51
|
Park HR, Park JE, Kim JH, Shin H, Yu SH, Son S, Yi G, Lee SS, Kim HH, Huh JH. Meiotic Chromosome Stability and Suppression of Crossover Between Non-homologous Chromosomes in x Brassicoraphanus, an Intergeneric Allotetraploid Derived From a Cross Between Brassica rapa and Raphanus sativus. FRONTIERS IN PLANT SCIENCE 2020; 11:851. [PMID: 32612629 PMCID: PMC7309133 DOI: 10.3389/fpls.2020.00851] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 05/27/2020] [Indexed: 05/27/2023]
Abstract
Hybridization and polyploidization are major driving forces in plant evolution. Allopolyploids can be occasionally formed from a cross between distantly related species but often suffer from chromosome instability and infertility. xBrassicoraphanus is an intergeneric allotetraploid (AARR; 2n = 38) derived from a cross between Brassica rapa (AA; 2n = 20) and Raphanus sativus (RR; 2n = 18). xBrassicoraphanus is fertile and genetically stable, while retaining complete sets of both B. rapa and R. sativus chromosomes. Precise control of meiotic recombination is essential for the production of balanced gametes, and crossovers (COs) must occur exclusively between homologous chromosomes. Many interspecific hybrids have problems with meiotic division at early generations, in which interactions between non-homologous chromosomes often bring about aneuploidy and unbalanced gamete formation. We analyzed meiotic chromosome behaviors in pollen mother cells (PMCs) of allotetraploid and allodiploid F1 individuals of newly synthesized xBrassicoraphanus. Allotetraploid xBrassicoraphanus PMCs showed a normal diploid-like meiotic behavior. By contrast, allodiploid xBrassicoraphanus PMCs displayed abnormal segregation of chromosomes mainly due to the absence of homologous pairs. Notably, during early stages of meiosis I many of allodiploid xBrassicoraphanus chromosomes behave independently with few interactions between B. rapa and R. sativus chromosomes, forming many univalent chromosomes before segregation. Chromosomes were randomly assorted at later stages of meiosis, and tetrads with unequal numbers of chromosomes were formed at completion of meiosis. Immunolocalization of HEI10 protein mediating meiotic recombination revealed that COs were more frequent in synthetic allotetraploid xBrassicoraphanus than in allodiploid, but less than in the stabilized line. These findings suggest that structural dissimilarity between B. rapa and R. sativus chromosomes prevents non-homologous interactions between the parental chromosomes in allotetraploid xBrassicoraphanus, allowing normal diploid-like meiosis when homologous pairing partners are present. This study also suggests that CO suppression between non-homologous chromosomes is required for correct meiotic progression in newly synthesized allopolyploids, which is important for the formation of viable gametes and reproductive success in the hybrid progeny.
Collapse
Affiliation(s)
- Hye Rang Park
- Department of Plant Science, Seoul National University, Seoul, South Korea
| | - Jeong Eun Park
- Department of Plant Science, Seoul National University, Seoul, South Korea
| | - Jung Hyo Kim
- Department of Plant Science, Seoul National University, Seoul, South Korea
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, South Korea
| | - Hosub Shin
- Department of Plant Science, Seoul National University, Seoul, South Korea
| | - Seung Hwa Yu
- Department of Plant Science, Seoul National University, Seoul, South Korea
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, South Korea
| | - Sehyeok Son
- Department of Plant Science, Seoul National University, Seoul, South Korea
| | - Gibum Yi
- Department of Plant Science, Seoul National University, Seoul, South Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea
| | | | - Hyun Hee Kim
- Department of Life Science, Chromosome Research Institute, Sahmyook University, Seoul, South Korea
| | - Jin Hoe Huh
- Department of Plant Science, Seoul National University, Seoul, South Korea
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, South Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
52
|
Varietal variation and chromosome behaviour during meiosis in Solanum tuberosum. Heredity (Edinb) 2020; 125:212-226. [PMID: 32523055 PMCID: PMC7490355 DOI: 10.1038/s41437-020-0328-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 06/02/2020] [Accepted: 06/02/2020] [Indexed: 02/05/2023] Open
Abstract
Naturally occurring autopolyploid species, such as the autotetraploid potato Solanum tuberosum, face a variety of challenges during meiosis. These include proper pairing, recombination and correct segregation of multiple homologous chromosomes, which can form complex multivalent configurations at metaphase I, and in turn alter allelic segregation ratios through double reduction. Here, we present a reference map of meiotic stages in diploid and tetraploid S. tuberosum using fluorescence in situ hybridisation (FISH) to differentiate individual meiotic chromosomes 1 and 2. A diploid-like behaviour at metaphase I involving bivalent configurations was predominant in all three tetraploid varieties. The crossover frequency per bivalent was significantly reduced in the tetraploids compared with a diploid variety, which likely indicates meiotic adaptation to the autotetraploid state. Nevertheless, bivalents were accompanied by a substantial frequency of multivalents, which varied by variety and by chromosome (7-48%). We identified possible sites of synaptic partner switching, leading to multivalent formation, and found potential defects in the polymerisation and/or maintenance of the synaptonemal complex in tetraploids. These findings demonstrate the rise of S. tuberosum as a model for autotetraploid meiotic recombination research and highlight constraints on meiotic chromosome configurations and chiasma frequencies as an important feature of an evolved autotetraploid meiosis.
Collapse
|
53
|
Parthenogenesis as a Solution to Hybrid Sterility: The Mechanistic Basis of Meiotic Distortions in Clonal and Sterile Hybrids. Genetics 2020; 215:975-987. [PMID: 32518062 PMCID: PMC7404241 DOI: 10.1534/genetics.119.302988] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 06/03/2020] [Indexed: 11/25/2022] Open
Abstract
Hybrid sterility is a hallmark of speciation, but the underlying molecular mechanisms remain poorly understood. Here, we report that speciation may regularly proceed through a stage at which gene flow is completely interrupted, but hybrid sterility occurs only in male hybrids whereas female hybrids reproduce asexually. We analyzed gametogenic pathways in hybrids between the fish species Cobitis elongatoides and C. taenia, and revealed that male hybrids were sterile owing to extensive asynapsis and crossover reduction among heterospecific chromosomal pairs in their gametes, which was subsequently followed by apoptosis. We found that polyploidization allowed pairing between homologous chromosomes and therefore partially rescued the bivalent formation and crossover rates in triploid hybrid males. However, it was not sufficient to overcome sterility. In contrast, both diploid and triploid hybrid females exhibited premeiotic genome endoreplication, thereby ensuring proper bivalent formation between identical chromosomal copies. This endoreplication ultimately restored female fertility but it simultaneously resulted in the obligate production of clonal gametes, preventing any interspecific gene flow. In conclusion, we demonstrate that the emergence of asexuality can remedy hybrid sterility in a sex-specific manner and contributes to the speciation process.
Collapse
|
54
|
ASY1 acts as a dosage-dependent antagonist of telomere-led recombination and mediates crossover interference in Arabidopsis. Proc Natl Acad Sci U S A 2020; 117:13647-13658. [PMID: 32499315 PMCID: PMC7306779 DOI: 10.1073/pnas.1921055117] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
During meiosis, interhomolog recombination produces crossovers and noncrossovers to create genetic diversity. Meiotic recombination frequency varies at multiple scales, with high subtelomeric recombination and suppressed centromeric recombination typical in many eukaryotes. During recombination, sister chromatids are tethered as loops to a polymerized chromosome axis, which, in plants, includes the ASY1 HORMA domain protein and REC8-cohesin complexes. Using chromatin immunoprecipitation, we show an ascending telomere-to-centromere gradient of ASY1 enrichment, which correlates strongly with REC8-cohesin ChIP-seq data. We mapped crossovers genome-wide in the absence of ASY1 and observe that telomere-led recombination becomes dominant. Surprisingly, asy1/+ heterozygotes also remodel crossovers toward subtelomeric regions at the expense of the pericentromeres. Telomeric recombination increases in asy1/+ occur in distal regions where ASY1 and REC8 ChIP enrichment are lowest in wild type. In wild type, the majority of crossovers show interference, meaning that they are more widely spaced along the chromosomes than expected by chance. To measure interference, we analyzed double crossover distances, MLH1 foci, and fluorescent pollen tetrads. Interestingly, while crossover interference is normal in asy1/+, it is undetectable in asy1 mutants, indicating that ASY1 is required to mediate crossover interference. Together, this is consistent with ASY1 antagonizing telomere-led recombination and promoting spaced crossover formation along the chromosomes via interference. These findings provide insight into the role of the meiotic axis in patterning recombination frequency within plant genomes.
Collapse
|
55
|
Derived alleles of two axis proteins affect meiotic traits in autotetraploid Arabidopsis arenosa. Proc Natl Acad Sci U S A 2020; 117:8980-8988. [PMID: 32273390 PMCID: PMC7183234 DOI: 10.1073/pnas.1919459117] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Genome duplication is an important factor in the evolution of eukaryotic lineages, but it poses challenges for the regular segregation of chromosomes in meiosis and thus fertility. To survive, polyploid lineages must evolve to overcome initial challenges that accompany doubling the chromosome complement. Understanding how evolution can solve the challenge of segregating multiple homologous chromosomes promises fundamental insights into the mechanisms of genome maintenance and could open polyploidy as a crop improvement tool. We previously identified candidate genes for meiotic stabilization of Arabidopsis arenosa, which has natural diploid and tetraploid variants. Here we test the role that derived alleles of two genes under selection in tetraploid A. arenosa might have in meiotic stabilization in tetraploids. Polyploidy, which results from whole genome duplication (WGD), has shaped the long-term evolution of eukaryotic genomes in all kingdoms. Polyploidy is also implicated in adaptation, domestication, and speciation. Yet when WGD newly occurs, the resulting neopolyploids face numerous challenges. A particularly pernicious problem is the segregation of multiple chromosome copies in meiosis. Evolution can overcome this challenge, likely through modification of chromosome pairing and recombination to prevent deleterious multivalent chromosome associations, but the molecular basis of this remains mysterious. We study mechanisms underlying evolutionary stabilization of polyploid meiosis using Arabidopsis arenosa, a relative of A. thaliana with natural diploid and meiotically stable autotetraploid populations. Here we investigate the effects of ancestral (diploid) versus derived (tetraploid) alleles of two genes, ASY1 and ASY3, that were among several meiosis genes under selection in the tetraploid lineage. These genes encode interacting proteins critical for formation of meiotic chromosome axes, long linear multiprotein structures that form along sister chromatids in meiosis and are essential for recombination, chromosome segregation, and fertility. We show that derived alleles of both genes are associated with changes in meiosis, including reduced formation of multichromosome associations, reduced axis length, and a tendency to more rod-shaped bivalents in metaphase I. Thus, we conclude that ASY1 and ASY3 are components of a larger multigenic solution to polyploid meiosis in which individual genes have subtle effects. Our results are relevant for understanding polyploid evolution and more generally for understanding how meiotic traits can evolve when faced with challenges.
Collapse
|
56
|
Zadesenets KS, Jetybayev IY, Schärer L, Rubtsov NB. Genome and Karyotype Reorganization after Whole Genome Duplication in Free-Living Flatworms of the Genus Macrostomum. Int J Mol Sci 2020; 21:E680. [PMID: 31968653 PMCID: PMC7013459 DOI: 10.3390/ijms21020680] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 01/09/2020] [Indexed: 01/31/2023] Open
Abstract
The genus Macrostomum represents a diverse group of rhabditophoran flatworms with >200 species occurring around the world. Earlier we uncovered karyotype instability linked to hidden polyploidy in both M. lignano (2n = 8) and its sibling species M. janickei (2n = 10), prompting interest in the karyotype organization of close relatives. In this study, we investigated chromosome organization in two recently described and closely related Macrostomum species, M. mirumnovem and M. cliftonensis, and explored karyotype instability in laboratory lines and cultures of M. lignano (DV1/10, 2n = 10) and M. janickei in more detail. We revealed that three of the four studied species are characterized by karyotype instability, while M. cliftonensis showed a stable 2n = 6 karyotype. Next, we performed comparative cytogenetics of these species using fluorescent in situ hybridization (FISH) with a set of DNA probes (including microdissected DNA probes generated from M. lignano chromosomes, rDNA, and telomeric DNA). To explore the chromosome organization of the unusual 2n = 9 karyotype discovered in M. mirumnovem, we then generated chromosome-specific DNA probes for all chromosomes of this species. Similar to M. lignano and M. janickei, our findings suggest that M. mirumnovem arose via whole genome duplication (WGD) followed by considerable chromosome reshuffling. We discuss possible evolutionary scenarios for the emergence and reorganization of the karyotypes of these Macrostomum species and consider their suitability as promising animal models for studying the mechanisms and regularities of karyotype and genome evolution after a recent WGD.
Collapse
Affiliation(s)
- Kira S. Zadesenets
- The Federal Research Center Institute of Cytology and Genetics SB RAS, Lavrentiev ave. 10, 630090 Novosibirsk, Russia;
| | - Ilyas Y. Jetybayev
- The Federal Research Center Institute of Cytology and Genetics SB RAS, Lavrentiev ave. 10, 630090 Novosibirsk, Russia;
| | - Lukas Schärer
- Evolutionary Biology, Zoological Institute, University of Basel, CH-4051 Basel, Switzerland;
| | - Nikolay B. Rubtsov
- The Federal Research Center Institute of Cytology and Genetics SB RAS, Lavrentiev ave. 10, 630090 Novosibirsk, Russia;
- Department of Cytology and Genetics, Novosibirsk State University, Pirogova str. 2, 630090 Novosibirsk, Russia
| |
Collapse
|
57
|
Abstract
Arabidopsis arenosa has recently become established as a model organism for investigating how meiosis has evolved to overcome the meiotic challenges faced by newly formed autotetraploids. Here, we describe a protocol for the preparation of spread, immunolabeled prophase I chromosomes from established A. arenosa autotetraploids for imaging with three-dimensional structured illumination microscopy (3D-SIM). This technique allows us to dissect the unique synaptic behavior in A. arenosa and identify synaptic partner switch sites that are unresolvable with conventional widefield microscopy.
Collapse
|
58
|
Koide Y, Kuniyoshi D, Kishima Y. Fertile Tetraploids: New Resources for Future Rice Breeding? FRONTIERS IN PLANT SCIENCE 2020; 11:1231. [PMID: 32849760 PMCID: PMC7432136 DOI: 10.3389/fpls.2020.01231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/27/2020] [Indexed: 05/02/2023]
Abstract
Ploidy manipulation is an efficient technique for the development of novel phenotypes in plant breeding. However, in rice (Oryza sativa L.), severe seed sterility has been considered a barrier preventing cultivation of autotetraploids since the 1930s. Recently, a series of studies identified two fertile autotetraploids, identified herein as the PMeS (Polyploid Meiosis Stability) and Neo-Tetraploid lines. Here, we summarize their characteristics, focusing on the recovery of seed fertility, and discuss potential future directions of study in this area, providing a comprehensive understanding of current progress in the study of fertile tetraploid rice, a classical, but promising, concept for rice breeding.
Collapse
|
59
|
Zhao Q, Wang Y, Bi Y, Zhai Y, Yu X, Cheng C, Wang P, Li J, Lou Q, Chen J. Oligo-painting and GISH reveal meiotic chromosome biases and increased meiotic stability in synthetic allotetraploid Cucumis ×hytivus with dysploid parental karyotypes. BMC PLANT BIOLOGY 2019; 19:471. [PMID: 31694540 PMCID: PMC6833230 DOI: 10.1186/s12870-019-2060-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 09/27/2019] [Indexed: 05/10/2023]
Abstract
BACKGROUND Meiosis of newly formed allopolyploids frequently encounter perturbations induced by the merging of divergent and hybridizable genomes. However, to date, the meiotic properties of allopolyploids with dysploid parental karyotypes have not been studied in detail. The allotetraploid Cucumis ×hytivus (HHCC, 2n = 38) was obtained from interspecific hybridization between C. sativus (CC, 2n = 14) and C. hystrix (HH, 2n = 24) followed by chromosome doubling. The results of this study thus offer an excellent opportunity to explore the meiotic properties of allopolyploids with dysploid parental karyotypes. RESULTS In this report, we describe the meiotic properties of five chromosomes (C5, C7, H1, H9 and H10) and two genomes in interspecific hybrids and C. ×hytivus (the 4th and 14th inbred family) through oligo-painting and genomic in situ hybridization (GISH). We show that 1) only two translocations carrying C5-oligo signals were detected on the chromosomes C2 and C4 of one 14th individual by the karyotyping of eight 4th and 36 14th plants based on C5- and C7-oligo painting, and possible cytological evidence was observed in meiosis of the 4th generation; 2) individual chromosome have biases for homoeologous pairing and univalent formation in F1 hybrids and allotetraploids; 3) extensive H-chromosome autosyndetic pairings (e.g., H-H, 25.5% PMCs) were observed in interspecific F1 hybrid, whereas no C-chromosome autosyndetic pairings were observed (e.g. C-C); 4) the meiotic properties of two subgenomes have significant biases in allotetraploids: H-subgenome exhibits higher univalent and chromosome lagging frequencies than C-subgenome; and 5) increased meiotic stability in the S14 generation compared with the S4 generation, including synchronous meiosis behavior, reduced incidents of univalent and chromosome lagging. CONCLUSIONS These results suggest that the meiotic behavior of two subgenomes has dramatic biases in response to interspecific hybridization and allopolyploidization, and the meiotic behavior harmony of subgenomes is a key subject of meiosis evolution in C. ×hytivus. This study helps to elucidate the meiotic properties and evolution of nascent allopolyploids with the dysploid parental karyotypes.
Collapse
Affiliation(s)
- Qinzheng Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No.1, Nanjing, 210095, China
| | - Yunzhu Wang
- Institue of Horticulture, Zhejiang Academy of Agriculture Sciences, Hangzhou, 310021, China
| | - Yunfei Bi
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No.1, Nanjing, 210095, China
| | - Yufei Zhai
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No.1, Nanjing, 210095, China
| | - Xiaqing Yu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No.1, Nanjing, 210095, China
| | - Chunyan Cheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No.1, Nanjing, 210095, China
| | - Panqiao Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No.1, Nanjing, 210095, China
| | - Ji Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No.1, Nanjing, 210095, China
| | - Qunfeng Lou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No.1, Nanjing, 210095, China.
| | - Jinfeng Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No.1, Nanjing, 210095, China.
| |
Collapse
|
60
|
Bourke PM, van Geest G, Voorrips RE, Jansen J, Kranenburg T, Shahin A, Visser RGF, Arens P, Smulders MJM, Maliepaard C. polymapR-linkage analysis and genetic map construction from F1 populations of outcrossing polyploids. Bioinformatics 2019; 34:3496-3502. [PMID: 29722786 PMCID: PMC6184683 DOI: 10.1093/bioinformatics/bty371] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 05/09/2018] [Indexed: 12/20/2022] Open
Abstract
Motivation Polyploid species carry more than two copies of each chromosome, a condition found in many of the world’s most important crops. Genetic mapping in polyploids is more complex than in diploid species, resulting in a lack of available software tools. These are needed if we are to realize all the opportunities offered by modern genotyping platforms for genetic research and breeding in polyploid crops. Results polymapR is an R package for genetic linkage analysis and integrated genetic map construction from bi-parental populations of outcrossing autopolyploids. It can currently analyse triploid, tetraploid and hexaploid marker datasets and is applicable to various crops including potato, leek, alfalfa, blueberry, chrysanthemum, sweet potato or kiwifruit. It can detect, estimate and correct for preferential chromosome pairing, and has been tested on high-density marker datasets from potato, rose and chrysanthemum, generating high-density integrated linkage maps in all of these crops. Availability and implementation polymapR is freely available under the general public license from the Comprehensive R Archive Network (CRAN) at http://cran.r-project.org/package=polymapR. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Peter M Bourke
- Plant Breeding, Wageningen University & Research, Wageningen, PB, The Netherlands
| | - Geert van Geest
- Plant Breeding, Wageningen University & Research, Wageningen, PB, The Netherlands.,Deliflor Chrysanten B.V, Maasdijk, BS, The Netherlands
| | - Roeland E Voorrips
- Plant Breeding, Wageningen University & Research, Wageningen, PB, The Netherlands
| | - Johannes Jansen
- Biometris, Wageningen University & Research, Wageningen, PB, The Netherlands
| | - Twan Kranenburg
- Plant Breeding, Wageningen University & Research, Wageningen, PB, The Netherlands
| | - Arwa Shahin
- Plant Breeding, Wageningen University & Research, Wageningen, PB, The Netherlands.,Van Zanten Breeding B. V, Rijsenhout, EW, The Netherlands
| | - Richard G F Visser
- Plant Breeding, Wageningen University & Research, Wageningen, PB, The Netherlands
| | - Paul Arens
- Plant Breeding, Wageningen University & Research, Wageningen, PB, The Netherlands
| | - Marinus J M Smulders
- Plant Breeding, Wageningen University & Research, Wageningen, PB, The Netherlands
| | - Chris Maliepaard
- Plant Breeding, Wageningen University & Research, Wageningen, PB, The Netherlands
| |
Collapse
|
61
|
Wang S, Liu Y, Shang Y, Zhai B, Yang X, Kleckner N, Zhang L. Crossover Interference, Crossover Maturation, and Human Aneuploidy. Bioessays 2019; 41:e1800221. [PMID: 31424607 PMCID: PMC6756933 DOI: 10.1002/bies.201800221] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 07/23/2019] [Indexed: 12/12/2022]
Abstract
A striking feature of human female sexual reproduction is the high level of gametes that exhibit an aberrant number of chromosomes (aneuploidy). A high baseline observed in women of prime reproductive age is followed by a dramatic increase in older women. Proper chromosome segregation requires one or more DNA crossovers (COs) between homologous maternal and paternal chromosomes, in combination with cohesion between sister chromatid arms. In human females, CO designations occur normally, according to the dictates of CO interference, giving early CO-fated intermediates. However, ≈25% of these intermediates fail to mature to final CO products. This effect explains the high baseline of aneuploidy and is predicted to synergize with age-dependent cohesion loss to explain the maternal age effect. Here, modern advances in the understanding of crossing over and CO interference are reviewed, the implications of human female CO maturation inefficiency are further discussed, and areas of interest for future studies are suggested.
Collapse
Affiliation(s)
- Shunxin Wang
- Center for Reproductive Medicine, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Key Laboratory of Reproductive Endocrinology of Ministry of Education, Jinan, Shandong 250001, China
| | - Yanlei Liu
- Center for Reproductive Medicine, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Key Laboratory of Reproductive Endocrinology of Ministry of Education, Jinan, Shandong 250001, China
| | - Yongliang Shang
- Center for Reproductive Medicine, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Key Laboratory of Reproductive Endocrinology of Ministry of Education, Jinan, Shandong 250001, China
| | - Binyuan Zhai
- Center for Reproductive Medicine, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Key Laboratory of Reproductive Endocrinology of Ministry of Education, Jinan, Shandong 250001, China
| | - Xiao Yang
- Center for Reproductive Medicine, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Key Laboratory of Reproductive Endocrinology of Ministry of Education, Jinan, Shandong 250001, China
| | - Nancy Kleckner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Liangran Zhang
- Center for Reproductive Medicine, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Key Laboratory of Reproductive Endocrinology of Ministry of Education, Jinan, Shandong 250001, China
- Advanced Medical Research Institute, Shandong University, Jinan, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
62
|
Li N, Xu C, Zhang A, Lv R, Meng X, Lin X, Gong L, Wendel JF, Liu B. DNA methylation repatterning accompanying hybridization, whole genome doubling and homoeolog exchange in nascent segmental rice allotetraploids. THE NEW PHYTOLOGIST 2019; 223:979-992. [PMID: 30919978 DOI: 10.1111/nph.15820] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 03/21/2019] [Indexed: 05/18/2023]
Abstract
Allopolyploidization, which entails interspecific hybridization and whole genome duplication (WGD), is associated with emergent genetic and epigenetic instabilities that are thought to contribute to adaptation and evolution. One frequent genomic consequence of nascent allopolyploidization is homoeologous exchange (HE), which arises from compromised meiotic fidelity and generates genetically and phenotypically variable progenies. Here, we used a genetically tractable synthetic rice segmental allotetraploid system to interrogate genome-wide DNA methylation and gene expression responses and outcomes to the separate and combined effects of hybridization, WGD and HEs. Progenies of the tetraploid rice were genomically diverse due to genome-wide HEs that affected all chromosomes, yet they exhibited overall methylome stability. Nonetheless, regional variation of cytosine methylation states was widespread in the tetraploids. Transcriptome profiling revealed genome-wide alteration of gene expression, which at least in part associates with changes in DNA methylation. Intriguingly, changes of DNA methylation and gene expression could be decoupled from hybridity and sustained and amplified by HEs. Our results suggest that HEs, a prominent genetic consequence of nascent allopolyploidy, can exacerbate, diversify and perpetuate the effects of allopolyploidization on epigenetic and gene expression variation, and hence may contribute to allopolyploid evolution.
Collapse
Affiliation(s)
- Ning Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Chunming Xu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Ai Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Ruili Lv
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Xinchao Meng
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Xiuyun Lin
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Lei Gong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
- Department of Ecology, Evolution & Organismal Biology, Iowa State University, Ames, IA, 50011, USA
| | - Jonathan F Wendel
- Department of Ecology, Evolution & Organismal Biology, Iowa State University, Ames, IA, 50011, USA
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| |
Collapse
|
63
|
Aggarwal DD, Rybnikov S, Cohen I, Frenkel Z, Rashkovetsky E, Michalak P, Korol AB. Desiccation-induced changes in recombination rate and crossover interference in Drosophila melanogaster: evidence for fitness-dependent plasticity. Genetica 2019; 147:291-302. [PMID: 31240599 DOI: 10.1007/s10709-019-00070-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 06/18/2019] [Indexed: 12/31/2022]
Abstract
Meiotic recombination is evolutionarily ambiguous, as being associated with both benefits and costs to its bearers, with the resultant dependent on a variety of conditions. While existing theoretical models explain the emergence and maintenance of recombination, some of its essential features remain underexplored. Here we focus on one such feature, recombination plasticity, and test whether recombination response to stress is fitness-dependent. We compare desiccation stress effects on recombination rate and crossover interference in chromosome 3 between desiccation-sensitive and desiccation-tolerant Drosophila lines. We show that relative to desiccation-tolerant genotypes, desiccation-sensitive genotypes exhibit a significant segment-specific increase in single- and double-crossover frequencies across the pericentromeric region of chromosome 3. Significant changes (relaxation) in crossover interference were found for the interval pairs flanking the centromere and extending to the left arm of the chromosome. These results indicate that desiccation is a recombinogenic factor and that desiccation-induced changes in both recombination rate and crossover interference are fitness-dependent, with a tendency of less fitted individuals to produce more variable progeny. Such dependence may play an important role in the regulation of genetic variation in populations experiencing environmental challenges.
Collapse
Affiliation(s)
- Dau Dayal Aggarwal
- Institute of Evolution, University of Haifa, 3498838, Haifa, Israel.,Department of Zoology, Banaras Hindu University, Varanasi, 221005, India
| | - Sviatoslav Rybnikov
- Institute of Evolution, University of Haifa, 3498838, Haifa, Israel.,Department of Evolutionary and Environmental Biology, University of Haifa, 3498838, Haifa, Israel
| | - Irit Cohen
- Institute of Evolution, University of Haifa, 3498838, Haifa, Israel.,Department of Evolutionary and Environmental Biology, University of Haifa, 3498838, Haifa, Israel
| | - Zeev Frenkel
- Department of Mathematics and Computational Science, Ariel University, 40700, Ariel, Israel
| | | | - Pawel Michalak
- Institute of Evolution, University of Haifa, 3498838, Haifa, Israel.,Edward Via College of Osteopathic Medicine, Blacksburg, VA, 24060, USA.,Center for One Health Research, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, 24060, USA
| | - Abraham B Korol
- Institute of Evolution, University of Haifa, 3498838, Haifa, Israel. .,Department of Evolutionary and Environmental Biology, University of Haifa, 3498838, Haifa, Israel.
| |
Collapse
|
64
|
Gonzalo A, Lucas MO, Charpentier C, Sandmann G, Lloyd A, Jenczewski E. Reducing MSH4 copy number prevents meiotic crossovers between non-homologous chromosomes in Brassica napus. Nat Commun 2019; 10:2354. [PMID: 31142748 PMCID: PMC6541637 DOI: 10.1038/s41467-019-10010-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 04/11/2019] [Indexed: 02/06/2023] Open
Abstract
In allopolyploids, correct chromosome segregation requires suppression of non-homologous crossovers while levels of homologous crossovers are ensured. To date, no mechanism able to specifically inhibit non-homologous crossovers has been described in allopolyploids other than in bread wheat. Here, we show that reducing the number of functional copies of MSH4, an essential gene for the main crossover pathway, prevents non-homologous crossovers in allotetraploid Brassica napus. We show that non-homologous crossovers originate almost exclusively from the MSH4-dependent recombination pathway and that their numbers decrease when MSH4 returns to single copy in B. napus; by contrast, homologous crossovers remain unaffected by MSH4 duplicate loss. We also demonstrate that MSH4 systematically returns to single copy following numerous independent polyploidy events, a pattern that is probably not by chance. These results suggest that stabilization of allopolyploid meiosis can be enhanced by loss of a key meiotic recombination gene.
Collapse
Affiliation(s)
- Adrián Gonzalo
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000, Versailles, France.,Department of Cell and Developmental Biology, John Innes Centre, Norwich, NR4 7UH, UK
| | - Marie-Odile Lucas
- INRA UMR1349 Institut de Génétique, Environnement et Protection des Plantes, Le Rheu, 35653, France
| | - Catherine Charpentier
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000, Versailles, France
| | - Greta Sandmann
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000, Versailles, France
| | - Andrew Lloyd
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000, Versailles, France.,Institute of Biological, Environmental, and Rural Sciences, Aberystwyth University, Aberystwyth, SY23 3EB, UK
| | - Eric Jenczewski
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000, Versailles, France.
| |
Collapse
|
65
|
Kryvokhyzha D, Milesi P, Duan T, Orsucci M, Wright SI, Glémin S, Lascoux M. Towards the new normal: Transcriptomic convergence and genomic legacy of the two subgenomes of an allopolyploid weed (Capsella bursa-pastoris). PLoS Genet 2019; 15:e1008131. [PMID: 31083657 PMCID: PMC6532933 DOI: 10.1371/journal.pgen.1008131] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 05/23/2019] [Accepted: 04/11/2019] [Indexed: 02/07/2023] Open
Abstract
Allopolyploidy has played a major role in plant evolution but its impact on genome diversity and expression patterns remains to be understood. Some studies found important genomic and transcriptomic changes in allopolyploids, whereas others detected a strong parental legacy and more subtle changes. The allotetraploid C. bursa-pastoris originated around 100,000 years ago and one could expect the genetic polymorphism of the two subgenomes to follow similar trajectories and their transcriptomes to start functioning together. To test this hypothesis, we sequenced the genomes and the transcriptomes (three tissues) of allotetraploid C. bursa-pastoris and its parental species, the outcrossing C. grandiflora and the self-fertilizing C. orientalis. Comparison of the divergence in expression between subgenomes, on the one hand, and divergence in expression between the parental species, on the other hand, indicated a strong parental legacy with a majority of genes exhibiting a conserved pattern and cis-regulation. However, a large proportion of the genes that were differentially expressed between the two subgenomes, were also under trans-regulation reflecting the establishment of a new regulatory pattern. Parental dominance varied among tissues: expression in flowers was closer to that of C. orientalis and expression in root and leaf to that of C. grandiflora. Since deleterious mutations accumulated preferentially on the C. orientalis subgenome, the bias in expression towards C. orientalis observed in flowers indicates that expression changes could be adaptive and related to the selfing syndrome, while biases in the roots and leaves towards the C. grandiflora subgenome may be reflective of the differential genetic load. Most plant species have a polyploid at some stage of their ancestry. Polyploidy, genome doubling through either multiple copies of a single species or through genomes of different species coming into the same nucleus, is therefore a crucial step in plant evolution. Understanding its impact on basic biological functions is thus a matter of interest. Shepherd’s purse (Capsella bursa-pastoris) is a major weed that appeared about 100,000 years ago through hybridization of two diploid species of the same genus. In the present project, we measured genetic diversity and analyzed gene expression patterns in flowers, roots, and leaves of C. bursa-pastoris individuals as well as in its two parental species, the outcrossing C. grandiflora and the self-fertilizing C. orientalis. Our data shows that, after 100,000 generations of evolution, the origin of the two subgenomes can still be seen: the genome inherited from C. grandiflora still differs from the one inherited from self-fertilizing C. orientalis. However, there are also signs that the two genomes have started to work together and are jointly regulated, and the way expression pattern varied across the three tissues indicates that the evolution of gene expression was adaptive.
Collapse
Affiliation(s)
- Dmytro Kryvokhyzha
- Plant Ecology and Evolution, Department of Ecology and Genetics, Evolutionary Biology Centre and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Pascal Milesi
- Plant Ecology and Evolution, Department of Ecology and Genetics, Evolutionary Biology Centre and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Tianlin Duan
- Plant Ecology and Evolution, Department of Ecology and Genetics, Evolutionary Biology Centre and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Marion Orsucci
- Plant Ecology and Evolution, Department of Ecology and Genetics, Evolutionary Biology Centre and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Stephen I. Wright
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada
| | - Sylvain Glémin
- Plant Ecology and Evolution, Department of Ecology and Genetics, Evolutionary Biology Centre and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- CNRS, Univ. Rennes, ECOBIO [(Ecosystèmes, biodiversité, évolution)] - UMR 6553, Rennes, France
| | - Martin Lascoux
- Plant Ecology and Evolution, Department of Ecology and Genetics, Evolutionary Biology Centre and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
66
|
Diversity and Determinants of Meiotic Recombination Landscapes. Trends Genet 2019; 35:359-370. [DOI: 10.1016/j.tig.2019.02.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/06/2019] [Accepted: 02/08/2019] [Indexed: 11/19/2022]
|
67
|
Bourke PM, van Geest G, Voorrips RE, Jansen J, Kranenburg T, Shahin A, Visser RGF, Arens P, Smulders MJM, Maliepaard C. polymapR-linkage analysis and genetic map construction from F1 populations of outcrossing polyploids. BIOINFORMATICS (OXFORD, ENGLAND) 2019; 35:540. [PMID: 30629112 DOI: 10.1101/228817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
AbstractMotivationPolyploid species carry more than two copies of each chromosome, a condition found in many of the world’s most important crops. Genetic mapping in polyploids is more complex than in diploid species, resulting in a lack of available software tools. These are needed if we are to realise all the opportunities offered by modern genotyping platforms for genetic research and breeding in polyploid crops.ResultspolymapR is an R package for genetic linkage analysis and integrated genetic map construction from bi-parental populations of outcrossing autopolyploids. It can currently analyse triploid, tetraploid and hexaploid marker datasets and is applicable to various crops including potato, leek, alfalfa, blueberry, chrysanthemum, sweet potato or kiwifruit. It can detect, estimate and correct for preferential chromosome pairing, and has been tested on high-density marker datasets from potato, rose and chrysanthemum, generating high-density integrated linkage maps in all of these crops.Availability and ImplementationpolymapR is freely available under the general public license from the Comprehensive R Archive Network (CRAN) athttp://cran.r-project.org/packages=polymapR.ContactChris Maliepaard chris.maliepaard@wur.nl or Roeland E. Voorrips roeland.voorrips@wur.nl
Collapse
|
68
|
Gerard D, Ferrão LFV, Garcia AAF, Stephens M. Genotyping Polyploids from Messy Sequencing Data. Genetics 2018; 210:789-807. [PMID: 30185430 PMCID: PMC6218231 DOI: 10.1534/genetics.118.301468] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 08/21/2018] [Indexed: 12/30/2022] Open
Abstract
Detecting and quantifying the differences in individual genomes (i.e., genotyping), plays a fundamental role in most modern bioinformatics pipelines. Many scientists now use reduced representation next-generation sequencing (NGS) approaches for genotyping. Genotyping diploid individuals using NGS is a well-studied field, and similar methods for polyploid individuals are just emerging. However, there are many aspects of NGS data, particularly in polyploids, that remain unexplored by most methods. Our contributions in this paper are fourfold: (i) We draw attention to, and then model, common aspects of NGS data: sequencing error, allelic bias, overdispersion, and outlying observations. (ii) Many datasets feature related individuals, and so we use the structure of Mendelian segregation to build an empirical Bayes approach for genotyping polyploid individuals. (iii) We develop novel models to account for preferential pairing of chromosomes, and harness these for genotyping. (iv) We derive oracle genotyping error rates that may be used for read depth suggestions. We assess the accuracy of our method in simulations, and apply it to a dataset of hexaploid sweet potato (Ipomoea batatas). An R package implementing our method is available at https://cran.r-project.org/package=updog.
Collapse
Affiliation(s)
- David Gerard
- Department of Mathematics and Statistics, American University, Washington, DC 20016
| | | | - Antonio Augusto Franco Garcia
- Department of Genetics, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, 13418-900, Brazil
| | - Matthew Stephens
- Department of Human Genetics, University of Chicago, Illinois 60637
- Department of Statistics, University of Chicago, Illinois 60637
| |
Collapse
|
69
|
Bourke PM, van Geest G, Voorrips RE, Jansen J, Kranenburg T, Shahin A, Visser RGF, Arens P, Smulders MJM, Maliepaard C. polymapR-linkage analysis and genetic map construction from F1 populations of outcrossing polyploids. BIOINFORMATICS (OXFORD, ENGLAND) 2018. [PMID: 29722786 DOI: 10.1093/bioinformatica/bty371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
MOTIVATION Polyploid species carry more than two copies of each chromosome, a condition found in many of the world's most important crops. Genetic mapping in polyploids is more complex than in diploid species, resulting in a lack of available software tools. These are needed if we are to realize all the opportunities offered by modern genotyping platforms for genetic research and breeding in polyploid crops. RESULTS polymapR is an R package for genetic linkage analysis and integrated genetic map construction from bi-parental populations of outcrossing autopolyploids. It can currently analyse triploid, tetraploid and hexaploid marker datasets and is applicable to various crops including potato, leek, alfalfa, blueberry, chrysanthemum, sweet potato or kiwifruit. It can detect, estimate and correct for preferential chromosome pairing, and has been tested on high-density marker datasets from potato, rose and chrysanthemum, generating high-density integrated linkage maps in all of these crops. AVAILABILITY AND IMPLEMENTATION polymapR is freely available under the general public license from the Comprehensive R Archive Network (CRAN) at http://cran.r-project.org/package=polymapR. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Peter M Bourke
- Plant Breeding, Wageningen University & Research, Wageningen, PB, The Netherlands
| | - Geert van Geest
- Plant Breeding, Wageningen University & Research, Wageningen, PB, The Netherlands
- Deliflor Chrysanten B.V, Maasdijk, BS, The Netherlands
| | - Roeland E Voorrips
- Plant Breeding, Wageningen University & Research, Wageningen, PB, The Netherlands
| | - Johannes Jansen
- Biometris, Wageningen University & Research, Wageningen, PB, The Netherlands
| | - Twan Kranenburg
- Plant Breeding, Wageningen University & Research, Wageningen, PB, The Netherlands
| | - Arwa Shahin
- Plant Breeding, Wageningen University & Research, Wageningen, PB, The Netherlands
- Van Zanten Breeding B. V, Rijsenhout, EW, The Netherlands
| | - Richard G F Visser
- Plant Breeding, Wageningen University & Research, Wageningen, PB, The Netherlands
| | - Paul Arens
- Plant Breeding, Wageningen University & Research, Wageningen, PB, The Netherlands
| | - Marinus J M Smulders
- Plant Breeding, Wageningen University & Research, Wageningen, PB, The Netherlands
| | - Chris Maliepaard
- Plant Breeding, Wageningen University & Research, Wageningen, PB, The Netherlands
| |
Collapse
|
70
|
Bian Y, Yang C, Ou X, Zhang Z, Wang B, Ma W, Gong L, Zhang H, Liu B. Meiotic chromosome stability of a newly formed allohexaploid wheat is facilitated by selection under abiotic stress as a spandrel. THE NEW PHYTOLOGIST 2018; 220:262-277. [PMID: 29916206 DOI: 10.1111/nph.15267] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 05/11/2018] [Indexed: 05/25/2023]
Abstract
Polyploidy is a prominent route to speciation in plants; however, this entails resolving the challenges of meiotic instability facing abrupt doubling of chromosome complement. This issue remains poorly understood. We subjected progenies of a synthetic hexaploid wheat, analogous to natural common wheat, but exhibiting extensive meiotic chromosome instability, to heat or salt stress. We selected stress-tolerant cohorts and generated their progenies under normal condition. We conducted fluorescent in situ hybridization/genomic in situ hybridization-based meiotic/mitotic analysis, RNA-Seq and virus-induced gene silencing (VIGS)-mediated assay of meiosis candidate genes. We show that heritability of stress tolerance concurred with increased euploidy frequency due to enhanced meiosis stability. We identified a set of candidate meiosis genes with altered expression in the stress-tolerant plants vs control, but the expression was similar to that of common wheat (cv Chinese Spring, CS). We demonstrate VIGS-mediated downregulation of individual candidate meiosis genes in CS is sufficient to confer an unstable meiosis phenotype mimicking the synthetic wheat. Our results suggest that heritable regulatory changes of preexisting meiosis genes may be hitchhiked as a spandrel of stress tolerance, which significantly improves meiosis stability in the synthetic wheat. Our findings implicate a plausible scenario that the meiosis machinery in hexaploid wheat may have already started to evolve at its onset stage.
Collapse
Affiliation(s)
- Yao Bian
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Chunwu Yang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Xiufang Ou
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Zhibin Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Bin Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Weiwei Ma
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Lei Gong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Huakun Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Colney, Norwich, NR4 7UH, UK
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| |
Collapse
|
71
|
He L, Braz GT, Torres GA, Jiang J. Chromosome painting in meiosis reveals pairing of specific chromosomes in polyploid Solanum species. Chromosoma 2018; 127:505-513. [PMID: 30242479 DOI: 10.1007/s00412-018-0682-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 09/13/2018] [Accepted: 09/14/2018] [Indexed: 10/28/2022]
Abstract
Analysis of chromosome pairing has been an important tool to assess the genetic similarity of homologous and homoeologous chromosomes in polyploids. However, it is technically challenging to monitor the pairing of specific chromosomes in polyploid species, especially for plant species with a large number of small chromosomes. We developed oligonucleotide-based painting probes for four different potato chromosomes. We demonstrate that these probes are robust enough to monitor a single chromosome throughout the prophase I of meiosis in polyploid Solanum species. Cultivated potato (Solanum tuberosum, 2n = 4x = 48) is an autotetraploid. We demonstrate that the four copies of each potato chromosome pair as a quadrivalent in 66-78% of the meiotic cells at the pachytene stage. Solanum demissum (2n = 6x = 72) is a hexaploid and has been controversial regarding its nature as an autopolyploid or allopolyploid. Interestingly, no hexavalent pairing was observed in meiosis. Instead, we observed three independent bivalents in 83-98% of the meiotic cells at late diakinesis and early metaphase I for the four chromosomes. These results suggest that S. demissum has evolved into a cytologically stable state with predominantly bivalent pairing in meiosis.
Collapse
Affiliation(s)
- Li He
- Horticulture Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, Sichuan, China.,Department of Horticulture, University of Wisconsin-Madison, Madison, WI, 53706, USA.,Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA.,Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
| | - Guilherme T Braz
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI, 53706, USA.,Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA.,Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA.,Departmento de Biologia, Universidade Federal de Lavras, Lavras, MG, 37200, Brazil
| | - Giovana A Torres
- Departmento de Biologia, Universidade Federal de Lavras, Lavras, MG, 37200, Brazil
| | - Jiming Jiang
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI, 53706, USA. .,Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA. .,Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
72
|
Baduel P, Bray S, Vallejo-Marin M, Kolář F, Yant L. The “Polyploid Hop”: Shifting Challenges and Opportunities Over the Evolutionary Lifespan of Genome Duplications. Front Ecol Evol 2018. [DOI: 10.3389/fevo.2018.00117] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
73
|
Pelé A, Rousseau-Gueutin M, Chèvre AM. Speciation Success of Polyploid Plants Closely Relates to the Regulation of Meiotic Recombination. FRONTIERS IN PLANT SCIENCE 2018; 9:907. [PMID: 30002669 PMCID: PMC6031745 DOI: 10.3389/fpls.2018.00907] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 06/08/2018] [Indexed: 05/18/2023]
Abstract
Polyploidization is a widespread phenomenon, especially in flowering plants that have all undergone at least one event of whole genome duplication during their evolutionary history. Consequently, a large range of plants, including many of the world's crops, combines more than two sets of chromosomes originating from the same (autopolyploids) or related species (allopolyploids). Depending on the polyploid formation pathway, different patterns of recombination will be promoted, conditioning the level of heterozygosity. A polyploid population harboring a high level of heterozygosity will produce more genetically diverse progenies. Some of these individuals may show a better adaptability to different ecological niches, increasing their chance for successful establishment through natural selection. Another condition for young polyploids to survive corresponds to the formation of well-balanced gametes, assuring a sufficient level of fertility. In this review, we discuss the consequences of polyploid formation pathways, meiotic behavior and recombination regulation on the speciation success and maintenance of polyploid species.
Collapse
Affiliation(s)
- Alexandre Pelé
- Plant Breeding, Wageningen University & Research, Wageningen, Netherlands
- Institut de Génétique, Environnement et Protection des Plantes, Institut National de la Recherche Agronomique, Agrocampus Ouest, Université de Rennes 1, Rennes, France
| | - Mathieu Rousseau-Gueutin
- Institut de Génétique, Environnement et Protection des Plantes, Institut National de la Recherche Agronomique, Agrocampus Ouest, Université de Rennes 1, Rennes, France
| | - Anne-Marie Chèvre
- Institut de Génétique, Environnement et Protection des Plantes, Institut National de la Recherche Agronomique, Agrocampus Ouest, Université de Rennes 1, Rennes, France
| |
Collapse
|
74
|
Vieira MLC, Almeida CB, Oliveira CA, Tacuatiá LO, Munhoz CF, Cauz-Santos LA, Pinto LR, Monteiro-Vitorello CB, Xavier MA, Forni-Martins ER. Revisiting Meiosis in Sugarcane: Chromosomal Irregularities and the Prevalence of Bivalent Configurations. Front Genet 2018; 9:213. [PMID: 29963076 PMCID: PMC6010537 DOI: 10.3389/fgene.2018.00213] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Accepted: 05/25/2018] [Indexed: 12/01/2022] Open
Abstract
Traditional sugarcane cultivars (Saccharum officinarum) proved highly susceptible to diseases, and this led breeders to progress to interspecific crosses resulting in disease resistance. A backcrossing program to S. officinarum was then required to boost sucrose content. Clonal selection across generations and incorporation of other germplasm into cultivated backgrounds established the (narrow) genetic base of modern cultivars (Saccharum spp.), which have a man-made genome. The genome complexity has inspired several molecular studies that have elucidated aspects of sugarcane genome constitution, architecture, and cytogenetics. However, there is a critical shortage of information on chromosome behavior throughout meiosis in modern cultivars. In this study, we examined the microsporogenesis of a contemporary variety, providing a detailed analysis of the meiotic process and chromosome association at diakinesis, using FISH with centromeric probes. Chromosomal abnormalities were documented by examining high quality preparations of pollen mother cells (700 in total). Approximately 70% of the cells showed abnormalities, such as metaphase chromosomes not lined up at the plate, lagging chromosomes and chromosomal bridges, and tetrad cells with micronuclei. Some dyads with asynchronous behavior were also observed. Due to the hybrid composition of the sugarcane genome, we suggest that bivalent incomplete pairing may occur in the first prophase leading to univalency. The presence of rod bivalents showing the lagging tendency is consistent with a reduction in chiasma frequency. Finally, the presence of chromatin bridges indicates the indirect occurrence of chromosomal inversions, although chromosome fragments were not clearly recognized. Possible reasons for such meiotic abnormalities and the large prevalence of bivalent formation are discussed.
Collapse
Affiliation(s)
- Maria Lucia C Vieira
- Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba, Brazil
| | - Carmelice B Almeida
- Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba, Brazil
| | - Carlos A Oliveira
- Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba, Brazil
| | - Luana O Tacuatiá
- Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| | - Carla F Munhoz
- Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba, Brazil
| | - Luiz A Cauz-Santos
- Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba, Brazil
| | - Luciana R Pinto
- Centro de Cana, Instituto Agronômico de Campinas, Ribeirão Preto, Brazil
| | | | - Mauro A Xavier
- Centro de Cana, Instituto Agronômico de Campinas, Ribeirão Preto, Brazil
| | | |
Collapse
|
75
|
Morgan CH, Zhang H, Bomblies K. Are the effects of elevated temperature on meiotic recombination and thermotolerance linked via the axis and synaptonemal complex? Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0470. [PMID: 29109229 PMCID: PMC5698628 DOI: 10.1098/rstb.2016.0470] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2017] [Indexed: 12/23/2022] Open
Abstract
Meiosis is unusual among cell divisions in shuffling genetic material by crossovers among homologous chromosomes and partitioning the genome into haploid gametes. Crossovers are critical for chromosome segregation in most eukaryotes, but are also an important factor in evolution, as they generate novel genetic combinations. The molecular mechanisms that underpin meiotic recombination and chromosome segregation are well conserved across kingdoms, but are also sensitive to perturbation by environment, especially temperature. Even subtle shifts in temperature can alter the number and placement of crossovers, while at greater extremes, structural failures can occur in the linear axis and synaptonemal complex structures which are essential for recombination and chromosome segregation. Understanding the effects of temperature on these processes is important for its implications in evolution and breeding, especially in the context of global warming. In this review, we first summarize the process of meiotic recombination and its reliance on axis and synaptonemal complex structures, and then discuss effects of temperature on these processes and structures. We hypothesize that some consistent effects of temperature on recombination and meiotic thermotolerance may commonly be two sides of the same coin, driven by effects of temperature on the folding or interaction of key meiotic proteins. This article is part of the themed issue ‘Evolutionary causes and consequences of recombination rate variation in sexual organisms’.
Collapse
Affiliation(s)
| | - Huakun Zhang
- John Innes Centre, Colney Lane, Norwich NR4 7UH, UK
| | | |
Collapse
|
76
|
Stapley J, Feulner PGD, Johnston SE, Santure AW, Smadja CM. Variation in recombination frequency and distribution across eukaryotes: patterns and processes. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0455. [PMID: 29109219 PMCID: PMC5698618 DOI: 10.1098/rstb.2016.0455] [Citation(s) in RCA: 249] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2017] [Indexed: 01/04/2023] Open
Abstract
Recombination, the exchange of DNA between maternal and paternal chromosomes during meiosis, is an essential feature of sexual reproduction in nearly all multicellular organisms. While the role of recombination in the evolution of sex has received theoretical and empirical attention, less is known about how recombination rate itself evolves and what influence this has on evolutionary processes within sexually reproducing organisms. Here, we explore the patterns of, and processes governing recombination in eukaryotes. We summarize patterns of variation, integrating current knowledge with an analysis of linkage map data in 353 organisms. We then discuss proximate and ultimate processes governing recombination rate variation and consider how these influence evolutionary processes. Genome-wide recombination rates (cM/Mb) can vary more than tenfold across eukaryotes, and there is large variation in the distribution of recombination events across closely related taxa, populations and individuals. We discuss how variation in rate and distribution relates to genome architecture, genetic and epigenetic mechanisms, sex, environmental perturbations and variable selective pressures. There has been great progress in determining the molecular mechanisms governing recombination, and with the continued development of new modelling and empirical approaches, there is now also great opportunity to further our understanding of how and why recombination rate varies.This article is part of the themed issue 'Evolutionary causes and consequences of recombination rate variation in sexual organisms'.
Collapse
Affiliation(s)
- Jessica Stapley
- Centre for Adaptation to a Changing Environment, IBZ, ETH Zürich, 8092 Zürich, Switzerland
| | - Philine G D Feulner
- Department of Fish Ecology and Evolution, Centre of Ecology, Evolution and Biogeochemistry, EAWAG Swiss Federal Institute of Aquatic Science and Technology, 6047 Kastanienbaum, Switzerland.,Division of Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
| | - Susan E Johnston
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3JY, UK
| | - Anna W Santure
- School of Biological Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Carole M Smadja
- Institut des Sciences de l'Evolution UMR 5554, CNRS, IRD, EPHE, Université de Montpellier, 3095 Montpellier cedex 05, France
| |
Collapse
|
77
|
Rybnikov SR, Frenkel ZM, Korol AB. What drives the evolution of condition-dependent recombination in diploids? Some insights from simulation modelling. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0460. [PMID: 29109223 DOI: 10.1098/rstb.2016.0460] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2017] [Indexed: 12/15/2022] Open
Abstract
While the evolutionary advantages of non-zero recombination rates have prompted diverse theoretical explanations, the evolution of essential recombination features remains underexplored. We focused on one such feature, the condition dependence of recombination, viewed as the variation in within-generation sensitivity of recombination to external (environment) and/or internal (genotype) conditions. Limited empirical evidence for its existence comes mainly from diploids, whereas theoretical models show that it only easily evolves in haploids. The evolution of condition-dependent recombination can be explained by its advantage for the selected system (indirect effect), or by benefits to modifier alleles, ensuring this strategy regardless of effects on the selected system (direct effect). We considered infinite panmictic populations of diploids exposed to a cyclical two-state environment. Each organism had three selected loci. Examining allele dynamics at a fourth, selectively neutral recombination modifier locus, we frequently observed that a modifier allele conferring condition-dependent recombination between the selected loci displaced the allele conferring the optimal constant recombination rate. Our simulations also confirm the results of theoretical studies showing that condition-dependent recombination cannot evolve in diploids on the basis of direct fitness-dependent effects alone. Therefore, the evolution of condition-dependent recombination in diploids can be driven by indirect effects alone, i.e. by modifier effects on the selected system.This article is part of the themed issue 'Evolutionary causes and consequences of recombination rate variation in sexual organisms'.
Collapse
Affiliation(s)
| | - Zeev M Frenkel
- Institute of Evolution, University of Haifa, Haifa, Israel
| | | |
Collapse
|
78
|
Abstract
Meiosis halves diploid chromosome numbers to haploid levels that are essential for sexual reproduction in most eukaryotes. Meiotic recombination ensures the formation of bivalents between homologous chromosomes (homologs) and their subsequent proper segregation. It also results in genetic diversity among progeny that influences evolutionary responses to selection. Moreover, crop breeding depends upon the action of meiotic recombination to rearrange elite traits between parental chromosomes. An understanding of the molecular mechanisms that drive meiotic recombination is important for both fundamental research and practical applications. This review emphasizes advances made during the past 5 years, primarily in Arabidopsis and rice, by summarizing newly characterized genes and proteins and examining the regulatory mechanisms that modulate their action.
Collapse
Affiliation(s)
- Yingxiang Wang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China;
| | - Gregory P Copenhaver
- Department of Biology and the Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3280, USA;
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-3280, USA
| |
Collapse
|
79
|
Can Interspecies Hybrid Zygosaccharomyces rouxii Produce an Allohaploid Gamete? Appl Environ Microbiol 2018; 84:AEM.01845-17. [PMID: 29079616 DOI: 10.1128/aem.01845-17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 10/17/2017] [Indexed: 01/08/2023] Open
Abstract
In soy sauce manufacturing, Candida versatilis plays a role in the production of volatile flavor compounds, such as volatile phenols, but limited accessible information on its genome has prevented further investigation regarding aroma production and breeding. Although the draft genome sequence data of two strains of C. versatilis have recently been reported, these strains are not similar to each other. Here, we reassess the draft genome sequence data for strain t-1, which was originally reported to be C. versatilis, and conclude that strain t-1 is most probably not C. versatilis but a gamete of hybrid Zygosaccharomyces rouxii Phylogenetic analysis of the D1/D2 region of the 26S ribosomal DNA (rDNA) sequence indicated that strain t-1 is more similar to the genus Zygosaccharomyces than to C. versatilis Moreover, we found that the genome of strain t-1 is composed of haploid genome content and divided into two regions that show approximately 100% identity with the T or P subgenome derived from the natural hybrid Zygosaccharomyces rouxii, such as NBRC110957 and NBRC1876. We also found a chromosome crossing-over signature in the scaffolds of strain t-1. These results suggest that strain t-1 is a gamete of the hybrid Z. rouxii, generated by either meiosis or chromosome loss following reciprocal translocation between the T and P subgenomes. Although it is unclear why strain t-1 was misidentified as C. versatilis, the genome of strain t-1 has broad implications for considering the evolutionary fate of an allodiploid.IMPORTANCE In yeast, crossing between different species sometimes leads to interspecies hybrids. The hybrid generally cannot produce viable spores because dissimilarity of parental genomes prevents normal chromosome segregation during meiotic division, leading to a dead end. Thus, only a few natural cases of homoploid hybrid speciation, which requires mating between 1n gametes of hybrids, have been described. However, a recent study provided strong evidence that homoploid hybrid speciation is initiated in natural populations of the budding yeast, suggesting the potential presence of viable 1n gametes of hybrids. The significance of our study is finding that the strain t-1, which had been misidentified as Candida versatilis, is a viable 1n gamete derived from hybrid Zygosaccharomyces rouxii.
Collapse
|
80
|
Lenormand T, Engelstädter J, Johnston SE, Wijnker E, Haag CR. Evolutionary mysteries in meiosis. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2016.0001. [PMID: 27619705 DOI: 10.1098/rstb.2016.0001] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2016] [Indexed: 01/25/2023] Open
Abstract
Meiosis is a key event of sexual life cycles in eukaryotes. Its mechanistic details have been uncovered in several model organisms, and most of its essential features have received various and often contradictory evolutionary interpretations. In this perspective, we present an overview of these often 'weird' features. We discuss the origin of meiosis (origin of ploidy reduction and recombination, two-step meiosis), its secondary modifications (in polyploids or asexuals, inverted meiosis), its importance in punctuating life cycles (meiotic arrests, epigenetic resetting, meiotic asymmetry, meiotic fairness) and features associated with recombination (disjunction constraints, heterochiasmy, crossover interference and hotspots). We present the various evolutionary scenarios and selective pressures that have been proposed to account for these features, and we highlight that their evolutionary significance often remains largely mysterious. Resolving these mysteries will likely provide decisive steps towards understanding why sex and recombination are found in the majority of eukaryotes.This article is part of the themed issue 'Weird sex: the underappreciated diversity of sexual reproduction'.
Collapse
Affiliation(s)
- Thomas Lenormand
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE)-Unité Mixte de Recherche 5175, Centre National de la Recherche Scientifique (CNRS), Université de Montpellier-Université Paul-Valéry Montpellier-Ecole Pratique des Hautes Etudes (EPHE), 1919 Route de Mende, 34293 Montpellier Cedex 5, France
| | - Jan Engelstädter
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Susan E Johnston
- Institute of Evolutionary Biology, University of Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK
| | - Erik Wijnker
- Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Christoph R Haag
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE)-Unité Mixte de Recherche 5175, Centre National de la Recherche Scientifique (CNRS), Université de Montpellier-Université Paul-Valéry Montpellier-Ecole Pratique des Hautes Etudes (EPHE), 1919 Route de Mende, 34293 Montpellier Cedex 5, France
| |
Collapse
|
81
|
Lawrence EJ, Griffin CH, Henderson IR. Modification of meiotic recombination by natural variation in plants. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:5471-5483. [PMID: 28992351 DOI: 10.1093/jxb/erx306] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Meiosis is a specialized cell division that produces haploid gametes required for sexual reproduction. During the first meiotic division, homologous chromosomes pair and undergo reciprocal crossing over, which recombines linked sequence variation. Meiotic recombination frequency varies extensively both within and between species. In this review, we will examine the molecular basis of meiotic recombination rate variation, with an emphasis on plant genomes. We first consider cis modification caused by polymorphisms at the site of recombination, or elsewhere on the same chromosome. We review cis effects caused by mismatches within recombining joint molecules, the effect of structural hemizygosity, and the role of specific DNA sequence motifs. In contrast, trans modification of recombination is exerted by polymorphic loci encoding diffusible molecules, which are able to modulate recombination on the same and/or other chromosomes. We consider trans modifiers that act to change total recombination levels, hotspot locations, or interactions between homologous and homeologous chromosomes in polyploid species. Finally, we consider the significance of genetic variation that modifies meiotic recombination for adaptation and evolution of plant species.
Collapse
Affiliation(s)
- Emma J Lawrence
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Catherine H Griffin
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Ian R Henderson
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| |
Collapse
|
82
|
Zadesenets KS, Ershov NI, Berezikov E, Rubtsov NB. Chromosome Evolution in the Free-Living Flatworms: First Evidence of Intrachromosomal Rearrangements in Karyotype Evolution of Macrostomum lignano (Platyhelminthes, Macrostomida). Genes (Basel) 2017; 8:E298. [PMID: 29084138 PMCID: PMC5704211 DOI: 10.3390/genes8110298] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/16/2017] [Accepted: 10/26/2017] [Indexed: 12/15/2022] Open
Abstract
The free-living flatworm Macrostomum lignano is a hidden tetraploid. Its genome was formed by a recent whole genome duplication followed by chromosome fusions. Its karyotype (2n = 8) consists of a pair of large chromosomes (MLI1), which contain regions of all other chromosomes, and three pairs of small metacentric chromosomes. Comparison of MLI1 with metacentrics was performed by painting with microdissected DNA probes and fluorescent in situ hybridization of unique DNA fragments. Regions of MLI1 homologous to small metacentrics appeared to be contiguous. Besides the loss of DNA repeat clusters (pericentromeric and telomeric repeats and the 5S rDNA cluster) from MLI1, the difference between small metacentrics MLI2 and MLI4 and regions homologous to them in MLI1 were revealed. Abnormal karyotypes found in the inbred DV1/10 subline were analyzed, and structurally rearranged chromosomes were described with the painting technique, suggesting the mechanism of their origin. The revealed chromosomal rearrangements generate additional diversity, opening the way toward massive loss of duplicated genes from a duplicated genome. Our findings suggest that the karyotype of M. lignano is in the early stage of genome diploidization after whole genome duplication, and further studies on M. lignano and closely related species can address many questions about karyotype evolution in animals.
Collapse
Affiliation(s)
- Kira S. Zadesenets
- The Federal Research Center Institute of Cytology and Genetics SB RAS, Lavrentiev ave., 10, Novosibirsk 630090, Russia; (N.I.E.); (N.B.R.)
| | - Nikita I. Ershov
- The Federal Research Center Institute of Cytology and Genetics SB RAS, Lavrentiev ave., 10, Novosibirsk 630090, Russia; (N.I.E.); (N.B.R.)
| | - Eugene Berezikov
- The Federal Research Center Institute of Cytology and Genetics SB RAS, Lavrentiev ave., 10, Novosibirsk 630090, Russia; (N.I.E.); (N.B.R.)
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713AV, Groningen, The Netherlands;
| | - Nikolay B. Rubtsov
- The Federal Research Center Institute of Cytology and Genetics SB RAS, Lavrentiev ave., 10, Novosibirsk 630090, Russia; (N.I.E.); (N.B.R.)
- Novosibirsk State University, Pirogova str., 2, Novosibirsk 630090, Russia
| |
Collapse
|
83
|
Homoeologous chromosome pairing across the eukaryote phylogeny. Mol Phylogenet Evol 2017; 117:83-94. [PMID: 28602622 DOI: 10.1016/j.ympev.2017.05.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 05/25/2017] [Accepted: 05/26/2017] [Indexed: 11/21/2022]
Abstract
During the past quarter century, molecular phylogenetic inferences have significantly resolved evolutionary relationships spanning the eukaryotic tree of life. With improved phylogenies in hand, the focus of systematics will continue to expand from estimating species relationships toward examining the evolution of specific, fundamental traits across the eukaryotic tree. Undoubtedly, this will expose knowledge gaps in the evolution of key traits, particularly with respect to non-model lineages. Here, we examine one such trait across eukaryotes-the regulation of homologous chromosome pairing during meiosis-as an illustrative example. Specifically, we present an overview of the breakdown of homologous chromosome pairing in model eukaryotes and provide a discussion of various meiotic aberrations that result in the failure of homolog recognition, with a particular focus on lineages with a history of hybridization and polyploidization, across major eukaryotic clades. We then explore what is known about these processes in natural and non-model eukaryotic taxa, thereby exposing disparities in our understanding of this key trait among non-model groups.
Collapse
|
84
|
Yant L, Bomblies K. Genomic studies of adaptive evolution in outcrossing Arabidopsis species. CURRENT OPINION IN PLANT BIOLOGY 2017; 36:9-14. [PMID: 27988391 DOI: 10.1016/j.pbi.2016.11.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 11/28/2016] [Indexed: 06/06/2023]
Abstract
Large-scale population genomic approaches have very recently been fruitfully applied to the Arabidopsis relatives Arabidopsis halleri, A. lyrata and especially A. arenosa. In contrast to A. thaliana, these species are obligately outcrossing and thus the footprints of natural selection are more straightforward to detect. Furthermore, both theoretical and empirical studies indicate that outcrossers are better able to evolve in response to selection pressure. As a result, recent work in these species serves as a paradigm of population genomic studies of adaptation both to environmental as well as intracellular challenges.
Collapse
Affiliation(s)
- Levi Yant
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom.
| | - Kirsten Bomblies
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom.
| |
Collapse
|
85
|
Lambing C, Franklin FCH, Wang CJR. Understanding and Manipulating Meiotic Recombination in Plants. PLANT PHYSIOLOGY 2017; 173:1530-1542. [PMID: 28108697 PMCID: PMC5338670 DOI: 10.1104/pp.16.01530] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 01/18/2017] [Indexed: 05/18/2023]
Abstract
Meiosis is a specialized cell division, essential in most reproducing organisms to halve the number of chromosomes, thereby enabling the restoration of ploidy levels during fertilization. A key step of meiosis is homologous recombination, which promotes homologous pairing and generates crossovers (COs) to connect homologous chromosomes until their separation at anaphase I. These CO sites, seen cytologically as chiasmata, represent a reciprocal exchange of genetic information between two homologous nonsister chromatids. This gene reshuffling during meiosis has a significant influence on evolution and also plays an essential role in plant breeding, because a successful breeding program depends on the ability to bring the desired combinations of alleles on chromosomes. However, the number and distribution of COs during meiosis is highly constrained. There is at least one CO per chromosome pair to ensure accurate segregation of homologs, but in most organisms, the CO number rarely exceeds three regardless of chromosome size. Moreover, their positions are not random on chromosomes but exhibit regional preference. Thus, genes in recombination-poor regions tend to be inherited together, hindering the generation of novel allelic combinations that could be exploited by breeding programs. Recently, much progress has been made in understanding meiotic recombination. In particular, many genes involved in the process in Arabidopsis (Arabidopsis thaliana) have been identified and analyzed. With the coming challenges of food security and climate change, and our enhanced knowledge of how COs are formed, the interest and needs in manipulating CO formation are greater than ever before. In this review, we focus on advances in understanding meiotic recombination and then summarize the attempts to manipulate CO formation. Last, we pay special attention to the meiotic recombination in polyploidy, which is a common genomic feature for many crop plants.
Collapse
Affiliation(s)
- Christophe Lambing
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom (C.L.)
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom (F.C.H.F.); and
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529 Taiwan (C.-J.R.W.)
| | - F Chris H Franklin
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom (C.L.)
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom (F.C.H.F.); and
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529 Taiwan (C.-J.R.W.)
| | - Chung-Ju Rachel Wang
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom (C.L.);
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom (F.C.H.F.); and
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529 Taiwan (C.-J.R.W.)
| |
Collapse
|
86
|
Potapova T, Gorbsky GJ. The Consequences of Chromosome Segregation Errors in Mitosis and Meiosis. BIOLOGY 2017; 6:biology6010012. [PMID: 28208750 PMCID: PMC5372005 DOI: 10.3390/biology6010012] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 01/24/2017] [Accepted: 01/26/2017] [Indexed: 12/21/2022]
Abstract
Mistakes during cell division frequently generate changes in chromosome content, producing aneuploid or polyploid progeny cells. Polyploid cells may then undergo abnormal division to generate aneuploid cells. Chromosome segregation errors may also involve fragments of whole chromosomes. A major consequence of segregation defects is change in the relative dosage of products from genes located on the missegregated chromosomes. Abnormal expression of transcriptional regulators can also impact genes on the properly segregated chromosomes. The consequences of these perturbations in gene expression depend on the specific chromosomes affected and on the interplay of the aneuploid phenotype with the environment. Most often, these novel chromosome distributions are detrimental to the health and survival of the organism. However, in a changed environment, alterations in gene copy number may generate a more highly adapted phenotype. Chromosome segregation errors also have important implications in human health. They may promote drug resistance in pathogenic microorganisms. In cancer cells, they are a source for genetic and phenotypic variability that may select for populations with increased malignance and resistance to therapy. Lastly, chromosome segregation errors during gamete formation in meiosis are a primary cause of human birth defects and infertility. This review describes the consequences of mitotic and meiotic errors focusing on novel concepts and human health.
Collapse
Affiliation(s)
- Tamara Potapova
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA.
| | - Gary J Gorbsky
- Cell Cycle and Cancer Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA.
| |
Collapse
|
87
|
Ziolkowski PA, Underwood CJ, Lambing C, Martinez-Garcia M, Lawrence EJ, Ziolkowska L, Griffin C, Choi K, Franklin FCH, Martienssen RA, Henderson IR. Natural variation and dosage of the HEI10 meiotic E3 ligase control Arabidopsis crossover recombination. Genes Dev 2017; 31:306-317. [PMID: 28223312 PMCID: PMC5358726 DOI: 10.1101/gad.295501.116] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 01/27/2017] [Indexed: 11/24/2022]
Abstract
During meiosis, homologous chromosomes undergo crossover recombination, which creates genetic diversity and balances homolog segregation. Despite these critical functions, crossover frequency varies extensively within and between species. Although natural crossover recombination modifier loci have been detected in plants, causal genes have remained elusive. Using natural Arabidopsis thaliana accessions, we identified two major recombination quantitative trait loci (rQTLs) that explain 56.9% of crossover variation in Col×Ler F2 populations. We mapped rQTL1 to semidominant polymorphisms in HEI10, which encodes a conserved ubiquitin E3 ligase that regulates crossovers. Null hei10 mutants are haploinsufficient, and, using genome-wide mapping and immunocytology, we show that transformation of additional HEI10 copies is sufficient to more than double euchromatic crossovers. However, heterochromatic centromeres remained recombination-suppressed. The strongest HEI10-mediated crossover increases occur in subtelomeric euchromatin, which is reminiscent of sex differences in Arabidopsis recombination. Our work reveals that HEI10 naturally limits Arabidopsis crossovers and has the potential to influence the response to selection.
Collapse
Affiliation(s)
- Piotr A Ziolkowski
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
- Department of Biotechnology, Adam Mickiewicz University, 61-614 Poznan, Poland
| | - Charles J Underwood
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
- Howard Hughes Medical Institute, Gordon and Betty Moore Foundation, Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Christophe Lambing
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | | | - Emma J Lawrence
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Liliana Ziolkowska
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Catherine Griffin
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Kyuha Choi
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - F Chris H Franklin
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Robert A Martienssen
- Howard Hughes Medical Institute, Gordon and Betty Moore Foundation, Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Ian R Henderson
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| |
Collapse
|
88
|
Special issue on "recent advances in meiotic chromosome structure, recombination and segregation". Chromosoma 2016; 125:173-5. [PMID: 27022980 DOI: 10.1007/s00412-016-0586-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 03/15/2016] [Indexed: 01/21/2023]
|
89
|
A few of our favorite things: Pairing, the bouquet, crossover interference and evolution of meiosis. Semin Cell Dev Biol 2016; 54:135-48. [PMID: 26927691 DOI: 10.1016/j.semcdb.2016.02.024] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 02/22/2016] [Indexed: 12/20/2022]
Abstract
Meiosis presents many important mysteries that await elucidation. Here we discuss two such aspects. First, we consider how the current meiotic program might have evolved. We emphasize the central feature of this program: how homologous chromosomes find one another ("pair") so as to create the connections required for their regular segregation at Meiosis I. Points of emphasis include the facts that: (i) the classical "bouquet stage" is not required for initial homolog contacts in the current evolved meiotic program; and (ii) diverse observations point to commonality between molecules that mediate meiotic inter-homolog interactions and molecules that are integral to centromeres and/or to microtubule organizing centers (a.k.a. spindle pole bodies or centrosomes). Second, we provide an overview of the classical phenomenon of crossover (CO) interference in an effort to bridge the gap between description on the one hand versus logic and mechanism on the other.
Collapse
|