51
|
Novotny I, Podolská K, Blazíková M, Valásek LS, Svoboda P, Stanek D. Nuclear LSm8 affects number of cytoplasmic processing bodies via controlling cellular distribution of Like-Sm proteins. Mol Biol Cell 2012; 23:3776-85. [PMID: 22875987 PMCID: PMC3459855 DOI: 10.1091/mbc.e12-02-0085] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
We show that depletion of nuclear Like-Sm 8 (LSm8) dramatically increases processing body (P-body) number, provide the explanation that LSm8 acts via the alteration of the nuclear–cytoplasmic distribution of LSm2–7 proteins, and propose a model that P-bodies form via self-organization. Processing bodies (P-bodies) are dynamic cytoplasmic structures involved in mRNA degradation, but the mechanism that governs their formation is poorly understood. In this paper, we address a role of Like-Sm (LSm) proteins in formation of P-bodies and provide evidence that depletion of nuclear LSm8 increases the number of P-bodies, while LSm8 overexpression leads to P-body loss. We show that LSm8 knockdown causes relocalization of LSm4 and LSm6 proteins to the cytoplasm and suggest that LSm8 controls nuclear accumulation of all LSm2–7 proteins. We propose a model in which redistribution of LSm2–7 to the cytoplasm creates new binding sites for other P-body components and nucleates new, microscopically visible structures. The model is supported by prolonged residence of two P-body proteins, DDX6 and Ago2, in P-bodies after LSm8 depletion, which indicates stronger interactions between these proteins and P-bodies. Finally, an increased number of P-bodies has negligible effects on microRNA-mediated translation repression and nonsense mediated decay, further supporting the view that the function of proteins localized in P-bodies is independent of visible P-bodies.
Collapse
Affiliation(s)
- Ivan Novotny
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | | | | | | | | |
Collapse
|
52
|
Bogolyubov DS, Batalova FM, Kiselyov AM, Parfenov VN. Distribution of 5'-trimethylguanosine capped small nuclear RNAs in extrachromosomal oocyte nuclear domains of the laboratory insect, Tribolium castaneum. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2012; 444:198-201. [PMID: 22760624 DOI: 10.1134/s0012496612030192] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Indexed: 11/23/2022]
|
53
|
Strzelecka M, Oates AC, Neugebauer KM. Dynamic control of Cajal body number during zebrafish embryogenesis. Nucleus 2012; 1:96-108. [PMID: 21327108 DOI: 10.4161/nucl.1.1.10680] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Revised: 11/17/2009] [Accepted: 11/18/2009] [Indexed: 02/06/2023] Open
Abstract
The Cajal body (CB) is an evolutionarily conserved nuclear subcompartment, enriched in components of the RNA processing machinery. The composition and dynamics of CBs in cells of living organisms is not well understood. Here we establish the zebrafish embryo as a model system to investigate the properties of CBs during rapid growth and cell division, taking advantage of the ease of live-cell imaging. We show that zebrafish embryo CBs contain coilin and multiple components of the pre-mRNA splicing machinery. Histone mRNA 3' end processing factors, present in CBs in some systems, were instead concentrated in a distinct nuclear body. CBs were present in embryos before and after activation of zygotic gene expression, indicating a maternal contribution of CB components. During the first 24 hours of development, embryonic cells displayed up to 30 CBs per nucleus; these dispersed prior to mitosis and reassembled within minutes upon daughter cell nucleus formation. Following zygotic genome activation, snRNP biogenesis was required for CB assembly and maintenance, suggesting a self-assembly process that determines CB numbers in embryos. Differentiation into muscle, neurons and epidermis was associated with the achievement of a steady state number of 2 CBs per nucleus. We propose that CB number is regulated during development to respond to the demands of gene expression in a rapidly growing embryo.
Collapse
|
54
|
Kariya S, Re DB, Jacquier A, Nelson K, Przedborski S, Monani UR. Mutant superoxide dismutase 1 (SOD1), a cause of amyotrophic lateral sclerosis, disrupts the recruitment of SMN, the spinal muscular atrophy protein to nuclear Cajal bodies. Hum Mol Genet 2012; 21:3421-34. [PMID: 22581780 DOI: 10.1093/hmg/dds174] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Spinal muscular atrophy (SMA) and amyotrophic lateral sclerosis (ALS) are among the most common motor neuron diseases to afflict the human population. A deficiency of the survival of motor neuron (SMN) protein causes SMA and is also reported to be an exacerbating factor in the development of ALS. However, pathways linking the two diseases have yet to be defined and it is not clear precisely how the pathology of ALS is aggravated by reduced SMN or whether mutant proteins underlying familial forms of ALS interfere with SMN-related biochemical pathways to exacerbate the neurodegenerative process. In this study, we show that mutant superoxide dismutase-1 (SOD1), a cause of familial ALS, profoundly alters the sub-cellular localization of the SMN protein, preventing the formation of nuclear 'gems' by disrupting the recruitment of the protein to Cajal bodies. Overexpressing the SMN protein in mutant SOD1 mice, a model of familial ALS, alleviates this phenomenon, most likely in a cell-autonomous manner, and significantly mitigates the loss of motor neurons in the spinal cord and in culture dishes. In the mice, the onset of the neuromuscular phenotype is delayed and motor function enhanced, suggestive of a therapeutic benefit for ALS patients treated with agents that augment the SMN protein. Nevertheless, this finding is tempered by an inability to prolong survival, a limitation most likely imposed by the inexorable denervation that characterizes ALS and eventually disrupts the neuromuscular synapses even in the presence of increased SMN.
Collapse
Affiliation(s)
- Shingo Kariya
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA
| | | | | | | | | | | |
Collapse
|
55
|
Giessing AMB, Kirpekar F. Mass spectrometry in the biology of RNA and its modifications. J Proteomics 2012; 75:3434-49. [PMID: 22348820 DOI: 10.1016/j.jprot.2012.01.032] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 01/20/2012] [Accepted: 01/26/2012] [Indexed: 01/31/2023]
Abstract
Many powerful analytical techniques for investigation of nucleic acids exist in the average modern molecular biology lab. The current review will focus on questions in RNA biology that have been answered by the use of mass spectrometry, which means that new biological information is the purpose and outcome of most of the studies we refer to. The review begins with a brief account of the subject "MS in the biology of RNA" and an overview of the prevalent RNA modifications identified to date. Fundamental considerations about mass spectrometric analysis of RNA are presented with the aim of detailing the analytical possibilities and challenges relating to the unique chemical nature of nucleic acids. The main biological topics covered are RNA modifications and the enzymes that perform the modifications. Modifications of RNA are essential in biology, and it is a field where mass spectrometry clearly adds knowledge of biological importance compared to traditional methods used in nucleic acid research. The biological applications are divided into analyses exclusively performed at the building block (mainly nucleoside) level and investigations involving mass spectrometry at the oligonucleotide level. We conclude the review discussing aspects of RNA identification and quantifications, which are upcoming fields for MS in RNA research. This article is part of a Special Section entitled: Understanding genome regulation and genetic diversity by mass spectrometry.
Collapse
Affiliation(s)
- Anders M B Giessing
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | | |
Collapse
|
56
|
Reorganization of Cajal bodies and nucleolar targeting of coilin in motor neurons of type I spinal muscular atrophy. Histochem Cell Biol 2012; 137:657-67. [DOI: 10.1007/s00418-012-0921-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2012] [Indexed: 12/21/2022]
|
57
|
Shaw P, Brown J. Nucleoli: composition, function, and dynamics. PLANT PHYSIOLOGY 2012; 158:44-51. [PMID: 22082506 PMCID: PMC3252080 DOI: 10.1104/pp.111.188052] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 11/12/2011] [Indexed: 05/18/2023]
Affiliation(s)
- Peter Shaw
- Department of Cell and Developmental Biology, John Innes Center, Norwich NR4 7UH, United Kingdom.
| | | |
Collapse
|
58
|
Bratkovič T, Rogelj B. Biology and applications of small nucleolar RNAs. Cell Mol Life Sci 2011; 68:3843-51. [PMID: 21748470 PMCID: PMC11114935 DOI: 10.1007/s00018-011-0762-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 06/20/2011] [Accepted: 06/21/2011] [Indexed: 10/18/2022]
Abstract
Small nucleolar RNAs (snoRNAs) constitute a group of non-coding RNAs principally involved in posttranscriptional modification of ubiquitously expressed ribosomal and small nuclear RNAs. However, a number of tissue-specific snoRNAs have recently been identified that apparently do not target conventional substrates and are presumed to guide processing of primary transcripts of protein-coding genes, potentially expanding the diapason of regulatory RNAs that control translation of mRNA to proteins. Here, we review biogenesis of snoRNAs and redefine their function in light of recent exciting discoveries. We also discuss the potential of recombinant snoRNAs to be used in modulation of gene expression.
Collapse
Affiliation(s)
- Tomaž Bratkovič
- Department of Pharmaceutical Biology, University of Ljubljana, Slovenia.
| | | |
Collapse
|
59
|
Periodic expression of Sm proteins parallels formation of nuclear Cajal bodies and cytoplasmic snRNP-rich bodies. Histochem Cell Biol 2011; 136:527-41. [PMID: 21904826 PMCID: PMC3192945 DOI: 10.1007/s00418-011-0861-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2011] [Indexed: 11/26/2022]
Abstract
Small nuclear ribonucleoproteins (snRNPs) play a fundamental role in pre-mRNA processing in the nucleus. The biogenesis of snRNPs involves a sequence of events that occurs in both the nucleus and cytoplasm. Despite the wealth of biochemical information about the cytoplasmic assembly of snRNPs, little is known about the spatial organization of snRNPs in the cytoplasm. In the cytoplasm of larch microsporocytes, a cyclic appearance of bodies containing small nuclear RNA (snRNA) and Sm proteins was observed during anther meiosis. We observed a correlation between the occurrence of cytoplasmic snRNP bodies, the levels of Sm proteins, and the dynamic formation of Cajal bodies. Larch microsporocytes were used for these studies. This model is characterized by natural fluctuations in the level of RNA metabolism, in which periods of high transcriptional activity are separated from periods of low transcriptional activity. In designing experiments, the authors considered the differences between the nuclear and cytoplasmic phases of snRNP maturation and generated a hypothesis about the direct participation of Sm proteins in a molecular switch triggering the formation of Cajal bodies.
Collapse
|
60
|
Xing Y, Shi Z. Nucleocapsid protein VP15 of White spot syndrome virus colocalizes with the nucleolar proteins nucleolin and fibrillarin. Can J Microbiol 2011; 57:759-64. [PMID: 21861764 DOI: 10.1139/w11-061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The core nucleocapsid protein VP15 of White spot syndrome virus (WSSV) was shown to interact with DNA and predicted to be involved in the packaging of the WSSV genome. In the present study, we explored the colocalization of VP15 with several nuclear proteins in insect cells. The results showed that the VP15 completely colocalized with nucleolin and fibrillarin, suggesting that VP15 is a nucleolar localization protein and plays an important role in the life cycle of WSSV in host cells.
Collapse
Affiliation(s)
- Yuna Xing
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, People's Republic of China
| | | |
Collapse
|
61
|
Tanackovic G, Ransijn A, Ayuso C, Harper S, Berson E, Rivolta C. A missense mutation in PRPF6 causes impairment of pre-mRNA splicing and autosomal-dominant retinitis pigmentosa. Am J Hum Genet 2011; 88:643-9. [PMID: 21549338 DOI: 10.1016/j.ajhg.2011.04.008] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 04/11/2011] [Accepted: 04/13/2011] [Indexed: 01/08/2023] Open
Abstract
Retinitis pigmentosa (RP) is an inherited form of retinal degeneration that leads to progressive visual-field constriction and blindness. Although the disease manifests only in the retina, mutations in ubiquitously expressed genes associated with the tri-snRNP complex of the spliceosome have been identified in patients with dominantly inherited RP. We screened for mutations in PRPF6 (NM_012469.3), a gene on chromosome 20q13.33 encoding an essential protein for tri-snRNP assembly and stability, in 188 unrelated patients with autosomal-dominant RP and identified a missense mutation, c.2185C>T (p.Arg729Trp). This change affected a residue that is conserved from humans to yeast and cosegregated with the disease in the family in which it was identified. Lymphoblasts derived from patients with this mutation showed abnormal localization of endogenous PRPF6 within the nucleus. Specifically, this protein accumulated in the Cajal bodies, indicating a possible impairment in the tri-snRNP assembly or recycling. Expression of GFP-tagged PRPF6 in HeLa cells showed that this phenomenon depended exclusively on the mutated form of the protein. Furthermore, analysis of endogenous transcripts in cells from patients revealed intron retention for pre-mRNA bearing specific splicing signals, according to the same pattern displayed by lymphoblasts with mutations in other PRPF genes. Our results identify PRPF6 as the sixth gene involved in pre-mRNA splicing and dominant RP, corroborating the hypothesis that deficiencies in the spliceosome play an important role in the molecular pathology of this disease.
Collapse
|
62
|
Yu MC. The Role of Protein Arginine Methylation in mRNP Dynamics. Mol Biol Int 2011; 2011:163827. [PMID: 22091396 PMCID: PMC3195771 DOI: 10.4061/2011/163827] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Accepted: 02/12/2011] [Indexed: 12/13/2022] Open
Abstract
In eukaryotes, messenger RNA biogenesis depends on the ordered and precise assembly of a nuclear messenger ribonucleoprotein particle (mRNP) during transcription. This process requires a well-orchestrated and dynamic sequence of molecular recognition events by specific RNA-binding proteins. Arginine methylation is a posttranslational modification found in a plethora of RNA-binding proteins responsible for mRNP biogenesis. These RNA-binding proteins include both heterogeneous nuclear ribonucleoproteins (hnRNPs) and serine/arginine-rich (SR) proteins. In this paper, I discuss the mechanisms of action by which arginine methylation modulates various facets of mRNP biogenesis, and how the collective consequences of this modification impart the specificity required to generate a mature, translational- and export-competent mRNP.
Collapse
Affiliation(s)
- Michael C Yu
- Department of Biological Sciences, State University of New York at Buffalo, 109 Cooke Hall, Buffalo, NY 14260, USA
| |
Collapse
|
63
|
Rajendra T, Praveen K, Matera AG. Genetic analysis of nuclear bodies: from nondeterministic chaos to deterministic order. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2011; 75:365-74. [PMID: 21467138 PMCID: PMC4062921 DOI: 10.1101/sqb.2010.75.043] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The eukaryotic nucleus is a congested place, and macromolecular crowding is thought to have an important role in increasing the relative concentrations of nuclear proteins, thereby accelerating the rates of biochemical reactions. Crowding is also thought to provide the environment needed for formation of nuclear bodies/subcompartments, such as the Cajal body (CB) and the histone locus body (HLB), via self-organization. In this chapter, we contrast the theories of stochastic self-organization and hierarchical self-organization in their application to nuclear body assembly, using CBs and HLBs as paradigms. Genetic ablation studies in Drosophila on components of CBs and HLBs have revealed an order to the assembly of these structures that is suggestive of a hierarchical model of self-organization. These studies also show that functions attributed to the nuclear bodies are largely unaffected in their absence, reinforcing an emerging theme in the field that the purpose of these subdomains may be to enhance the efficiency and specificity of reactions.
Collapse
Affiliation(s)
- T.K. Rajendra
- Departments of Biology and Genetics, Program in Molecular Biology & Biotechnology, Lineberger Comprehensive Cancer Center University of North Carolina, Chapel Hill, NC 27599
| | - Kavita Praveen
- Departments of Biology and Genetics, Program in Molecular Biology & Biotechnology, Lineberger Comprehensive Cancer Center University of North Carolina, Chapel Hill, NC 27599
| | - A. Gregory Matera
- Departments of Biology and Genetics, Program in Molecular Biology & Biotechnology, Lineberger Comprehensive Cancer Center University of North Carolina, Chapel Hill, NC 27599
| |
Collapse
|
64
|
Ganesh K, Adam S, Taylor B, Simpson P, Rada C, Neuberger M. CTNNBL1 is a novel nuclear localization sequence-binding protein that recognizes RNA-splicing factors CDC5L and Prp31. J Biol Chem 2011; 286:17091-102. [PMID: 21385873 PMCID: PMC3089553 DOI: 10.1074/jbc.m110.208769] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nuclear proteins typically contain short stretches of basic amino acids (nuclear localization sequences; NLSs) that bind karyopherin α family members, directing nuclear import. Here, we identify CTNNBL1 (catenin-β-like 1), an armadillo motif-containing nuclear protein that exhibits no detectable primary sequence homology to karyopherin α, as a novel, selective NLS-binding protein. CTNNBL1 (a single-copy gene conserved from fission yeast to man) was previously found associated with Prp19-containing RNA-splicing complexes as well as with the antibody-diversifying enzyme AID. We find that CTNNBL1 association with the Prp19 complex is mediated by recognition of the NLS of the CDC5L component of the complex and show that CTNNBL1 also interacts with Prp31 (another U4/U6.U5 tri-snRNP-associated splicing factor) through its NLS. As with karyopherin αs, CTNNBL1 binds NLSs via its armadillo (ARM) domain, but displays a separate, more selective NLS binding specificity. Furthermore, the CTNNBL1/AID interaction depends on amino acids forming the AID conformational NLS with CTNNBL1-deficient cells showing a partial defect in AID nuclear accumulation. However, in further contrast to karyopherin αs, the CTNNBL1 N-terminal region itself binds karyopherin αs (rather than karyopherin β), suggesting a function divergent from canonical nuclear transport. Thus, CTNNBL1 is a novel NLS-binding protein, distinct from karyopherin αs, with the results suggesting a possible role in the selective intranuclear targeting or interactions of some splicing-associated complexes.
Collapse
Affiliation(s)
- Karuna Ganesh
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, United Kingdom
| | | | | | | | | | | |
Collapse
|
65
|
Novotný I, Blažíková M, Staneˇk D, Herman P, Malinsky J. In vivo kinetics of U4/U6·U5 tri-snRNP formation in Cajal bodies. Mol Biol Cell 2011; 22:513-23. [PMID: 21177826 PMCID: PMC3038649 DOI: 10.1091/mbc.e10-07-0560] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 12/08/2010] [Accepted: 12/15/2010] [Indexed: 01/09/2023] Open
Abstract
The U4/U6·U5 tri-small nuclear ribonucleoprotein particle (tri-snRNP) is an essential pre-mRNA splicing factor, which is assembled in a stepwise manner before each round of splicing. It was previously shown that the tri-snRNP is formed in Cajal bodies (CBs), but little is known about the dynamics of this process. Here we created a mathematical model of tri-snRNP assembly in CBs and used it to fit kinetics of individual snRNPs monitored by fluorescence recovery after photobleaching. A global fitting of all kinetic data determined key reaction constants of tri-snRNP assembly. Our model predicts that the rates of di-snRNP and tri-snRNP assemblies are similar and that ∼230 tri-snRNPs are assembled in one CB per minute. Our analysis further indicates that tri-snRNP assembly is approximately 10-fold faster in CBs than in the surrounding nucleoplasm, which is fully consistent with the importance of CBs for snRNP formation in rapidly developing biological systems. Finally, the model predicted binding between SART3 and a CB component. We tested this prediction by Förster resonance energy transfer and revealed an interaction between SART3 and coilin in CBs.
Collapse
MESH Headings
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/metabolism
- Cell Line, Tumor
- Cell Nucleus/genetics
- Cell Nucleus/metabolism
- Coiled Bodies/genetics
- Coiled Bodies/metabolism
- HeLa Cells
- Humans
- Kinetics
- Models, Molecular
- Nuclear Proteins/metabolism
- Protein Binding/genetics
- RNA Helicases/genetics
- RNA Helicases/metabolism
- RNA Precursors/genetics
- RNA Precursors/metabolism
- RNA Splicing/genetics
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Ribonucleoprotein, U4-U6 Small Nuclear/genetics
- Ribonucleoprotein, U4-U6 Small Nuclear/metabolism
- Ribonucleoprotein, U5 Small Nuclear/genetics
- Ribonucleoprotein, U5 Small Nuclear/metabolism
- Ribonucleoproteins, Small Nuclear/genetics
- Ribonucleoproteins, Small Nuclear/metabolism
- Spliceosomes/genetics
- Spliceosomes/metabolism
Collapse
Affiliation(s)
- Ivan Novotný
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, 142 20 Prague 4, Czech Republic
| | - Michaela Blažíková
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, 142 20 Prague 4, Czech Republic
- Faculty of Mathematics and Physics, Charles University, 121 16 Prague 2, Czech Republic
| | - David Staneˇk
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, 142 20 Prague 4, Czech Republic
| | - Petr Herman
- Faculty of Mathematics and Physics, Charles University, 121 16 Prague 2, Czech Republic
| | - Jan Malinsky
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, 142 20 Prague 4, Czech Republic
| |
Collapse
|
66
|
Boulon S, Westman BJ, Hutten S, Boisvert FM, Lamond AI. The nucleolus under stress. Mol Cell 2010; 40:216-27. [PMID: 20965417 PMCID: PMC2987465 DOI: 10.1016/j.molcel.2010.09.024] [Citation(s) in RCA: 804] [Impact Index Per Article: 53.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 08/16/2010] [Accepted: 09/22/2010] [Indexed: 12/16/2022]
Abstract
Cells typically respond quickly to stress, altering their metabolism to compensate. In mammalian cells, stress signaling usually leads to either cell-cycle arrest or apoptosis, depending on the severity of the insult and the ability of the cell to recover. Stress also often leads to reorganization of nuclear architecture, reflecting the simultaneous inhibition of major nuclear pathways (e.g., replication and transcription) and activation of specific stress responses (e.g., DNA repair). In this review, we focus on how two nuclear organelles, the nucleolus and the Cajal body, respond to stress. The nucleolus senses stress and is a central hub for coordinating the stress response. We review nucleolar function in the stress-induced regulation of p53 and the specific changes in nucleolar morphology and composition that occur upon stress. Crosstalk between nucleoli and CBs is also discussed in the context of stress responses.
Collapse
Affiliation(s)
- Séverine Boulon
- Wellcome Trust Centre for Gene Regulation and Expression, University of Dundee, Dundee DD1 5EH, UK
| | | | | | | | | |
Collapse
|
67
|
Baltanás FC, Casafont I, Weruaga E, Alonso JR, Berciano MT, Lafarga M. Nucleolar disruption and cajal body disassembly are nuclear hallmarks of DNA damage-induced neurodegeneration in purkinje cells. Brain Pathol 2010; 21:374-88. [PMID: 21054627 DOI: 10.1111/j.1750-3639.2010.00461.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The Purkinje cell (PC) degeneration (pcd) phenotype results from mutation in nna1 gene and is associated with the degeneration and death of PCs during the postnatal life. Although the pcd mutation is a model of the ataxic mouse, it shares clinical and pathological characteristics of inherited human spinocerebellar ataxias. PC degeneration in pcd mice provides a useful neuronal system to study nuclear mechanisms involved in DNA damage-dependent neurodegeneration, particularly the contribution of nucleoli and Cajal bodies (CBs). Both nuclear structures are engaged in housekeeping functions for neuronal survival, the biogenesis of ribosomes and the maturation of snRNPs and snoRNPs required for pre-mRNA and pre-rRNA processing, respectively. In this study, we use ultrastructural analysis, in situ transcription assay and molecular markers for DNA damage, nucleoli and CB components to demonstrate that PC degeneration involves the progressive accumulation of nuclear DNA damage associated with disruption of nucleoli and CBs, disassembly of polyribosomes into monoribosomes, ribophagy and shut down of nucleolar and extranucleolar transcription. Microarray analysis reveals that four genes encoding repressors of nucleolar rRNA synthesis (p53, Rb, PTEN and SNF2) are upregulated in the cerebellum of pcd mice. Collectively, these data support that nucleolar and CB alterations are hallmarks of DNA damage-induced neurodegeneration.
Collapse
Affiliation(s)
- Fernando C Baltanás
- Laboratory of Neural Plasticity and Neurorepair, Institute for Neuroscience of Castilla y León, Universidad de Salamanca, Salamanca, Spain
| | | | | | | | | | | |
Collapse
|
68
|
Boulisfane N, Choleza M, Rage F, Neel H, Soret J, Bordonné R. Impaired minor tri-snRNP assembly generates differential splicing defects of U12-type introns in lymphoblasts derived from a type I SMA patient. Hum Mol Genet 2010; 20:641-8. [PMID: 21098506 DOI: 10.1093/hmg/ddq508] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The survival of motor neuron (SMN) protein is essential for cytoplasmic assembly of spliceosomal snRNPs. Although the normal proportion of endogenous snRNAs is unevenly altered in spinal muscular atrophy (SMA) tissues, the biogenesis of individual snRNPs is not dramatically affected in SMN-deficient cells. The SMN protein is also required for normal Cajal body (CB) formation, but the functional consequences of CB disruption upon SMN deficiency have not yet been analyzed at the level of macromolecular snRNPs assembly. Here, we show that the SMN protein is required for tri-snRNPs formation and that the level of the minor U4atac/U6atac/U5 tri-snRNPs is dramatically decreased in lymphoblasts derived from a patient suffering from a severe form of SMA. We found also that splicing of some, but not all, minor introns is inhibited in these cells, demonstrating links between SMN deficiency and differential alterations of splicing events mediated by the minor spliceosome. Our results suggest that SMA might result from the inefficient splicing of one or only a few pre-mRNAs carrying minor introns and coding for proteins required for motor neurons function and/or organization.
Collapse
Affiliation(s)
- Nawal Boulisfane
- Institut de Génétique Moléculaire de Montpellier (IGMM), CNRS UMR 5535/IFR122, Université Montpellier I and II,1919 route de Mende, 34293 Montpellier Cedex 5, France
| | | | | | | | | | | |
Collapse
|
69
|
Suzuki T, Izumi H, Ohno M. Cajal body surveillance of U snRNA export complex assembly. J Cell Biol 2010; 190:603-12. [PMID: 20733056 PMCID: PMC2928011 DOI: 10.1083/jcb.201004109] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Accepted: 07/20/2010] [Indexed: 12/11/2022] Open
Abstract
Phosphorylated adaptor for RNA export (PHAX) is the key export mediator for spliceosomal U small nuclear RNA (snRNA) precursors in metazoa. PHAX is enriched in Cajal bodies (CBs), nuclear subdomains involved in the biogenesis of small ribonucleoproteins. However, CBs' role in U snRNA export has not been demonstrated. In this study, we show that U snRNA precursors microinjected into Xenopus laevis oocyte nuclei temporarily concentrate in CBs but gradually decrease as RNA export proceeds. Inhibition of PHAX activity by the coinjection of a specific anti-PHAX antibody or a dominant-negative PHAX mutant inhibits U snRNA export and simultaneously enhances accumulation of U snRNA precursors in CBs, indicating that U snRNAs transit through CBs before export and that binding to PHAX is required for efficient exit of U snRNAs from CBs. Similar results were obtained with U snRNAs transcribed from microinjected genes. These results reveal a novel function for CBs, which ensure that U snRNA precursors are properly bound by PHAX.
Collapse
Affiliation(s)
- Tatsuya Suzuki
- Institute for Virus Research, Kyoto University, Kyoto, Japan
| | | | | |
Collapse
|
70
|
Zhang J, Zhang F, Zheng X. Depletion of hCINAP by RNA interference causes defects in Cajal body formation, histone transcription, and cell viability. Cell Mol Life Sci 2010; 67:1907-18. [PMID: 20186459 PMCID: PMC11115741 DOI: 10.1007/s00018-010-0301-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Revised: 01/25/2010] [Accepted: 02/02/2010] [Indexed: 10/19/2022]
Abstract
hCINAP is a highly conserved and ubiquitously expressed protein in eukaryotic organisms and its overexpression decreases the average number of Cajal bodies (CBs) with diverse nuclear functions. Here, we report that hCINAP is associated with important components of CBs. Depletion of hCINAP by RNA interference causes defects in CB formation and disrupts subcellular localizations of its components including coilin, survival motor neurons protein, spliceosomal small nuclear ribonucleoproteins, and nuclear protein ataxia-telangiectasia. Moreover, knockdown of hCINAP expression results in marked reduction of histone transcription, lower levels of U small nuclear RNAs (U1, U2, U4, and U5), and a loss of cell viability. Detection of increased caspase-3 activities in hCINAP-depleted cells indicate that apoptosis is one of the reasons for the loss of viability. Altogether, these data suggest that hCINAP is essential for the formation of canonical CBs, histone transcription, and cell viability.
Collapse
Affiliation(s)
- Jinfang Zhang
- National Laboratory of Protein Engineering and Plant Genetic Engineering, Peking University, Beijing, 100871 China
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Peking University, Beijing, 100871 China
| | - Feiyun Zhang
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Capital Normal University, Beijing, 100037 China
| | - Xiaofeng Zheng
- National Laboratory of Protein Engineering and Plant Genetic Engineering, Peking University, Beijing, 100871 China
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Peking University, Beijing, 100871 China
| |
Collapse
|
71
|
Abstract
Eukaryotic gene expression is an intricate multistep process, regulated within the cell nucleus through the activation or repression of RNA synthesis, processing, cytoplasmic export, and translation into protein. The major regulators of gene expression are chromatin remodeling and transcription machineries that are locally recruited to genes. However, enzymatic activities that act on genes are not ubiquitously distributed throughout the nucleoplasm, but limited to specific and spatially defined foci that promote preferred higher-order chromatin arrangements. The positioning of genes within the nuclear landscape relative to specific functional landmarks plays an important role in gene regulation and disease.
Collapse
Affiliation(s)
- Carmelo Ferrai
- Genome Function Group, MRC Clinical Sciences Centre, Imperial College School of Medicine, Hammersmith Hospital Campus, Du Cane Road, London, United Kingdom
| | | | | | | | | |
Collapse
|
72
|
Nucleolar targeting of coilin is regulated by its hypomethylation state. Chromosoma 2010; 119:527-40. [PMID: 20449600 DOI: 10.1007/s00412-010-0276-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Revised: 04/14/2010] [Accepted: 04/20/2010] [Indexed: 10/19/2022]
Abstract
Coilin, a molecular marker for Cajal bodies (CBs), is a phosphoprotein that contains a cryptic nucleolar localization signal and multiple interacting domains, such as the RG-box. Post-translational symmetrical dimethylation of arginines on the coilin RG-box is required for the recruitment of the survival motor neuron (SMN) protein and splicing small ribonucleoproteins (snRNPs) to CBs. Here, we analyze the role of the methylation state of coilin in the regulation of its localization to the nucleolus. We use the MCF7 MTAP(-/-) cell line, which lacks the gene encoding 5'-methylthioadenosine phosphorylase (MTAP). This is a key enzyme of the methionine salvage pathway. The reduction of the levels of coilin methylation causes disruption of the canonical CBs and coilin redistribution to nucleoplasmic microfoci and to the nucleolus. Intranucleolar coilin is unmethylated and appears restricted to the dense fibrillar component. Interestingly, intranucleolar coilin is not associated with SMN or snRNPs, and does not interfere with global transcriptional activity. Overexpression of wild-type MTAP reverts the intranucleolar localization of coilin and the disruption of CBs to the normal coilin phenotype. Our results suggest the existence of a dynamic flux of coilin between CBs, nucleoplasm and nucleolus, and indicate that coilin methylation plays a key role in this process.
Collapse
|
73
|
Hebert MD. Phosphorylation and the Cajal body: modification in search of function. Arch Biochem Biophys 2010; 496:69-76. [PMID: 20193656 PMCID: PMC2850958 DOI: 10.1016/j.abb.2010.02.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Accepted: 02/24/2010] [Indexed: 12/25/2022]
Abstract
The Cajal body (CB) is a subnuclear domain that contains proteins and factors involved in a diverse range of activities including ribonucleoprotein maturation, histone gene transcription and telomerase assembly. Among these activities, the CBs' role in small nuclear ribonucleoprotein (snRNP) biogenesis is best characterized. Although CBs are found in plants, flies and mammals, not all cell types contain CBs. Rather, CBs are most prominent in transcriptionally active cells, such as cancer and neuronal cells. Many CB components, including the CB marker protein coilin, are phosphorylated in humans. The functional consequence of phosphorylation on CB assembly, activity and disassembly is largely unknown. Also unknown are the signaling pathways, kinases and phosphatases that act upon proteins which localize in the CB. The goal of this review is to demonstrate the need for a concerted effort towards elucidating the functional consequence of phosphorylation on CB formation and activity.
Collapse
Affiliation(s)
- Michael D Hebert
- Department of Biochemistry, The University of Mississippi Medical Center, Jackson, MS 39216-4505, USA
| |
Collapse
|
74
|
Isabelle M, Moreel X, Gagné JP, Rouleau M, Ethier C, Gagné P, Hendzel MJ, Poirier GG. Investigation of PARP-1, PARP-2, and PARG interactomes by affinity-purification mass spectrometry. Proteome Sci 2010; 8:22. [PMID: 20388209 PMCID: PMC2861645 DOI: 10.1186/1477-5956-8-22] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Accepted: 04/13/2010] [Indexed: 12/15/2022] Open
Abstract
Background Poly(ADP-ribose) polymerases (PARPs) catalyze the formation of poly(ADP-ribose) (pADPr), a post-translational modification involved in several important biological processes, namely surveillance of genome integrity, cell cycle progression, initiation of the DNA damage response, apoptosis, and regulation of transcription. Poly(ADP-ribose) glycohydrolase (PARG), on the other hand, catabolizes pADPr and thereby accounts for the transient nature of poly(ADP-ribosyl)ation. Our investigation of the interactomes of PARP-1, PARP-2, and PARG by affinity-purification mass spectrometry (AP-MS) aimed, on the one hand, to confirm current knowledge on these interactomes and, on the other hand, to discover new protein partners which could offer insights into PARPs and PARG functions. Results PARP-1, PARP-2, and PARG were immunoprecipitated from human cells, and pulled-down proteins were separated by gel electrophoresis prior to in-gel trypsin digestion. Peptides were identified by tandem mass spectrometry. Our AP-MS experiments resulted in the identifications of 179 interactions, 139 of which are novel interactions. Gene Ontology analysis of the identified protein interactors points to five biological processes in which PARP-1, PARP-2 and PARG may be involved: RNA metabolism for PARP-1, PARP-2 and PARG; DNA repair and apoptosis for PARP-1 and PARP-2; and glycolysis and cell cycle for PARP-1. Conclusions This study reveals several novel protein partners for PARP-1, PARP-2 and PARG. It provides a global view of the interactomes of these proteins as well as a roadmap to establish the systems biology of poly(ADP-ribose) metabolism.
Collapse
Affiliation(s)
- Maxim Isabelle
- Axe cancer, CHUQ Research Center, Faculty of Medicine, Laval University, 2705 Boulevard Laurier, Québec, Canada, G1V 4G2.
| | | | | | | | | | | | | | | |
Collapse
|
75
|
Fuller HR, Man NT, Lam LT, Thanh LT, Keough RA, Asperger A, Gonda TJ, Morris GE. The SMN interactome includes Myb-binding protein 1a. J Proteome Res 2010; 9:556-63. [PMID: 19928837 DOI: 10.1021/pr900884g] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Understanding networks of interacting proteins is a major goal in cell biology. The survival of motor neurons protein (SMN) interacts, directly or indirectly, with a large number of other proteins and reduced levels of SMN cause the inherited disorder spinal muscular atrophy (SMA). Some SMN interactions are stable and stoichiometric, such as those with gemins, while others are expected to be transient and substoichiometric, such as the functional interaction of SMN with coilin in Cajal bodies. This study set out to determine whether novel components of the extensive SMN interactome can be identified by a proteomic approach. SMN complexes were immuno-precipitated from HeLa nuclear extracts, using anti-SMN monoclonal antibody attached to magnetic beads, digested with trypsin, separated by capillary-liquid chromatography and analyzed by MALDI TOF/TOF mass spectrometry. One-hundred and one proteins were detected with a p value of <0.05, SMN, gemins and U snRNPs being the dominant "hits". Sixty-nine of these were rejected after MALDI analysis of two control pull-downs using antibodies against unrelated nuclear proteins. The proteins found only in anti-SMN pulldowns were either known SMN partners, and/or contained dimethylated RG domains involved in direct interaction with the SMN tudor domain, or they were known binding partners of such direct SMN interactors. Myb-binding protein 1a, identified as a novel candidate, is a mainly nucleolar protein of unknown function but it partially colocalized with SMN in Cajal bodies in HeLa cell nucleoplasm and, like SMN, was reduced in cells from an SMA patient.
Collapse
Affiliation(s)
- Heidi R Fuller
- Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry SY10 7AG, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
76
|
Coilin-dependent snRNP assembly is essential for zebrafish embryogenesis. Nat Struct Mol Biol 2010; 17:403-9. [PMID: 20357773 DOI: 10.1038/nsmb.1783] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Accepted: 01/29/2010] [Indexed: 01/01/2023]
Abstract
Spliceosomal small nuclear ribonucleoproteins (snRNPs), comprised of small nuclear RNAs (snRNAs) in complex with snRNP-specific proteins, are essential for pre-mRNA splicing. Coilin is not a snRNP protein but concentrates snRNPs and their assembly intermediates in Cajal bodies (CBs). Here we show that depletion of coilin in zebrafish embryos leads to CB dispersal, deficits in snRNP biogenesis and expression of spliced mRNA, as well as reduced cell proliferation followed by developmental arrest. Notably, injection of purified mature human snRNPs restored mRNA expression and viability. snRNAs were necessary but not sufficient for rescue, showing that only assembled snRNPs can bypass the requirement for coilin. Thus, coilin's essential function in embryos is to promote macromolecular assembly of snRNPs, likely by concentrating snRNP components in CBs to overcome rate-limiting assembly steps.
Collapse
|
77
|
SMN and the Gemin proteins form sub-complexes that localise to both stationary and dynamic neurite granules. Biochem Biophys Res Commun 2010; 394:211-6. [PMID: 20188701 DOI: 10.1016/j.bbrc.2010.02.158] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Accepted: 02/23/2010] [Indexed: 11/21/2022]
Abstract
Childhood spinal muscular atrophy (SMA) is caused by a reduction in survival motor neuron (SMN) protein. SMN is expressed in every cell type, but it is predominantly the lower motor neurones of the spinal cord that degenerate in SMA. SMN has been linked to the axonal transport of beta-actin mRNA, a breakdown in which could trigger disease onset. It is known that SMN is present in transport ribonucleoproteins (RNPs) granules that also contain Gemin2 and Gemin3. To further characterise these granules we have performed live cell imaging of GFP-tagged SMN, GFP-Gemin2, GFP-Gemin3, GFP-Gemin6 and GFP-Gemin7. In all, we have made two important observations: (1) SMN granules appear metamorphic; and (2) the SMN-Gemin complex(es) appears to localise to two distinct subsets of bodies in neurites; stationary bodies and smaller dynamic bodies. This study provides an insight into the neuronal function of the SMN complex.
Collapse
|
78
|
Abstract
While the cell nucleus was described for the first time almost two centuries ago, our modern view of the nuclear architecture is primarily based on studies from the last two decades. This surprising late start coincides with the development of new, powerful strategies to probe for the spatial organization of nuclear activities in both fixed and live cells. As a result, three major principles have emerged: first, the nucleus is not just a bag filled with nucleic acids and proteins. Rather, many distinct functional domains, including the chromosomes, resides within the confines of the nuclear envelope. Second, all these nuclear domains are highly dynamic, with molecules exchanging rapidly between them and the surrounding nucleoplasm. Finally, the motion of molecules within the nucleoplasm appears to be mostly driven by random diffusion. Here, the emerging roles of several subnuclear domains are discussed in the context of the dynamic functions of the cell nucleus.
Collapse
Affiliation(s)
- Christopher M Austin
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | | |
Collapse
|
79
|
Nuclear bodies: random aggregates of sticky proteins or crucibles of macromolecular assembly? Dev Cell 2009; 17:639-47. [PMID: 19922869 DOI: 10.1016/j.devcel.2009.10.017] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The principles of self-assembly and self-organization are major tenets of molecular and cellular biology. Governed by these principles, the eukaryotic nucleus is composed of numerous subdomains and compartments, collectively described as nuclear bodies. Emerging evidence reveals that associations within and between various nuclear bodies and genomic loci are dynamic and can change in response to cellular signals. This review will discuss recent progress in our understanding of how nuclear body components come together, what happens when they form, and what benefit these subcellular structures may provide to the tissues or organisms in which they are found.
Collapse
|
80
|
Clelland AK, Kinnear NP, Oram L, Burza J, Sleeman JE. The SMN protein is a key regulator of nuclear architecture in differentiating neuroblastoma cells. Traffic 2009; 10:1585-98. [PMID: 19735367 PMCID: PMC2788272 DOI: 10.1111/j.1600-0854.2009.00972.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The cell nucleus contains two closely related structures, Cajal bodies (CBs) and gems. CBs are the first site of accumulation of newly assembled splicing snRNPs (small nuclear ribonucleoproteins) following their import into the nucleus, before they form their steady-state localization in nuclear splicing speckles. Gems are the nuclear site of accumulation of survival motor neurons (SMNs), an insufficiency of which leads to the inherited neurodegenerative condition, spinal muscular atrophy (SMA). SMN is required in the cytoplasm for the addition of core, Sm, proteins to new snRNPs and is believed to accompany snRNPs to the CB. In most cell lines, gems are indistinguishable from CBs, although the structures are often separate in vivo. The relationship between CBs and gems is not fully understood, but there is evidence that symmetrical dimethylation of arginine residues in the CB protein coilin brings them together in HeLa cells. During neuronal differentiation of the human neuroblastoma cell line SH-SY5Y, CBs and gems increase their colocalization, mimicking changes seen during foetal development. This does not result from alterations in the methylation of coilin, but from increased levels of SMN. Expression of exogenous SMN results in an increased efficiency of snRNP transport to nuclear speckles. This suggests different mechanisms are present in different cell types and in vivo that may be significant for the tissue-specific pathology of SMA.
Collapse
Affiliation(s)
- Allyson K Clelland
- School of Biology, University of St Andrews, Bute Medical Buildings, St Andrews, Fife KY16 9TS, UK
| | | | | | | | | |
Collapse
|
81
|
The spliceosome: a self-organized macromolecular machine in the nucleus? Trends Cell Biol 2009; 19:375-84. [DOI: 10.1016/j.tcb.2009.05.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Revised: 05/04/2009] [Accepted: 05/08/2009] [Indexed: 12/17/2022]
|
82
|
Walker MP, Tian L, Matera AG. Reduced viability, fertility and fecundity in mice lacking the cajal body marker protein, coilin. PLoS One 2009; 4:e6171. [PMID: 19587784 PMCID: PMC2702818 DOI: 10.1371/journal.pone.0006171] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Accepted: 06/02/2009] [Indexed: 12/02/2022] Open
Abstract
Background Coilin is the signature protein of the Cajal body, a conserved nuclear organelle involved in multiple aspects of small ribonucleoprotein (RNP) biogenesis. Coilin is required for Cajal body homeostasis in both plants and animals. Mice lacking coilin are viable when the mutation is crossed to an outbred strain but only partially viable when crossed to inbred lines. Methodology/Principal Findings In order to clarify this issue, we backcrossed the coilin deletion onto the C57BL6/J background for ten generations and then investigated the consequences of coilin removal on overall viability and reproductive success. We conclude that semi-lethal phenotype observed in mixed-background crosses is due to loss of the Coilin gene (or a very tightly-linked locus). Interestingly, coilin knockout embryos die relatively late in gestation, between E13.5 and birth. We show that the maternal contribution of coilin is not important for organismal viability. Importantly, coilin knockout mice display significant fertility and fecundity defects. Mutant males that escape the embryonic lethality display reduced testis size, however, both males and females contribute to the observed reduction in reproductive fitness. Conclusions/Significance The evolutionary conservation of coilin from plants to animals suggests that the protein plays an important role, perhaps coordinating the activities of various RNA-processing machineries. Our observations are consistent with the idea that coilin functions to ensure robust organismal development, especially during periods of rapid growth.
Collapse
Affiliation(s)
- Michael P. Walker
- Department of Genetics, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
- Departments of Biology and Genetics, Program in Molecular Biology & Biotechnology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Liping Tian
- Department of Genetics, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - A. Gregory Matera
- Department of Genetics, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
- Departments of Biology and Genetics, Program in Molecular Biology & Biotechnology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
83
|
snRNP: Rich Nuclear Bodies in Hyacinthus orientalis L. Microspores and Developing Pollen Cells. Int J Cell Biol 2009; 2009:209303. [PMID: 20111623 PMCID: PMC2809418 DOI: 10.1155/2009/209303] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Revised: 02/19/2009] [Accepted: 04/14/2009] [Indexed: 01/07/2023] Open
Abstract
The aim of the present work was the characterization of nuclear bodies in the microspore and developing pollen cells of Hyacinthus orientalis L.. The combination of Ag-NOR, immunofluorescence and immunogold techniques was used in this study. The obtained results showed the presence of highly agyrophylic extranucleolar bodies in microspore and developing pollen cells, which were finally identified
as Cajal bodies. In all cases, a strong accumulation of snRNP-indicating molecules including TMG cap, Sm
proteins and U2 snRNA, was observed in the examined nuclear bodies. In contrast to their number the
size of the identified structures did not change significantly during pollen development. In the microspore
and the vegetative cell of pollen grains CBs were more numerous than in the generative cell. At later
stages of pollen development, a drastic decrease in CB number was observed and, just before anthesis, a
complete lack of these structures was indicated in both pollen nuclei. On the basis of these results, as well as our previous studies, we postulate a strong relationship between Cajal body numbers and the levels of
RNA synthesis and splicing machinery elements in microspore and developing pollen cells.
Collapse
|
84
|
HSPB7 is a SC35 speckle resident small heat shock protein. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1793:1343-53. [PMID: 19464326 DOI: 10.1016/j.bbamcr.2009.05.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Revised: 05/13/2009] [Accepted: 05/15/2009] [Indexed: 01/15/2023]
Abstract
BACKGROUND The HSPB family is one of the more diverse families within the group of HSP families. Some members have chaperone-like activities and/or play a role in cytoskeletal stabilization. Some members also show a dynamic, stress-induced translocation to SC35 splicing speckles. If and how these features are interrelated and if they are shared by all members are yet unknown. METHODS Tissue expression data and interaction and co-regulated gene expression data of the human HSPB members was analyzed using bioinformatics. Using a gene expression library, sub-cellular distribution of the diverse members was analyzed by confocal microscopy. Chaperone activity was measured using a cellular luciferase refolding assay. RESULTS Online databases did not accurately predict the sub-cellular distribution of all the HSPB members. A novel and non-predicted finding was that HSPB7 constitutively localized to SC35 splicing speckles, driven by its N-terminus. Unlike HSPB1 and HSPB5, that chaperoned heat unfolded substrates and kept them folding competent, HSPB7 did not support refolding. CONCLUSION Our data suggest a non-chaperone-like role of HSPB7 at SC35 speckles. GENERAL SIGNIFICANCE The functional divergence between HSPB members seems larger than previously expected and also includes non-canonical members lacking classical chaperone-like functions.
Collapse
|
85
|
Lafarga M, Casafont I, Bengoechea R, Tapia O, Berciano MT. Cajal's contribution to the knowledge of the neuronal cell nucleus. Chromosoma 2009; 118:437-43. [PMID: 19404660 DOI: 10.1007/s00412-009-0212-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Revised: 04/02/2009] [Accepted: 04/02/2009] [Indexed: 11/26/2022]
Abstract
In 1906, the Spanish neurobiologist Santiago Ramón y Cajal was awarded the Nobel Prize in Physiology or Medicine in recognition of his work on the structure of neurons and their connections. Cajal is commonly regarded as the father of modern neuroscience. What is less well known is that Cajal also had a great interest in intracellular neuronal structures and developed the reduced silver nitrate method for the study of neurofibrils (neurofilaments) and nuclear subcompartments. It was in 1903 that Cajal discovered the "accessory body" ("Cajal body") and seven years later, published an article on the organization of the cell nucleus in mammalian neurons that represents a masterpiece of nuclear structure at the light microscopy level. In addition to the accessory body, it includes the analysis of several nuclear components currently recognized as fibrillar centers of the nucleolus, nuclear speckles of splicing factors, transcription foci, nuclear matrix, and the double nuclear membrane. The aim of this article is to revisit Cajal's contributions to the knowledge of the neuronal nucleus in light of our current understanding of nuclear structure and function.
Collapse
Affiliation(s)
- Miguel Lafarga
- Department of Anatomy and Cell Biology and Centro de Investigación Biomédica en Red sobre Enferemedades Neurodegenerativas, University of Cantabria, Avd. Cardenal Herrera Oria s/n, 39011, Santander, Spain.
| | | | | | | | | |
Collapse
|
86
|
Sato J, Shimizu H, Kasama T, Yabuta N, Nojima H. GAK, a regulator of clathrin-mediated membrane trafficking, localizes not only in the cytoplasm but also in the nucleus. Genes Cells 2009; 14:627-41. [PMID: 19371378 DOI: 10.1111/j.1365-2443.2009.01296.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The ubiquitously expressed Cyclin G-associated kinase (GAK) regulates clathrin-mediated membrane trafficking in the cytoplasm. However, the association of GAK with a nuclear protein Cyclin G1 that is unrelated to membrane trafficking suggests an unidentified role of GAK in the nucleus. Indeed, we report here that GAK localizes in both cytoplasm and nucleus by immunostaining, ectopic expression of GFP-GAK and pull-down assays using dissected GAK fragments. GAK forms complexes not only with cyclin G1 but also with other nuclear proteins such as p53, clathrin heavy chain (CHC) and protein phosphatase 2A (PP2A) B'alpha1. Moreover, CHC associates with GAK via a different domain depending on whether it is in the cytoplasm or nucleus. Immunostaining revealed that about 20-30% of B'alpha1, cyclin G1 and p53 complex with nuclear GAK. CHC also displayed dots in the nucleus and almost all nuclear CHC signals colocalized with GAK. These observations together suggest an important function of GAK in the nucleus.
Collapse
Affiliation(s)
- Jun Sato
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita City, Osaka 565-0871, Japan
| | | | | | | | | |
Collapse
|
87
|
Huranová M, Hnilicová J, Fleischer B, Cvacková Z, Stanek D. A mutation linked to retinitis pigmentosa in HPRP31 causes protein instability and impairs its interactions with spliceosomal snRNPs. Hum Mol Genet 2009; 18:2014-23. [PMID: 19293337 DOI: 10.1093/hmg/ddp125] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The AD29 mutation in HPRP31 belongs to a series of mutations that were initially linked with the autosomal dominant disorder retinitis pigmentosa (RP) type 11. The HPRP31 gene encodes the hPrp31 protein that specifically associates with spliceosomal small nuclear ribonucleoprotein particles (snRNPs). Despite intensive research, it is still unclear how the AD29 (Ala216Pro) mutation causes RP. In this study, we report that the expression of this mutant protein affects cell proliferation and alters the structure of nuclear Cajal bodies that are connected with snRNP metabolism. Interestingly, these effects can be reversed by the over-expression of the hPrp6 protein, a binding partner of hPrp31. Although Ala216 is not contained within the U4 or U5 snRNP interacting domains, we present several lines of evidence that demonstrate that the association between the AD29 mutant and snRNPs in the cell nucleus is significantly reduced. Finally, we show that the stability of the AD29 mutant is severely affected resulting in its rapid degradation. Taken together, our results indicate that the Ala216Pro mutation destabilizes the hPrp31 protein structure in turn reducing its interaction with snRNP binding partners and leading to its rapid degradation. These findings significantly impact our understanding of the molecular mechanisms underlying RP and suggest that the insufficiency of the functional hPrp31 protein combined with the potential cytotoxicity associated with the expression the AD29 mutant are at least partially causative of the RP phenotype.
Collapse
Affiliation(s)
- Martina Huranová
- Department of RNA Biology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, 142 20 Prague, Czech Republic
| | | | | | | | | |
Collapse
|
88
|
Tycowski KT, Shu MD, Kukoyi A, Steitz JA. A conserved WD40 protein binds the Cajal body localization signal of scaRNP particles. Mol Cell 2009; 34:47-57. [PMID: 19285445 DOI: 10.1016/j.molcel.2009.02.020] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Revised: 02/13/2009] [Accepted: 02/25/2009] [Indexed: 12/12/2022]
Abstract
Small Cajal body (CB)-specific RNPs (scaRNPs) function in posttranscriptional modification of small nuclear (sn)RNAs. An RNA element, the CAB box, facilitates CB localization of H/ACA scaRNPs. Using a related element in Drosophila C/D scaRNAs, we purified a fly WD40 repeat protein that UV crosslinks to RNA in a C/D CAB box-dependent manner and associates with C/D and mixed domain C/D-H/ACA scaRNAs. Its human homolog, WDR79, associates with C/D, H/ACA, and mixed domain scaRNAs, as well as with telomerase RNA. WDR79's binding to human H/ACA and mixed domain scaRNAs is CAB box dependent, and its association with mixed domain RNAs also requires the ACA motif, arguing for additional interactions of WDR79 with H/ACA core proteins. We demonstrate a requirement for WDR79 binding in the CB localization of a scaRNA. This and other recent reports establish WDR79 as a central player in the localization and processing of nuclear RNPs.
Collapse
Affiliation(s)
- Kazimierz T Tycowski
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06536, USA
| | | | | | | |
Collapse
|
89
|
Sivaramakrishnan G, Sun Y, Tan SK, Lin VCL. Dynamic localization of tripartite motif-containing 22 in nuclear and nucleolar bodies. Exp Cell Res 2009; 315:1521-32. [PMID: 19331816 DOI: 10.1016/j.yexcr.2009.01.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Revised: 01/21/2009] [Accepted: 01/29/2009] [Indexed: 01/08/2023]
Abstract
Tripartite motif-containing 22 (TRIM22) exhibits antiviral and growth inhibitory properties, but there has been no study on the localization and dynamics of the endogenous TRIM22 protein. We report here that TRIM22 is dramatically induced by progesterone in MDA-MB-231-derived ABC28 cells and T47D cells. This induction was associated with an increase in TRIM22 nuclear bodies (NB), and an even more prominent increase in nucleolar TRIM22 bodies. Distinct endogenous TRIM22 NB were also demonstrated in several other cell lines including MCF7 and HeLa cells. These TRIM22 NB resemble Cajal bodies, co-localized with these structures and co-immunoprecipitated with p80-coilin. However, IFNgamma-induced TRIM22 in HeLa and MCF7 cells did not form NB, implying the forms and distribution of TRIM22 are regulated by specific cellular signals. This notion is also supported by the observation that TRIM22 NB undergoes dynamic cell-cycle dependent changes in distribution such that TRIM22 NB started to form in early G0/G1 but became dispersed in the S-phase. In light of its potential antiviral and antitumor properties, the findings here provide an interesting gateway to study the relationship between the different forms and functions of TRIM22.
Collapse
Affiliation(s)
- Gayathri Sivaramakrishnan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | | | | | | |
Collapse
|
90
|
Collins LJ, Penny D. The RNA infrastructure: dark matter of the eukaryotic cell? Trends Genet 2009; 25:120-8. [PMID: 19171405 DOI: 10.1016/j.tig.2008.12.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Revised: 12/16/2008] [Accepted: 12/17/2008] [Indexed: 11/29/2022]
Abstract
Eukaryotes express many functional non-protein-coding RNAs (ncRNAs) that participate in the processing and regulation of other RNA molecules. By focusing on connections between RNA-based processes, common patterns emerge that form a network-like RNA infrastructure. Owing to the intracellular movement of RNA during its processing (both between nuclear compartments and between the nucleus and cytoplasm), the RNA infrastructure contains both spatial and temporal connections. As research moves away from being protein-centric and focuses more on genomics, it is timely to explore these often 'hidden' aspects of the eukaryotic cell. The general and ancestral nature of most basic RNA-processing steps places a new focus on the generality of the spatial and temporal steps in RNA processing.
Collapse
Affiliation(s)
- Lesley J Collins
- Allan Wilson Centre for Molecular Ecology and Evolution and Institute of Molecular BioSciences, Private Bag 11222, Massey University, 4442 Palmerston North, New Zealand.
| | | |
Collapse
|
91
|
Lorković ZJ, Barta A. Role of Cajal bodies and nucleolus in the maturation of the U1 snRNP in Arabidopsis. PLoS One 2008; 3:e3989. [PMID: 19098980 PMCID: PMC2600615 DOI: 10.1371/journal.pone.0003989] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2008] [Accepted: 11/21/2008] [Indexed: 01/31/2023] Open
Abstract
Background The biogenesis of spliceosomal snRNPs takes place in both the cytoplasm where Sm core proteins are added and snRNAs are modified at the 5′ and 3′ termini and in the nucleus where snRNP-specific proteins associate. U1 snRNP consists of U1 snRNA, seven Sm proteins and three snRNP-specific proteins, U1-70K, U1A, and U1C. It has been shown previously that after import to the nucleus U2 and U4/U6 snRNP-specific proteins first appear in Cajal bodies (CB) and then in splicing speckles. In addition, in cells grown under normal conditions U2, U4, U5, and U6 snRNAs/snRNPs are abundant in CBs. Therefore, it has been proposed that the final assembly of these spliceosomal snRNPs takes place in this nuclear compartment. In contrast, U1 snRNA in both animal and plant cells has rarely been found in this nuclear compartment. Methodology/Principal Findings Here, we analysed the subnuclear distribution of Arabidopsis U1 snRNP-specific proteins fused to GFP or mRFP in transiently transformed Arabidopsis protoplasts. Irrespective of the tag used, U1-70K was exclusively found in the nucleus, whereas U1A and U1C were equally distributed between the nucleus and the cytoplasm. In the nucleus all three proteins localised to CBs and nucleoli although to different extent. Interestingly, we also found that the appearance of the three proteins in nuclear speckles differ significantly. U1-70K was mostly found in speckles whereas U1A and U1C in ∼90% of cells showed diffuse nucleoplasmic in combination with CBs and nucleolar localisation. Conclusions/Significance Our data indicate that CBs and nucleolus are involved in the maturation of U1 snRNP. Differences in nuclear accumulation and distribution between U1-70K and U1A and U1C proteins may indicate that either U1-70K or U1A and U1C associate with, or is/are involved, in other nuclear processes apart from pre-mRNA splicing.
Collapse
Affiliation(s)
- Zdravko J Lorković
- Department of Medical Biochemistry, Max F Perutz Laboratories, Medical University of Vienna, Vienna, Austria.
| | | |
Collapse
|
92
|
Turner BJ, Bäumer D, Parkinson NJ, Scaber J, Ansorge O, Talbot K. TDP-43 expression in mouse models of amyotrophic lateral sclerosis and spinal muscular atrophy. BMC Neurosci 2008; 9:104. [PMID: 18957104 PMCID: PMC2583980 DOI: 10.1186/1471-2202-9-104] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Accepted: 10/28/2008] [Indexed: 12/12/2022] Open
Abstract
Background Redistribution of nuclear TAR DNA binding protein 43 (TDP-43) to the cytoplasm and ubiquitinated inclusions of spinal motor neurons and glial cells is characteristic of amyotrophic lateral sclerosis (ALS) pathology. Recent evidence suggests that TDP-43 pathology is common to sporadic ALS and familial ALS without SOD1 mutation, but not SOD1-related fALS cases. Furthermore, it remains unclear whether TDP-43 abnormalities occur in non-ALS forms of motor neuron disease. Here, we characterise TDP-43 localisation, expression levels and post-translational modifications in mouse models of ALS and spinal muscular atrophy (SMA). Results TDP-43 mislocalisation to ubiquitinated inclusions or cytoplasm was notably lacking in anterior horn cells from transgenic mutant SOD1G93A mice. In addition, abnormally phosphorylated or truncated TDP-43 species were not detected in fractionated ALS mouse spinal cord or brain. Despite partial colocalisation of TDP-43 with SMN, depletion of SMN- and coilin-positive Cajal bodies in motor neurons of affected SMA mice did not alter nuclear TDP-43 distribution, expression or biochemistry in spinal cords. Conclusion These results emphasise that TDP-43 pathology characteristic of human sporadic ALS is not a core component of the neurodegenerative mechanisms caused by SOD1 mutation or SMN deficiency in mouse models of ALS and SMA, respectively.
Collapse
Affiliation(s)
- Bradley J Turner
- University of Oxford, MRC Functional Genetics Unit, Department of Physiology, Anatomy and Genetics, South Parks Road, Oxford, OX1 3QX, UK.
| | | | | | | | | | | |
Collapse
|
93
|
Patel SB, Bellini M. The assembly of a spliceosomal small nuclear ribonucleoprotein particle. Nucleic Acids Res 2008; 36:6482-93. [PMID: 18854356 PMCID: PMC2582628 DOI: 10.1093/nar/gkn658] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The U1, U2, U4, U5 and U6 small nuclear ribonucleoprotein particles (snRNPs) are essential elements of the spliceosome, the enzyme that catalyzes the excision of introns and the ligation of exons to form a mature mRNA. Since their discovery over a quarter century ago, the structure, assembly and function of spliceosomal snRNPs have been extensively studied. Accordingly, the functions of splicing snRNPs and the role of various nuclear organelles, such as Cajal bodies (CBs), in their nuclear maturation phase have already been excellently reviewed elsewhere. The aim of this review is, then, to briefly outline the structure of snRNPs and to synthesize new and exciting developments in the snRNP biogenesis pathways.
Collapse
Affiliation(s)
- Snehal Bhikhu Patel
- Biochemistry and College of Medicine and Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | |
Collapse
|
94
|
Intracellular organization of the pre-mRNA splicing machinery during Hyacinthus orientalis L. pollen development. ACTA ACUST UNITED AC 2008. [DOI: 10.1007/s00497-008-0086-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
95
|
Diversification of the core RNA interference machinery in Chlamydomonas reinhardtii and the role of DCL1 in transposon silencing. Genetics 2008; 179:69-81. [PMID: 18493041 DOI: 10.1534/genetics.107.086546] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Small RNA-guided gene silencing is an evolutionarily conserved process that operates by a variety of molecular mechanisms. In multicellular eukaryotes, the core components of RNA-mediated silencing have significantly expanded and diversified, resulting in partly distinct pathways for the epigenetic control of gene expression and genomic parasites. In contrast, many unicellular organisms with small nuclear genomes seem to have lost entirely the RNA-silencing machinery or have retained only a basic set of components. We report here that Chlamydomonas reinhardtii, a unicellular eukaryote with a relatively large nuclear genome, has undergone extensive duplication of Dicer and Argonaute polypeptides after the divergence of the green algae and land plant lineages. Chlamydomonas encodes three Dicers and three Argonautes with DICER-LIKE1 (DCL1) and ARGONAUTE1 being more divergent than the other paralogs. Interestingly, DCL1 is uniquely involved in the post-transcriptional silencing of retrotransposons such as TOC1. Moreover, on the basis of the subcellular distribution of TOC1 small RNAs and target transcripts, this pathway most likely operates in the nucleus. However, Chlamydomonas also relies on a DCL1-independent, transcriptional silencing mechanism(s) for the maintenance of transposon repression. Our results suggest that multiple, partly redundant epigenetic processes are involved in preventing transposon mobilization in this green alga.
Collapse
|
96
|
Scofield DG, Lynch M. Evolutionary diversification of the Sm family of RNA-associated proteins. Mol Biol Evol 2008; 25:2255-67. [PMID: 18687770 DOI: 10.1093/molbev/msn175] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Sm family of proteins is closely associated with RNA metabolism throughout all life. These proteins form homomorphic and heteromorphic rings consisting of six or seven subunits with a characteristic central pore, the presence of which is critical for binding U-rich regions of single-stranded RNA. Eubacteria and Archaea typically carry one or two forms of Sm proteins and assemble one homomorphic ring per Sm protein. Eukaryotes typically carry 16 or more Sm proteins that assemble to form heteromorphic rings which lie at the center of a number of critical RNA-associated small nuclear ribonucleoproteins (snRNPs). High Sm protein diversity and heteromorphic Sm rings are features stretching back to the origin of eukaryotes; very deep phylogenetic divisions among existing Sm proteins indicate simultaneous evolution across essentially all existing eukaryotic life. Two basic forms of heteromorphic Sm rings are found in eukaryotes. Fixed Sm rings are highly stable and static and are assembled around an RNA cofactor. Flexible Sm rings also stabilize and chaperone RNA but assemble in the absence of an RNA substrate and, more significantly, associate with and dissociate from RNA substrates more freely than fixed rings. This suggests that the conformation of flexible Sm rings might be modified in some specific manner to facilitate association and dissociation with RNA. Diversification of eukaryotic Sm proteins may have been initiated by gene transfers and/or genome clashes that accompanied the origin of the eukaryotic cell itself, with further diversification driven by a greater need for steric specificity within increasingly complex snRNPs.
Collapse
|
97
|
Morris GE. The Cajal body. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:2108-15. [PMID: 18755223 DOI: 10.1016/j.bbamcr.2008.07.016] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Revised: 07/21/2008] [Accepted: 07/23/2008] [Indexed: 12/30/2022]
Abstract
The Cajal body, originally identified over 100 years ago as a nucleolar accessory body in neurons, has come to be identified with nucleoplasmic structures, often quite tiny, that contain coiled threads of the marker protein, coilin. The interaction of coilin with other proteins appears to increase the efficiency of several nuclear processes by concentrating their components in the Cajal body. The best-known of these processes is the modification and assembly of U snRNPs, some of which eventually form the RNA splicing machinery, or spliceosome. Over the last 10 years, research into the function of Cajal bodies has been greatly stimulated by the discovery that SMN, the protein deficient in the inherited neuromuscular disease, spinal muscular atrophy, is a Cajal body component and has an essential role in the assembly of spliceosomal U snRNPs in the cytoplasm and their delivery to the Cajal body in the nucleus.
Collapse
Affiliation(s)
- Glenn E Morris
- Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, OSWESTRY, SY10 7AG, UK.
| |
Collapse
|
98
|
Minor spliceosome components are predominantly localized in the nucleus. Proc Natl Acad Sci U S A 2008; 105:8655-60. [PMID: 18559850 DOI: 10.1073/pnas.0803646105] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recently, it has been reported that there is a differential subcellular distribution of components of the minor U12-dependent and major U2-dependent spliceosome, and further that the minor spliceosome functions in the cytoplasm. To study the subcellular localization of the snRNA components of both the major and minor spliceosomes, we performed in situ hybridizations with mouse tissues and human cells. In both cases, all spliceosomal snRNAs were nearly exclusively detected in the nucleus, and the minor U11 and U12 snRNAs were further shown to colocalize with U4 and U2, respectively, in human cells. Additionally, we examined the distribution of several spliceosomal snRNAs and proteins in nuclear and cytoplasmic fractions isolated from human cells. These studies revealed an identical subcellular distribution of components of both the U12- and U2-dependent spliceosomes. Thus, our data, combined with several earlier publications, establish that, like the major spliceosome, components of the U12-dependent spliceosome are localized predominantly in the nucleus.
Collapse
|
99
|
Listerman I, Bledau AS, Grishina I, Neugebauer KM. Extragenic accumulation of RNA polymerase II enhances transcription by RNA polymerase III. PLoS Genet 2008; 3:e212. [PMID: 18039033 PMCID: PMC2082468 DOI: 10.1371/journal.pgen.0030212] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Accepted: 10/10/2007] [Indexed: 11/25/2022] Open
Abstract
Recent genomic data indicate that RNA polymerase II (Pol II) function extends beyond conventional transcription of primarily protein-coding genes. Among the five snRNAs required for pre-mRNA splicing, only the U6 snRNA is synthesized by RNA polymerase III (Pol III). Here we address the question of how Pol II coordinates the expression of spliceosome components, including U6. We used chromatin immunoprecipitation (ChIP) and high-resolution mapping by PCR to localize both Pol II and Pol III to snRNA gene regions. We report the surprising finding that Pol II is highly concentrated ∼300 bp upstream of all five active human U6 genes in vivo. The U6 snRNA, an essential component of the spliceosome, is synthesized by Pol III, whereas all other spliceosomal snRNAs are Pol II transcripts. Accordingly, U6 transcripts were terminated in a Pol III-specific manner, and Pol III localized to the transcribed gene regions. However, synthesis of both U6 and U2 snRNAs was α-amanitin-sensitive, indicating a requirement for Pol II activity in the expression of both snRNAs. Moreover, both Pol II and histone tail acetylation marks were lost from U6 promoters upon α-amanitin treatment. The results indicate that Pol II is concentrated at specific genomic regions from which it can regulate Pol III activity by a general mechanism. Consequently, Pol II coordinates expression of all RNA and protein components of the spliceosome. During transcription, RNA polymerases synthesize an RNA copy of a given gene. Human genes are transcribed by either RNA polymerase I, II, or III. Here, we focus on transcription of the U6 gene that encodes a small nuclear RNA (snRNA), a non-coding RNA with unique activities in gene expression. The U6 snRNA is transcribed by RNA polymerase III (Pol III); here we report the surprising finding that RNA polymerase II (Pol II) is important for efficient expression of the U6 snRNA. Interestingly, high concentrations of Pol II have been recently observed on genomic regions that are considered outside of transcribed genes. We localized Pol II to a region upstream of the U6 snRNA gene promoters in living cells. Inhibition of Pol II activity decreased U6 snRNA synthesis and was accompanied by a decrease in Pol II accumulation as well as transcription-activating histone modifications, while Pol III remained bound at U6 genes. Thus, Pol II may promote U6 snRNA transcription by facilitating open chromatin formation. Our results provide insight into the extragenic function of Pol II, which can coordinate the expression of all components of the RNA splicing machinery, including U6 snRNA.
Collapse
Affiliation(s)
- Imke Listerman
- Max-Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Anita S Bledau
- Max-Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Inna Grishina
- Max-Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Karla M Neugebauer
- Max-Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
100
|
Stanek D, Pridalová-Hnilicová J, Novotný I, Huranová M, Blazíková M, Wen X, Sapra AK, Neugebauer KM. Spliceosomal small nuclear ribonucleoprotein particles repeatedly cycle through Cajal bodies. Mol Biol Cell 2008; 19:2534-43. [PMID: 18367544 DOI: 10.1091/mbc.e07-12-1259] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The Cajal body (CB) is a nuclear structure closely associated with import and biogenesis of small nuclear ribonucleoprotein particles (snRNPs). Here, we tested whether CBs also contain mature snRNPs and whether CB integrity depends on the ongoing snRNP splicing cycle. Sm proteins tagged with photoactivatable and color-maturing variants of fluorescent proteins were used to monitor snRNP behavior in living cells over time; mature snRNPs accumulated in CBs, traveled from one CB to another, and they were not preferentially replaced by newly imported snRNPs. To test whether CB integrity depends on the snRNP splicing cycle, two human orthologues of yeast proteins involved in distinct steps in spliceosome disassembly after splicing, hPrp22 and hNtr1, were depleted by small interfering RNA treatment. Surprisingly, depletion of either protein led to the accumulation of U4/U6 snRNPs in CBs, suggesting that reassembly of the U4/U6.U5 tri-snRNP was delayed. Accordingly, a relative decrease in U5 snRNPs compared with U4/U6 snRNPs was observed in CBs, as well as in nuclear extracts of treated cells. Together, the data show that particular phases of the spliceosome cycle are compartmentalized in living cells, with reassembly of the tri-snRNP occurring in CBs.
Collapse
Affiliation(s)
- David Stanek
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, 142 20 Prague 4, Czech Republic.
| | | | | | | | | | | | | | | |
Collapse
|