53
|
Nishino Y, Webb IG, Davidson SM, Ahmed AI, Clark JE, Jacquet S, Shah AM, Miura T, Yellon DM, Avkiran M, Marber MS. Glycogen Synthase Kinase-3 Inactivation Is Not Required for Ischemic Preconditioning or Postconditioning in the Mouse. Circ Res 2008; 103:307-14. [DOI: 10.1161/circresaha.107.169953] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The inactivation of glycogen synthase kinase-3β (GSK-3β) is proposed as the event integrating protective pathways initiated by preconditioning and other interventions. The inactivation of GSK-3 is thought to decrease the probability of opening of the mitochondrial permeability transition pore. The aim of this study was to verify the role of GSK-3 using a targeted mouse line lacking the critical N-terminal serine within GSK-3β (Ser9) and the highly homologous GSK-3α (Ser21), which when phosphorylated results in kinase inactivation. Postconditioning with 10 cycles of 5 seconds of reperfusion/5 seconds of ischemia and preconditioning with 6 cycles of 4 minutes of ischemia/6 minutes of reperfusion, similarly reduced infarction of the isolated perfused mouse heart in response to 30 minutes of global ischemia and 120 minutes of reperfusion. Preconditioning caused noticeable inactivating phosphorylation of GSK-3. However, both preconditioning and postconditioning still protected hearts of homozygous GSK-3 double knockin mice. Moreover, direct pharmacological inhibition of GSK-3 catalytic activity with structurally diverse inhibitors before or after ischemia failed to recapitulate conditioning protection. Nonetheless, cyclosporin A, a direct mitochondrial permeability transition pore inhibitor, reduced infarction in hearts from both wild-type and homozygous GSK-3 double knockin mice. Furthermore, in adult cardiac myocytes from GSK-3 double knockin mice, insulin exposure was still as effective as cyclosporin A in delaying mitochondrial permeability transition pore opening. Our results, which include a novel genetic approach, suggest that the inhibition of GSK-3 is unlikely to be the key determinant of cardioprotective signaling in either preconditioning or postconditioning in the mouse.
Collapse
Affiliation(s)
- Yasuhiro Nishino
- From the King’s College London BHF Centre (Y.N., I.G.W., A.I.A., J.E.C., S.J., A.M.S., M.A., M.S.M.), Cardiovascular Division, The Rayne Institute, St. Thomas’ Hospital, UK; The Hatter Cardiovascular Institute (S.M.D., D.M.Y.), University College London Hospital and Medical School, UK; and Second Department of Internal Medicine (T.M.), Sapporo Medical University School of Medicine, Japan
| | - Ian G. Webb
- From the King’s College London BHF Centre (Y.N., I.G.W., A.I.A., J.E.C., S.J., A.M.S., M.A., M.S.M.), Cardiovascular Division, The Rayne Institute, St. Thomas’ Hospital, UK; The Hatter Cardiovascular Institute (S.M.D., D.M.Y.), University College London Hospital and Medical School, UK; and Second Department of Internal Medicine (T.M.), Sapporo Medical University School of Medicine, Japan
| | - Sean M. Davidson
- From the King’s College London BHF Centre (Y.N., I.G.W., A.I.A., J.E.C., S.J., A.M.S., M.A., M.S.M.), Cardiovascular Division, The Rayne Institute, St. Thomas’ Hospital, UK; The Hatter Cardiovascular Institute (S.M.D., D.M.Y.), University College London Hospital and Medical School, UK; and Second Department of Internal Medicine (T.M.), Sapporo Medical University School of Medicine, Japan
| | - Aminul I. Ahmed
- From the King’s College London BHF Centre (Y.N., I.G.W., A.I.A., J.E.C., S.J., A.M.S., M.A., M.S.M.), Cardiovascular Division, The Rayne Institute, St. Thomas’ Hospital, UK; The Hatter Cardiovascular Institute (S.M.D., D.M.Y.), University College London Hospital and Medical School, UK; and Second Department of Internal Medicine (T.M.), Sapporo Medical University School of Medicine, Japan
| | - James E. Clark
- From the King’s College London BHF Centre (Y.N., I.G.W., A.I.A., J.E.C., S.J., A.M.S., M.A., M.S.M.), Cardiovascular Division, The Rayne Institute, St. Thomas’ Hospital, UK; The Hatter Cardiovascular Institute (S.M.D., D.M.Y.), University College London Hospital and Medical School, UK; and Second Department of Internal Medicine (T.M.), Sapporo Medical University School of Medicine, Japan
| | - Sebastien Jacquet
- From the King’s College London BHF Centre (Y.N., I.G.W., A.I.A., J.E.C., S.J., A.M.S., M.A., M.S.M.), Cardiovascular Division, The Rayne Institute, St. Thomas’ Hospital, UK; The Hatter Cardiovascular Institute (S.M.D., D.M.Y.), University College London Hospital and Medical School, UK; and Second Department of Internal Medicine (T.M.), Sapporo Medical University School of Medicine, Japan
| | - Ajay M. Shah
- From the King’s College London BHF Centre (Y.N., I.G.W., A.I.A., J.E.C., S.J., A.M.S., M.A., M.S.M.), Cardiovascular Division, The Rayne Institute, St. Thomas’ Hospital, UK; The Hatter Cardiovascular Institute (S.M.D., D.M.Y.), University College London Hospital and Medical School, UK; and Second Department of Internal Medicine (T.M.), Sapporo Medical University School of Medicine, Japan
| | - Tetsuji Miura
- From the King’s College London BHF Centre (Y.N., I.G.W., A.I.A., J.E.C., S.J., A.M.S., M.A., M.S.M.), Cardiovascular Division, The Rayne Institute, St. Thomas’ Hospital, UK; The Hatter Cardiovascular Institute (S.M.D., D.M.Y.), University College London Hospital and Medical School, UK; and Second Department of Internal Medicine (T.M.), Sapporo Medical University School of Medicine, Japan
| | - Derek M. Yellon
- From the King’s College London BHF Centre (Y.N., I.G.W., A.I.A., J.E.C., S.J., A.M.S., M.A., M.S.M.), Cardiovascular Division, The Rayne Institute, St. Thomas’ Hospital, UK; The Hatter Cardiovascular Institute (S.M.D., D.M.Y.), University College London Hospital and Medical School, UK; and Second Department of Internal Medicine (T.M.), Sapporo Medical University School of Medicine, Japan
| | - Metin Avkiran
- From the King’s College London BHF Centre (Y.N., I.G.W., A.I.A., J.E.C., S.J., A.M.S., M.A., M.S.M.), Cardiovascular Division, The Rayne Institute, St. Thomas’ Hospital, UK; The Hatter Cardiovascular Institute (S.M.D., D.M.Y.), University College London Hospital and Medical School, UK; and Second Department of Internal Medicine (T.M.), Sapporo Medical University School of Medicine, Japan
| | - Michael S. Marber
- From the King’s College London BHF Centre (Y.N., I.G.W., A.I.A., J.E.C., S.J., A.M.S., M.A., M.S.M.), Cardiovascular Division, The Rayne Institute, St. Thomas’ Hospital, UK; The Hatter Cardiovascular Institute (S.M.D., D.M.Y.), University College London Hospital and Medical School, UK; and Second Department of Internal Medicine (T.M.), Sapporo Medical University School of Medicine, Japan
| |
Collapse
|
54
|
Kuno A, Solenkova NV, Solodushko V, Dost T, Liu Y, Yang XM, Cohen MV, Downey JM. Infarct limitation by a protein kinase G activator at reperfusion in rabbit hearts is dependent on sensitizing the heart to A2b agonists by protein kinase C. Am J Physiol Heart Circ Physiol 2008; 295:H1288-H1295. [PMID: 18660452 DOI: 10.1152/ajpheart.00209.2008] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
PKG activator 8-(4-chlorophenylthio)-guanosine 3',5'-cyclic monophosphate (CPT) at reperfusion protects ischemic hearts, but the mechanism is unknown. We recently proposed that in preconditioned hearts PKC lowers the threshold for adenosine to initiate signaling from low-affinity A2b receptors during early reperfusion thus allowing endogenous adenosine to activate survival kinases phosphatidylinositol 3-kinase (PI3K) and ERK. We tested whether CPT might also sensitize A2b receptors to adenosine. CPT (10 microM) during the first minutes of reperfusion markedly reduced infarction in isolated rabbit hearts undergoing 30-min regional ischemia/2-h reperfusion, and salvage was blocked by MRS 1754, an A2b-selective antagonist. Coadministration of wortmannin (PI3K inhibitor) or PD-98059 (MEK1/2 and therefore ERK1/2 inhibitor) also blocked protection. In nonischemic hearts, 10-min infusion of CPT did not change phosphorylation of Akt or ERK1/2. Neither did a subthreshold dose (2.5 nM) of the nonselective but A2b-potent receptor agonist 5'-(N-ethylcarboxamido)adenosine (NECA). However, when 2.5 nM NECA was combined with 10 microM CPT, both phospho-Akt and phospho-ERK1/2 significantly increased, indicating CPT had lowered the threshold for A2b-dependent signaling. The PKC antagonist chelerythrine blocked this phosphorylation induced by CPT + NECA. Chelerythrine also blocked the anti-infarct effect of CPT as did nonselective (glibenclamide) and mitochondrial-selective (5-hydroxydecanoate) K(ATP) channel blockers. A free radical scavenger, N-(2-mercaptopropionyl)glycine, also blocked CPT protection. We propose CPT targets PKG, which activates PKC through mitochondrial K(ATP) channel (mitoKATP)-dependent redox signaling, a sequence mimicking that already documented in preconditioning. Activated PKC then augments sensitivity of normally low-affinity cardiac adenosine A2b receptors so endogenous adenosine can protect by activating Akt and ERK.
Collapse
Affiliation(s)
- Atsushi Kuno
- Department of Physiology, University of South Alabama, College of Medicine, Mobile, AL 36688, USA
| | | | | | | | | | | | | | | |
Collapse
|
56
|
Mykytenko J, Reeves JG, Kin H, Wang NP, Zatta AJ, Jiang R, Guyton RA, Vinten-Johansen J, Zhao ZQ. Persistent beneficial effect of postconditioning against infarct size: role of mitochondrial K(ATP) channels during reperfusion. Basic Res Cardiol 2008; 103:472-84. [PMID: 18600365 DOI: 10.1007/s00395-008-0731-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2007] [Accepted: 05/02/2008] [Indexed: 10/21/2022]
Abstract
UNLABELLED This study tested the hypothesis that inhibition of myocardial injury and modulation of mitochondrial dysfunction by postconditioning (Postcon) after 24 h of reperfusion is associated with activation of K(ATP) channels. Thirty dogs undergoing 60 min of ischemia and 24 h of reperfusion (R) were randomly divided into four groups: CONTROL no intervention at R; Postcon: three cycles of 30 s R alternating with 30 s re-occlusion were applied at R; 5-hydroxydecanoate (5-HD): the mitochondrial K(ATP) channel blocker was infused 5 min before Postcon; HMR1098: the sarcolemmal K(ATP) channel blocker was administered 5 min before Postcon. After 24 h of R, infarct size was smaller in Postcon relative to CONTROL (27 +/- 4%* Vs. 39 +/- 2% of area at risk), consistent with a reduction in CK activity (66 +/- 7* Vs. 105 +/- 7 IU/g). The infarct-sparing effect of Postcon was blocked by 5-HD (48 +/- 5%(dagger)), but was not altered by HMR1098 (29 +/- 3%*), consistent with the change in CK activity (102 +/- 8(dagger) in 5-HD and 71 +/- 6* IU/g in HMR1098). In H9c2 cells exposed to 8 h hypoxia and 3 h of reoxygenation, Postcon up-regulated expression of mito-K(ATP) channel Kir6.1 protein, maintained mitochondrial membrane potential and inhibited mitochondrial permeability transition pore (mPTP) opening evidenced by preserved fluorescent TMRE and calcein staining. The protective effects were blocked by 5-HD, but not by HMR1098. These data suggest that in a clinically relevant model of ischemia-reperfusion (1) Postcon reduces infarct size and decreases CK activity after prolonged reperfusion; (2) protection by Postcon is achieved by opening mitochondrial K(ATP) channels and inhibiting mPTP opening. *P < 0.05 Vs. CONTROL; P < 0.05 Vs. Postcon.
Collapse
Affiliation(s)
- James Mykytenko
- Carlyle Fraser Heart Center, Emory Crawford Long Hospital, Emory University, Atlanta, GA 30308-2225, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Liu Y, Yang XM, Iliodromitis EK, Kremastinos DT, Dost T, Cohen MV, Downey JM. Redox signaling at reperfusion is required for protection from ischemic preconditioning but not from a direct PKC activator. Basic Res Cardiol 2008; 103:54-9. [PMID: 17999029 PMCID: PMC2660167 DOI: 10.1007/s00395-007-0683-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2007] [Accepted: 10/01/2007] [Indexed: 10/22/2022]
Abstract
Redox signaling prior to a lethal ischemic insult is an important step in triggering the protected state in ischemic preconditioning. When the preconditioned heart is reperfused a second sequence of signal transduction events, the mediator pathway, occurs which is believed to inhibit mitochondrial permeability transition pore formation that normally destroys mitochondria in much of the reperfused tissue. Prominent among the mediator pathway's events is activation of phosphatidylinositol 3-kinase and extracellular signal-regulated kinase. Recently it was found that both activation of PKC and generation of reactive oxygen species (ROS) at the time of reperfusion are required for protection in preconditioned hearts. To establish their relative order we tested whether ROS formation at reperfusion is required in hearts protected by direct activation of PKC at reperfusion. Isolated rabbit hearts were exposed to 30 min of regional ischemia and 2 h of reperfusion. Preconditioned hearts received 5 min of global ischemia and 10 min of reperfusion prior to the index ischemia. Another group of preconditioned hearts was exposed to 300 microM of the ROS scavenger N-(2-mercaptopropionyl) glycine (MPG) for 20 min starting 5 min prior to reperfusion. Infarct size was measured by triphenyltetrazolium staining. Preconditioning reduced infarct size from 36% +/- 2% of the ischemic zone in control hearts to only 18 +/- 2%. MPG during early reperfusion completely blocked preconditioning's protection (33 +/- 3% infarction). MPG given in the same dose and schedule to non-preconditioned hearts had no effect on infarct size. In the last group phorbol 12-myristate 13-acetate (PMA) (0.05 nM) was given to non-preconditioned hearts from 1 min before to 5 min after reperfusion in addition to MPG administered as in the other groups. MPG did not block protection from an infusion of PMA as infarct size was only 9 +/- 2% of the risk zone. We conclude that while redox signaling during the first few minutes of reperfusion is an essential component of preconditioning's protective mechanism, this step occurs upstream of PKC activation.
Collapse
Affiliation(s)
- Yanping Liu
- Department of Physiology, University of South Alabama College of Medicine, Mobile, Alabama, USA
| | - Xi-Ming Yang
- Department of Physiology, University of South Alabama College of Medicine, Mobile, Alabama, USA
| | - Efstathios K. Iliodromitis
- Second University Department of Cardiology, Attikon General Hospital, Medical School, University of Athens, Athens, Greece
| | - Dimitrios Th. Kremastinos
- Second University Department of Cardiology, Attikon General Hospital, Medical School, University of Athens, Athens, Greece
| | - Turhan Dost
- Department of Physiology, University of South Alabama College of Medicine, Mobile, Alabama, USA
| | - Michael V. Cohen
- Department of Physiology, University of South Alabama College of Medicine, Mobile, Alabama, USA
- Department of Medicine, University of South Alabama College of Medicine, Mobile, Alabama, USA
| | - James M. Downey
- Department of Physiology, University of South Alabama College of Medicine, Mobile, Alabama, USA
| |
Collapse
|
59
|
Penna C, Mancardi D, Raimondo S, Geuna S, Pagliaro P. The paradigm of postconditioning to protect the heart. J Cell Mol Med 2007; 12:435-58. [PMID: 18182064 PMCID: PMC3822534 DOI: 10.1111/j.1582-4934.2007.00210.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Ischaemic preconditioning limits the damage induced by subsequent ischaemia/reperfusion (I/R). However, preconditioning is of little practical use as the onset of an infarction is usually unpredictable. Recently, it has been shown that the heart can be protected against the extension of I/R injury if brief (10–30 sec.) coronary occlusions are performed just at the beginning of the reperfusion. This procedure has been called postconditioning (PostC). It can also be elicited at a distant organ, termed remote PostC, by intermittent pacing (dyssynchrony-induced PostC) and by pharmacological interventions, that is pharmacological PostC. In particular, brief applications of intermittent bradykinin or diazoxide at the beginning of reperfusion reproduce PostC protection. PostC reduces the reperfusion-induced injury, blunts oxidant-mediated damages and attenuates the local inflammatory response to reperfusion. PostC induces a reduction of infarct size, apoptosis, endothelial dysfunction and activation, neutrophil adherence and arrhythmias. Whether it reduces stunning is not clear yet. Similar to preconditioning, PostC triggers signalling pathways and activates effectors implicated in other cardioprotective manoeuvres. Adenosine and bradykinin are involved in PostC triggering. PostC triggers survival kinases (RISK), including A t and extracellular signal-regulated kinase (ERK). Nitric oxide, via nitric oxide synthase and non-enzymatic production, cyclic guanosine monophosphate (cGMP) and protein kinases G (PKG) participate in PostC. PostC-induced protection also involves an early redox-sensitive mechanism, and mitochondrial adenosine-5′ -triphosphate (ATP)-sensitive K+ and PKC activation. Protective pathways activated by PostC appear to converge on mitochondrial permeability transition pores, which are inhibited by acidosis and glycogen synthase kinase-3β (GSK-3β). In conclusion, the first minutes of reperfusion represent a window of opportunity for triggering the aforementioned mediators which will in concert lead to protection against reperfusion injury. Pharmacological PostC and possibly remote PostC may have a promising future in clinical scenario.
Collapse
Affiliation(s)
- C Penna
- Dipartimento di Scienze Cliniche e Biologiche dell'Università di Torino, Orbassano, Torino, Italy
| | | | | | | | | |
Collapse
|