51
|
Abstract
Zebrafish offer a unique vertebrate model for research areas such as drug development, disease modeling and other biological exploration. There is significant conservation of genetics and other cellular networks among zebrafish and other vertebrate models, including humans. Here we discuss the recent work and efforts made in different fields of biology to explore the potential of zebrafish. Along with this, we also reviewed the concept of systems biology. A biological system is made up of a large number of components that interact in a huge variety of combinations. To understand completely the behavior of a system, it is important to know its components and interactions, and this can be achieved through a systems biology approach. At the end of the paper we present a concept of integrating zebrafish into the systems biology approach.
Collapse
Affiliation(s)
- Mian Yahya Mushtaq
- a Natural Products Laboratory, Institute of Biology, Leiden University , Leiden , The Netherlands
| | | | | |
Collapse
|
52
|
|
53
|
Huttner IG, Trivedi G, Jacoby A, Mann SA, Vandenberg JI, Fatkin D. A transgenic zebrafish model of a human cardiac sodium channel mutation exhibits bradycardia, conduction-system abnormalities and early death. J Mol Cell Cardiol 2013; 61:123-32. [PMID: 23791817 DOI: 10.1016/j.yjmcc.2013.06.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 06/05/2013] [Accepted: 06/11/2013] [Indexed: 12/11/2022]
Abstract
The recent exponential increase in human genetic studies due to the advances of next generation sequencing has generated unprecedented numbers of new gene variants. Determining which of these are causative of human disease is a major challenge. In-vitro studies and murine models have been used to study inherited cardiac arrhythmias but have several limitations. Zebrafish models provide an attractive alternative for modeling human heart disease due to similarities in cardiac electrophysiology and contraction, together with ease of genetic manipulation, external development and optical transparency. Although zebrafish cardiac mutants and morphants have been widely used to study loss and knockdown of zebrafish gene function, the phenotypic effects of human dominant-negative gene mutations expressed in transgenic zebrafish have not been evaluated. The aim of this study was to generate and characterize a transgenic zebrafish arrhythmia model harboring the pathogenic human cardiac sodium channel mutation SCN5A-D1275N, that has been robustly associated with a range of cardiac phenotypes, including conduction disease, sinus node dysfunction, atrial and ventricular arrhythmias, and dilated cardiomyopathy in humans and in mice. Stable transgenic fish with cardiac expression of human SCN5A were generated using Tol2-mediated transgenesis and cardiac phenotypes were analyzed using video microscopy and ECG. Here we show that transgenic zebrafish expressing the SCN5A-D1275N mutation, but not wild-type SCN5A, exhibit bradycardia, conduction-system abnormalities and premature death. We furthermore show that SCN5A-WT, and to a lesser degree SCN5A-D1275N, are able to compensate the loss of endogenous zebrafish cardiac sodium channels, indicating that the basic pathways, through which SCN5A acts, are conserved in teleosts. This proof-of-principle study suggests that zebrafish may be highly useful in vivo models to differentiate functional from benign human genetic variants in cardiac ion channel genes in a time- and cost-efficient manner. This article is part of a Special Issue entitled "Na(+) Regulation in Cardiac Myocytes".
Collapse
Affiliation(s)
- Inken G Huttner
- Molecular Cardiology Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
| | | | | | | | | | | |
Collapse
|
54
|
Mishra S, Guan J, Plovie E, Seldin DC, Connors LH, Merlini G, Falk RH, MacRae CA, Liao R. Human amyloidogenic light chain proteins result in cardiac dysfunction, cell death, and early mortality in zebrafish. Am J Physiol Heart Circ Physiol 2013; 305:H95-103. [PMID: 23624626 DOI: 10.1152/ajpheart.00186.2013] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Systemic amyloid light-chain (AL) amyloidosis is associated with rapidly progressive and fatal cardiomyopathy resulting from the direct cardiotoxic effects of circulating AL light chain (AL-LC) proteins and the indirect effects of AL fibril tissue infiltration. Cardiac amyloidosis is resistant to standard heart failure therapies, and, to date, there are limited treatment options for these patients. The mechanisms underlying the development of cardiac amyloidosis and AL-LC cardiotoxicity are largely unknown, and their study has been limited by the lack of a suitable in vivo model system. Here, we establish an in vivo zebrafish model of human AL-LC-induced cardiotoxicity. AL-LC isolated from AL cardiomyopathy patients or control nonamyloidogenic LC protein isolated from multiple myeloma patients (Con-LC) was directly injected into the circulation of zebrafish at 48 h postfertilization. AL-LC injection resulted in impaired cardiac function, pericardial edema, and increased cell death relative to Con-LC, culminating in compromised survival with 100% mortality within 2 wk, independent of AL fibril deposition. Prior work has implicated noncanonical p38 MAPK activation in the pathogenesis of AL-LC-induced cardiotoxicity, and p38 MAPK inhibition via SB-203580 rescued AL-LC-induced cardiac dysfunction and cell death and attenuated mortality in zebrafish. This in vivo zebrafish model of AL-LC cardiotoxicity demonstrates that antagonism of p38 MAPK within the AL-LC cardiotoxic signaling response may serve to improve cardiac function and mortality in AL cardiomyopathy. Furthermore, this in vivo model system will allow for further study of the molecular underpinnings of AL cardiotoxicity and identification of novel therapeutic strategies.
Collapse
Affiliation(s)
- Shikha Mishra
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Boxer AL, Gold M, Huey E, Gao FB, Burton EA, Chow T, Kao A, Leavitt BR, Lamb B, Grether M, Knopman D, Cairns NJ, Mackenzie IR, Mitic L, Roberson ED, Van Kammen D, Cantillon M, Zahs K, Salloway S, Morris J, Tong G, Feldman H, Fillit H, Dickinson S, Khachaturian Z, Sutherland M, Farese R, Miller BL, Cummings J. Frontotemporal degeneration, the next therapeutic frontier: molecules and animal models for frontotemporal degeneration drug development. Alzheimers Dement 2012; 9:176-88. [PMID: 23043900 DOI: 10.1016/j.jalz.2012.03.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2012] [Accepted: 03/07/2012] [Indexed: 02/04/2023]
Abstract
Frontotemporal degeneration (FTD) is a common cause of dementia for which there are currently no approved therapies. Over the past decade, there has been an explosion of knowledge about the biology and clinical features of FTD that has identified a number of promising therapeutic targets as well as animal models in which to develop drugs. The close association of some forms of FTD with neuropathological accumulation of tau protein or increased neuroinflammation due to progranulin protein deficiency suggests that a drug's success in treating FTD may predict efficacy in more common diseases such as Alzheimer's disease. A variety of regulatory incentives, clinical features of FTD such as rapid disease progression, and relatively pure molecular pathology suggest that there are advantages to developing drugs for FTD as compared with other more common neurodegenerative diseases such as Alzheimer's disease. In March 2011, the Frontotemporal Degeneration Treatment Study Group sponsored a conference entitled "FTD, the Next Therapeutic Frontier," which focused on preclinical aspects of FTD drug development. The goal of the meeting was to promote collaborations between academic researchers and biotechnology and pharmaceutical researchers to accelerate the development of new treatments for FTD. Here we report the key findings from the conference, including the rationale for FTD drug development; epidemiological, genetic, and neuropathological features of FTD; FTD animal models and how best to use them; and examples of successful drug development collaborations in other neurodegenerative diseases.
Collapse
Affiliation(s)
- Adam L Boxer
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Sundvik M, Panula P. Organization of the histaminergic system in adult zebrafish (Danio rerio) brain: Neuron number, location, and cotransmitters. J Comp Neurol 2012; 520:3827-45. [DOI: 10.1002/cne.23126] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
57
|
The zebrafish homologue of the human DYT1 dystonia gene is widely expressed in CNS neurons but non-essential for early motor system development. PLoS One 2012; 7:e45175. [PMID: 23028827 PMCID: PMC3460957 DOI: 10.1371/journal.pone.0045175] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 08/17/2012] [Indexed: 11/19/2022] Open
Abstract
DYT1 dystonia is caused by mutation of the TOR1A gene, resulting in the loss of a single glutamic acid residue near the carboxyl terminal of TorsinA. The neuronal functions perturbed by TorsinA[ΔE] are a major unresolved issue in understanding the pathophysiology of dystonia, presenting a critical roadblock to developing effective treatments. We identified and characterized the zebrafish homologue of TOR1A, as a first step towards elucidating the functions of TorsinA in neurons, in vivo, using the genetically-manipulable zebrafish model. The zebrafish genome was found to contain a single alternatively-spliced tor1 gene, derived from a common ancestral locus shared with the dual TOR1A and TOR1B paralogues found in tertrapods. tor1 was expressed ubiquitously during early embryonic development and in multiple adult tissues, including the CNS. The 2.1 kb tor1 mRNA encodes Torsin1, which is 59% identical and 78% homologous to human TorsinA. Torsin1 was expressed as major 45 kDa and minor 47 kDa glycoproteins, within the cytoplasm of neurons and neuropil throughout the CNS. Similar to previous findings relating to human TorsinA, mutations of the ATP hydrolysis domain of Torsin1 resulted in relocalization of the protein in cultured cells from the endoplasmic reticulum to the nuclear envelope. Zebrafish embryos lacking tor1 during early development did not show impaired viability, overt morphological abnormalities, alterations in motor behavior, or developmental defects in the dopaminergic system. Torsin1 is thus non-essential for early development of the motor system, suggesting that important CNS functions may occur later in development, consistent with the critical time window in late childhood when dystonia symptoms usually emerge in DYT1 patients. The similarities between Torsin1 and human TorsinA in domain organization, expression pattern, and cellular localization suggest that the zebrafish will provide a useful model to understand the neuronal functions of Torsins in vivo.
Collapse
|
58
|
Di Carlo M. Simple model systems: a challenge for Alzheimer's disease. IMMUNITY & AGEING 2012; 9:3. [PMID: 22507659 PMCID: PMC3388466 DOI: 10.1186/1742-4933-9-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 04/16/2012] [Indexed: 11/10/2022]
Abstract
The success of biomedical researches has led to improvement in human health and increased life expectancy. An unexpected consequence has been an increase of age-related diseases and, in particular, neurodegenerative diseases. These disorders are generally late onset and exhibit complex pathologies including memory loss, cognitive defects, movement disorders and death. Here, it is described as the use of simple animal models such as worms, fishes, flies, Ascidians and sea urchins, have facilitated the understanding of several biochemical mechanisms underlying Alzheimer's disease (AD), one of the most diffuse neurodegenerative pathologies. The discovery of specific genes and proteins associated with AD, and the development of new technologies for the production of transgenic animals, has helped researchers to overcome the lack of natural models. Moreover, simple model systems of AD have been utilized to obtain key information for evaluating potential therapeutic interventions and for testing efficacy of putative neuroprotective compounds.
Collapse
Affiliation(s)
- Marta Di Carlo
- Istituto di Biomedicina ed Immunologia Molecolare (IBIM) Alberto Monroy CNR, via Ugo La Malfa 153, 90146 Palermo, Italy.
| |
Collapse
|
59
|
Lanson NA, Pandey UB. FUS-related proteinopathies: lessons from animal models. Brain Res 2012; 1462:44-60. [PMID: 22342159 DOI: 10.1016/j.brainres.2012.01.039] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 01/16/2012] [Accepted: 01/17/2012] [Indexed: 12/11/2022]
Abstract
The recent identification of ALS-linked mutations in FUS and TDP-43 has led to a major shift in our thinking in regard to the potential molecular mechanisms of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). RNA-mediated proteinopathy is increasingly being recognized as a potential cause of neurodegenerative disorders. FUS and TDP-43 are structurally and functionally similar proteins. FUS is a DNA/RNA binding protein that may regulate aspects of RNA metabolism, including splicing, mRNA processing, and micro RNA biogenesis. It is unclear how ALS-linked mutations perturb the functions of FUS. This review highlights recent advances in understanding the functions of FUS and discusses findings from FUS animal models that provide several key insights into understanding the molecular mechanisms that might contribute to ALS pathogenesis.
Collapse
Affiliation(s)
- Nicholas A Lanson
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA 70112-2223, USA
| | | |
Collapse
|
60
|
Sakowski SA, Lunn JS, Busta AS, Palmer M, Dowling JJ, Feldman EL. A novel approach to study motor neurons from zebrafish embryos and larvae in culture. J Neurosci Methods 2012; 205:277-82. [PMID: 22285259 DOI: 10.1016/j.jneumeth.2012.01.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 01/11/2012] [Accepted: 01/11/2012] [Indexed: 12/27/2022]
Abstract
Zebrafish are becoming increasingly popular models for examining the mechanisms of and treatments for neurological diseases. The available methods and technology to examine disease processes in vivo are increasing, however, detailed observations of subcellular structures and processes are complex in whole organisms. To address this need, we developed a primary motor neuron (MN) culture technique for utilization with zebrafish neurological disease models. Our protocol enables the culturing of cells from embryos older than 24h post-fertilization, at points after MN axonal development and outgrowth begins, which enables MN axons to develop in vivo in the context of the normal endogenous cues of the model organism, while also providing the accessibility of an in vitro system. When utilized with the increasing number of genetically modified or transgenic models of neurological diseases, this approach provides a novel tool for the examination of cellular and subcellular disease mechanisms, and offers a new platform for therapeutic discoveries in zebrafish.
Collapse
|
61
|
Kettunen P. Calcium imaging in the zebrafish. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 740:1039-71. [PMID: 22453983 DOI: 10.1007/978-94-007-2888-2_48] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The zebrafish (Danio rerio) has emerged as a new model system during the last three decades. The fact that the zebrafish larva is transparent enables sophisticated in vivo imaging. While being the vertebrate, the reduced complexity of its nervous system and small size make it possible to follow large-scale activity in the whole brain. Its genome is sequenced and many genetic and molecular tools have been developed that simplify the study of gene function. Since the mid 1990s, the embryonic development and neuronal function of the larval, and later, adult zebrafish have been studied using calcium imaging methods. The choice of calcium indicator depends on the desired number of cells to study and cell accessibility. Dextran indicators have been used to label cells in the developing embryo from dye injection into the one-cell stage. Dextrans have also been useful for retrograde labeling of spinal cord neurons and cells in the olfactory system. Acetoxymethyl (AM) esters permit labeling of larger areas of tissue such as the tectum, a region responsible for visual processing. Genetically encoded calcium indicators have been expressed in various tissues by the use of cell-specific promoters. These studies have contributed greatly to our understanding of basic biological principles during development and adulthood, and of the function of disease-related genes in a vertebrate system.
Collapse
Affiliation(s)
- Petronella Kettunen
- Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Sweden.
| |
Collapse
|
62
|
Gama Sosa MA, De Gasperi R, Elder GA. Modeling human neurodegenerative diseases in transgenic systems. Hum Genet 2011; 131:535-63. [PMID: 22167414 DOI: 10.1007/s00439-011-1119-1] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 11/23/2011] [Indexed: 02/07/2023]
Abstract
Transgenic systems are widely used to study the cellular and molecular basis of human neurodegenerative diseases. A wide variety of model organisms have been utilized, including bacteria (Escherichia coli), plants (Arabidopsis thaliana), nematodes (Caenorhabditis elegans), arthropods (Drosophila melanogaster), fish (zebrafish, Danio rerio), rodents (mouse, Mus musculus and rat, Rattus norvegicus) as well as non-human primates (rhesus monkey, Macaca mulatta). These transgenic systems have enormous value for understanding the pathophysiological basis of these disorders and have, in some cases, been instrumental in the development of therapeutic approaches to treat these conditions. In this review, we discuss the most commonly used model organisms and the methodologies available for the preparation of transgenic organisms. Moreover, we provide selected examples of the use of these technologies for the preparation of transgenic animal models of neurodegenerative diseases, including Alzheimer's disease (AD), frontotemporal lobar degeneration (FTLD), amyotrophic lateral sclerosis (ALS), Huntington's disease (HD) and Parkinson's disease (PD) and discuss the application of these technologies to AD as an example of how transgenic modeling has affected the study of human neurodegenerative diseases.
Collapse
Affiliation(s)
- Miguel A Gama Sosa
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY 10468, USA.
| | | | | |
Collapse
|
63
|
Milanese C, Sager JJ, Bai Q, Farrell TC, Cannon JR, Greenamyre JT, Burton EA. Hypokinesia and reduced dopamine levels in zebrafish lacking β- and γ1-synucleins. J Biol Chem 2011; 287:2971-83. [PMID: 22128150 DOI: 10.1074/jbc.m111.308312] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
α-Synuclein is strongly implicated in the pathogenesis of Parkinson disease. However, the normal functions of synucleins and how these relate to disease pathogenesis are uncertain. We characterized endogenous zebrafish synucleins in order to develop tractable models to elucidate the physiological roles of synucleins in neurons in vivo. Three zebrafish genes, sncb, sncg1, and sncg2 (encoding β-, γ1-, and γ2-synucleins respectively), show extensive phylogenetic conservation with respect to their human paralogues. A zebrafish α-synuclein orthologue was not found. Abundant 1.45-kb sncb and 2.7-kb sncg1 mRNAs were detected in the CNS from early development through adulthood and showed overlapping but distinct expression patterns. Both transcripts were detected in catecholaminergic neurons throughout the CNS. Zebrafish lacking β-, γ1-, or both synucleins during early development showed normal CNS and body morphology but exhibited decreased spontaneous motor activity that resolved as gene expression recovered. Zebrafish lacking both β- and γ1-synucleins were more severely hypokinetic than animals lacking one or the other synuclein and showed delayed differentiation of dopaminergic neurons and reduced dopamine levels. Phenotypic abnormalities resulting from loss of endogenous zebrafish synucleins were rescued by expression of human α-synuclein. These data demonstrate that synucleins have essential phylogenetically conserved neuronal functions that regulate dopamine homeostasis and spontaneous motor behavior. Zebrafish models will allow further elucidation of the molecular physiology and pathophysiology of synucleins in vivo.
Collapse
Affiliation(s)
- Chiara Milanese
- Pittsburgh Institute for Neurodegenerative Diseases and Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | | | | | |
Collapse
|
64
|
Duszynski RJ, Topczewski J, LeClair EE. Simple, economical heat-shock devices for zebrafish housing racks. Zebrafish 2011; 8:211-9. [PMID: 21913856 DOI: 10.1089/zeb.2011.0693] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
One reason for the popularity of the zebrafish (Danio rerio) as a model vertebrate is the ability to manipulate gene expression in this organism. A common method is to induce gene expression transiently under control of a heat-shock promoter (e.g., hsp70l). By making simple mechanical adjustments to small aquarium heaters (25-50W), we were able to produce consistent and reliable heat-shock conditions within a conventional zebrafish housing system. Up to two heat-shock intervals per day (>37°C) could be maintained under conditions of continuous flow (5-25 mL/min). Temperature logging every 30 s indicated rapid warm up times, consistent heat-shock lengths, and accurate and precise peak water temperatures (mean±SD=38°C±0.2°C). The biological effects of these heat-shock treatments were confirmed by observing inducible expression of enhanced green fluorescent protein (EGFP) and inhibition of caudal fin regeneration in a transgenic fish line expressing a dominant negative fibroblast growth factor receptor (Tg(hsp70l:dnfgfr1-EGFP)(pd1)). These devices are inexpensive, easily modified, and can be calibrated to accommodate a variety of experimental designs. After setup on a programmable timer, the heaters require no intervention to produce consistent daily heat shocks, and all other standard care protocols can be followed in the fish facility. The simplicity and stability of these devices make them suitable for long-term heat shocks at any stage of the zebrafish lifecycle (>7 days postfertilization), and useful for both laboratory and classroom experiments on transgenic zebrafish.
Collapse
Affiliation(s)
- Robert J Duszynski
- Department of Biological Sciences, DePaul University, Chicago, Illinois 60614, USA
| | | | | |
Collapse
|
65
|
Zelenchuk TA, Brusés JL. In vivo labeling of zebrafish motor neurons using an mnx1 enhancer and Gal4/UAS. Genesis 2011; 49:546-54. [PMID: 21538811 DOI: 10.1002/dvg.20766] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 04/22/2011] [Accepted: 04/22/2011] [Indexed: 11/06/2022]
Abstract
The zebrafish spinal cord primary motor neurons are commonly used as an experimental model to study the molecular mechanisms that regulate axonal pathfinding and neuromuscular junction formation, and for the modeling of human neurodegenerative disorders. This study characterized a 125-bp mnx1 enhancer to direct gene expression in spinal cord motor neurons. A promoter containing three copies of the 125-bp mnx1 enhancer was generated in a Tol2 vector and used to drive enhanced green fluorescent protein (EGFP) expression either directly or in combination with the Gal4/UAS transcriptional activation system. Both methods induced protein expression for up to 5 days after fertilization, allowing the observation of the dendritic tree and axonal arborization of single motor neurons within a somitic segment in fixed and live animals. The use of the 125-bp mnx1 promoter for transient transgenic expression or for the generation of stable transgenic fish lines will facilitate the study of motor neuron development and neurodegenerative processes.
Collapse
Affiliation(s)
- Taras A Zelenchuk
- Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, Kansas 66160, USA
| | | |
Collapse
|
66
|
Bai Q, Sun M, Stolz DB, Burton EA. Major isoform of zebrafish P0 is a 23.5 kDa myelin glycoprotein expressed in selected white matter tracts of the central nervous system. J Comp Neurol 2011; 519:1580-96. [PMID: 21452240 PMCID: PMC3903511 DOI: 10.1002/cne.22587] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The zebrafish mpz gene, encoding the ortholog of mammalian myelin protein zero, is expressed in oligodendrocytes of the zebrafish central nervous system (CNS). The putative gene product, P0, has been implicated in promoting axonal regeneration in addition to its proposed structural functions in compact myelin. We raised novel zebrafish P0-specific antibodies and established that P0 is a 23.5 kDa glycoprotein containing a 3 kDa N-linked carbohydrate moiety. P0 was localized to myelin sheaths surrounding axons, but was not detected in the cell bodies or proximal processes of oligodendrocytes. Many white matter tracts in the adult zebrafish CNS were robustly immunoreactive for P0, including afferent visual and olfactory pathways, commissural and longitudinal tracts of the brain, and selected ascending and descending tracts of the spinal cord. P0 was first detected during development in premyelinating oligodendrocytes of the ventral hindbrain at 48 hours postfertilization (hpf). By 72 hpf, short segments of longitudinally oriented P0-immunoreactive myelinating axons were seen in the hindbrain; expression in the spinal cord, optic pathways, hindbrain commissures, midbrain, and peripheral nervous system followed. The mpz transcript was found to be alternatively spliced, giving rise to P0 isoforms with alternative C-termini. The 23.5 kDa isoform was most abundant in the CNS, but other isoforms predominated in the myelin sheath surrounding the Mauthner axon. These data provide a detailed account of P0 expression and demonstrate novel P0 isoforms, which may have discrete functional properties. The restriction of P0 immunoreactivity to myelin sheaths indicates that the protein is subject to stringent intracellular compartmentalization, which likely occurs through posttranslational mechanisms.
Collapse
Affiliation(s)
- Qing Bai
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Ming Sun
- Center for Biological Imaging, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Donna B. Stolz
- Center for Biological Imaging, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Edward A. Burton
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Geriatric Research, Education and Clinical Center, Pittsburgh VA Healthcare System, Pittsburgh, Pennsylvania
- Department of Neurology, Pittsburgh VA Healthcare System, Pittsburgh, Pennsylvania
| |
Collapse
|
67
|
Characterisation of neuronal and glial populations of the visual system during zebrafish lifespan. Int J Dev Neurosci 2011; 29:441-9. [DOI: 10.1016/j.ijdevneu.2011.02.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 02/07/2011] [Accepted: 02/23/2011] [Indexed: 11/17/2022] Open
|
68
|
Klee EW, Ebbert JO, Schneider H, Hurt RD, Ekker SC. Zebrafish for the study of the biological effects of nicotine. Nicotine Tob Res 2011; 13:301-12. [PMID: 21385906 DOI: 10.1093/ntr/ntr010] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Zebrafish are emerging as a powerful animal model for studying the molecular and physiological effects of nicotine exposure. The zebrafish have many advantageous physical characteristics, including small size, high fecundity rates, and externally developing transparent embryos. When combined with a battery of molecular-genetic tools and behavioral assays, these attributes enable studies to be conducted that are not practical using traditional animal models. METHODS We reviewed the literature on the application of the zebrafish model as a preclinical model to study the biological effects of nicotine exposure. RESULTS The identified studies used zebrafish to examine the effects of nicotine exposure on early development, addiction, anxiety, and learning. The methods used included green fluorescent protein-labeled proteins to track in vivo nicotine-altered neuron development, nicotine-conditioned place preference, and locomotive sensitization linked with high-throughput molecular and genetic screens and behavioral models of learning and stress response to nicotine. Data are presented on the complete homology of all known human neural nicotinic acetylcholine receptors in zebrafish and on the biological similarity of human and zebrafish dopaminergic signaling. CONCLUSIONS Tobacco dependence remains a major health problem worldwide. Further understanding of the molecular effects of nicotine exposure and genetic contributions to dependence may lead to improvement in patient treatment strategies. While there are limitations to the use of zebrafish as a preclinical model, it should provide a valuable tool to complement existing model systems. The reviewed studies demonstrate the enormous opportunity zebrafish have to advance the science of nicotine and tobacco research.
Collapse
Affiliation(s)
- Eric W Klee
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | | | | | | | | |
Collapse
|
69
|
Bjork BC, Fujiwara Y, Davis SW, Qiu H, Saunders TL, Sandy P, Orkin S, Camper SA, Beier DR. A transient transgenic RNAi strategy for rapid characterization of gene function during embryonic development. PLoS One 2010; 5:e14375. [PMID: 21179568 PMCID: PMC3002952 DOI: 10.1371/journal.pone.0014375] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Accepted: 11/24/2010] [Indexed: 01/14/2023] Open
Abstract
RNA interference (RNAi) is a powerful strategy for studying the phenotypic consequences of reduced gene expression levels in model systems. To develop a method for the rapid characterization of the developmental consequences of gene dysregulation, we tested the use of RNAi for “transient transgenic” knockdown of mRNA in mouse embryos. These methods included lentiviral infection as well as transposition using the Sleeping Beauty (SB) and PiggyBac (PB) transposable element systems. This approach can be useful for phenotypic validation of putative mutant loci, as we demonstrate by confirming that knockdown of Prdm16 phenocopies the ENU-induced cleft palate (CP) mutant, csp1. This strategy is attractive as an alternative to gene targeting in embryonic stem cells, as it is simple and yields phenotypic information in a matter of weeks. Of the three methodologies tested, the PB transposon system produced high numbers of transgenic embryos with the expected phenotype, demonstrating its utility as a screening method.
Collapse
Affiliation(s)
- Bryan C. Bjork
- Genetics Division, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Yuko Fujiwara
- Division of Hematology and Oncology, Children's Hospital, Harvard Medical School/Howard Hughes Medical Institute, Boston, Massachusetts, United States of America
| | - Shannon W. Davis
- Departments of Human Genetics and Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Haiyan Qiu
- Genetics Division, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Thomas L. Saunders
- Departments of Human Genetics and Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Peter Sandy
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Stuart Orkin
- Division of Hematology and Oncology, Children's Hospital, Harvard Medical School/Howard Hughes Medical Institute, Boston, Massachusetts, United States of America
| | - Sally A. Camper
- Departments of Human Genetics and Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - David R. Beier
- Genetics Division, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
70
|
van Tijn P, Kamphuis W, Marlatt MW, Hol EM, Lucassen PJ. Presenilin mouse and zebrafish models for dementia: focus on neurogenesis. Prog Neurobiol 2010; 93:149-64. [PMID: 21056616 DOI: 10.1016/j.pneurobio.2010.10.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Revised: 10/27/2010] [Accepted: 10/31/2010] [Indexed: 01/18/2023]
Abstract
Autosomal dominant mutations in the presenilin gene PSEN cause familial Alzheimer's disease (AD), a neurological disorder pathologically characterized by intraneuronal accumulation and extracellular deposition of amyloid-β in plaques and intraneuronal, hyperphosphorylated tau aggregation in neurofibrillary tangles. Presenilins (PS/PSENs) are part of the proteolytic γ-secretase complex, which cleaves substrate proteins within the membrane. Cleavage of the amyloid precursor protein (APP) by γ-secretase releases amyloid-β peptides. Besides its role in the processing of APP and other transmembrane proteins, presenilin plays an important role in neural progenitor cell maintenance and neurogenesis. In this review, we discuss the role of presenilin in relation to neurogenesis and neurodegeneration and review the currently available presenilin animal models. In addition to established mouse models, zebrafish are emerging as an attractive vertebrate model organism to study the role of presenilin during the development of the nervous system and in neurodegenerative disorders involving presenilin. Zebrafish is a suitable model organism for large-scale drug screening, making this a valuable model to identify novel therapeutic targets for AD.
Collapse
Affiliation(s)
- Paula van Tijn
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA, Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
71
|
Koechling T, Lim F, Hernandez F, Avila J. Neuronal models for studying tau pathology. Int J Alzheimers Dis 2010; 2010. [PMID: 20721342 PMCID: PMC2915753 DOI: 10.4061/2010/528474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Accepted: 06/17/2010] [Indexed: 12/22/2022] Open
Abstract
Alzheimer's disease (AD) is the most frequent neurodegenerative disorder leading to dementia in the aged human population. It is characterized by the presence of two main pathological hallmarks in the brain: senile plaques containing β-amyloid peptide and neurofibrillary tangles (NFTs), consisting of fibrillar polymers of abnormally phosphorylated tau protein. Both of these histological characteristics of the disease have been simulated in genetically modified animals, which today include numerous mouse, fish, worm, and fly models of AD. The objective of this review is to present some of the main animal models that exist for reproducing symptoms of the disorder and their advantages and shortcomings as suitable models of the pathological processes. Moreover, we will discuss the results and conclusions which have been drawn from the use of these models so far and their contribution to the development of therapeutic applications for AD.
Collapse
Affiliation(s)
- Thorsten Koechling
- Centro de Biología Molecular "Severo Ochoa" (C.S.I.C.-U.A.M.), Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | | | | | | |
Collapse
|
72
|
Panula P, Chen YC, Priyadarshini M, Kudo H, Semenova S, Sundvik M, Sallinen V. The comparative neuroanatomy and neurochemistry of zebrafish CNS systems of relevance to human neuropsychiatric diseases. Neurobiol Dis 2010; 40:46-57. [PMID: 20472064 DOI: 10.1016/j.nbd.2010.05.010] [Citation(s) in RCA: 331] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Revised: 05/05/2010] [Accepted: 05/06/2010] [Indexed: 12/20/2022] Open
Abstract
Modulatory neurotransmitters which signal through G protein-coupled receptors control brain functions which deteriorate in degenerative brain diseases. During the past decade many of these systems have been mapped in the zebrafish brain. The main architecture of the systems in zebrafish brain resembles that of the mammals, despite differences in the development of the telencephalon and mesodiencephalon. Modulatory neurotransmitters systems which degenerate in human diseases include dopamine, noradrenaline, serotonin, histamine, acetylcholine and orexin/hypocretin. Although the number of G protein-coupled receptors in zebrafish is clearly larger than in mammals, many receptors have similar expression patterns, binding and signaling properties as in mammals. Distinct differences between mammals and zebrafish include duplication of the tyrosine hydroxylase gene in zebrafish, and presence of one instead of two monoamine oxidase genes. Zebrafish are sensitive to neurotoxins including MPTP, and exposure to this neurotoxin induces a decline in dopamine content and number of detectable tyrosine hydroxylase immunoreactive neurons in distinct nuclei. Sensitivity to important neurotoxins, many available genetic methods, rapid development and large-scale quantitative behavioral methods in addition to advanced quantitative anatomical methods render zebrafish an optimal organism for studies on disease mechanisms.
Collapse
Affiliation(s)
- P Panula
- Neuroscience Center, University of Helsinki, POB 63, FIN-00014 University of Helsinki, Finland.
| | | | | | | | | | | | | |
Collapse
|