signaling. We found that dynamin2 function was required for BMP2 uptake but was dispensable for C-terminal phosphorylation, nuclear translocation and transcriptional activity of BMP-dependent Smads. Furthermore, we demonstrated a role of dynamin2 in the regulation of steady-state and surface BMP receptor levels, as well as an impact on Smad1 protein level. Thus, dynamin2 allows for modulation of basal and ligand-dependent Smad signaling capacity. High levels of functional dynamin2 enhanced the myogenic differentiation of precursor cells. From our study we conclude that dynamin-dependent endocytosis serves as a regulatory mechanism to fine-tune Smad signaling, but it is not a prerequisite for signal initiation and propagation. Our findings contribute to the understanding of fundamental mechanisms of BMP signaling and thus provide important information for future consideration in the context of therapeutic applications of BMPs.
Collapse
Affiliation(s)
- Pia Paarmann
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Germany
| | - Gina Dörpholz
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Germany
| | - Juliane Fiebig
- Department for Molecular Plant Physiology and Biophysics, Biozentrum Universität Würzburg, Julius-von-Sachs Institute, Julius-von-Sachs Platz 2, 97082 Würzburg, Germany
| | - Ayelet R Amsalem
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Marcelo Ehrlich
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yoav I Henis
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Thomas Müller
- Department for Molecular Plant Physiology and Biophysics, Biozentrum Universität Würzburg, Julius-von-Sachs Institute, Julius-von-Sachs Platz 2, 97082 Würzburg, Germany
| | - Petra Knaus
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Germany.
| |
Collapse
|
67
|
Johnson KE, Makanji Y, Temple-Smith P, Kelly EK, Barton PA, Al-Musawi SL, Mueller TD, Walton KL, Harrison CA. Biological activity and in vivo half-life of pro-activin A in male rats. Mol Cell Endocrinol 2016; 422:84-92. [PMID: 26687063 DOI: 10.1016/j.mce.2015.12.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 12/07/2015] [Accepted: 12/07/2015] [Indexed: 01/01/2023]
Abstract
Mature TGF-β proteins are used in vivo to promote bone growth, combat obesity, reverse fibrosis and pulmonary arterial hypertension, and as potential rejuvenation factors. However, the serum half-life of this family of growth factors is short (∼5 min), limiting their therapeutic potential. Because TGF-β proteins are normally secreted from cells with their prodomains attached, we considered whether these molecules could extend the in vivo half-life and activity of their respective growth factors. Using activin A as a model ligand, we initially modified the cleavage site between the pro- and mature domains to ensure complete processing of the activin A precursor. Co-immunoprecipitation studies confirmed mature activin A is secreted from cells in a non-covalent complex with its prodomain, however, the affinity of this interaction is not sufficient to suppress activin A in vitro biological activity. The plasma clearance profiles of purified pro- and mature activin A were determined over a 4 h period in adult male rats. Both activin forms demonstrated a two-phase decay, with the half-life of pro-activin A (t1/2 fast = 12.5 min, slow = 31.0 min) being greater than that of mature activin A (t1/2 fast = 5.5 min, slow = 20.3 min). Both pro- and mature activin A induced significant increases in serum follicle stimulating hormone levels after 4 h, but no differences were observed in the relative in vivo bioactivities of the two activin isoforms. Increased serum half-life of activin A in the presence of its prodomain identifies a new means to increase the therapeutic effectiveness of TGF-β proteins.
Collapse
Affiliation(s)
- Katharine E Johnson
- Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | | | - Peter Temple-Smith
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3800, Australia
| | - Emily K Kelly
- Hudson Institute of Medical Research, Clayton, VIC 3168, Australia
| | - Peter A Barton
- Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Sara L Al-Musawi
- Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; Department of Molecular and Translational Science, Monash University, Clayton, VIC 3800, Australia
| | - Thomas D Mueller
- Department of Plant Physiology and Biophysics, Julius-von-Sachs Institute of the University Wuerzburg, Julius-von Sachs Platz 2, Wuerzburg, Germany
| | - Kelly L Walton
- Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; Department of Molecular and Translational Science, Monash University, Clayton, VIC 3800, Australia
| | - Craig A Harrison
- Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; Department of Molecular and Translational Science, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
68
|
Hiepen C, Yadin D, Rikeit P, Dörpholz G, Knaus P. Actions from head to toe: An update on Bone/Body Morphogenetic Proteins in health and disease. Cytokine Growth Factor Rev 2016; 27:1-11. [PMID: 26803465 DOI: 10.1016/j.cytogfr.2015.12.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The pleiotropic actions of Bone Morphogenetic Proteins in many different tissues has led us to the conclusion that they may be viewed as Body Morphogenetic Proteins (BMPs). This is supported by a broad range of distinct BMP-related diseases. Here, we summarize highlights from the 10th international BMP conference, which took place from September 16th to 20th 2014 in Berlin. Attendees updated us on recently identified common and context-specific mechanisms of BMP signaling and function. This included for example new insights into BMP pro-domains, BMP receptors, role of BMPs in muscle and novel consequences of ACVRI mutations. Currently, new BMPs are entering clinical trials with the BMP pathway considered as a 'druggable' target. We conclude that various recent and ongoing approaches could indeed help patients in the near future.
Collapse
Affiliation(s)
- Christian Hiepen
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Germany; Berlin-Brandenburg School for Regenerative Therapies (BSRT), Charité Campus Virchow Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany
| | - David Yadin
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Germany; Berlin-Brandenburg School for Regenerative Therapies (BSRT), Charité Campus Virchow Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Paul Rikeit
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Germany; Berlin-Brandenburg School for Regenerative Therapies (BSRT), Charité Campus Virchow Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Gina Dörpholz
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Germany
| | - Petra Knaus
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, Berlin, 14195, Germany; Berlin-Brandenburg School for Regenerative Therapies (BSRT), Charité Campus Virchow Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany
| |
Collapse
|
69
|
Grgurevic L, Christensen GL, Schulz TJ, Vukicevic S. Bone morphogenetic proteins in inflammation, glucose homeostasis and adipose tissue energy metabolism. Cytokine Growth Factor Rev 2015; 27:105-18. [PMID: 26762842 DOI: 10.1016/j.cytogfr.2015.12.009] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 12/10/2015] [Accepted: 12/23/2015] [Indexed: 12/13/2022]
Abstract
Bore morphogenetic proteins (BMPs) are members of the transforming growth factor (TGF)-β superfamily, a group of secreted proteins that regulate embryonic development. This review summarizes the effects of BMPs on physiological processes not exclusively linked to the musculoskeletal system. Specifically, we focus on the involvement of BMPs in inflammatory disorders, e.g. fibrosis, inflammatory bowel disease, anchylosing spondylitis, rheumatoid arthritis. Moreover, we discuss the role of BMPs in the context of vascular disorders, and explore the role of these signalling proteins in iron homeostasis (anaemia, hemochromatosis) and oxidative damage. The second and third parts of this review focus on BMPs in the development of metabolic pathologies such as type-2 diabetes mellitus and obesity. The pancreatic beta cells are the sole source of the hormone insulin and BMPs have recently been implicated in pancreas development as well as control of adult glucose homeostasis. Lastly, we review the recently recognized role of BMPs in brown adipose tissue formation and their consequences for energy expenditure and adiposity. In summary, BMPs play a pivotal role in metabolism beyond their role in skeletal homeostasis. However, increased understanding of these pleiotropic functions also highlights the necessity of tissue-specific strategies when harnessing BMP action as a therapeutic target.
Collapse
Affiliation(s)
- Lovorka Grgurevic
- University of Zagreb School of Medicine, Center for Translational and Clinical Research, Laboratory for Mineralized Tissues, Zagreb, Croatia
| | | | - Tim J Schulz
- German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany.
| | - Slobodan Vukicevic
- University of Zagreb School of Medicine, Center for Translational and Clinical Research, Laboratory for Mineralized Tissues, Zagreb, Croatia.
| |
Collapse
|
70
|
BMPs in bone regeneration: Less is more effective, a paradigm-shift. Cytokine Growth Factor Rev 2015; 27:141-8. [PMID: 26678813 DOI: 10.1016/j.cytogfr.2015.11.006] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 11/13/2015] [Indexed: 11/20/2022]
Abstract
Worldwide, the clinical application of BMP2 (bone morphogenetic protein 2) has helped an increasing number of patients achieve bone regeneration in a clinical area lacking simple solutions for difficult bone healing situations. In this review, the historical aspects and current critical clinical issues are summarized and positioned against new research findings on efficacy and function of BMP2. Knowledge concerning how the dose of this growth factor as well as its interaction with mechanical loading influences the efficacy of bone regeneration, might open possible future strategies in cases where bony bridging is unachievable so far. In conclusion, it is apparent that there is a substantial need for continued basic research to unravel the details of its function and the underlying signaling pathways involved, to make BMP2 even more relevant and safe in daily clinical use, even though this growth factor has been known for more than 125 years.
Collapse
|
71
|
Benn A, Bredow C, Casanova I, Vukičević S, Knaus P. VE-cadherin facilitates BMP-induced endothelial cell permeability and signaling. J Cell Sci 2015; 129:206-18. [PMID: 26598555 PMCID: PMC4732303 DOI: 10.1242/jcs.179960] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 11/16/2015] [Indexed: 12/22/2022] Open
Abstract
Several vascular disorders, such as aberrant angiogenesis, atherosclerosis and pulmonary hypertension, have been linked to dysfunctional BMP signaling. Vascular hyperpermeability via distortion of endothelial cell adherens junctions is a common feature of these diseases, but the role of BMPs in this process has not been investigated. BMP signaling is initiated by binding of ligand to, and activation of, BMP type I (BMPRI) and type II (BMPRII) receptors. Internalization of VE-cadherin as well as c-Src kinase-dependent phosphorylation have been implicated in the loosening of cell–cell contacts, thereby modulating vascular permeability. Here we demonstrate that BMP6 induces hyperpermeabilization of human endothelial cells by inducing internalization and c-Src-dependent phosphorylation of VE-cadherin. Furthermore, we show BMP-dependent physical interaction of VE-cadherin with the BMP receptor ALK2 (BMPRI) and BMPRII, resulting in stabilization of the BMP receptor complex and, thereby, the support of BMP6-Smad signaling. Our results provide first insights into the molecular mechanism of BMP-induced vascular permeability, a hallmark of various vascular diseases, and provide the basis for further investigations of BMPs as regulators of vascular integrity, both under physiological and pathophysiological conditions. Summary: We reveal the molecular mechanism by which BMP6 induces hyperpermeabilization of the endothelium. This provides first insights into the mechanism of BMP-dependent vascular integrity in normal physiology and disease.
Collapse
Affiliation(s)
- Andreas Benn
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin 14195, Germany DFG Graduate School 1093 Berlin School of Integrative Oncology, Berlin 13353, Germany DFG Graduate School 203 Berlin-Brandenburg School for Regenerative Therapies, Berlin 13353, Germany
| | - Clara Bredow
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin 14195, Germany
| | - Isabel Casanova
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin 14195, Germany
| | - Slobodan Vukičević
- Center for Translational and Clinical Research, University of Zagreb, Zagreb 10000, Croatia
| | - Petra Knaus
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin 14195, Germany DFG Graduate School 1093 Berlin School of Integrative Oncology, Berlin 13353, Germany DFG Graduate School 203 Berlin-Brandenburg School for Regenerative Therapies, Berlin 13353, Germany
| |
Collapse
|
72
|
Collagen type I coating stimulates bone regeneration and osteointegration of titanium implants in the osteopenic rat. INTERNATIONAL ORTHOPAEDICS 2015. [DOI: 10.1007/s00264-015-2926-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
73
|
Alternatives to autograft evaluated in a rabbit segmental bone defect. INTERNATIONAL ORTHOPAEDICS 2015; 40:197-203. [DOI: 10.1007/s00264-015-2824-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 05/26/2015] [Indexed: 10/23/2022]
|
74
|
Dumic-Cule I, Pecina M, Jelic M, Jankolija M, Popek I, Grgurevic L, Vukicevic S. Biological aspects of segmental bone defects management. INTERNATIONAL ORTHOPAEDICS 2015; 39:1005-11. [DOI: 10.1007/s00264-015-2728-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 02/26/2015] [Indexed: 10/23/2022]
|
75
|
Bone morphogenetic protein-7 enhances bone-tendon integration in a murine in vitro co-culture model. INTERNATIONAL ORTHOPAEDICS 2015; 39:799-805. [PMID: 25667050 DOI: 10.1007/s00264-015-2688-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 01/18/2015] [Indexed: 12/16/2022]
Abstract
PURPOSE Bone-tendon healing following anterior cruciate ligament reconstruction is reportedly enhanced by bone morphogenetic protein (BMP)-7. To improve our understanding of the underlying biologic processes, we examined the effects of BMP-7 on region-specific gene expression in vitro. METHODS A murine in vitro co-culture model simulating the osteoblast, interface and fibroblast regions was established. The dose- and time-dependent region-specific effects of BMP-7 exposure on gene expression of Alpl, Bglap, Col1a1, Runx2 and Spp1 were analysed by quantitative PCR. RESULTS At the osteoblast region, BMP-7 significantly increased Alp, Bglap, Col1a1, and Runx2 expression, while Spp1 expression was suppressed. At the interface region, BMP-7 exposure resulted in a trend towards increased expression rates of Alpl and Col1a1, whereas Bglap (P < 0.001) and Runx2 (P < 0.01) were significantly upregulated without any detectable effect on Spp1 expression. At the fibroblast region, BMP-7 increased Alpl (P < 0.001), Bglap (P < 0.001) and Runx2 (P < 0.001) expression, but no significant effects were seen on Col1a1 or Spp1. Exposure to BMP-7 (100 ng/ml) had its most pronounced biologic impact on day ten. CONCLUSION BMP-7 stimulation showed beneficial region-specific effects on bone-tendon healing in vitro, such as enhanced expression of parameters for ossification and fibroblast transdifferentiation, both key processes during successful graft integration.
Collapse
|
76
|
Liu Y, Hou R, Yin R, Yin W. Correlation of bone morphogenetic protein-2 levels in serum and synovial fluid with disease severity of knee osteoarthritis. Med Sci Monit 2015; 21:363-70. [PMID: 25644704 PMCID: PMC4321411 DOI: 10.12659/msm.892160] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND This study aimed to investigate the bone morphogenetic protein-2 (BMP-2) levels in serum and synovial fluid (SF) of patients with primary knee osteoarthritis (OA) and to exam its correlation with radiographic and symptomatic severity of the disease. MATERIAL/METHODS A total of 37 knee OA patients and 20 healthy controls were enrolled in this study. Knee OA radiographic grading was performed according to the Kellgren-Lawrence (KL) grading system by evaluating X-ray changes observed in anteroposterior knee radiography. Symptomatic severity of the disease was evaluated according to the Western Ontario McMaster University Osteoarthritis Index (WOMAC) scores. BMP-2 levels in serum and SF were determined using enzyme-linked immunosorbent assay. RESULTS Serum BMP-2 level in patients with knee OA was higher than that in healthy controls. Knee OA patients with KL grade 4 showed significantly elevated BMP-2 levels in the serum and SF compared with those with KL grade 2 and 3. Knee OA patients with KL grade 3 had significant higher SF levels of BMP-2 than those with KL grade 2. BMP-2 levels in the serum and SF of knee OA patients were both positively correlated with KL grades and WOMAC scores. CONCLUSIONS BMP2 levels in serum and SF were closely related to the radiographic and symptomatic severity of knee OA and may serve as an alternative biochemical parameter to determine disease severity of primary knee OA.
Collapse
Affiliation(s)
- Yan Liu
- Department of Ultrasonography, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China (mainland)
| | - Ruizhi Hou
- Department of Gastrointestinal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China (mainland)
| | - Ruofeng Yin
- Department of Orthopedic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China (mainland)
| | - Weitian Yin
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China (mainland)
| |
Collapse
|
77
|
Santiago-Torres JE, Lovasz R, Bertone AL. Fetal vs adult mesenchymal stem cells achieve greater gene expression, but less osteoinduction. World J Stem Cells 2015; 7:223-234. [PMID: 25621122 PMCID: PMC4300933 DOI: 10.4252/wjsc.v7.i1.223] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 10/14/2014] [Accepted: 11/03/2014] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate adenoviral transduction in mesenchymal stem cells (MSCs) and effects on stemness in vitro and function as a cell therapy in vivo.
METHODS: Bone marrow-derived adult and fetal MSC were isolated from an equine source and expanded in monolayer tissue culture. Polyethylenimine (PEI)-mediated transfection of pcDNA3-eGFP or adenoviral transduction of green fluorescent protein (GFP) was evaluated in fetal MSCs. Adenoviral-mediated transduction was chosen for subsequent experiments. All experiments were carried out at least in triplicate unless otherwise noted. Outcome assessment was obtained by flow cytometry or immunohystochemistry and included transduction efficiency, cell viability, stemness (i.e., cell proliferation, osteogenic and chondrogenic cell differentiation), and quantification of GFP expression. Fetal and adult MSCs were then transduced with an adenoviral vector containing the gene for the bone morphogenic protein 2 (BMP2). In vitro BMP2 expression was assessed by enzyme linked immunosorbent assay. In addition, MSC-mediated gene delivery of BMP2 was evaluated in vivo in an osteoinduction nude mouse quadriceps model. New bone formation was evaluated by microradiography and histology.
RESULTS: PEI provided greater transfection and viability in fetal MSCs than other commercial chemical reagents. Adenoviral transduction efficiency was superior to PEI-mediated transfection of GFP in fetal MSCs (81.3% ± 1.3% vs 35.0% ± 1.6%, P < 0.05) and was similar in adult MSCs (78.1% ± 1.9%). Adenoviral transduction provided significantly greater expression of GFP in fetal than adult MSCs (7.4 ± 0.1 vs 4.4 ± 0.3 millions of mean fluorescence intensity units, P < 0.01) as well as significantly greater in vitro BMP2 expression (0.16 pg/cell-day vs 0.10 pg/cell-day, P < 0.01). Fraction of fetal MSC GFP positive cells decreased significantly faster than adult MSCs (1.15% ± 0.05% vs 11.4% ± 2.1% GFP positive at 2 wk post-transduction, P < 0.05). Cell proliferation and osteogenic differentiation in vitro were not affected by Ad transduction in both fetal and adult MSCs, but fetal MSCs had reduced chondrogenic differentiation in vitro when compared to adult (P < 0.01). Chondrogenic differentiation was also significantly reduced in Ad-GFP transduced cells (P < 0.05). Ad-BMP2 transduced adult MSCs induced new bone formation in more thighs than Ad-BMP2 transduced fetal MSCs (83% vs 17% of the six treated thighs per group, P < 0.05) and resulted in increased femur midshaft diameter due to greater extent of periosteal new bone (1.57 ± 0.35 mm vs 1.27 ± 0.08 mm, P < 0.05).
CONCLUSION: Fetal MSCs may be genetically manipulated ex vivo with adenoviral vectors. Nonetheless, the abbreviated expression of the exogenous gene may limit their applications in vivo.
Collapse
|
78
|
Peric M, Dumic-Cule I, Grcevic D, Matijasic M, Verbanac D, Paul R, Grgurevic L, Trkulja V, Bagi CM, Vukicevic S. The rational use of animal models in the evaluation of novel bone regenerative therapies. Bone 2015; 70:73-86. [PMID: 25029375 DOI: 10.1016/j.bone.2014.07.010] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 06/30/2014] [Accepted: 07/05/2014] [Indexed: 12/31/2022]
Abstract
Bone has a high potential for endogenous self-repair. However, due to population aging, human diseases with impaired bone regeneration are on the rise. Current strategies to facilitate bone healing include various biomolecules, cellular therapies, biomaterials and different combinations of these. Animal models for testing novel regenerative therapies remain the gold standard in pre-clinical phases of drug discovery and development. Despite improvements in animal experimentation, excessive poorly designed animal studies with inappropriate endpoints and inaccurate conclusions are being conducted. In this review, we discuss animal models, procedures, methods and technologies used in bone repair studies with the aim to assist investigators in planning and performing scientifically sound experiments that respect the wellbeing of animals. In the process of designing an animal study for bone repair investigators should consider: skeletal characteristics of the selected animal species; a suitable animal model that mimics the intended clinical indication; an appropriate assessment plan with validated methods, markers, timing, endpoints and scoring systems; relevant dosing and statistically pre-justified sample sizes and evaluation methods; synchronization of the study with regulatory requirements and additional evaluations specific to cell-based approaches. This article is part of a Special Issue entitled "Stem Cells and Bone".
Collapse
Affiliation(s)
- Mihaela Peric
- University of Zagreb School of Medicine, Center for Translational and Clinical Research, Department for Intercellular Communication, Salata 2, Zagreb, Croatia.
| | - Ivo Dumic-Cule
- University of Zagreb School of Medicine, Center for Translational and Clinical Research, Laboratory for Mineralized Tissues, Salata 11, Zagreb, Croatia
| | - Danka Grcevic
- University of Zagreb School of Medicine, Department of Physiology and Immunology, Salata 3, Zagreb, Croatia
| | - Mario Matijasic
- University of Zagreb School of Medicine, Center for Translational and Clinical Research, Department for Intercellular Communication, Salata 2, Zagreb, Croatia
| | - Donatella Verbanac
- University of Zagreb School of Medicine, Center for Translational and Clinical Research, Department for Intercellular Communication, Salata 2, Zagreb, Croatia
| | - Ruth Paul
- Paul Regulatory Services Ltd, Fisher Hill Way, Cardiff CF15 8DR, UK
| | - Lovorka Grgurevic
- University of Zagreb School of Medicine, Center for Translational and Clinical Research, Laboratory for Mineralized Tissues, Salata 11, Zagreb, Croatia
| | - Vladimir Trkulja
- University of Zagreb School of Medicine, Department of Pharmacology, Salata 11, Zagreb, Croatia
| | - Cedo M Bagi
- Pfizer Inc., Global Research and Development, Global Science and Technology, 100 Eastern Point Road, Groton, CT 06340, USA
| | - Slobodan Vukicevic
- University of Zagreb School of Medicine, Center for Translational and Clinical Research, Laboratory for Mineralized Tissues, Salata 11, Zagreb, Croatia.
| |
Collapse
|
79
|
Long-term functional outcome and quality of life after successful surgical treatment of tibial nonunions. INTERNATIONAL ORTHOPAEDICS 2014; 39:521-5. [PMID: 25522800 DOI: 10.1007/s00264-014-2629-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 12/01/2014] [Indexed: 10/24/2022]
Abstract
PURPOSE Our aim was to evaluate quality of life (QoL) and functional outcome of patients with tibial nonunions after completion of surgical treatment with an average follow-up of five years. METHODS The following data of 64 patients were retrospectively evaluated: fracture type, type and duration of surgical therapy, range of motion of the knee and ankle and American Orthopaedic Foot and Ankle Society (AOFAS) score. QoL was evaluated with the Short-Form Health Survey (SF-36) questionnaire; pain intensity, patient satisfaction and impairments of daily, professional and sport activities with a ten point visual analogue scale. RESULTS QoL, even in cases with successfully completed treatment, was significantly reduced compared with the normal general population. Pain intensity and limited ankle dorsal extension, despite the absence of intra-articular fractures, were significantly correlated with inferior QoL. CONCLUSIONS This study emphasises the long-term negative impact of tibial nonunions on patient QoL, even after successful surgical treatment.
Collapse
|
80
|
Hinsenkamp M, Collard JF. Growth factors in orthopaedic surgery: demineralized bone matrix versus recombinant bone morphogenetic proteins. INTERNATIONAL ORTHOPAEDICS 2014; 39:137-47. [PMID: 25338109 DOI: 10.1007/s00264-014-2562-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 09/30/2014] [Indexed: 12/22/2022]
Abstract
During recent decades the utilisation of growth factors, especially BMPs, has received an increasing interest in orthopaedic surgery. For clinical implantation the two main options are demineralised bone matrix (DBM) and recombinant bone morphogenetic proteins (rhBMP). Many clinical studies agree on an equivalent osteoinductive effect between DBM, BMPs and autologous bone graft; however, the different origins and processing of DBM and rhBMP may introduce some fluctuations. Their respective characteristics are reviewed and possible interactions with their effectiveness are analysed. The main difference concerns the concentration of BMPs, which varies to an order of magnitude of 10(6) between DBM and rhBMPs. This may explain the variability in efficiency of some products and the adverse effects. Currently, considering osteoinductive properties, safety and availability, the DBM seems to offer several advantages. However, if DBM and rhBMPs are useful in some indications, their effectiveness and safety can be improved and more evidence-based studies are needed to better define the indications.
Collapse
Affiliation(s)
- Maurice Hinsenkamp
- Orthopaedic Research Laboratory (LROT) and Musculoskeletal Tissue Bank (BTE), Department of Orthopaedic Surgery, Hôpital Erasme, Université Libre de Bruxelles (ULB), 808, route de Lennik, Brussels, B-1070, Belgium,
| | | |
Collapse
|
81
|
Pauk M, Grgurevic L, Brkljacic J, Kufner V, Bordukalo-Niksic T, Grabusic K, Razdorov G, Rogic D, Zuvic M, Oppermann H, Babitt JL, Lin HY, Volarevic S, Vukicevic S. Exogenous BMP7 corrects plasma iron overload and bone loss in Bmp6-/- mice. INTERNATIONAL ORTHOPAEDICS 2014; 39:161-72. [PMID: 25300398 DOI: 10.1007/s00264-014-2550-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 09/22/2014] [Indexed: 02/07/2023]
Abstract
PURPOSE Iron overload accelerates bone loss in mice lacking the bone morphogenetic protein 6 (Bmp6) gene, which is the key endogenous regulator of hepcidin, iron homeostasis gene. We investigated involvement of other BMPs in preventing haemochromatosis and subsequent osteopenia in Bmp6-/- mice. METHODS Iron-treated wild-type (WT) and Bmp6-/- mice were analysed for hepcidin messenger RNA (mRNA) and tissue and blood BMP levels by quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR), immunohistochemistry, Western blot, enzyme-linked immunosorbent assay (ELISA) and proximity extension assay. BMPs labeled with technetium-99m were used in pharmacokinetic studies. RESULTS In WT mice, 4 h following iron challenge, liver Bmp6 and hepcidin expression were increased, while expression of other Bmps was not affected. In parallel, we provided the first evidence that BMP6 circulates in WT mice and that iron increased the BMP6 serum level and the specific liver uptake of (99m)Tc-BMP6. In Bmp6-/- mice, iron challenge led to blunted activation of liver Smad signaling and hepcidin expression with a delay of 24 h, associated with increased Bmp5 and Bmp7 expression and increased Bmp2, 4, 5 and 9 expression in the duodenum. Liver Bmp7 expression and increased circulating BMP9 eventually contributed to the late hepcidin response. This was further supported by exogenous BMP7 therapy resulting in an effective hepcidin expression followed by a rapid normalisation of plasma iron values and restored osteopenia in Bmp6-/- mice. CONCLUSION In Bmp6-/- mice, iron activated endogenous compensatory mechanisms of other BMPs that were not sufficient for preventing hemochromatosis and bone loss. Administration of exogenous BMP7 was effective in correcting the plasma iron level and bone loss, indicating that BMP6 is an essential but not exclusive in vivo regulator of iron homeostasis.
Collapse
Affiliation(s)
- Martina Pauk
- Center for Translational and Clinical Research, University of Zagreb School of Medicine, Salata 11, 10000, Zagreb, Croatia,
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Courvoisier A, Sailhan F, Laffenêtre O, Obert L. Bone morphogenetic protein and orthopaedic surgery: can we legitimate its off-label use? INTERNATIONAL ORTHOPAEDICS 2014; 38:2601-5. [PMID: 25267430 DOI: 10.1007/s00264-014-2534-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 09/09/2014] [Indexed: 01/11/2023]
Abstract
PURPOSE Bone morphogenetic proteins (BMP) are recombinant osteoinductive proteins with their primary role being to promote bone formation. The off-label use of BMP in orthopaedic surgery has dramatically increased. However, reports of complications with BMP have emerged, and the safety of these proteins in orthopaedics is questioned. The purpose of this review was to evaluate safe situations in which BMP should be used and situations in which their use should be restricted. METHOD We recorded all studies from PubMed database from 2002 (date of first authorisation for both BMPs) until January 2014 using "BMP" or "bone morphogenetic protein". Then we screened and extracted all studies dealing with orthopaedic surgery. All situations in which BMP were used, even cases reports, were considered, and complications reported were then listed. RESULTS Situations in which it seems safe and efficient to use BMP are long-bone nonunions, or arthrodesis as an alternative or combined to autograft in small-bone loss. Surgeons and patients should be aware of transient aseptic wound swelling when BMP is located superficially. The use of BMP in spine surgery for intersomatic fusion is efficient but should be restricted to approaches that respect the vertebral canal to avoid neurological complications. CONCLUSION This review is an off-label map of BMP use in orthopaedics during the past 10 years. Our results could provide a useful tool to help decisions around when to use a BMP in a specific complex, and sometimes off-label, situation.
Collapse
Affiliation(s)
- Aurélien Courvoisier
- Pediatric Orthopedic Department. Grenoble University Hospital, Grenoble Alpes University, BP 217, 38043, Grenoble Cedex 09, France,
| | | | | | | |
Collapse
|
83
|
Nguyen A, Scott MA, Dry SM, James AW. Roles of bone morphogenetic protein signaling in osteosarcoma. INTERNATIONAL ORTHOPAEDICS 2014; 38:2313-22. [PMID: 25209345 DOI: 10.1007/s00264-014-2512-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 08/14/2014] [Indexed: 02/07/2023]
Abstract
PURPOSE Since the original extraction of bone morphogenetic proteins (BMPs) from bovine bone, research interest and clinical use has increased exponentially. With this, a concomitant analysis of BMP expression in bone tumours has been performed. BMP ligands, receptors, and signaling activity have been observed in diverse benign and malignant bone tumours. However, the reported expression, function, and importance of BMPs in bone tumours, and specifically osteosarcomas, have been far from uniform. This review highlights recent advances in understanding the role of BMP signaling in osteosarcoma biology, focusing on the sometimes divergent findings by various researchers and the challenges inherent in the study of osteosarcoma. METHODS We performed a literature review of all studies examining BMP signaling in osteosarcoma. RESULTS Overall, multiple BMP ligands and receptors are expressed in most osteosarcoma cell lines and subtypes, although BMP signaling may be reduced in comparison with benign bone-forming tumours. Studies suggest that osteosarcomas with different lineages of differentiation may have differential expression of BMP ligands. Although significant disagreement in the literature exists, the presence of BMP signaling in osteosarcoma may impart a worse prognosis. On the cellular level, BMP signaling appears to mediate promigratory effects in osteosarcoma and chondrosarcoma cell types, possibly via interaction and activation of Integrin β1. CONCLUSIONS BMP signaling has clear biologic importance in osteosarcoma, although it is not yet fully understood. Future questions for study include assessing the utility of BMP signaling in prognostication of osteosarcoma and the potential modulation of BMP signaling for inhibition of osteosarcomagenesis, growth and invasion.
Collapse
Affiliation(s)
- Alan Nguyen
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, University of California, 10833 Le Conte Ave, CHS A3-251, Los Angeles, CA, 90077, USA
| | | | | | | |
Collapse
|
84
|
Kaipel M, Schützenberger S, Hofmann AT, Ferguson J, Nau T, Redl H, Feichtinger GA. Evaluation of fibrin-based gene-activated matrices for BMP2/7 plasmid codelivery in a rat nonunion model. INTERNATIONAL ORTHOPAEDICS 2014; 38:2607-13. [PMID: 25192687 DOI: 10.1007/s00264-014-2499-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 08/06/2014] [Indexed: 11/29/2022]
Abstract
PURPOSE Treatment of large-segmental bone defects still is a challenge in clinical routine. Application of gene-activated matrices (GAMs) based on fibrin, bone morphogenic protein (BMP) 2/7 plasmids and nonviral transfection reagents (cationic polymers) could be an innovative treatment strategy to overcome this problem. The aim of this study was to determine the therapeutic efficacy of fibrin GAMs with or without additional transfection reagents for BMP2 and 7 plasmid codelivery in a femur nonunion rat model. METHODS In this experimental study, a critical-sized femoral defect was created in 27 rats. At four weeks after the surgery, animals were separated into four groups and underwent a second operation. Fibrin clots containing BMP2/7 plasmids with and without cationic polymer were implanted into the femoral defect. Fibrin clots containing recombinant human (rh) BMP2 served as positive and clots without supplement as negative controls. RESULTS At eight weeks, animals that received GAMs containing the cationic polymer and BMP2/7 plasmids showed decreased bone volume compared with animals treated with GAMs and BMP2/7 only. Application of BMP2/7 plasmids in fibrin GAMs without cationic polymer led to variable results. Animals that received rhBMP2 protein showed increased bone volume, and osseous unions were achieved in two of six animals. CONCLUSIONS Cationic polymers decrease therapeutic efficiency of fibrin GAM-based BMP2/7 plasmid codelivery in bone regeneration. Nonviral gene transfer of BMP2/7 plasmids needs alternative promoters (e.g. by sonoporation, electroporation) to produce beneficial clinical effects.
Collapse
Affiliation(s)
- Martin Kaipel
- Orthopaedic Department, Barmherzige Brüder Hospital, Johannes von Gott-Platz 1/A-7000, Eisenstadt, Austria,
| | | | | | | | | | | | | |
Collapse
|
85
|
Dumic-Cule I, Brkljacic J, Rogic D, Bordukalo Niksic T, Tikvica Luetic A, Draca N, Kufner V, Trkulja V, Grgurevic L, Vukicevic S. Systemically available bone morphogenetic protein two and seven affect bone metabolism. INTERNATIONAL ORTHOPAEDICS 2014; 38:1979-1985. [PMID: 25030962 DOI: 10.1007/s00264-014-2425-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 06/12/2014] [Indexed: 11/28/2022]
Abstract
PURPOSE Bone morphogenetic protein (BMP)-2 and -7 are used in patients with long-bone fractures, nonunions and spinal fusions. It is unknown whether their potential systemic bioavailability following local bone administration might affect skeletal metabolism. To answer this question, we examined effects of systemically administered BMP-2 and -7 on bone in a newly developed rat model with a low level of calciotropic hormones. METHODS Removal of thyroid and parathyroid glands (TPTx) in rats resulted in a decreased level of calciotropic hormones and subsequent bone loss assessed by micro computed tomography (micro-CT) and measurement of serum bone formation and resorption markers, including osteocalcin, C-telopeptide, osteoprotegerin and receptor activator of nuclear factor kappa-B ligand. Results were complemented with in vitro studies on osteoblast and osteoclast activity by both BMP-2 and -7. The doses used were calculated from published pharmacodynamic studies and bioavailability results from preclinical BMP-2 and -7 studies. RESULTS TPTx resulted in bone loss, which was restored by systemic administration of 10-70 μg/kg of BMP-2 and 10-250 μg/kg of BMP-7. BMP-2 showed a higher capacity for enhancing trabecular microarchitecture, whereas BMP-7 augmented trabecular thickness. In vitro experiments revealed that BMP-2 and -7 when uncoupled increased the number and activity of both osteoblasts and osteoclasts. CONCLUSIONS Surprisingly, both BMP-2 and -7 showed an increased bone volume in an in vivo environment of low calciotropic hormones. Locally administered BMP-2 and -7 from bone devices might become partially available in circulation but will not mediate systemic bone loss.
Collapse
Affiliation(s)
- Ivo Dumic-Cule
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, School of Medicine, University of Zagreb, Šalata 11, Zagreb, 10000, HR, Croatia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
A pilot study investigating the histology and growth factor content of human non-union tissue. INTERNATIONAL ORTHOPAEDICS 2014; 38:2623-9. [DOI: 10.1007/s00264-014-2496-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 08/03/2014] [Indexed: 11/27/2022]
|
87
|
Bone marrow derived stem cells in joint and bone diseases: a concise review. INTERNATIONAL ORTHOPAEDICS 2014; 38:1787-801. [PMID: 25005462 DOI: 10.1007/s00264-014-2445-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Accepted: 06/21/2014] [Indexed: 12/11/2022]
Abstract
Stem cells have huge applications in the field of tissue engineering and regenerative medicine. Their use is currently not restricted to the life-threatening diseases but also extended to disorders involving the structural tissues, which may not jeopardize the patients' life, but certainly influence their quality of life. In fact, a particularly popular line of research is represented by the regeneration of bone and cartilage tissues to treat various orthopaedic disorders. Most of these pioneering research lines that aim to create new treatments for diseases that currently have limited therapies are still in the bench of the researchers. However, in recent years, several clinical trials have been started with satisfactory and encouraging results. This article aims to review the concept of stem cells and their characterization in terms of site of residence, differentiation potential and therapeutic prospective. In fact, while only the bone marrow was initially considered as a "reservoir" of this cell population, later, adipose tissue and muscle tissue have provided a considerable amount of cells available for multiple differentiation. In reality, recently, the so-called "stem cell niche" was identified as the perivascular space, recognizing these cells as almost ubiquitous. In the field of bone and joint diseases, their potential to differentiate into multiple cell lines makes their application ideally immediate through three main modalities: (1) cells selected by withdrawal from bone marrow, subsequent culture in the laboratory, and ultimately transplant at the site of injury; (2) bone marrow aspirate, concentrated and directly implanted into the injury site; (3) systemic mobilization of stem cells and other bone marrow precursors by the use of growth factors. The use of this cell population in joint and bone disease will be addressed and discussed, analysing both the clinical outcomes but also the basic research background, which has justified their use for the treatment of bone, cartilage and meniscus tissues.
Collapse
|
88
|
Aurégan JC, Bégué T. Induced membrane for treatment of critical sized bone defect: a review of experimental and clinical experiences. INTERNATIONAL ORTHOPAEDICS 2014; 38:1971-8. [PMID: 24984595 DOI: 10.1007/s00264-014-2422-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 06/07/2014] [Indexed: 10/25/2022]
Abstract
PURPOSE The purpose of this study was to review experimental and clinical experiences about the use of an induced membrane to address critical bone size defect of the limbs. METHODS From a review of published experimental and clinical data and from our clinical experience, we present the key data about the use of an induced membrane to address critical bone size defect of the limbs. RESULTS After reviewing the concept of critical sized bone defect, we present the different indications of an induced membrane, the key points of the surgical technique and the strategy of bone grafting given the indication, localization and importance of the critical sized bone defect. Finally, we discuss the perspective of the use of an induced membrane with various bone substitutes. CONCLUSIONS The use of an induced membrane to treat critical sized bone defects of the limbs is a simple, reliable and reproducible technique. Certain technical steps should be pointed out and observed with great caution in order to avoid any pitfalls. This technique will probably be a key step for facilitating bone inclusion of new bone substitutes proposed by recent bioengineering.
Collapse
Affiliation(s)
- Jean-Charles Aurégan
- Department of Orthopaedic, Trauma and Reconstructive Surgery, Antoine Béclère Hospital, AP-HP, Paris Sud University, 157 rue de la Porte de Trivaux, 92140, Clamart, France,
| | | |
Collapse
|
89
|
Nanobiotechnology and bone regeneration: a mini-review. INTERNATIONAL ORTHOPAEDICS 2014; 38:1877-84. [PMID: 24962293 DOI: 10.1007/s00264-014-2412-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Accepted: 06/03/2014] [Indexed: 12/27/2022]
Abstract
The purpose of this paper is to review current developments in bone tissue engineering, with special focus on the promising role of nanobiotechnology. This unique fusion between nanotechnology and biotechnology offers unprecedented possibilities in studying and modulating biological processes on a molecular and atomic scale. First we discuss the multiscale hierarchical structure of bone and its implication on the design of new scaffolds and delivery systems. Then we briefly present different types of nanostructured scaffolds, and finally we conclude with nanoparticle delivery systems and their potential use in promoting bone regeneration. This review is not meant to be exhaustive and comprehensive, but aims to highlight concepts and key advances in the field of nanobiotechnology and bone regeneration.
Collapse
|
90
|
Tissue-engineered bone constructed in a bioreactor for repairing critical-sized bone defects in sheep. INTERNATIONAL ORTHOPAEDICS 2014; 38:2399-406. [PMID: 24916136 DOI: 10.1007/s00264-014-2389-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 05/18/2014] [Indexed: 12/21/2022]
Abstract
PURPOSE Repair of bone defects, particularly critical-sized bone defects, is a considerable challenge in orthopaedics. Tissue-engineered bones provide an effective approach. However, previous studies mainly focused on the repair of bone defects in small animals. For better clinical application, repairing critical-sized bone defects in large animals must be studied. This study investigated the effect of a tissue-engineered bone for repairing critical-sized bone defect in sheep. METHODS A tissue-engineered bone was constructed by culturing bone marrow mesenchymal-stem-cell-derived osteoblast cells seeded in a porous β-tricalcium phosphate ceramic (β-TCP) scaffold in a perfusion bioreactor. A critical-sized bone defect in sheep was repaired with the tissue-engineered bone. At the eighth and 16th week after the implantation of the tissue-engineered bone, X-ray examination and histological analysis were performed to evaluate the defect. The bone defect with only the β-TCP scaffold served as the control. RESULT X-ray showed that the bone defect was successfully repaired 16 weeks after implantation of the tissue-engineered bone; histological sections showed that a sufficient volume of new bones formed in β-TCP 16 weeks after implantation. Eight and 16 weeks after implantation, the volume of new bones that formed in the tissue-engineered bone group was more than that in the β-TCP scaffold group (P < 0.05). CONCLUSION Tissue-engineered bone improved osteogenesis in vivo and enhanced the ability to repair critical-sized bone defects in large animals.
Collapse
|
91
|
Percutaneous grafting with bone marrow autologous concentrate for open tibia fractures: analysis of forty three cases and literature review. INTERNATIONAL ORTHOPAEDICS 2014; 38:1845-53. [PMID: 24728310 DOI: 10.1007/s00264-014-2342-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 03/23/2014] [Indexed: 12/14/2022]
Abstract
PURPOSE Tibial fractures are the most common lower limb fractures. Some criteria such as open fractures and increasing open stage are known to be associated with high delayed union and pseudarthrosis rate. In cases of delayed or nonunion, classical treatment is autologous cancelous bone graft which is associated with high morbidity rate. The ideal treatment would be a percutaneous harvesting and grafting technique. As bone marrow autologous concentrate (BMAC) presents both advantages, we evaluated this technique from 2002 to 2007. METHODS This was a retrospective study of 43 cases of open tibial fractures with initial surgical treatment. The criteria of inclusion were open fracture and nonunion, delayed union or suspicion of delayed union. RESULTS In 23 cases (53.5 %) BMAC was successful. The success group had received significantly more CFU-F than the failure group (469 vs 153.10(3), p = 0.013). A threshold of 360.10(3) CFU-F grafted could be established over which there was 100 % success. BMAC done before 110 days after fracture had 47 % success and BMAC done since 110 days after fracture had 73 % success. BMAC success rate decreased with increasing initial fracture skin open stage. There was no BMAC success in cases of a fracture with a remaining gap of more than 4 mm. We had no complications with the technique at the iliac harvesting zone and tibia injection point. CONCLUSION BMAC is a technique that should be considered as one of the different alternatives for management of long-bone delayed and nonunion because of its effectiveness, low complication rate, preservation of bone stock and low cost.
Collapse
|