51
|
Liang X, Zhang Q, Cattaneo P, Zhuang S, Gong X, Spann NJ, Jiang C, Cao X, Zhao X, Zhang X, Bu L, Wang G, Chen HSV, Zhuang T, Yan J, Geng P, Luo L, Banerjee I, Chen Y, Glass CK, Zambon AC, Chen J, Sun Y, Evans SM. Transcription factor ISL1 is essential for pacemaker development and function. J Clin Invest 2015; 125:3256-68. [PMID: 26193633 DOI: 10.1172/jci68257] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 06/04/2015] [Indexed: 01/29/2023] Open
Abstract
The sinoatrial node (SAN) maintains a rhythmic heartbeat; therefore, a better understanding of factors that drive SAN development and function is crucial to generation of potential therapies, such as biological pacemakers, for sinus arrhythmias. Here, we determined that the LIM homeodomain transcription factor ISL1 plays a key role in survival, proliferation, and function of pacemaker cells throughout development. Analysis of several Isl1 mutant mouse lines, including animals harboring an SAN-specific Isl1 deletion, revealed that ISL1 within SAN is a requirement for early embryonic viability. RNA-sequencing (RNA-seq) analyses of FACS-purified cells from ISL1-deficient SANs revealed that a number of genes critical for SAN function, including those encoding transcription factors and ion channels, were downstream of ISL1. Chromatin immunoprecipitation assays performed with anti-ISL1 antibodies and chromatin extracts from FACS-purified SAN cells demonstrated that ISL1 directly binds genomic regions within several genes required for normal pacemaker function, including subunits of the L-type calcium channel, Ank2, and Tbx3. Other genes implicated in abnormal heart rhythm in humans were also direct ISL1 targets. Together, our results demonstrate that ISL1 regulates approximately one-third of SAN-specific genes, indicate that a combination of ISL1 and other SAN transcription factors could be utilized to generate pacemaker cells, and suggest ISL1 mutations may underlie sick sinus syndrome.
Collapse
|
52
|
Ye W, Wang J, Song Y, Yu D, Sun C, Liu C, Chen F, Zhang Y, Wang F, Harvey RP, Schrader L, Martin JF, Chen Y. A common Shox2-Nkx2-5 antagonistic mechanism primes the pacemaker cell fate in the pulmonary vein myocardium and sinoatrial node. Development 2015; 142:2521-2532. [PMID: 26138475 PMCID: PMC4510860 DOI: 10.1242/dev.120220] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 06/04/2015] [Indexed: 12/26/2022]
Abstract
In humans, atrial fibrillation is often triggered by ectopic pacemaking activity in the myocardium sleeves of the pulmonary vein (PV) and systemic venous return. The genetic programs that abnormally reinforce pacemaker properties at these sites and how this relates to normal sinoatrial node (SAN) development remain uncharacterized. It was noted previously that Nkx2-5, which is expressed in the PV myocardium and reinforces a chamber-like myocardial identity in the PV, is lacking in the SAN. Here we present evidence that in mice Shox2 antagonizes the transcriptional output of Nkx2-5 in the PV myocardium and in a functional Nkx2-5(+) domain within the SAN to determine cell fate. Shox2 deletion in the Nkx2-5(+) domain of the SAN caused sick sinus syndrome, associated with the loss of the pacemaker program. Explanted Shox2(+) cells from the embryonic PV myocardium exhibited pacemaker characteristics including node-like electrophysiological properties and the capability to pace surrounding Shox2(-) cells. Shox2 deletion led to Hcn4 ablation in the developing PV myocardium. Nkx2-5 hypomorphism rescued the requirement for Shox2 for the expression of genes essential for SAN development in Shox2 mutants. Similarly, the pacemaker-like phenotype induced in the PV myocardium in Nkx2-5 hypomorphs reverted back to a working myocardial phenotype when Shox2 was simultaneously deleted. A similar mechanism is also adopted in differentiated embryoid bodies. We found that Shox2 interacts with Nkx2-5 directly, and discovered a substantial genome-wide co-occupancy of Shox2, Nkx2-5 and Tbx5, further supporting a pivotal role for Shox2 in the core myogenic program orchestrating venous pole and pacemaker development.
Collapse
Affiliation(s)
- Wenduo Ye
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | - Jun Wang
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine and the Texas Heart Institute, Houston, TX 77030, USA
| | - Yingnan Song
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA Southern Center for Biomedical Research and Fujian Key Laboratory of Developmental and Neural Biology, College of Life Science, Fujian Normal University, Fuzhou, Fujian 350108, P.R. China
| | - Diankun Yu
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | - Cheng Sun
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | - Chao Liu
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | - Fading Chen
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | - Yanding Zhang
- Southern Center for Biomedical Research and Fujian Key Laboratory of Developmental and Neural Biology, College of Life Science, Fujian Normal University, Fuzhou, Fujian 350108, P.R. China
| | - Fen Wang
- Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX 77030, USA
| | - Richard P Harvey
- Developmental and Stem Cell Biology Division, The Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia St. Vincent's Clinical School and School of Biological and Biomolecular Sciences, University of New South Wales, Kensington, New South Wales 2052, Australia
| | - Laura Schrader
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | - James F Martin
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine and the Texas Heart Institute, Houston, TX 77030, USA
| | - YiPing Chen
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA Southern Center for Biomedical Research and Fujian Key Laboratory of Developmental and Neural Biology, College of Life Science, Fujian Normal University, Fuzhou, Fujian 350108, P.R. China
| |
Collapse
|
53
|
Rosin JM, Kurrasch DM, Cobb J. Shox2 is required for the proper development of the facial motor nucleus and the establishment of the facial nerves. BMC Neurosci 2015; 16:39. [PMID: 26156498 PMCID: PMC4495855 DOI: 10.1186/s12868-015-0176-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 06/12/2015] [Indexed: 11/10/2022] Open
Abstract
Background Axons from the visceral motor neurons (vMNs) project from nuclei in the hindbrain to innervate autonomic ganglia and branchial arch-derived muscles. Although much is known about the events that govern specification of somatic motor neurons, the genetic pathways responsible for the development of vMNs are less well characterized. We know that vMNs, like all motor neurons, depend on sonic hedgehog signaling for their generation. Similarly, the paired-like homeobox 2b (Phox2b) gene, which is expressed in both proliferating progenitors and post-mitotic motor neurons, is essential for the development of vMNs. Given that our previous study identified a novel role for the short stature homeobox 2 (Shox2) gene in the hindbrain, and since SHOX2 has been shown to regulate transcription of islet 1 (Isl1), an important regulator of vMN development, we sought to determine whether Shox2 is required for the proper development of the facial motor nucleus. Results Using a Nestin-Cre driver, we show that elimination of Shox2 throughout the brain results in elevated cell death in the facial motor nucleus at embryonic day 12.5 (E12.5) and E14.5, which correlates with impaired axonal projection properties of vMNs. We also observed changes in the spatial expression of the vMN cell fate factors Isl1 and Phox2b, and concomitant defects in Shh and Ptch1 expression in Shox2 mutants. Furthermore, we demonstrate that elimination of Shox2 results in the loss of dorsomedial and ventromedial subnuclei by postnatal day 0 (P0), which may explain the changes in physical activity and impaired feeding/nursing behavior in Shox2 mutants. Conclusions Combined, our data show that Shox2 is required for development of the facial motor nucleus and its associated facial (VII) nerves, and serves as a new molecular tool to probe the genetic programs of this understudied hindbrain region. Electronic supplementary material The online version of this article (doi:10.1186/s12868-015-0176-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jessica M Rosin
- Department of Biological Sciences, University of Calgary, 2500 University Drive N.W., BI286D, Calgary, AB, T2N 1N4, Canada.
| | - Deborah M Kurrasch
- Department of Medical Genetics, Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Drive N.W., Room HS2275, Calgary, AB, T2N 4N1, Canada.
| | - John Cobb
- Department of Biological Sciences, University of Calgary, 2500 University Drive N.W., BI286D, Calgary, AB, T2N 1N4, Canada.
| |
Collapse
|
54
|
Kelder TP, Vicente-Steijn R, Harryvan TJ, Kosmidis G, Gittenberger-de Groot AC, Poelmann RE, Schalij MJ, DeRuiter MC, Jongbloed MRM. The sinus venosus myocardium contributes to the atrioventricular canal: potential role during atrioventricular node development? J Cell Mol Med 2015; 19:1375-89. [PMID: 25752780 PMCID: PMC4459851 DOI: 10.1111/jcmm.12525] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 11/27/2014] [Indexed: 11/29/2022] Open
Abstract
The presence of distinct electrophysiological pathways within the atrioventricular node (AVN) is a prerequisite for atrioventricular nodal reentrant tachycardia to occur. In this study, the different cell contributions that may account for the anatomical and functional heterogeneity of the AVN were investigated. To study the temporal development of the AVN, the expression pattern of ISL1, expressed in cardiac progenitor cells, was studied in sequential stages performing co-staining with myocardial markers (TNNI2 and NKX2-5) and HCN4 (cardiac conduction system marker). An ISL1+/TNNI2+/HCN4+ continuity between the myocardium of the sinus venosus and atrioventricular canal was identified in the region of the putative AVN, which showed a pacemaker-like phenotype based on single cell patch-clamp experiments. Furthermore, qPCR analysis showed that even during early development, different cell populations can be identified in the region of the putative AVN. Fate mapping was performed by in ovo vital dye microinjection. Embryos were harvested and analysed 24 and 48 hrs post-injection. These experiments showed incorporation of sinus venosus myocardium in the posterior region of the atrioventricular canal. The myocardium of the sinus venosus contributes to the atrioventricular canal. It is postulated that the myocardium of the sinus venosus contributes to nodal extensions or transitional cells of the AVN since these cells are located in the posterior region of the AVN. This finding may help to understand the origin of atrioventricular nodal reentrant tachycardia.
Collapse
Affiliation(s)
- Tim P Kelder
- Department of Anatomy & Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - Rebecca Vicente-Steijn
- Department of Anatomy & Embryology, Leiden University Medical Center, Leiden, The Netherlands.,Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Tom J Harryvan
- Department of Anatomy & Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - Georgios Kosmidis
- Department of Anatomy & Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - Adriana C Gittenberger-de Groot
- Department of Anatomy & Embryology, Leiden University Medical Center, Leiden, The Netherlands.,Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Rob E Poelmann
- Department of Anatomy & Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - Martin J Schalij
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Marco C DeRuiter
- Department of Anatomy & Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - Monique R M Jongbloed
- Department of Anatomy & Embryology, Leiden University Medical Center, Leiden, The Netherlands.,Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
55
|
Yaniv Y, Tsutsui K, Lakatta EG. Potential effects of intrinsic heart pacemaker cell mechanisms on dysrhythmic cardiac action potential firing. Front Physiol 2015; 6:47. [PMID: 25755643 PMCID: PMC4337365 DOI: 10.3389/fphys.2015.00047] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Accepted: 02/03/2015] [Indexed: 02/05/2023] Open
Abstract
The heart's regular electrical activity is initiated by specialized cardiac pacemaker cells residing in the sinoatrial node. The rate and rhythm of spontaneous action potential firing of sinoatrial node cells are regulated by stochastic mechanisms that determine the level of coupling of chemical to electrical clocks within cardiac pacemaker cells. This coupled-clock system is modulated by autonomic signaling from the brain via neurotransmitter release from the vagus and sympathetic nerves. Abnormalities in brain-heart clock connections or in any molecular clock activity within pacemaker cells lead to abnormalities in the beating rate and rhythm of the pacemaker tissue that initiates the cardiac impulse. Dysfunction of pacemaker tissue can lead to tachy-brady heart rate alternation or exit block that leads to long atrial pauses and increases susceptibility to other cardiac arrhythmia. Here we review evidence for the idea that disturbances in the intrinsic components of pacemaker cells may be implemented in arrhythmia induction in the heart.
Collapse
Affiliation(s)
- Yael Yaniv
- Biomedical Engineering Faculty, Technion-Israel Institute of Technology Haifa, Israel
| | - Kenta Tsutsui
- Laboratory of Cardiovascular Science, Biomedical Research Center, Intramural Research Program, National Institute on Aging, National Institutes of Health Baltimore, MD, USA
| | - Edward G Lakatta
- Laboratory of Cardiovascular Science, Biomedical Research Center, Intramural Research Program, National Institute on Aging, National Institutes of Health Baltimore, MD, USA
| |
Collapse
|
56
|
Loss of dihydrolipoyl succinyltransferase (DLST) leads to reduced resting heart rate in the zebrafish. Basic Res Cardiol 2015; 110:14. [PMID: 25697682 PMCID: PMC4335124 DOI: 10.1007/s00395-015-0468-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 01/14/2015] [Accepted: 02/02/2015] [Indexed: 02/06/2023]
Abstract
The genetic underpinnings of heart rate regulation are only poorly understood. In search for genetic regulators of cardiac pacemaker activity, we isolated in a large-scale mutagenesis screen the embryonic lethal, recessive zebrafish mutant schneckentempo (ste). Homozygous ste mutants exhibit a severely reduced resting heart rate with normal atrio-ventricular conduction and contractile function. External electrical pacing reveals that defective excitation generation in cardiac pacemaker cells underlies bradycardia in ste−/− mutants. By positional cloning and gene knock-down analysis we find that loss of dihydrolipoyl succinyltransferase (DLST) function causes the ste phenotype. The mitochondrial enzyme DLST is an essential player in the citric acid cycle that warrants proper adenosine-tri-phosphate (ATP) production. Accordingly, ATP levels are significantly diminished in ste−/− mutant embryos, suggesting that limited energy supply accounts for reduced cardiac pacemaker activity in ste−/− mutants. We demonstrate here for the first time that the mitochondrial enzyme DLST plays an essential role in the modulation of the vertebrate heart rate by controlling ATP production in the heart.
Collapse
|
57
|
Vedantham V, Galang G, Evangelista M, Deo RC, Srivastava D. RNA sequencing of mouse sinoatrial node reveals an upstream regulatory role for Islet-1 in cardiac pacemaker cells. Circ Res 2015; 116:797-803. [PMID: 25623957 DOI: 10.1161/circresaha.116.305913] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
RATIONALE Treatment of sinus node disease with regenerative or cell-based therapies will require a detailed understanding of gene regulatory networks in cardiac pacemaker cells (PCs). OBJECTIVE To characterize the transcriptome of PCs using RNA sequencing and to identify transcriptional networks responsible for PC gene expression. METHODS AND RESULTS We used laser capture microdissection on a sinus node reporter mouse line to isolate RNA from PCs for RNA sequencing. Differential expression and network analysis identified novel sinoatrial node-enriched genes and predicted that the transcription factor Islet-1 is active in developing PCs. RNA sequencing on sinoatrial node tissue lacking Islet-1 established that Islet-1 is an important transcriptional regulator within the developing sinoatrial node. CONCLUSIONS (1) The PC transcriptome diverges sharply from other cardiomyocytes; (2) Islet-1 is a positive transcriptional regulator of the PC gene expression program.
Collapse
Affiliation(s)
- Vasanth Vedantham
- From the Gladstone Institute of Cardiovascular Disease, San Francisco, CA (V.V., G.G., M.E., D.S.); and Division of Cardiology, Departments of Medicine (V.V., G.G., R.C.D.), Pediatrics (D.S.), and Biochemistry and Biophysics (R.C.D., D.S.), Institute for Human Genetics, California Institute for Quantitative Biosciences (R.C.D.), and Cardiovascular Research Institute (V.V., G.G., M.E., R.C.D.), University of California, San Francisco
| | - Giselle Galang
- From the Gladstone Institute of Cardiovascular Disease, San Francisco, CA (V.V., G.G., M.E., D.S.); and Division of Cardiology, Departments of Medicine (V.V., G.G., R.C.D.), Pediatrics (D.S.), and Biochemistry and Biophysics (R.C.D., D.S.), Institute for Human Genetics, California Institute for Quantitative Biosciences (R.C.D.), and Cardiovascular Research Institute (V.V., G.G., M.E., R.C.D.), University of California, San Francisco
| | - Melissa Evangelista
- From the Gladstone Institute of Cardiovascular Disease, San Francisco, CA (V.V., G.G., M.E., D.S.); and Division of Cardiology, Departments of Medicine (V.V., G.G., R.C.D.), Pediatrics (D.S.), and Biochemistry and Biophysics (R.C.D., D.S.), Institute for Human Genetics, California Institute for Quantitative Biosciences (R.C.D.), and Cardiovascular Research Institute (V.V., G.G., M.E., R.C.D.), University of California, San Francisco
| | - Rahul C Deo
- From the Gladstone Institute of Cardiovascular Disease, San Francisco, CA (V.V., G.G., M.E., D.S.); and Division of Cardiology, Departments of Medicine (V.V., G.G., R.C.D.), Pediatrics (D.S.), and Biochemistry and Biophysics (R.C.D., D.S.), Institute for Human Genetics, California Institute for Quantitative Biosciences (R.C.D.), and Cardiovascular Research Institute (V.V., G.G., M.E., R.C.D.), University of California, San Francisco.
| | - Deepak Srivastava
- From the Gladstone Institute of Cardiovascular Disease, San Francisco, CA (V.V., G.G., M.E., D.S.); and Division of Cardiology, Departments of Medicine (V.V., G.G., R.C.D.), Pediatrics (D.S.), and Biochemistry and Biophysics (R.C.D., D.S.), Institute for Human Genetics, California Institute for Quantitative Biosciences (R.C.D.), and Cardiovascular Research Institute (V.V., G.G., M.E., R.C.D.), University of California, San Francisco.
| |
Collapse
|
58
|
Bellamkonda K, Sime W, Sjölander A. The impact of inflammatory lipid mediators on colon cancer-initiating cells. Mol Carcinog 2014; 54:1315-27. [PMID: 25154976 DOI: 10.1002/mc.22207] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 06/19/2014] [Accepted: 06/24/2014] [Indexed: 01/16/2023]
Abstract
The role of inflammatory lipid-mediators in tumor progression is well recognized in colorectal cancer; however, if this includes promotion of cancer-initiating cells remains unclear. We show that the inflammatory lipid-mediators leukotriene D4 and prostaglandin E2 increased the Aldehyde dehydrogenase (ALDH(+) ) population, the colony formation capacity, and tumor growth in a xenograft model of colon cancer. The ALDH(+) cells showed significant resistance to irradiation and 5-fluorouracil treatment that could be further augmented by these lipid-mediators, occurring in parallel with increased target gene expression. Our data emphasize a role for tumor microenvironment derived inflammatory lipid-mediators to favor cancer stem cells-like characteristics and thus promote tumor progression.
Collapse
Affiliation(s)
- Kishan Bellamkonda
- Division of Cell and Experimental Pathology, Department of Laboratory Medicine, Lund University, Clinical Research Center, Skåne University Hospital, Malmö, Sweden
| | - Wondossen Sime
- Division of Cell and Experimental Pathology, Department of Laboratory Medicine, Lund University, Clinical Research Center, Skåne University Hospital, Malmö, Sweden
| | - Anita Sjölander
- Division of Cell and Experimental Pathology, Department of Laboratory Medicine, Lund University, Clinical Research Center, Skåne University Hospital, Malmö, Sweden.
| |
Collapse
|
59
|
Pylatiuk C, Sanchez D, Mikut R, Alshut R, Reischl M, Hirth S, Rottbauer W, Just S. Automatic zebrafish heartbeat detection and analysis for zebrafish embryos. Zebrafish 2014; 11:379-83. [PMID: 25003305 DOI: 10.1089/zeb.2014.1002] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A fully automatic detection and analysis method of heartbeats in videos of nonfixed and nonanesthetized zebrafish embryos is presented. This method reduces the manual workload and time needed for preparation and imaging of the zebrafish embryos, as well as for evaluating heartbeat parameters such as frequency, beat-to-beat intervals, and arrhythmicity. The method is validated by a comparison of the results from automatic and manual detection of the heart rates of wild-type zebrafish embryos 36-120 h postfertilization and of embryonic hearts with bradycardia and pauses in the cardiac contraction.
Collapse
Affiliation(s)
- Christian Pylatiuk
- 1 Institute for Applied Computer Science (IAI) , Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
60
|
|