51
|
Cui F, Zhang N, Fan XL, Zhang W, Zhao CH, Yang LJ, Pan RQ, Chen M, Han J, Zhao XQ, Ji J, Tong YP, Zhang HX, Jia JZ, Zhao GY, Li JM. Utilization of a Wheat660K SNP array-derived high-density genetic map for high-resolution mapping of a major QTL for kernel number. Sci Rep 2017. [PMID: 28630475 DOI: 10.1038/s41598-017-04028-63] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023] Open
Abstract
In crop plants, a high-density genetic linkage map is essential for both genetic and genomic researches. The complexity and the large size of wheat genome have hampered the acquisition of a high-resolution genetic map. In this study, we report a high-density genetic map based on an individual mapping population using the Affymetrix Wheat660K single-nucleotide polymorphism (SNP) array as a probe in hexaploid wheat. The resultant genetic map consisted of 119 566 loci spanning 4424.4 cM, and 119 001 of those loci were SNP markers. This genetic map showed good collinearity with the 90 K and 820 K consensus genetic maps and was also in accordance with the recently released wheat whole genome assembly. The high-density wheat genetic map will provide a major resource for future genetic and genomic research in wheat. Moreover, a comparative genomics analysis among gramineous plant genomes was conducted based on the high-density wheat genetic map, providing an overview of the structural relationships among theses gramineous plant genomes. A major stable quantitative trait locus (QTL) for kernel number per spike was characterized, providing a solid foundation for the future high-resolution mapping and map-based cloning of the targeted QTL.
Collapse
Affiliation(s)
- Fa Cui
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050022, China
- Genetic Improvement Centre of Agricultural and Forest Crops, College of Agriculture, Ludong Unversity, Yan'tai, 264025, China
- State Key Laboratory of Plant Cell and Chromosomal Engineering, Chinese Academy of Sciences, Beijing, 100101, China
| | - Na Zhang
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050022, China
- University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Xiao-Li Fan
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050022, China
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Wei Zhang
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050022, China.
- State Key Laboratory of Plant Cell and Chromosomal Engineering, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Chun-Hua Zhao
- Genetic Improvement Centre of Agricultural and Forest Crops, College of Agriculture, Ludong Unversity, Yan'tai, 264025, China
| | - Li-Juan Yang
- Xinxiang Academy of Agricultural Sciences, Xinxiang, 453000, China
| | - Rui-Qing Pan
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050022, China
- University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Mei Chen
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050022, China
- University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Jie Han
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050022, China
- University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Xue-Qiang Zhao
- State Key Laboratory of Plant Cell and Chromosomal Engineering, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jun Ji
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050022, China
- State Key Laboratory of Plant Cell and Chromosomal Engineering, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yi-Ping Tong
- State Key Laboratory of Plant Cell and Chromosomal Engineering, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hong-Xia Zhang
- Genetic Improvement Centre of Agricultural and Forest Crops, College of Agriculture, Ludong Unversity, Yan'tai, 264025, China
| | - Ji-Zeng Jia
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Guang-Yao Zhao
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Jun-Ming Li
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050022, China.
- State Key Laboratory of Plant Cell and Chromosomal Engineering, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
52
|
Utilization of a Wheat660K SNP array-derived high-density genetic map for high-resolution mapping of a major QTL for kernel number. Sci Rep 2017. [PMID: 28630475 PMCID: PMC5476560 DOI: 10.1038/s41598-017-04028-6] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
In crop plants, a high-density genetic linkage map is essential for both genetic and genomic researches. The complexity and the large size of wheat genome have hampered the acquisition of a high-resolution genetic map. In this study, we report a high-density genetic map based on an individual mapping population using the Affymetrix Wheat660K single-nucleotide polymorphism (SNP) array as a probe in hexaploid wheat. The resultant genetic map consisted of 119 566 loci spanning 4424.4 cM, and 119 001 of those loci were SNP markers. This genetic map showed good collinearity with the 90 K and 820 K consensus genetic maps and was also in accordance with the recently released wheat whole genome assembly. The high-density wheat genetic map will provide a major resource for future genetic and genomic research in wheat. Moreover, a comparative genomics analysis among gramineous plant genomes was conducted based on the high-density wheat genetic map, providing an overview of the structural relationships among theses gramineous plant genomes. A major stable quantitative trait locus (QTL) for kernel number per spike was characterized, providing a solid foundation for the future high-resolution mapping and map-based cloning of the targeted QTL.
Collapse
|
53
|
Klindworth DL, Saini J, Long Y, Rouse MN, Faris JD, Jin Y, Xu SS. Physical mapping of DNA markers linked to stem rust resistance gene Sr47 in durum wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2017; 130:1135-1154. [PMID: 28286900 DOI: 10.1007/s00122-017-2875-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 02/07/2017] [Indexed: 06/06/2023]
Abstract
Markers linked to stem rust resistance gene Sr47 were physically mapped in three small Aegilops speltoides chromosomal bins. Five markers, including two PCR-based SNP markers, were validated for marker-assisted selection. In durum wheat (Triticum turgidum subsp. durum), the gene Sr47 derived from Aegilops speltoides conditions resistance to race TTKSK (Ug99) of the stem rust pathogen (Puccinia graminis f. sp. tritici). Sr47 is carried on small interstitial translocation chromosomes (Ti2BL-2SL-2BL·2BS) in which the Ae. speltoides chromosome 2S segments are divided into four bins in genetic stocks RWG35, RWG36, and RWG37. Our objective was to physically map molecular markers to bins and to determine if any of the molecular markers would be useful in marker-assisted selection (MAS). Durum cultivar Joppa was used as the recurrent parent to produce three BC2F2 populations. Each BC2F2 plant was genotyped with markers to detect the segment carrying Sr47, and stem rust testing of BC2F3 progeny with race TTKSK confirmed the genotyping. Forty-nine markers from published sources, four new SSR markers, and five new STARP (semi-thermal asymmetric reverse PCR) markers, were evaluated in BC2F2 populations for assignment of markers to bins. Sr47 was mapped to bin 3 along with 13 markers. No markers were assigned to bin 1; however, 7 and 13 markers were assigned to bins 2 and 4, respectively. Markers Xrwgs38a, Xmag1729, Xwmc41, Xtnac3119, Xrwgsnp1, and Xrwgsnp4 were found to be useful for MAS of Sr47. However, STARP markers Xrwgsnp1 and Xrwgsnp4 can be used in gel-free systems, and are the preferred markers for high-throughput MAS. The physical mapping data from this study will also be useful for pyramiding Sr47 with other Sr genes on chromosome 2B.
Collapse
Affiliation(s)
- Daryl L Klindworth
- USDA-ARS, Northern Crop Science Laboratory, Cereal Crops Research Unit, Red River Valley Agricultural Research Center, 1605 Albrecht Blvd. North, Fargo, ND, 58102-2765, USA
| | - Jyoti Saini
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108, USA
| | - Yunming Long
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108, USA
| | - Matthew N Rouse
- USDA-ARS, Cereal Disease Laboratory, and Department of Plant Pathology, University of Minnesota, St. Paul, MN, 55108, USA
| | - Justin D Faris
- USDA-ARS, Northern Crop Science Laboratory, Cereal Crops Research Unit, Red River Valley Agricultural Research Center, 1605 Albrecht Blvd. North, Fargo, ND, 58102-2765, USA
| | - Yue Jin
- USDA-ARS, Cereal Disease Laboratory, and Department of Plant Pathology, University of Minnesota, St. Paul, MN, 55108, USA
| | - Steven S Xu
- USDA-ARS, Northern Crop Science Laboratory, Cereal Crops Research Unit, Red River Valley Agricultural Research Center, 1605 Albrecht Blvd. North, Fargo, ND, 58102-2765, USA.
| |
Collapse
|
54
|
Crespo-Herrera LA, Garkava-Gustavsson L, Åhman I. A systematic review of rye ( Secale cereale L.) as a source of resistance to pathogens and pests in wheat ( Triticum aestivum L.). Hereditas 2017; 154:14. [PMID: 28559761 PMCID: PMC5445327 DOI: 10.1186/s41065-017-0033-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 04/26/2017] [Indexed: 12/25/2022] Open
Abstract
Wheat is globally one of the most important crops. With the current human population growth rate, there is an increasing need to raise wheat productivity by means of plant breeding, along with development of more efficient and sustainable agricultural systems. Damage by pathogens and pests, in combination with adverse climate effects, need to be counteracted by incorporating new germplasm that makes wheat more resistant/tolerant to such stress factors. Rye has been used as a source for improved resistance to pathogens and pests in wheat during more than 50 years. With new devastating stem and yellow rust pathotypes invading wheat at large acreage globally, along with new biotypes of pest insects, there is renewed interest in using rye as a source of resistance. Currently the proportion of wheat cultivars with rye chromatin varies between countries, with examples of up to 34%. There is mainly one rye source, Petkus, that has been widely exploited and that has contributed considerably to raise yields and increase disease resistance in wheat. Successively, the multiple disease resistances conferred by this source has been overcome by new pathotypes of leaf rust, yellow rust, stem rust and powdery mildew. However, there are several other rye sources reported to make wheat more resistant to various biotic constraints when their rye chromatin has been transferred to wheat. There is also development of knowledge on how to produce new rye translocation, substitution and addition lines. Here we compile information that may facilitate decision making for wheat breeders aiming to transfer resistance to biotic constraints from rye to elite wheat germplasm.
Collapse
Affiliation(s)
- Leonardo A Crespo-Herrera
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, 06600 Mexico, DF Mexico
| | - Larisa Garkava-Gustavsson
- Department of Plant Breeding, Swedish University of Agricultural Sciences, P.O. Box 101, SE 23053 Alnarp, Sweden
| | - Inger Åhman
- Department of Plant Breeding, Swedish University of Agricultural Sciences, P.O. Box 101, SE 23053 Alnarp, Sweden
| |
Collapse
|
55
|
Wu J, Wang Q, Liu S, Huang S, Mu J, Zeng Q, Huang L, Han D, Kang Z. Saturation Mapping of a Major Effect QTL for Stripe Rust Resistance on Wheat Chromosome 2B in Cultivar Napo 63 Using SNP Genotyping Arrays. FRONTIERS IN PLANT SCIENCE 2017; 8:653. [PMID: 28491075 PMCID: PMC5405077 DOI: 10.3389/fpls.2017.00653] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 04/10/2017] [Indexed: 05/18/2023]
Abstract
Stripe rust or yellow rust (YR), caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most important diseases of wheat (Triticum aestivum L.). Widespread deployment of resistant cultivars is the best means of achieving durable disease control. The red grain, spring wheat cultivar Napo 63 produced by CIMMYT in the 1960s shows a high level of adult-plant resistance to stripe rust in the field. To elucidate the genetic basis of resistance in this cultivar we evaluated 224 F2:3 lines and 175 F2:6 recombinant inbred lines (RILs) derived from a cross between Napo 63 and the Pst-susceptible line Avocet S. The maximum disease severity (MDS) data of F2:3 lines and the relative area under the disease progress curve (rAUDPC) data of RILs were collected during the 2014-2015 and 2015-2016 wheat growing seasons, respectively. Combined bulked segregant analysis and 90K single nucleotide polymorphism (SNP) arrays placed 275 of 511 polymorphic SNPs on chromosome 2B. Sixty four KASP markers selected from the 275 SNPs and 76 SSR markers on 2B were used to identify a chromosome region associated with rust response. A major effect QTL, named Qyrnap.nwafu-2BS, was identified by inclusive composite interval mapping and was preliminarily mapped to a 5.46 cM interval flanked by KASP markers 90K-AN34 and 90K-AN36 in chromosome 2BS. Fourteen KASP markers more closely linked to the locus were developed following a 660K SNP array analysis. The QTL region was finally narrowed to a 0.9 cM interval flanked by KASP markers 660K-AN21 and 660K-AN57 in bin region 2BS-1-0.53. The resistance of Napo 63 was stable across all environments, and as a QTL, explained an average 66.1% of the phenotypic variance in MDS of F2:3 lines and 55.7% of the phenotypic variance in rAUDPC of F5:6 RILs. The short genetic interval and flanking KASP markers developed in the study will facilitate marker-assisted selection, gene pyramiding, and eventual positional cloning of Qyrnap.nwafu-2BS.
Collapse
Affiliation(s)
- Jianhui Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F UniversityYangling, China
| | - Qilin Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F UniversityYangling, China
| | - Shengjie Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F UniversityYangling, China
| | - Shuo Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F UniversityYangling, China
| | - Jingmei Mu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F UniversityYangling, China
| | - Qingdong Zeng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F UniversityYangling, China
| | - Lili Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F UniversityYangling, China
| | - Dejun Han
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F UniversityYangling, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F UniversityYangling, China
| |
Collapse
|
56
|
Yoshioka M, Iehisa JCM, Ohno R, Kimura T, Enoki H, Nishimura S, Nasuda S, Takumi S. Three dominant awnless genes in common wheat: Fine mapping, interaction and contribution to diversity in awn shape and length. PLoS One 2017; 12:e0176148. [PMID: 28437453 PMCID: PMC5402986 DOI: 10.1371/journal.pone.0176148] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 04/05/2017] [Indexed: 11/18/2022] Open
Abstract
The awn is a long needle-like structure formed at the tip of the lemma in the florets of some grass species. It plays a role in seed dispersal and protection against animals, and can contribute to the photosynthetic activity of spikes. Three main dominant inhibitors of awn development (Hd, B1 and B2) are known in hexaploid wheat, but the causal genes have not been cloned yet and a genetic association with awn length diversity has been found only for the B1 allele. To analyze the prevalence of these three awning inhibitors, we attempted to predict the genotypes of 189 hexaploid wheat varieties collected worldwide using markers tightly linked to these loci. Using recombinant inbred lines derived from two common wheat cultivars, Chinese Spring and Mironovskaya 808, both with short awns, and a high-density linkage map, we performed quantitative trait locus analysis to identify tightly linked markers. Because this linkage map was constructed with abundant array-based markers, we converted the linked markers to PCR-based markers and determined the genotypes of 189 hexaploids. A significant genotype-phenotype correlation was observed at the Hd and B1 regions. We also found that interaction among these three awning inhibitors is involved in development of a membranous outgrowth at the base of awn resembling the Hooded mutants of barley. For the hooded awn phenotype, presence of the Hd dominant allele was essential but not sufficient, so B2 and other factors appear to act epistatically to produce the ectopic tissue. On the other hand, the dominant B1 allele acted as a suppressor of the hooded phenotype. These three awning inhibitors largely contribute to the genetic variation in awn length and shape of common wheat.
Collapse
Affiliation(s)
- Motohiro Yoshioka
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Julio C. M. Iehisa
- Departamento de Biotecnología, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, San Lorenzo, Paraguay
| | - Ryoko Ohno
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan
| | - Tatsuro Kimura
- Biotechnology & Afforestation Laboratory, New Business Planning Division, TOYOTA Motor Corporation, Miyoshi, Aichi, Japan
| | - Hiroyuki Enoki
- Biotechnology & Afforestation Laboratory, New Business Planning Division, TOYOTA Motor Corporation, Miyoshi, Aichi, Japan
| | - Satoru Nishimura
- Frontier Research Planning Department, Frontier Research Center, TOYOTA Motor Corporation, Toyota, Aichi, Japan
| | - Shuhei Nasuda
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Shigeo Takumi
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
- * E-mail:
| |
Collapse
|
57
|
Liu W, Koo DH, Xia Q, Li C, Bai F, Song Y, Friebe B, Gill BS. Homoeologous recombination-based transfer and molecular cytogenetic mapping of powdery mildew-resistant gene Pm57 from Aegilops searsii into wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2017; 130:841-848. [PMID: 28116459 DOI: 10.1007/s00122-017-2855-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 01/04/2017] [Indexed: 05/23/2023]
Abstract
Pm57, a novel resistant gene against powdery mildew, was transferred into common wheat from Ae. searsi and further mapped to 2S s #1L at an interval of FL0.75 to FL0.87. Powdery mildew, caused by the fungus Blumeria graminis f. sp. tritici, is one of the most severe foliar diseases of wheat causing reduction in grain yield and quality. Host plant resistance is the most effective and environmentally safe approach to control this disease. Tests of a set of Chinese Spring-Ae. searsii (SsSs, 2n = 2x = 14) Feldman & Kislev ex K. Hammer disomic addition lines with a mixed isolate of the powdery mildew fungus identified a novel resistance gene(s), designed as Pm57, which was located on chromosome 2Ss#1. Here, we report the development of ten wheat-Ae. searsii recombinants. The wheat chromosomes involved in five of these recombinants were identified by FISH and SSR marker analysis and three of them were resistant to powdery mildew. Pm57 was further mapped to the long arm of chromosome 2Ss#1 at a fraction length interval of FL 0.75 to FL 0.87. The recombinant stocks T2BS.2BL-2Ss#1L 89-346 (TA5108) with distal 2Ss#1L segments of 28% and 89(5)69 (TA5109) with 33% may be useful in wheat improvement. The PCR marker X2L4g9p4/HaeIII was validated to specifically identify the Ae. searsii 2Ss#1L segment harboring Pm57 in T2BS.2BL-2Ss#1L against 16 wheat varieties and advanced breeding lines, and the development of more user-friendly KASP markers is underway.
Collapse
Affiliation(s)
- Wenxuan Liu
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China.
| | - Dal-Hoe Koo
- Department of Plant Pathology, Wheat Genetics Resource Center, Throckmorton Plant Sciences Center, Kansas State University, Manhattan, KS, 66506-5502, USA
| | - Qing Xia
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China
| | - Chunxin Li
- Henan Academy of Agricultural Sciences, Zhengzhou, 450002, People's Republic of China
| | - Fuqiang Bai
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China
| | - Yuli Song
- Henan Academy of Agricultural Sciences, Zhengzhou, 450002, People's Republic of China
| | - Bernd Friebe
- Department of Plant Pathology, Wheat Genetics Resource Center, Throckmorton Plant Sciences Center, Kansas State University, Manhattan, KS, 66506-5502, USA
| | - Bikram S Gill
- Department of Plant Pathology, Wheat Genetics Resource Center, Throckmorton Plant Sciences Center, Kansas State University, Manhattan, KS, 66506-5502, USA
| |
Collapse
|
58
|
Lou H, Dong L, Zhang K, Wang DW, Zhao M, Li Y, Rong C, Qin H, Zhang A, Dong Z, Wang D. High-throughput mining of E-genome-specific SNPs for characterizingThinopyrum elongatumintrogressions in common wheat. Mol Ecol Resour 2017; 17:1318-1329. [DOI: 10.1111/1755-0998.12659] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Revised: 12/25/2016] [Accepted: 01/30/2017] [Indexed: 01/01/2023]
Affiliation(s)
- Haijuan Lou
- The State Key Laboratory of Plant Cell and Chromosome Engineering; Institute of Genetics and Developmental Biology; Chinese Academy of Sciences; Beijing 100101 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Lingli Dong
- The State Key Laboratory of Plant Cell and Chromosome Engineering; Institute of Genetics and Developmental Biology; Chinese Academy of Sciences; Beijing 100101 China
| | - Kunpu Zhang
- The State Key Laboratory of Plant Cell and Chromosome Engineering; Institute of Genetics and Developmental Biology; Chinese Academy of Sciences; Beijing 100101 China
| | - Da-Wei Wang
- The State Key Laboratory of Plant Cell and Chromosome Engineering; Institute of Genetics and Developmental Biology; Chinese Academy of Sciences; Beijing 100101 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Maolin Zhao
- The State Key Laboratory of Plant Cell and Chromosome Engineering; Institute of Genetics and Developmental Biology; Chinese Academy of Sciences; Beijing 100101 China
| | - Yiwen Li
- The State Key Laboratory of Plant Cell and Chromosome Engineering; Institute of Genetics and Developmental Biology; Chinese Academy of Sciences; Beijing 100101 China
| | - Chaowu Rong
- The State Key Laboratory of Plant Cell and Chromosome Engineering; Institute of Genetics and Developmental Biology; Chinese Academy of Sciences; Beijing 100101 China
| | - Huanju Qin
- The State Key Laboratory of Plant Cell and Chromosome Engineering; Institute of Genetics and Developmental Biology; Chinese Academy of Sciences; Beijing 100101 China
| | - Aimin Zhang
- The State Key Laboratory of Plant Cell and Chromosome Engineering; Institute of Genetics and Developmental Biology; Chinese Academy of Sciences; Beijing 100101 China
| | - Zhenying Dong
- The State Key Laboratory of Plant Cell and Chromosome Engineering; Institute of Genetics and Developmental Biology; Chinese Academy of Sciences; Beijing 100101 China
| | - Daowen Wang
- The State Key Laboratory of Plant Cell and Chromosome Engineering; Institute of Genetics and Developmental Biology; Chinese Academy of Sciences; Beijing 100101 China
- The Collaborative Innovation Center for Grain Crops; Henan Agricultural University; Zhengzhou 450002 China
| |
Collapse
|
59
|
Hiebert CW, Rouse MN, Nirmala J, Fetch T. Genetic Mapping of Stem Rust Resistance to Puccinia graminis f. sp. tritici Race TRTTF in the Canadian Wheat Cultivar Harvest. PHYTOPATHOLOGY 2017; 107:192-197. [PMID: 27705664 DOI: 10.1094/phyto-05-16-0186-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Stem rust, caused by Puccinia graminis f. sp. tritici, is a destructive disease of wheat that can be controlled by deploying effective stem rust resistance (Sr) genes. Highly virulent races of P. graminis f. sp. tritici in Africa have been detected and characterized. These include race TRTTF and the Ug99 group of races such as TTKSK. Several Canadian and U.S. spring wheat cultivars, including the widely grown Canadian cultivar 'Harvest', are resistant to TRTTF. However, the genetic basis of resistance to TRTTF in Canadian and U.S. spring wheat cultivars is unknown. The objectives of this study were to determine the number of Sr genes involved in TRTTF resistance in Harvest, genetically map the resistance with DNA markers, and use markers to assess the distribution of that resistance in a panel of Canadian cultivars. A doubled haploid (DH) population was produced from the cross LMPG-6S/Harvest. The DH population was tested with race TRTTF at the seedling stage. Of 92 DH progeny evaluated, 46 were resistant and 46 were susceptible which perfectly fit a 1:1 ratio indicating a single Sr gene was responsible for conferring resistance to TRTTF in Harvest. Mapping with single nucleotide polymorphism (SNP) and simple sequence repeat (SSR) markers placed the resistance gene distally on the chromosome 6AS genetic map, which corresponded to the location reported for Sr8. SSR marker gwm459 and 30 cosegregating SNP markers showed the closest linkage, mapping 2.2 cM proximal to the Sr gene. Gene Sr8a confers resistance to TRTTF and may account for the resistance in Harvest. Testing a panel of Canadian wheat cultivars with four SNP markers closely linked to resistance to TRTTF suggested that the resistance present in Harvest is present in many Canadian cultivars. Two of these SNP markers were also predictive of TRTTF resistance in a panel of 241 spring wheat lines from the United States, Canada, and Mexico.
Collapse
Affiliation(s)
- Colin W Hiebert
- First author: Agriculture and Agri-Food Canada, Morden Research and Development Centre, 100, Morden, MB R6M 1Y5, Canada; second and third authors: U.S. Department of Agriculture-Agricultural Research Service, Cereal Disease Laboratory and Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108; and fourth author: Agriculture and Agri-Food Canada, Brandon Research and Development Centre, Brandon, MB R7A 5Y3, Canada
| | - Matthew N Rouse
- First author: Agriculture and Agri-Food Canada, Morden Research and Development Centre, 100, Morden, MB R6M 1Y5, Canada; second and third authors: U.S. Department of Agriculture-Agricultural Research Service, Cereal Disease Laboratory and Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108; and fourth author: Agriculture and Agri-Food Canada, Brandon Research and Development Centre, Brandon, MB R7A 5Y3, Canada
| | - Jayaveeramuthu Nirmala
- First author: Agriculture and Agri-Food Canada, Morden Research and Development Centre, 100, Morden, MB R6M 1Y5, Canada; second and third authors: U.S. Department of Agriculture-Agricultural Research Service, Cereal Disease Laboratory and Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108; and fourth author: Agriculture and Agri-Food Canada, Brandon Research and Development Centre, Brandon, MB R7A 5Y3, Canada
| | - Tom Fetch
- First author: Agriculture and Agri-Food Canada, Morden Research and Development Centre, 100, Morden, MB R6M 1Y5, Canada; second and third authors: U.S. Department of Agriculture-Agricultural Research Service, Cereal Disease Laboratory and Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108; and fourth author: Agriculture and Agri-Food Canada, Brandon Research and Development Centre, Brandon, MB R7A 5Y3, Canada
| |
Collapse
|
60
|
Balcárková B, Frenkel Z, Škopová M, Abrouk M, Kumar A, Chao S, Kianian SF, Akhunov E, Korol AB, Doležel J, Valárik M. A High Resolution Radiation Hybrid Map of Wheat Chromosome 4A. FRONTIERS IN PLANT SCIENCE 2017; 7:2063. [PMID: 28119729 PMCID: PMC5222868 DOI: 10.3389/fpls.2016.02063] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 12/26/2016] [Indexed: 05/18/2023]
Abstract
Bread wheat has a large and complex allohexaploid genome with low recombination level at chromosome centromeric and peri-centromeric regions. This significantly hampers ordering of markers, contigs of physical maps and sequence scaffolds and impedes obtaining of high-quality reference genome sequence. Here we report on the construction of high-density and high-resolution radiation hybrid (RH) map of chromosome 4A supported by high-density chromosome deletion map. A total of 119 endosperm-based RH lines of two RH panels and 15 chromosome deletion bin lines were genotyped with 90K iSelect single nucleotide polymorphism (SNP) array. A total of 2316 and 2695 markers were successfully mapped to the 4A RH and deletion maps, respectively. The chromosome deletion map was ordered in 19 bins and allowed precise identification of centromeric region and verification of the RH panel reliability. The 4A-specific RH map comprises 1080 mapping bins and spans 6550.9 cR with a resolution of 0.13 Mb/cR. Significantly higher mapping resolution in the centromeric region was observed as compared to recombination maps. Relatively even distribution of deletion frequency along the chromosome in the RH panel was observed and putative functional centromere was delimited within a region characterized by two SNP markers.
Collapse
Affiliation(s)
- Barbora Balcárková
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural ResearchOlomouc, Czechia
| | - Zeev Frenkel
- Institute of Evolution, University of HaifaHaifa, Israel
| | - Monika Škopová
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural ResearchOlomouc, Czechia
| | - Michael Abrouk
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural ResearchOlomouc, Czechia
| | - Ajay Kumar
- Department of Plant Sciences, North Dakota State University, FargoND, USA
| | - Shiaoman Chao
- Biosciences Research Laboratory, United States Department of Agriculture-Agricultural Research Service, FargoND, USA
| | - Shahryar F. Kianian
- Cereal Disease Laboratory, United States Department of Agriculture-Agricultural Research Service, University of Minnesota, St. PaulMN, USA
| | - Eduard Akhunov
- Department of Plant Pathology, Kansas State University, ManhattanKS, USA
| | | | - Jaroslav Doležel
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural ResearchOlomouc, Czechia
| | - Miroslav Valárik
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural ResearchOlomouc, Czechia
| |
Collapse
|
61
|
Li X, Xiang ZP, Chen WQ, Huang QL, Liu TG, Li Q, Zhong SF, Zhang M, Guo JW, Lei L, Luo PG. Reevaluation of Two Quantitative Trait Loci for Type II Resistance to Fusarium Head Blight in Wheat Germplasm PI 672538. PHYTOPATHOLOGY 2017; 107:92-99. [PMID: 27571309 DOI: 10.1094/phyto-04-16-0170-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Fusarium head blight (FHB), mainly caused by Fusarium graminearum, is a destructive disease in wheat. A population consisting of 229 F2 and F2:3 plants derived from the cross PI 672538 × L661 was used to evaluate the reactions to FHB. The FHB resistance data distribution in the F2 population indicates that some quantitative trait loci (QTLs) were controlling the FHB resistance in PI 672538. We further detected two major QTLs (Qfhs-2B, Qfhs-3B) from analysis of the resistance data and the PCR-amplified results using WinQTLCart 2.5 software. Qfhs-2B, flanked by Xbarc55-2B and Xbarc1155-2B, explained more than 11.6% of the phenotypic variation of the percentage of diseased spikelets (PDS), and Qfhs-3B, flanked by Xwmc54-3B and Xgwm566-3B, explained more than 10% of the PDS phenotypic variation in the F2:3 population. In addition, Qfhs-3B was different from Fhb1 in terms of the pedigree, inheritance, resistance response, chromosomal location, and marker diagnosis. We also detected QTLs for other disease resistance indices, including the percentage of damaged kernels and 1,000-grain weight, in similar chromosomal regions. Therefore, the FHB resistance of PI 672538 was mainly controlled by two major QTLs, mapped on 2B (FhbL693a) and 3B (FhbL693b). PI 672538 could be a useful germplasm for improving wheat FHB resistance.
Collapse
Affiliation(s)
- X Li
- First, second, fourth, sixth, seventh, eighth, ninth, and eleventh authors: State Key Laboratory of Plant Breeding and Genetics, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; first, third, fifth, and eleventh authors: State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; second author: College of Food Science and Technology, Sichuan Tourism University, Chengdu, Sichuan 610100, China; sixth author: Department of Biology and Chemistry, Chongqing Industry and Trade Polytechnic Institute, Fuling District of Chongqing 408000, China; and tenth author: Department of Plant Pathology, Kansas State University, Manhattan 66506
| | - Z P Xiang
- First, second, fourth, sixth, seventh, eighth, ninth, and eleventh authors: State Key Laboratory of Plant Breeding and Genetics, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; first, third, fifth, and eleventh authors: State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; second author: College of Food Science and Technology, Sichuan Tourism University, Chengdu, Sichuan 610100, China; sixth author: Department of Biology and Chemistry, Chongqing Industry and Trade Polytechnic Institute, Fuling District of Chongqing 408000, China; and tenth author: Department of Plant Pathology, Kansas State University, Manhattan 66506
| | - W Q Chen
- First, second, fourth, sixth, seventh, eighth, ninth, and eleventh authors: State Key Laboratory of Plant Breeding and Genetics, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; first, third, fifth, and eleventh authors: State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; second author: College of Food Science and Technology, Sichuan Tourism University, Chengdu, Sichuan 610100, China; sixth author: Department of Biology and Chemistry, Chongqing Industry and Trade Polytechnic Institute, Fuling District of Chongqing 408000, China; and tenth author: Department of Plant Pathology, Kansas State University, Manhattan 66506
| | - Q L Huang
- First, second, fourth, sixth, seventh, eighth, ninth, and eleventh authors: State Key Laboratory of Plant Breeding and Genetics, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; first, third, fifth, and eleventh authors: State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; second author: College of Food Science and Technology, Sichuan Tourism University, Chengdu, Sichuan 610100, China; sixth author: Department of Biology and Chemistry, Chongqing Industry and Trade Polytechnic Institute, Fuling District of Chongqing 408000, China; and tenth author: Department of Plant Pathology, Kansas State University, Manhattan 66506
| | - T G Liu
- First, second, fourth, sixth, seventh, eighth, ninth, and eleventh authors: State Key Laboratory of Plant Breeding and Genetics, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; first, third, fifth, and eleventh authors: State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; second author: College of Food Science and Technology, Sichuan Tourism University, Chengdu, Sichuan 610100, China; sixth author: Department of Biology and Chemistry, Chongqing Industry and Trade Polytechnic Institute, Fuling District of Chongqing 408000, China; and tenth author: Department of Plant Pathology, Kansas State University, Manhattan 66506
| | - Q Li
- First, second, fourth, sixth, seventh, eighth, ninth, and eleventh authors: State Key Laboratory of Plant Breeding and Genetics, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; first, third, fifth, and eleventh authors: State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; second author: College of Food Science and Technology, Sichuan Tourism University, Chengdu, Sichuan 610100, China; sixth author: Department of Biology and Chemistry, Chongqing Industry and Trade Polytechnic Institute, Fuling District of Chongqing 408000, China; and tenth author: Department of Plant Pathology, Kansas State University, Manhattan 66506
| | - S F Zhong
- First, second, fourth, sixth, seventh, eighth, ninth, and eleventh authors: State Key Laboratory of Plant Breeding and Genetics, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; first, third, fifth, and eleventh authors: State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; second author: College of Food Science and Technology, Sichuan Tourism University, Chengdu, Sichuan 610100, China; sixth author: Department of Biology and Chemistry, Chongqing Industry and Trade Polytechnic Institute, Fuling District of Chongqing 408000, China; and tenth author: Department of Plant Pathology, Kansas State University, Manhattan 66506
| | - M Zhang
- First, second, fourth, sixth, seventh, eighth, ninth, and eleventh authors: State Key Laboratory of Plant Breeding and Genetics, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; first, third, fifth, and eleventh authors: State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; second author: College of Food Science and Technology, Sichuan Tourism University, Chengdu, Sichuan 610100, China; sixth author: Department of Biology and Chemistry, Chongqing Industry and Trade Polytechnic Institute, Fuling District of Chongqing 408000, China; and tenth author: Department of Plant Pathology, Kansas State University, Manhattan 66506
| | - J W Guo
- First, second, fourth, sixth, seventh, eighth, ninth, and eleventh authors: State Key Laboratory of Plant Breeding and Genetics, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; first, third, fifth, and eleventh authors: State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; second author: College of Food Science and Technology, Sichuan Tourism University, Chengdu, Sichuan 610100, China; sixth author: Department of Biology and Chemistry, Chongqing Industry and Trade Polytechnic Institute, Fuling District of Chongqing 408000, China; and tenth author: Department of Plant Pathology, Kansas State University, Manhattan 66506
| | - L Lei
- First, second, fourth, sixth, seventh, eighth, ninth, and eleventh authors: State Key Laboratory of Plant Breeding and Genetics, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; first, third, fifth, and eleventh authors: State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; second author: College of Food Science and Technology, Sichuan Tourism University, Chengdu, Sichuan 610100, China; sixth author: Department of Biology and Chemistry, Chongqing Industry and Trade Polytechnic Institute, Fuling District of Chongqing 408000, China; and tenth author: Department of Plant Pathology, Kansas State University, Manhattan 66506
| | - P G Luo
- First, second, fourth, sixth, seventh, eighth, ninth, and eleventh authors: State Key Laboratory of Plant Breeding and Genetics, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; first, third, fifth, and eleventh authors: State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; second author: College of Food Science and Technology, Sichuan Tourism University, Chengdu, Sichuan 610100, China; sixth author: Department of Biology and Chemistry, Chongqing Industry and Trade Polytechnic Institute, Fuling District of Chongqing 408000, China; and tenth author: Department of Plant Pathology, Kansas State University, Manhattan 66506
| |
Collapse
|
62
|
Yu K, Liu D, Wu W, Yang W, Sun J, Li X, Zhan K, Cui D, Ling H, Liu C, Zhang A. Development of an integrated linkage map of einkorn wheat and its application for QTL mapping and genome sequence anchoring. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2017; 130:53-70. [PMID: 27659843 DOI: 10.1007/s00122-016-2791-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 09/12/2016] [Indexed: 11/26/2022]
Abstract
An integrated genetic map was constructed for einkorn wheat A genome and provided valuable information for QTL mapping and genome sequence anchoring. Wheat is one of the most widely grown food grain crops in the world. The construction of a genetic map is a key step to organize biologically or agronomically important traits along the chromosomes. In the present study, an integrated linkage map of einkorn wheat was developed using 109 recombinant inbred lines (RILs) derived from an inter sub-specific cross, KT1-1 (T. monococcum ssp. boeoticum) × KT3-5 (T. monococcum ssp. monococcum). The map contains 926 molecular markers assigned to seven linkage groups, and covers 1,377 cM with an average marker interval of 1.5 cM. A quantitative trait locus (QTL) analysis of five agronomic traits identified 16 stable QTL on all seven chromosomes, except 6A. The total phenotypic variance explained by these stable QTL using multiple regressions varied across environments from 8.8 to 87.1 % for days to heading, 24.4-63.0 % for spike length, 48.2-79.6 % for spikelet number per spike, 13.1-48.1 % for plant architecture, and 12.2-26.5 % for plant height, revealing that much of the RIL phenotypic variation had been genetically dissected. Co-localizations of closely linked QTL for different traits were frequently observed, especially on 3A and 7A. The QTL on 3A, 5A and 7A were closely associated with Eps-A m 3, Vrn1 and Vrn3 loci, respectively. Furthermore, this genetic map facilitated the anchoring of 237 T. urartu scaffolds onto seven chromosomes with a physical length of 26.15 Mb. This map and the QTL data provide valuable genetic information to dissect important agronomic and developmental traits in diploid wheat and contribute to the genetic ordering of the genome assembly.
Collapse
Affiliation(s)
- Kang Yu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing, 100101, People's Republic of China
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Fragrant Hill, Beijing, 100093, People's Republic of China
| | - Dongcheng Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing, 100101, People's Republic of China
| | - Wenying Wu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing, 100101, People's Republic of China
| | - Wenlong Yang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing, 100101, People's Republic of China
| | - Jiazhu Sun
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing, 100101, People's Republic of China
| | - Xin Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing, 100101, People's Republic of China
| | - Kehui Zhan
- Collaborative Innovation Center for Grain Crops in Henan, Henan Agricultural University, No. 95 Wenhua Road, Zhengzhou, Henan, 450002, People's Republic of China
| | - Dangqun Cui
- Collaborative Innovation Center for Grain Crops in Henan, Henan Agricultural University, No. 95 Wenhua Road, Zhengzhou, Henan, 450002, People's Republic of China
| | - Hongqing Ling
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing, 100101, People's Republic of China
| | - Chunming Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Fragrant Hill, Beijing, 100093, People's Republic of China
| | - Aimin Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing, 100101, People's Republic of China.
- Collaborative Innovation Center for Grain Crops in Henan, Henan Agricultural University, No. 95 Wenhua Road, Zhengzhou, Henan, 450002, People's Republic of China.
| |
Collapse
|
63
|
Nesterov MA, Afonnikov DA, Sergeeva EM, Miroshnichenko LA, Bragina MK, Bragin AO, Vasiliev GV, Salina EA. Identification of microsatellite loci based on BAC sequencing data and their physical mapping into the soft wheat 5B chromosome. ACTA ACUST UNITED AC 2016. [DOI: 10.1134/s2079059716070078] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
64
|
Virdi SK, Liu Z, Overlander ME, Zhang Z, Xu SS, Friesen TL, Faris JD. New Insights into the Roles of Host Gene-Necrotrophic Effector Interactions in Governing Susceptibility of Durum Wheat to Tan Spot and Septoria nodorum Blotch. G3 (BETHESDA, MD.) 2016; 6:4139-4150. [PMID: 27777262 PMCID: PMC5144982 DOI: 10.1534/g3.116.036525] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 10/14/2016] [Indexed: 01/09/2023]
Abstract
Tan spot and Septoria nodorum blotch (SNB) are important diseases of wheat caused by the necrotrophic fungi Pyrenophora tritici-repentis and Parastagonospora nodorum, respectively. The P. tritici-repentis necrotrophic effector (NE) Ptr ToxB causes tan spot when recognized by the Tsc2 gene. The NE ToxA is produced by both pathogens and has been associated with the development of both tan spot and SNB when recognized by the wheat Tsn1 gene. Most work to study these interactions has been conducted in common wheat, but little has been done in durum wheat. Here, quantitative trait loci (QTL) analysis of a segregating biparental population indicated that the Tsc2-Ptr ToxB interaction plays a prominent role in the development of tan spot in durum. However, analysis of two biparental populations indicated that the Tsn1-ToxA interaction was not associated with the development of tan spot, but was strongly associated with the development of SNB. Pa. nodorum expressed ToxA at high levels in infected Tsn1 plants, whereas ToxA expression in P. tritici-repentis was barely detectable, suggesting that the differences in disease levels associated with the Tsn1-ToxA interaction were due to differences in pathogen expression of ToxA These and previous results together indicate that: (1) the effects of Tsn1-ToxA on tan spot in common wheat can range from nonsignificant to highly significant depending on the host genetic background; (2) Tsn1-ToxA is not a significant factor for tan spot development in durum wheat; and (3) Tsn1-ToxA plays a major role in SNB development in both common and durum wheat. Durum and common wheat breeders alike should strive to remove both Tsc2 and Tsn1 from their materials to achieve disease resistance.
Collapse
Affiliation(s)
- Simerjot K Virdi
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota 58108
| | - Zhaohui Liu
- Department of Plant Pathology, North Dakota State University, Fargo, North Dakota 58108
| | - Megan E Overlander
- United States Department of Agriculture-Agricultural Research Service, Cereal Cops Research Unit, Northern Crop Science Laboratory, Fargo, North Dakota 58102
| | - Zengcui Zhang
- United States Department of Agriculture-Agricultural Research Service, Cereal Cops Research Unit, Northern Crop Science Laboratory, Fargo, North Dakota 58102
| | - Steven S Xu
- United States Department of Agriculture-Agricultural Research Service, Cereal Cops Research Unit, Northern Crop Science Laboratory, Fargo, North Dakota 58102
| | - Timothy L Friesen
- Department of Plant Pathology, North Dakota State University, Fargo, North Dakota 58108
- United States Department of Agriculture-Agricultural Research Service, Cereal Cops Research Unit, Northern Crop Science Laboratory, Fargo, North Dakota 58102
| | - Justin D Faris
- United States Department of Agriculture-Agricultural Research Service, Cereal Cops Research Unit, Northern Crop Science Laboratory, Fargo, North Dakota 58102
| |
Collapse
|
65
|
Liu W, Koo DH, Friebe B, Gill BS. A set of Triticum aestivum-Aegilops speltoides Robertsonian translocation lines. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:2359-2368. [PMID: 27558595 DOI: 10.1007/s00122-016-2774-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 08/12/2016] [Indexed: 06/06/2023]
Abstract
Here we report the production of a set of wheat - Aegilops speltoides Robertsonian translocations covering all Ae. speltoides chromosome arms except the long arm of the homoeologous group 4 chromosome. Aegilops speltoides of the Poaceae family is the most probable donor of the B and G genomes of polyploid Triticum species and also an important source of resistance to diseases and pests of wheat. Previously, we reported the production of a complete set of T aestivum-Ae. speltoides chromosome addition lines and a set of disomic S(B/A)-genome chromosome substitution lines. The isolation of compensating Robertsonian translocations (RobTs) composed of alien chromosome arms translocated to homoeologous wheat chromosome arms is the important next step to exploit the genetic variation of a wild relative of wheat. Here, we report the development of molecular markers specific for the S-genome chromosomes and their use in the isolation of a set of 13 compensating wheat-Ae. speltoides RobTs covering the S genome of Ae. speltoides except for the long arm of chromosome 4S. Most of the RobTs were fully fertile and will facilitate mapping of genes to specific chromosome arms and also will accelerate the introgression of agronomically useful traits from Ae. speltoides into wheat by homologous recombination.
Collapse
Affiliation(s)
- Wenxuan Liu
- Laboratory of Cell and Chromosome Engineering, College of Life Sciences, Henan Agricultural University, Zhengzhou, Henan, 450002, People's Republic of China
| | - Dal-Hoe Koo
- Wheat Genetics Resource Center, Department of Plant Pathology, Throckmorton Plant Sciences Center, Kansas State University, Manhattan, KS, 66506-5502, USA
| | - Bernd Friebe
- Wheat Genetics Resource Center, Department of Plant Pathology, Throckmorton Plant Sciences Center, Kansas State University, Manhattan, KS, 66506-5502, USA.
| | - Bikram S Gill
- Wheat Genetics Resource Center, Department of Plant Pathology, Throckmorton Plant Sciences Center, Kansas State University, Manhattan, KS, 66506-5502, USA
| |
Collapse
|
66
|
Hiebert CW, Kassa MT, McCartney CA, You FM, Rouse MN, Fobert P, Fetch TG. Genetics and mapping of seedling resistance to Ug99 stem rust in winter wheat cultivar Triumph 64 and differentiation of SrTmp, SrCad, and Sr42. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:2171-2177. [PMID: 27506534 DOI: 10.1007/s00122-016-2765-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 08/02/2016] [Indexed: 05/20/2023]
Abstract
Resistance to Ug99 stem rust in Triumph 64 was conferred by SrTmp on chromosome arm 6DS and was mapped to the same position as SrCad and Sr42 , however, the three genes show functional differences. Stem rust, caused by Puccinia graminis f. sp. tritici (Pgt), is an important disease of wheat that can be controlled by effective stem rust resistance (Sr) genes. The emergence of virulent Pgt races in Africa, namely Ug99 and its variants, has stimulated the search for new Sr genes and genetic characterization of known sources of resistance. Triumph 64 is a winter wheat cultivar that carries gene SrTmp, which confers resistance to Ug99. The goals of this study were to genetically map SrTmp and examine its relationship with other Sr genes occupying a similar chromosome location. A doubled haploid (DH) population from the cross LMPG-6S/Triumph 64 was inoculated with Ug99 at the seedling stage. A single gene conditioning resistance to Ug99 segregated in the population. Genetic mapping with SSR markers placed SrTmp on chromosome arm 6DS in a region similar to SrCad and Sr42. SNP markers developed for SrCad were used to further map SrTmp and were also added to a genetic map of Sr42 using a DH population (LMPG-6S/Norin 40). Three SNP markers that co-segregated with SrTmp also co-segregated with SrCad and Sr42. The SNP markers showed no difference in the map locations of SrTmp, SrCad, and Sr42. Multi-race testing with DH lines from the Triumph 64 and Norin 40 populations and a recombinant inbred-line population from the cross LMPG-6S/AC Cadillac showed that SrTmp, SrCad, and Sr42 confer different spectra of resistance. Markers closely linked to SrTmp are suitable for marker-assisted breeding and germplasm development.
Collapse
Affiliation(s)
- Colin W Hiebert
- Agriculture and Agri-Food Canada, Morden Research and Development Centre, 101 Route 100 Morden, Manitoba, R6M 1Y5, Canada.
| | - Mulualem T Kassa
- Agriculture and Agri-Food Canada, Morden Research and Development Centre, 101 Route 100 Morden, Manitoba, R6M 1Y5, Canada
- National Research Council, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - Curt A McCartney
- Agriculture and Agri-Food Canada, Morden Research and Development Centre, 101 Route 100 Morden, Manitoba, R6M 1Y5, Canada
| | - Frank M You
- Agriculture and Agri-Food Canada, Morden Research and Development Centre, 101 Route 100 Morden, Manitoba, R6M 1Y5, Canada
| | - Matthew N Rouse
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS) Cereal Disease Laboratory, University of Minnesota Department of Plant Pathology, 1551 Lindig Street, St. Paul, MN, USA
| | - Pierre Fobert
- National Research Council, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - Tom G Fetch
- Agriculture and Agri-Food Canada, Brandon Research and Development Centre, Brandon, MB R7A 5Y3, Canada
| |
Collapse
|
67
|
Terasawa Y, Ito M, Tabiki T, Nagasawa K, Hatta K, Nishio Z. Mapping of a major QTL associated with protein content on chromosome 2B in hard red winter wheat ( Triticum aestivum L.). BREEDING SCIENCE 2016; 66:471-480. [PMID: 27795672 PMCID: PMC5010309 DOI: 10.1270/jsbbs.16026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 04/18/2016] [Indexed: 05/06/2023]
Abstract
A quantitative trait locus (QTL) controlling wheat grain protein content (GPC) and flour protein content (FPC) was identified using doubled haploid (DH) lines developed from a cross between the hard red winter wheat variety 'Yumechikara' with a high protein content used for bread making, and the soft red winter wheat 'Kitahonami' with a low protein content used for Japanese white salted noodles. A single major QTL, QGpc.2B-yume, was identified on the short arm of wheat chromosome 2B for both the GPC and FPC over 3 years of testing. QGpc.2B-yume was mapped on the flanking region of microsatellite marker Xgpw4382. The DH lines grouped by the haplotype of the closest flanking microsatellite marker Xgpw4382 showed differences of 1.0% and 1.1% in mean GPC and FPC, respectively. Yield-component-related traits were not affected by the haplotype of QGpc.2B-yume, and major North American hard red winter wheat varieties showed the high-protein haplotype. Unlike Gpc-B1 derived from tetraploid wheat, QGpc.2B-yume has no negative effects on yield-component-related traits and should be useful for wheat breeding to increase GPC and FPC.
Collapse
Affiliation(s)
- Yohei Terasawa
- NARO Hokkaido Agricultural Research Center, Memuro Research Station,
9-4 Shinsei-minami, Memuro, Kasai, Hokkaido 082-0081,
Japan
| | - Miwako Ito
- NARO Hokkaido Agricultural Research Center, Memuro Research Station,
9-4 Shinsei-minami, Memuro, Kasai, Hokkaido 082-0081,
Japan
| | - Tadashi Tabiki
- NARO Hokkaido Agricultural Research Center, Memuro Research Station,
9-4 Shinsei-minami, Memuro, Kasai, Hokkaido 082-0081,
Japan
| | - Koichi Nagasawa
- NARO Hokkaido Agricultural Research Center, Memuro Research Station,
9-4 Shinsei-minami, Memuro, Kasai, Hokkaido 082-0081,
Japan
| | - Koichi Hatta
- NARO Hokkaido Agricultural Research Center, Memuro Research Station,
9-4 Shinsei-minami, Memuro, Kasai, Hokkaido 082-0081,
Japan
| | - Zenta Nishio
- NARO Hokkaido Agricultural Research Center, Memuro Research Station,
9-4 Shinsei-minami, Memuro, Kasai, Hokkaido 082-0081,
Japan
- Tokyo University of Agriculture,
1737, Funako, Atsugi, Kanagawa 243-0034,
Japan
- Corresponding author (e-mail: )
| |
Collapse
|
68
|
Zhao L, Ning S, Yu J, Hao M, Zhang L, Yuan Z, Zheng Y, Liu D. Cytological identification of an Aegilops variabilis chromosome carrying stripe rust resistance in wheat. BREEDING SCIENCE 2016; 66:522-529. [PMID: 27795677 PMCID: PMC5010304 DOI: 10.1270/jsbbs.16011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 04/23/2016] [Indexed: 05/19/2023]
Abstract
Aegilops variabilis (UUSvSv), an important sources for wheat improvement, originated from chromosome doubling of a natural hybrid between Ae. umbellulata (UU) with Ae. longissima (SlSl). The Ae. variabilis karyotype was poorly characterized by fluorescent in situ hybridization (FISH). The FISH probe combination of pSc119.2, pTa71 and pTa-713 identified each of the 14 pairs of Ae. variabilis chromosomes. Our FISH ideogram was further used to detect an Ae. variabilis chromosome carrying stripe rust resistance in the background of wheat lines developed from crosses of the stripe rust susceptible bread wheat cultivar Yiyuan 2 with a resistant Ae. variabilis accession. Among the 15 resistant BC1F7 lines, three were 2Sv + 4Sv addition lines (2n = 46) and 12 were 2Sv(2B) or 2Sv(2D) substitution lines that were confirmed with SSR markers. SSR marker gwm148 can be used to trace 2Sv in common wheat background. Chromosome 2Sv probably carries gametocidal(Gc) gene(s) since cytological instability and chromosome structural variations, including non-homologous translocations, were observed in some lines with this chromosome. Due to the effects of photoperiod genes, substitution lines 2Sv(2D) and 2Sv(2B) exhibited late heading with 2Sv(2D) lines being later than 2Sv(2B) lines. 2Sv(2D) substitution lines were also taller and exhibited higher spikelet numbers and longer spikes.
Collapse
Affiliation(s)
| | | | - Jianjun Yu
- Triticeae Research Institute, Sichuan Agricultural University,
Chengdu, Sichuan 611130,
China
| | - Ming Hao
- Triticeae Research Institute, Sichuan Agricultural University,
Chengdu, Sichuan 611130,
China
| | - Lianquan Zhang
- Triticeae Research Institute, Sichuan Agricultural University,
Chengdu, Sichuan 611130,
China
| | - Zhongwei Yuan
- Triticeae Research Institute, Sichuan Agricultural University,
Chengdu, Sichuan 611130,
China
| | - Youliang Zheng
- Triticeae Research Institute, Sichuan Agricultural University,
Chengdu, Sichuan 611130,
China
| | - Dengcai Liu
- Triticeae Research Institute, Sichuan Agricultural University,
Chengdu, Sichuan 611130,
China
| |
Collapse
|
69
|
Lu Y, Yao M, Zhang J, Song L, Liu W, Yang X, Li X, Li L. Genetic analysis of a novel broad-spectrum powdery mildew resistance gene from the wheat-Agropyron cristatum introgression line Pubing 74. PLANTA 2016; 244:713-23. [PMID: 27125388 DOI: 10.1007/s00425-016-2538-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 04/20/2016] [Indexed: 05/24/2023]
Abstract
A novel broad-spectrum powdery mildew resistance gene PmPB74 was identified in wheat- Agropyron cristatum introgression line Pubing 74. Development of wheat cultivars with broad-spectrum, durable resistance to powdery mildew has been restricted by lack of superior genetic resources. In this study, a wheat-A. cristatum introgression line Pubing 74, originally selected from a wide cross between the common wheat cultivar Fukuhokomugi (Fukuho) and Agropyron cristatum (L.) Gaertn (2n = 4x = 28; genome PPPP), displayed resistance to powdery mildew at both the seedling and adult stages. The putative alien chromosomal fragment in Pubing 74 was below the detection limit of genomic in situ hybridization (GISH), but evidence for other non-GISH-detectable introgressions was provided by the presence of three STS markers specific to A. cristatum. Genetic analysis indicated that Pubing 74 carried a single dominant gene for powdery mildew resistance, temporarily designated PmPB74. Molecular mapping showed that PmPB74 was located on wheat chromosome arm 5DS, and flanked by markers Xcfd81 and HRM02 at genetic distances of 2.5 and 1.7 cM, respectively. Compared with other lines with powdery mildew resistance gene(s) on wheat chromosome arm 5DS, Pubing 74 was resistant to all 28 Blumeria graminis f. sp tritici (Bgt) isolates from different wheat-producing regions of northern China. Allelism tests indicated that PmPB74 was not allelic to PmPB3558 or Pm2. Our work showed that PmPB74 is a novel gene with broad resistance to powdery mildew, and hence will be helpful in broadening the genetic basis of powdery mildew resistance in wheat.
Collapse
Affiliation(s)
- Yuqing Lu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Miaomiao Yao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jinpeng Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Liqiang Song
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Weihua Liu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xinming Yang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiuquan Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lihui Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
70
|
Hou L, Jia J, Zhang X, Li X, Yang Z, Ma J, Guo H, Zhan H, Qiao L, Chang Z. Molecular Mapping of the Stripe Rust Resistance Gene Yr69 on Wheat Chromosome 2AS. PLANT DISEASE 2016; 100:1717-1724. [PMID: 30686226 DOI: 10.1094/pdis-05-15-0555-re] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Wheat is one of the major food crops in the world. Stripe rust, caused by Puccinia striiformis f. sp. tritici, is an economically important disease that affects wheat worldwide. The discovery of novel resistance genes and the deployment of effectively resistant cultivars are important for the ongoing control of wheat stripe rust and the maintenance of the agricultural productivity of wheat. CH7086, a new stripe rust-resistant wheat introgression line, was selected by crossing susceptible cultivars with the resistant Thinopyrum ponticum-derived partial amphiploid Xiaoyan 7430. The resistance of CH7086 is effective against all current Chinese P. striiformis f. sp. tritici races. CH7086 was crossed with the stripe rust-susceptible cultivars to develop F1, F2, F3, and BC1 populations for genetic analysis. Segregation in the F2 and BC1 populations and F2:3 lines were tested for resistance against the P. striiformis f. sp. tritici race CYR32. This test showed that CH7086 carries a single dominant gene for stripe rust resistance, which was temporarily designated YrCH86. The closest of the eight simple sequence repeat (SSR) and expressed sequence tag-SSR markers flanking the locus were X2AS33, which is 1.9 cM distal, and Xmag3807, which is 3.1 cM proximal. The resistance gene and its polymorphic markers were placed in deletion bin 2AS-0.78-1.00 using the 'Chinese Spring' nullisomic-tetrasomic, ditelosomic, and deletion lines. The tests of both allelism and resistance specificity suggested that the resistance gene found in CH7086 was not Yr17, which was the only current formally named Yr gene on chromosome 2AS. Thus, YrCH86 appeared to be a new locus and was permanently designated Yr69.
Collapse
Affiliation(s)
- Liyuan Hou
- College of Life Science, Shanxi University, Taiyuan 030006, Shanxi, China
| | - Juqing Jia
- College of Agronomy, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Xiaojun Zhang
- Institute of Crop Science, Shanxi Academy of Agricultural Sciences, Taiyuan 030031, Shanxi, China, and Shanxi Key Laboratory for Crop Genetics and Gene Improvement, Taiyuan 030031, Shanxi, China
| | - Xin Li
- Institute of Crop Science, Shanxi Academy of Agricultural Sciences, Taiyuan 030031, Shanxi, China, and Shanxi Key Laboratory for Crop Genetics and Gene Improvement, Taiyuan 030031, Shanxi, China
| | - Zujun Yang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| | - Jian Ma
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Huijuan Guo
- Institute of Crop Science, Shanxi Academy of Agricultural Sciences, Taiyuan 030031, Shanxi, China, and Shanxi Key Laboratory for Crop Genetics and Gene Improvement, Taiyuan 030031, Shanxi, China
| | - Haixian Zhan
- Institute of Crop Science, Shanxi Academy of Agricultural Sciences, Taiyuan 030031, Shanxi, China, and Shanxi Key Laboratory for Crop Genetics and Gene Improvement, Taiyuan 030031, Shanxi, China
| | - Linyi Qiao
- Institute of Crop Science, Shanxi Academy of Agricultural Sciences, Taiyuan 030031, Shanxi, China, and Shanxi Key Laboratory for Crop Genetics and Gene Improvement, Taiyuan 030031, Shanxi, China
| | - Zhijian Chang
- Institute of Crop Science, Shanxi Academy of Agricultural Sciences, Taiyuan 030031, Shanxi, China, and Shanxi Key Laboratory for Crop Genetics and Gene Improvement, Taiyuan 030031, Shanxi, China
| |
Collapse
|
71
|
Phan HTT, Rybak K, Furuki E, Breen S, Solomon PS, Oliver RP, Tan KC. Differential effector gene expression underpins epistasis in a plant fungal disease. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 87:343-54. [PMID: 27133896 PMCID: PMC5053286 DOI: 10.1111/tpj.13203] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 04/18/2016] [Accepted: 04/25/2016] [Indexed: 05/18/2023]
Abstract
Fungal effector-host sensitivity gene interactions play a key role in determining the outcome of septoria nodorum blotch disease (SNB) caused by Parastagonospora nodorum on wheat. The pathosystem is complex and mediated by interaction of multiple fungal necrotrophic effector-host sensitivity gene systems. Three effector sensitivity gene systems are well characterized in this pathosystem; SnToxA-Tsn1, SnTox1-Snn1 and SnTox3-Snn3. We tested a wheat mapping population that segregated for Snn1 and Snn3 with SN15, an aggressive P. nodorum isolate that produces SnToxA, SnTox1 and SnTox3, to study the inheritance of sensitivity to SnTox1 and SnTox3 and disease susceptibility. Interval quantitative trait locus (QTL) mapping showed that the SnTox1-Snn1 interaction was paramount in SNB development on both seedlings and adult plants. No effect of the SnTox3-Snn3 interaction was observed under SN15 infection. The SnTox3-Snn3 interaction was however, detected in a strain of SN15 in which SnTox1 had been deleted (tox1-6). Gene expression analysis indicates increased SnTox3 expression in tox1-6 compared with SN15. This indicates that the failure to detect the SnTox3-Snn3 interaction in SN15 is due - at least in part - to suppressed expression of SnTox3 mediated by SnTox1. Furthermore, infection of the mapping population with a strain deleted in SnToxA, SnTox1 and SnTox3 (toxa13) unmasked a significant SNB QTL on 2DS where the SnTox2 effector sensitivity gene, Snn2, is located. This QTL was not observed in SN15 and tox1-6 infections and thus suggesting that SnToxA and/or SnTox3 were epistatic. Additional QTLs responding to SNB and effectors sensitivity were detected on 2AS1 and 3AL.
Collapse
Affiliation(s)
- Huyen T T Phan
- Centre for Crop and Disease Management, Department of Environment and Agriculture, Curtin University, Bentley, WA, 6102, Australia
| | - Kasia Rybak
- Centre for Crop and Disease Management, Department of Environment and Agriculture, Curtin University, Bentley, WA, 6102, Australia
| | - Eiko Furuki
- Centre for Crop and Disease Management, Department of Environment and Agriculture, Curtin University, Bentley, WA, 6102, Australia
| | - Susan Breen
- Plant Sciences Division, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Peter S Solomon
- Plant Sciences Division, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Richard P Oliver
- Centre for Crop and Disease Management, Department of Environment and Agriculture, Curtin University, Bentley, WA, 6102, Australia.
| | - Kar-Chun Tan
- Centre for Crop and Disease Management, Department of Environment and Agriculture, Curtin University, Bentley, WA, 6102, Australia.
| |
Collapse
|
72
|
Hiebert CW, Kolmer JA, McCartney CA, Briggs J, Fetch T, Bariana H, Choulet F, Rouse MN, Spielmeyer W. Major Gene for Field Stem Rust Resistance Co-Locates with Resistance Gene Sr12 in 'Thatcher' Wheat. PLoS One 2016; 11:e0157029. [PMID: 27309724 PMCID: PMC4911119 DOI: 10.1371/journal.pone.0157029] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 05/24/2016] [Indexed: 11/19/2022] Open
Abstract
Stem rust, caused by Puccinia graminis (Pgt), is a damaging disease of wheat that can be controlled by utilizing effective stem rust resistance genes. 'Thatcher' wheat carries complex resistance to stem rust that is enhanced in the presence of the resistance gene Lr34. The purpose of this study was to examine APR in 'Thatcher' and look for genetic interactions with Lr34. A RIL population was tested for stem rust resistance in field nurseries in Canada, USA, and Kenya. BSA was used to find SNP markers associated with reduced stem rust severity. A major QTL was identified on chromosome 3BL near the centromere in all environments. Seedling testing showed that Sr12 mapped to the same region as the QTL for APR. The SNP markers were physically mapped and the region carrying the resistance was searched for sequences with homology to members of the NB-LRR resistance gene family. SNP marker from one NB-LRR-like sequence, NB-LRR3 co-segregated with Sr12. Two additional populations, including one that lacked Lr34, were tested in field nurseries. NB-LRR3 mapped near the maximum LOD for reduction in stem rust severity in both populations. Lines from a population that segregated for Sr12 and Lr34 were tested for seedling Pgt biomass and infection type, as well as APR to field stem rust which showed an interaction between the genes. We concluded that Sr12, or a gene closely linked to Sr12, was responsible for 'Thatcher'-derived APR in several environments and this resistance was enhanced in the presence of Lr34.
Collapse
Affiliation(s)
- Colin W. Hiebert
- Agriculture and Agri-Food Canada, Cereal Research Centre, Morden, Manitoba, Canada
| | - James A. Kolmer
- Department of Plant Pathology, University of Minnesota, Saint Paul, Minnesota, United States of America
- United States Department of Agriculture–Agriculture Research Service, Cereal Disease Laboratory, Saint Paul, Minnesota, United States of America
| | - Curt A. McCartney
- Agriculture and Agri-Food Canada, Cereal Research Centre, Morden, Manitoba, Canada
| | - Jordan Briggs
- Department of Plant Pathology, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Tom Fetch
- Agriculture and Agri-Food Canada, Brandon Research Centre, Brandon, Manitoba, Canada
| | - Harbans Bariana
- Plant Breeding Institute, University of Sydney, Cobbitty, New South Wales, Australia
| | - Frederic Choulet
- INRA UMR1095 Genetics, Diversity and Ecophysiology of Cereals, Clermont-Ferrand, France
| | - Matthew N. Rouse
- Department of Plant Pathology, University of Minnesota, Saint Paul, Minnesota, United States of America
- United States Department of Agriculture–Agriculture Research Service, Cereal Disease Laboratory, Saint Paul, Minnesota, United States of America
| | - Wolfgang Spielmeyer
- Commonwealth Scientific and Industrial Research Organisation—Agriculture and Food, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
73
|
Bheema Lingeswara Reddy IN, Chandrasekhar K, Zewdu Y, Dinoor A, Keller B, Ben-David R. Identification and genetic mapping of PmAF7DS a powdery mildew resistance gene in bread wheat (Triticum aestivum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:1127-1137. [PMID: 26934890 DOI: 10.1007/s00122-016-2688-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 01/30/2016] [Indexed: 06/05/2023]
Abstract
Gene PmAF7DS confers resistance to wheat powdery mildew (isolate Bgt#211 ); it was mapped to a 14.6-cM interval ( Xgwm350 a- Xbarc184 ) on chromosome 7DS. The flanking markers could be applied in MAS breeding. Wheat powdery mildew (Pm) is caused by the biotrophic pathogen Blumeria graminis tritici (DC.) (Bgt). An ongoing threat of breakdown of race-specific resistance to Pm requires a continuous effort to discover new alleles in the wheat gene pool. Developing new cultivars with improved disease resistance is an economically and environmentally safe approach to reduce yield losses. To identify and characterize genes for resistance against Pm in bread wheat we used the (Arina × Forno) RILs population. Initially, the two parental lines were screened with a collection of 61 isolates of Bgt from Israel. Three Pm isolates Bgt#210 , Bgt#211 and Bgt#213 showed differential reactions in the parents: Arina was resistant (IT = 0), whereas Forno was moderately susceptible (IT = -3). Isolate Bgt#211 was then used to inoculate the RIL population. The segregation pattern of plant reactions among the RILs indicates that a single dominant gene controls the conferred resistance. A genetic map of the region containing this gene was assembled with DNA markers and assigned to the 7D physical bin map. The gene, temporarily designated PmAF7DS, was located in the distal region of chromosome arm 7DS. The RILs were also inoculated with Bgt#210 and Bgt#213. The plant reactions to these isolates showed high identity with the reaction to Bgt#211, indicating the involvement of the same gene or closely linked, but distinct single genes. The genomic location of PmAF7DS, in light of other Pm genes on 7DS is discussed.
Collapse
Affiliation(s)
- I N Bheema Lingeswara Reddy
- Department of Vegetables and Field Crops, Institute of Plant Sciences, Agricultural Research Organization (ARO)-Volcani Center, 5025000, Bet Dagan, Israel
| | - K Chandrasekhar
- Department of Vegetables and Field Crops, Institute of Plant Sciences, Agricultural Research Organization (ARO)-Volcani Center, 5025000, Bet Dagan, Israel
| | - Y Zewdu
- Department of Vegetables and Field Crops, Institute of Plant Sciences, Agricultural Research Organization (ARO)-Volcani Center, 5025000, Bet Dagan, Israel
| | - A Dinoor
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, 7610001, Rehovot, Israel
| | - B Keller
- Institute of Plant Biology, University of Zurich, Zollikerstrasse 107, 8008, Zurich, Switzerland
| | - R Ben-David
- Department of Vegetables and Field Crops, Institute of Plant Sciences, Agricultural Research Organization (ARO)-Volcani Center, 5025000, Bet Dagan, Israel.
| |
Collapse
|
74
|
Wu XL, Wang JW, Cheng YK, Ye XL, Li W, Pu ZE, Jiang QT, Wei YM, Deng M, Zheng YL, Chen GY. Inheritance and Molecular Mapping of an All-Stage Stripe Rust Resistance Gene Derived from the Chinese Common Wheat Landrace "Yilongtuomai". J Hered 2016; 107:463-70. [PMID: 27208148 DOI: 10.1093/jhered/esw032] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 05/09/2016] [Indexed: 11/13/2022] Open
Abstract
Yellow or stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is a devastating foliar disease that affects common wheat (Triticum aestivum L.) around the world. In China, common wheat landraces are potential sources of disease and abiotic stress resistance genes for wheat improvement. Yilongtuomai (YL), a wheat landrace from Yilong County, Sichuan Province, shows high levels of resistance against most Chinese Pst races. In this study, the resistance of YL to stripe rust disease was examined in detail. Parent strains, YL and Taichung 29, a variety susceptible to Pst race CYR32, and their F1, F2, and F2:3 offspring, were inoculated with CYR32 during the seedling stage in the field or adult-plant stage in the greenhouse. Results indicated that resistance to CYR32 in YL is conferred by a single dominant gene, designated YrYL The segregating F2 population (352 plants), was analyzed in terms of its resistance locus using simple sequence repeats (SSRs), resistance gene analog polymorphisms (RGAPs), and sequence-related amplified polymorphism (SRAP). A linkage group of 6 SSRs, 2 RGAPs, and 1 SRAP was constructed for the YrYL gene. Using the identified SSRs associated with physical mapping of RGAP using Chinese Spring nullisomic-tetrasomic stocks, the YrYL gene was localized to the short arm of chromosome 7D. The gene was flanked by 1 SSR marker, Xbarc92, and 1 RGAP marker, CLRRfor/Ptokin4, at genetic distances of 5.35 and 9.86 cM, respectively. The YrYL gene was compared to other stripe rust resistance genes reported on chromosome 7D by evaluating its reaction patterns to CYR32 and its pedigree relationship. Our results suggest that the YrYL gene is a new stripe rust resistance gene.
Collapse
Affiliation(s)
- Xue-Lian Wu
- From the Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, People's Republic of China (Wu, Wang, Cheng, Ye, Jiang, Li, Deng, Zheng, and Chen); Key Laboratory of Crop Germplasm Resources Utilization in Southwest China, Ministry of Agriculture, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China (Wei and Zheng); College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, People's Republic of China (Li and Pu)
| | - Jian-Wei Wang
- From the Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, People's Republic of China (Wu, Wang, Cheng, Ye, Jiang, Li, Deng, Zheng, and Chen); Key Laboratory of Crop Germplasm Resources Utilization in Southwest China, Ministry of Agriculture, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China (Wei and Zheng); College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, People's Republic of China (Li and Pu)
| | - Yu-Kun Cheng
- From the Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, People's Republic of China (Wu, Wang, Cheng, Ye, Jiang, Li, Deng, Zheng, and Chen); Key Laboratory of Crop Germplasm Resources Utilization in Southwest China, Ministry of Agriculture, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China (Wei and Zheng); College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, People's Republic of China (Li and Pu)
| | - Xue-Ling Ye
- From the Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, People's Republic of China (Wu, Wang, Cheng, Ye, Jiang, Li, Deng, Zheng, and Chen); Key Laboratory of Crop Germplasm Resources Utilization in Southwest China, Ministry of Agriculture, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China (Wei and Zheng); College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, People's Republic of China (Li and Pu)
| | - Wei Li
- From the Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, People's Republic of China (Wu, Wang, Cheng, Ye, Jiang, Li, Deng, Zheng, and Chen); Key Laboratory of Crop Germplasm Resources Utilization in Southwest China, Ministry of Agriculture, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China (Wei and Zheng); College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, People's Republic of China (Li and Pu)
| | - Zhi-En Pu
- From the Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, People's Republic of China (Wu, Wang, Cheng, Ye, Jiang, Li, Deng, Zheng, and Chen); Key Laboratory of Crop Germplasm Resources Utilization in Southwest China, Ministry of Agriculture, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China (Wei and Zheng); College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, People's Republic of China (Li and Pu)
| | - Qian-Tao Jiang
- From the Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, People's Republic of China (Wu, Wang, Cheng, Ye, Jiang, Li, Deng, Zheng, and Chen); Key Laboratory of Crop Germplasm Resources Utilization in Southwest China, Ministry of Agriculture, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China (Wei and Zheng); College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, People's Republic of China (Li and Pu)
| | - Yu-Ming Wei
- From the Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, People's Republic of China (Wu, Wang, Cheng, Ye, Jiang, Li, Deng, Zheng, and Chen); Key Laboratory of Crop Germplasm Resources Utilization in Southwest China, Ministry of Agriculture, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China (Wei and Zheng); College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, People's Republic of China (Li and Pu)
| | - Mei Deng
- From the Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, People's Republic of China (Wu, Wang, Cheng, Ye, Jiang, Li, Deng, Zheng, and Chen); Key Laboratory of Crop Germplasm Resources Utilization in Southwest China, Ministry of Agriculture, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China (Wei and Zheng); College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, People's Republic of China (Li and Pu)
| | - You-Liang Zheng
- From the Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, People's Republic of China (Wu, Wang, Cheng, Ye, Jiang, Li, Deng, Zheng, and Chen); Key Laboratory of Crop Germplasm Resources Utilization in Southwest China, Ministry of Agriculture, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China (Wei and Zheng); College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, People's Republic of China (Li and Pu)
| | - Guo-Yue Chen
- From the Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, People's Republic of China (Wu, Wang, Cheng, Ye, Jiang, Li, Deng, Zheng, and Chen); Key Laboratory of Crop Germplasm Resources Utilization in Southwest China, Ministry of Agriculture, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China (Wei and Zheng); College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, People's Republic of China (Li and Pu).
| |
Collapse
|
75
|
Ma P, Xu H, Li L, Zhang H, Han G, Xu Y, Fu X, Zhang X, An D. Characterization of a New Pm2 Allele Conferring Powdery Mildew Resistance in the Wheat Germplasm Line FG-1. FRONTIERS IN PLANT SCIENCE 2016; 7:546. [PMID: 27200022 PMCID: PMC4844600 DOI: 10.3389/fpls.2016.00546] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 04/08/2016] [Indexed: 05/04/2023]
Abstract
Powdery mildew has a negative impact on wheat production. Novel host resistance increases the diversity of resistance genes and helps to control the disease. In this study, wheat line FG-1 imported from France showed a high level of powdery mildew resistance at both the seedling and adult stages. An F2 population and F2:3 families from the cross FG-1 × Mingxian 169 both fit Mendelian ratios for a single dominant resistance gene when tested against multiple avirulent Blumeria tritici f. sp. tritici (Bgt) races. This gene was temporarily designated PmFG. PmFG was mapped on the multi-allelic Pm2 locus of chromosome 5DS using seven SSR, 10 single nucleotide polymorphism (SNP)-derived and two SCAR markers with the flanking markers Xbwm21/Xcfd81/Xscar112 (distal) and Xbwm25 (proximal) at 0.3 and 0.5 cM being the closest. Marker SCAR203 co-segregated with PmFG. Allelism tests between PmFG and documented Pm2 alleles confirmed that PmFG was allelic with Pm2. Line FG-1 produced a significantly different reaction pattern compared to other lines with genes at or near Pm2 when tested against 49 Bgt isolates. The PmFG-linked marker alleles detected by the SNP-derived markers revealed significant variation between FG-1 and other lines with genes at or near Pm2. It was concluded that PmFG is a new allele at the Pm2 locus. Data from seven closely linked markers tested on 31 wheat cultivars indicated opportunities for marker-assisted pyramiding of this gene with other genes for powdery mildew resistance and additional traits.
Collapse
Affiliation(s)
- Pengtao Ma
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology - Chinese Academy of Sciences Shijiazhuang, China
| | - Hongxng Xu
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology - Chinese Academy of Sciences Shijiazhuang, China
| | - Lihui Li
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science - Chinese Academy of Agricultural Sciences Beijing, China
| | - Hongxia Zhang
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology - Chinese Academy of Sciences Shijiazhuang, China
| | - Guohao Han
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology - Chinese Academy of Sciences Shijiazhuang, China
| | - Yunfeng Xu
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology - Chinese Academy of Sciences Shijiazhuang, China
| | - Xiaoyi Fu
- Shijiazhuang Academy of Agricultural and Forestry Sciences Shijiazhuang, China
| | - Xiaotian Zhang
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology - Chinese Academy of Sciences Shijiazhuang, China
| | - Diaoguo An
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology - Chinese Academy of Sciences Shijiazhuang, China
| |
Collapse
|
76
|
Zhang P, Hiebert CW, McIntosh RA, McCallum BD, Thomas JB, Hoxha S, Singh D, Bansal U. The relationship of leaf rust resistance gene Lr13 and hybrid necrosis gene Ne2m on wheat chromosome 2BS. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:485-93. [PMID: 26660463 DOI: 10.1007/s00122-015-2642-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 11/21/2015] [Indexed: 05/24/2023]
Abstract
Genetic and mutational analyses of wheat leaf rust resistance gene Lr13 and hybrid necrosis gene Ne2 m indicated that they are the same gene. Hybrid necrosis in wheat characterized by chlorosis and eventual necrosis of plant tissues in certain wheat hybrids is controlled by the interaction of complementary dominant genes Ne1 and Ne2 located on chromosome arms 5BL and 2BS, respectively. Multiple alleles at each locus can be identified by differences in necrotic phenotypes when varieties are crossed with a fixed accession of the other genotype. Some of at least five Ne2 alleles were described as s (strong), m (medium) and w (weak); alleles of Ne1 were similarly described. Ne2m causes moderate necrosis in hybrids with genotypes having Ne1s. Ne2 is located on chromosome arm 2BS in close proximity to Lr13. Most wheat lines with Ne2m carry Lr13, and all wheat lines with Lr13 appear to carry Ne2m. To further dissect the relationship between Lr13 and Ne2m, more than 350 crosses were made between cv. Spica (Triticum aestivum) or Kubanka (T. durum) carrying Ne1s and recombinant inbred lines or doubled haploid lines from three crosses segregating for Lr13. F1 plants from lines carrying Lr13 crossed with Spica (Ne1s) always showed progressive necrosis; those lacking Lr13 did not. Four wheat cultivars/lines carrying Lr13 were treated with the mutagen EMS. Thirty-five susceptible mutants were identified; eight were distinctly less glaucous and late maturing indicative of chromosome 2B or sub-chromosome loss. Hybrids of phenotypically normal Lr13 mutant plants crossed with Spica did not produce symptoms of hybrid necrosis. Thus, Lr13 and one particular Ne2m allele may be the same gene.
Collapse
Affiliation(s)
- Peng Zhang
- Plant Breeding Institute, University of Sydney, 107 Cobbitty Road, Cobbitty, NSW, 2570, Australia.
| | - Colin W Hiebert
- Agriculture and Agri-Food Canada, Cereal Research Centre, 101 Route 100, Morden, MB, R6M 1Y5, Canada
| | - Robert A McIntosh
- Plant Breeding Institute, University of Sydney, 107 Cobbitty Road, Cobbitty, NSW, 2570, Australia
| | - Brent D McCallum
- Agriculture and Agri-Food Canada, Cereal Research Centre, 101 Route 100, Morden, MB, R6M 1Y5, Canada
| | - Julian B Thomas
- Agriculture and Agri-Food Canada, Cereal Research Centre, 101 Route 100, Morden, MB, R6M 1Y5, Canada
| | - Sami Hoxha
- Plant Breeding Institute, University of Sydney, 107 Cobbitty Road, Cobbitty, NSW, 2570, Australia
| | - Davinder Singh
- Plant Breeding Institute, University of Sydney, 107 Cobbitty Road, Cobbitty, NSW, 2570, Australia
| | - Urmil Bansal
- Plant Breeding Institute, University of Sydney, 107 Cobbitty Road, Cobbitty, NSW, 2570, Australia
| |
Collapse
|
77
|
Zhang H, Zhang L, Wang C, Wang Y, Zhou X, Lv S, Liu X, Kang Z, Ji W. Molecular mapping and marker development for the Triticum dicoccoides-derived stripe rust resistance gene YrSM139-1B in bread wheat cv. Shaanmai 139. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:369-376. [PMID: 26649867 DOI: 10.1007/s00122-015-2633-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 11/04/2015] [Indexed: 06/05/2023]
Abstract
KEY MESSAGE YrSM139-1B maybe a new gene for effective resistance to stripe rust and useful flanking markers for marker-assisted selection were developed. ABSTRACT Stripe rust, caused by Puccinia striiformis f. sp. tritici, is an important foliar disease of wheat. Two dominant stripe rust resistant genes YrSM139-1B and YrSM139-2D were pyramided in bread wheat cultivar Shaanmai 139; one from wild emmer and the other from Thinopyrum intermedium. Three near-isogenic F7:8 line pairs (contrasting RILs), N122-1013R/S, N122-185R/S, and N122-1812R/S, independently derived from different F2 plants and differing at the YrSM139-1B locus were generated from the cross Shaanmai 139 × Hu 901-19 through marker-assisted selection. A large F2:3 population from cross N122-1013R × N122-1013S tested for stripe rust response and subjected to analysis with markers in the 1BS10-0.5 bin region using SSR expressed sequence tags (EST) and site-specific sequence markers developed from the 90 K Illumina iSelect SNP array. Five EST-STS markers and four allele-specific PCR markers were mapped to the YrSM139-1B region. The 30.5 cM genetic map for YrSM139-1B consisted of nine markers, two of which were closer to YrSM139-1B than Xgwm273, which was used in producing the contrasting RIL pairs. Race response data and allelism tests showed that YrSM139-1B is different from Yr10, Yr15, and Yr24/26/CH42.
Collapse
Affiliation(s)
- Hong Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy (Northwest A&F University), Yangling, 712100, Shaanxi, China.
- College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Lu Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy (Northwest A&F University), Yangling, 712100, Shaanxi, China
| | - Changyou Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy (Northwest A&F University), Yangling, 712100, Shaanxi, China
| | - Yajuan Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy (Northwest A&F University), Yangling, 712100, Shaanxi, China
| | - Xinli Zhou
- College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Shikai Lv
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy (Northwest A&F University), Yangling, 712100, Shaanxi, China
| | - Xinlun Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy (Northwest A&F University), Yangling, 712100, Shaanxi, China
| | - Zhensheng Kang
- College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Wanquan Ji
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy (Northwest A&F University), Yangling, 712100, Shaanxi, China.
| |
Collapse
|
78
|
Kiseleva AA, Shcherban AB, Leonova IN, Frenkel Z, Salina EA. Identification of new heading date determinants in wheat 5B chromosome. BMC PLANT BIOLOGY 2016; 16 Suppl 1:8. [PMID: 26821813 PMCID: PMC4895781 DOI: 10.1186/s12870-015-0688-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
BACKGROUND Variability of heading date may assist in wheat adaptation to local environments. Thereafter, discovery of new heading date determinants is important for cereal improvement. In this study we used common wheat cultivar Chinese Spring (CS) and the substitution line of CS with 5B chromosome from T. dicoccoides (CS-5Bdic), different in their heading date by two weeks, to detect determinants of heading date on 5B chromosome. RESULTS The possible influence of the VRN-B1 gene, the most powerful regulator of flowering, located on 5B chromosome, to differences in heading time between CS and CS-5Bdic was studied. The sequencing of this gene from CS-5Bdic showed that an insertion of a nucleotide triplet produced an additional amino acid in the corresponding protein. No changes in the transcription levels of each homoeologous VRN-1 loci were found in CS-5Bdic by comparison with CS. To ascertain the loci determining heading date difference, a set of 116 recombinant inbred 5В chromosomal lines as a result of hybridization of CS with CS-5Bdic were developed and their heading dates were estimated. Using the Illumina Infinium 15 k Wheat platform, 379 5B-specific polymorphic markers were detected and a genetic map with 82 skeletal markers was constructed. Phenotype (heading date) - genotype association analysis revealed seventy eight markers in pericentromeric region of 5B chromosome significantly associated with heading date variation. Based on this estimation and synteny with model crop genomes we identified the three best candidate genes: WRKY, ERF/AP2 and FHY3/FAR1. CONCLUSIONS We supposed that the difference in activity of WRKY, ERF/AP2 and/or FHY3/FAR1 transcription factors between CS and CS-5Bdic to be a probable reason for the observed difference in heading dates. Data obtained in this study provide a good basis for the subsequent investigation of heading time pathways in wheat.
Collapse
Affiliation(s)
- Antonina A Kiseleva
- The Federal Research Center "Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences", Prospekt Lavrentyeva 10, Novosibirsk, 630090, Russian Federation.
| | - Andrey B Shcherban
- The Federal Research Center "Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences", Prospekt Lavrentyeva 10, Novosibirsk, 630090, Russian Federation
| | - Irina N Leonova
- The Federal Research Center "Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences", Prospekt Lavrentyeva 10, Novosibirsk, 630090, Russian Federation
| | - Zeev Frenkel
- Institute of Evolution, University of Haifa, Mount Carmel, Haifa, 31905, Israel
| | - Elena A Salina
- The Federal Research Center "Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences", Prospekt Lavrentyeva 10, Novosibirsk, 630090, Russian Federation
| |
Collapse
|
79
|
Ariyarathna HACK, Oldach KH, Francki MG. A comparative gene analysis with rice identified orthologous group II HKT genes and their association with Na(+) concentration in bread wheat. BMC PLANT BIOLOGY 2016; 16:21. [PMID: 26786911 PMCID: PMC4719669 DOI: 10.1186/s12870-016-0714-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 01/14/2016] [Indexed: 05/08/2023]
Abstract
BACKGROUND Although the HKT transporter genes ascertain some of the key determinants of crop salt tolerance mechanisms, the diversity and functional role of group II HKT genes are not clearly understood in bread wheat. The advanced knowledge on rice HKT and whole genome sequence was, therefore, used in comparative gene analysis to identify orthologous wheat group II HKT genes and their role in trait variation under different saline environments. RESULTS The four group II HKTs in rice identified two orthologous gene families from bread wheat, including the known TaHKT2;1 gene family and a new distinctly different gene family designated as TaHKT2;2. A single copy of TaHKT2;2 was found on each homeologous chromosome arm 7AL, 7BL and 7DL and each gene was expressed in leaf blade, sheath and root tissues under non-stressed and at 200 mM salt stressed conditions. The proteins encoded by genes of the TaHKT2;2 family revealed more than 93% amino acid sequence identity but ≤52% amino acid identity compared to the proteins encoded by TaHKT2;1 family. Specifically, variations in known critical domains predicted functional differences between the two protein families. Similar to orthologous rice genes on chromosome 6L, TaHKT2;1 and TaHKT2;2 genes were located approximately 3 kb apart on wheat chromosomes 7AL, 7BL and 7DL, forming a static syntenic block in the two species. The chromosomal region on 7AL containing TaHKT2;1 7AL-1 co-located with QTL for shoot Na(+) concentration and yield in some saline environments. CONCLUSION The differences in copy number, genes sequences and encoded proteins between TaHKT2;2 homeologous genes and other group II HKT gene families within and across species likely reflect functional diversity for ion selectivity and transport in plants. Evidence indicated that neither TaHKT2;2 nor TaHKT2;1 were associated with primary root Na(+) uptake but TaHKT2;1 may be associated with trait variation for Na(+) exclusion and yield in some but not all saline environments.
Collapse
Affiliation(s)
- H A Chandima K Ariyarathna
- School of Plant Biology and Institute of Agriculture, The University of Western Australia, Crawley, 6009, Western Australia.
- State Agricultural Biotechnology Centre, Murdoch University, Murdoch, 6150, Western Australia.
| | - Klaus H Oldach
- South Australia Research Development Institute, Plant Genomics Centre, Waite Research Precinct, Urrbrae, 5064, South Australia.
| | - Michael G Francki
- State Agricultural Biotechnology Centre, Murdoch University, Murdoch, 6150, Western Australia.
- Department of Agriculture and Food Western Australia, South Perth, 6151, Western Australia.
| |
Collapse
|
80
|
Hu MJ, Zhang HP, Liu K, Cao JJ, Wang SX, Jiang H, Wu ZY, Lu J, Zhu XF, Xia XC, Sun GL, Ma CX, Chang C. Cloning and Characterization of TaTGW-7A Gene Associated with Grain Weight in Wheat via SLAF-seq-BSA. FRONTIERS IN PLANT SCIENCE 2016; 7:1902. [PMID: 28066462 PMCID: PMC5167734 DOI: 10.3389/fpls.2016.01902] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 12/01/2016] [Indexed: 05/18/2023]
Abstract
Thousand-grain weight (TGW) of wheat (Triticum aestivum L.) contributes significantly to grain yield. In the present study, a candidate gene associated with TGW was identified through specific-locus amplified fragment sequencing (SLAF-seq) of DNA bulks of recombinant inbred lines (RIL) derived from the cross between Jing 411 and Hongmangchun 21. The gene was located on chromosome 7A, designated as TaTGW-7A with a complete genome sequence and an open reading frame (ORF). A single nucleotide polymorphism (SNP) was present in the first exon between two alleles at TaTGW-7A locus, resulting in a Val to Ala substitution, corresponding to a change from higher to lower TGW. Cleaved amplified polymorphic sequence (CAPS) (TGW7A) and InDel (TG9) markers were developed to discriminate the two alleles TaTGW-7Aa and TaTGW-7Ab for higher and lower TGW, respectively. A major QTL co-segregating with TaTGW-7A explained 21.7-27.1% of phenotypic variance for TGW in the RIL population across five environments. The association of TaTGW-7A with TGW was further validated in a natural population and Chinese mini-core collections. Quantitative real-time PCR revealed higher transcript levels of TaTGW-7Aa than those of TaTGW-7Ab during grain development. High frequencies of the superior allele TaTGW-7Aa for higher TGW in Chinese mini-core collections (65.0%) and 501 wheat varieties (86.0%) indicated a strong and positive selection of this allele in wheat breeding. The molecular markers TGW7A and TG9 can be used for improvement of TGW in breeding programs.
Collapse
Affiliation(s)
- Ming-Jian Hu
- College of Agronomy, Anhui Agricultural University – Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, The Ministry of AgricultureHefei, China
| | - Hai-Ping Zhang
- College of Agronomy, Anhui Agricultural University – Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, The Ministry of AgricultureHefei, China
| | - Kai Liu
- College of Agronomy, Anhui Agricultural University – Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, The Ministry of AgricultureHefei, China
| | - Jia-Jia Cao
- College of Agronomy, Anhui Agricultural University – Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, The Ministry of AgricultureHefei, China
| | - Sheng-Xing Wang
- College of Agronomy, Anhui Agricultural University – Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, The Ministry of AgricultureHefei, China
| | - Hao Jiang
- College of Agronomy, Anhui Agricultural University – Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, The Ministry of AgricultureHefei, China
| | - Zeng-Yun Wu
- College of Agronomy, Anhui Agricultural University – Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, The Ministry of AgricultureHefei, China
| | - Jie Lu
- College of Agronomy, Anhui Agricultural University – Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, The Ministry of AgricultureHefei, China
| | - Xiao F. Zhu
- College of Agronomy, Anhui Agricultural University – Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, The Ministry of AgricultureHefei, China
| | - Xian-Chun Xia
- College of Agronomy, Anhui Agricultural University – Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, The Ministry of AgricultureHefei, China
- National Wheat Improvement Center/The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Gen-Lou Sun
- College of Agronomy, Anhui Agricultural University – Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, The Ministry of AgricultureHefei, China
- Department of Biology, Saint Mary’s University, HalifaxNS, Canada
| | - Chuan-Xi Ma
- College of Agronomy, Anhui Agricultural University – Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, The Ministry of AgricultureHefei, China
| | - Cheng Chang
- College of Agronomy, Anhui Agricultural University – Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, The Ministry of AgricultureHefei, China
- *Correspondence: Cheng Chang,
| |
Collapse
|
81
|
Mahmoud AF, Hassan MI, Amein KA. Resistance Potential of Bread Wheat Genotypes Against Yellow Rust Disease Under Egyptian Climate. THE PLANT PATHOLOGY JOURNAL 2015; 31:402-13. [PMID: 26674020 PMCID: PMC4677749 DOI: 10.5423/ppj.oa.12.2014.0127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 06/27/2015] [Accepted: 07/05/2015] [Indexed: 06/01/2023]
Abstract
Yellow rust (stripe rust), caused by Puccinia striiformis f. sp. tritici, is one of the most destructive foliar diseases of wheat in Egypt and worldwide. In order to identify wheat genotypes resistant to yellow rust and develop molecular markers associated with the resistance, fifty F8 recombinant inbred lines (RILs) derived from a cross between resistant and susceptible bread wheat landraces were obtained. Artificial infection of Puccinia striiformis was performed under greenhouse conditions during two growing seasons and relative resistance index (RRI) was calculated. Two Egyptian bread wheat cultivars i.e. Giza-168 (resistant) and Sakha-69 (susceptible) were also evaluated. RRI values of two-year trial showed that 10 RILs responded with RRI value >6 <9 with an average of 7.29, which exceeded the Egyptian bread wheat cultivar Giza-168 (5.58). Thirty three RILs were included among the acceptable range having RRI value >2 <6. However, only 7 RILs showed RRI value <2. Five RILs expressed hypersensitive type of resistance (R) against the pathogen and showed the lowest Average Coefficient of Infection (ACI). Bulked segregant analysis (BSA) with eight simple sequence repeat (SSR), eight sequence-related amplified polymorphism (SRAP) and sixteen random amplified polymorphic DNA (RAPD) markers revealed that three SSR, three SRAP and six RAPD markers were found to be associated with the resistance to yellow rust. However, further molecular analyses would be performed to confirm markers associated with the resistance and suitable for marker-assisted selection. Resistant RILs identified in the study could be efficiently used to improve the resistance to yellow rust in wheat.
Collapse
Affiliation(s)
- Amer F. Mahmoud
- Department of Plant Pathology, Faculty of Agriculture, Assiut University, Assiut,
Egypt
| | - Mohamed I. Hassan
- Department of Genetics, Faculty of Agriculture, Assiut University, Assiut,
Egypt
| | - Karam A. Amein
- Department of Genetics, Faculty of Agriculture, Assiut University, Assiut,
Egypt
| |
Collapse
|
82
|
Dreisigacker S, Wang X, Martinez Cisneros BA, Jing R, Singh PK. Adult-plant resistance to Septoria tritici blotch in hexaploid spring wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2015; 128:2317-29. [PMID: 26298303 DOI: 10.1007/s00122-015-2587-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 07/16/2015] [Indexed: 05/24/2023]
Abstract
New QTL for Septoria tritici blotch detected in hexapoid spring wheat under field conditions across diverse environments. Septoria tritici blotch caused by the ascomycete fungus Zymoseptoria tritici presents a serious and consistent challenge to global wheat production. In particular the augmented use of soil management practices that leave large amounts of wheat stubble on the soil surface and global warming increases the chance of Septoria tritici blotch epidemics to emerge more frequently including in developing countries. Two recombinant inbred line populations developed from a cross between the susceptible Moroccan spring bread wheat variety 'NASMA' and the CIMMYT resistant lines, 'IAS20*5/H567.71' and 'RPB709.71/COC' were used to study the genetics and map adult-plant resistance to Septoria tritici blotch under field conditions in different environments. Resistance to Septoria tritici blotch in both populations was quantitative and overall, five across environment consistent resistance loci on chromosomes 1BS, 3AL, 5AL and 7AS were detected in the two populations. The QTL on chromosome 1BS and 7AS are likely to be allelic with the known Septoria tritici blotch genes Stb3 and Stb11. All identified QTL were additive and explained between 4 and 27 % of the phenotypic variation. Epistatic interaction was not observed. Low cost KASP assays were developed as flanking markers for all five QTL that will facilitate molecular breeding. Our study represents the first mapping effort under field conditions utilizing two spring bread wheat resistant sources evaluated over multiple environments.
Collapse
Affiliation(s)
- Susanne Dreisigacker
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, 06600, Mexico, D.F., Mexico.
| | - Xiang Wang
- National Center for Wheat Research, Henan Agricultural University, Zhengzhou, 450002, China
| | | | - Ruilian Jing
- Institute of Crop Sciences and the National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Pawan K Singh
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, 06600, Mexico, D.F., Mexico.
| |
Collapse
|
83
|
Guo J, Zhang X, Hou Y, Cai J, Shen X, Zhou T, Xu H, Ohm HW, Wang H, Li A, Han F, Wang H, Kong L. High-density mapping of the major FHB resistance gene Fhb7 derived from Thinopyrum ponticum and its pyramiding with Fhb1 by marker-assisted selection. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2015. [PMID: 26220223 DOI: 10.1007/s00122-015-2586-x] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Wheat lines with shortened Th. ponticum chromatin carrying Fhb7 and molecular markers linked to Fhb7 will accelerate the transfer of Fhb7 to breeding lines and provide an important resource for future map-based cloning of this gene. Fusarium head blight is a major wheat disease globally. A major FHB resistance gene, designated as Fhb7, derived from Thinopyrum ponticum, was earlier transferred to common wheat, but was not used in wheat breeding due to linkage drag. The aims of this study were to (1) saturate this FHB resistance gene region; (2) develop and characterize secondary translocation lines with shortened Thinopyrum segments carrying Fhb7 using ph1b; (3) pyramid Fhb7 and Fhb1 by marker-assisted selection. Fhb7 was mapped in a 1.7 cM interval that was flanked by molecular markers XsdauK66 and Xcfa2240 with SSR, diversity arrays technology, EST-derived and conserved markers. KS24-2 carrying Fhb7 was analyzed with molecular markers and genomic in situ hybridization, confirming it was a 7DS.7el2L Robertsonian translocation. To reduce the Thinopyrum chromatin segments carrying Fhb7, a BC1F2 population (Chinese Spring ph1bph1b*2/KS24-2) was developed and genotyped with the markers linked to Fhb7. Two new translocation lines (SDAU1881 and SDAU1886) carrying Fhb7 on shortened alien segments (approximately 16.1 and 17.3% of the translocation chromosome, respectively) were developed. Furthermore, four wheat lines (SDAU1902, SDAU1903, SDAU1904, and SDAU1906) with the pyramided markers flanking Fhb1 and Fhb7 were developed and the FHB responses indicated lines with mean NDS ranging from 1.3 to 1.6 had successfully combined Fhb7 and Fhb1. Three new molecular markers associated with Fhb7 were identified and validated in 35 common wheat varieties. The translocation lines with shortened alien segments carrying Fhb7 (and Fhb1) and the markers closely linked to Fhb7 will be useful for improving wheat scab resistance.
Collapse
Affiliation(s)
- Jun Guo
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian, 271018, China
| | - Xiuli Zhang
- College of Life Science, Northeast Forest University, Harbin, 150040, Jilin, China
| | - Yanlin Hou
- State Key Lab of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jinjin Cai
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian, 271018, China
| | - Xiaorong Shen
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907-1150, USA
| | - Tingting Zhou
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian, 271018, China
| | - Huihui Xu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian, 271018, China
| | - Herbert W Ohm
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907-1150, USA
| | - Hongwei Wang
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian, 271018, China
| | - Anfei Li
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian, 271018, China
| | - Fangpu Han
- State Key Lab of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Honggang Wang
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian, 271018, China
| | - Lingrang Kong
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian, 271018, China.
| |
Collapse
|
84
|
Kumar A, Seetan R, Mergoum M, Tiwari VK, Iqbal MJ, Wang Y, Al-Azzam O, Šimková H, Luo MC, Dvorak J, Gu YQ, Denton A, Kilian A, Lazo GR, Kianian SF. Radiation hybrid maps of the D-genome of Aegilops tauschii and their application in sequence assembly of large and complex plant genomes. BMC Genomics 2015; 16:800. [PMID: 26475137 PMCID: PMC4609151 DOI: 10.1186/s12864-015-2030-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 10/09/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The large and complex genome of bread wheat (Triticum aestivum L., ~17 Gb) requires high resolution genome maps with saturated marker scaffolds to anchor and orient BAC contigs/ sequence scaffolds for whole genome assembly. Radiation hybrid (RH) mapping has proven to be an excellent tool for the development of such maps for it offers much higher and more uniform marker resolution across the length of the chromosome compared to genetic mapping and does not require marker polymorphism per se, as it is based on presence (retention) vs. absence (deletion) marker assay. METHODS In this study, a 178 line RH panel was genotyped with SSRs and DArT markers to develop the first high resolution RH maps of the entire D-genome of Ae. tauschii accession AL8/78. To confirm map order accuracy, the AL8/78-RH maps were compared with:1) a DArT consensus genetic map constructed using more than 100 bi-parental populations, 2) a RH map of the D-genome of reference hexaploid wheat 'Chinese Spring', and 3) two SNP-based genetic maps, one with anchored D-genome BAC contigs and another with anchored D-genome sequence scaffolds. Using marker sequences, the RH maps were also anchored with a BAC contig based physical map and draft sequence of the D-genome of Ae. tauschii. RESULTS A total of 609 markers were mapped to 503 unique positions on the seven D-genome chromosomes, with a total map length of 14,706.7 cR. The average distance between any two marker loci was 29.2 cR which corresponds to 2.1 cM or 9.8 Mb. The average mapping resolution across the D-genome was estimated to be 0.34 Mb (Mb/cR) or 0.07 cM (cM/cR). The RH maps showed almost perfect agreement with several published maps with regard to chromosome assignments of markers. The mean rank correlations between the position of markers on AL8/78 maps and the four published maps, ranged from 0.75 to 0.92, suggesting a good agreement in marker order. With 609 mapped markers, a total of 2481 deletions for the whole D-genome were detected with an average deletion size of 42.0 Mb. A total of 520 markers were anchored to 216 Ae. tauschii sequence scaffolds, 116 of which were not anchored earlier to the D-genome. CONCLUSION This study reports the development of first high resolution RH maps for the D-genome of Ae. tauschii accession AL8/78, which were then used for the anchoring of unassigned sequence scaffolds. This study demonstrates how RH mapping, which offered high and uniform resolution across the length of the chromosome, can facilitate the complete sequence assembly of the large and complex plant genomes.
Collapse
Affiliation(s)
- Ajay Kumar
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58102, USA
| | - Raed Seetan
- Department of Computer Sciences, North Dakota State University, Fargo, ND, 58102, USA
- Department of Computer Science, Slippery Rock University, Slippery Rock, PA, 16057, USA
| | - Mohamed Mergoum
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58102, USA
| | - Vijay K Tiwari
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506-5502, USA
| | - Muhammad J Iqbal
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58102, USA
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Yi Wang
- USDA-ARS, Western Regional Research Center, Albany, CA, 94710, USA
| | - Omar Al-Azzam
- Department of Computer Sciences, North Dakota State University, Fargo, ND, 58102, USA
- Department of Computer Science and Information Technology, St. Cloud State University, St. Cloud, MN, 56301, USA
| | - Hana Šimková
- Faculty of Science, Palacký University, 783 71, Olomouc, Czech Republic
- Institute of Experimental Botany, Šlechtitelů 31, 783-71, Olomouc, Czech Republic
| | - Ming-Cheng Luo
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Jan Dvorak
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Yong Q Gu
- USDA-ARS, Western Regional Research Center, Albany, CA, 94710, USA
| | - Anne Denton
- Department of Computer Sciences, North Dakota State University, Fargo, ND, 58102, USA
| | - Andrzej Kilian
- Diversity Arrays Technology Pty Limited, 1 Wilf Crane Crescent, Yarralumla, ACT2600, Australia
| | - Gerard R Lazo
- USDA-ARS, Western Regional Research Center, Albany, CA, 94710, USA
| | - Shahryar F Kianian
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58102, USA.
- USDA-ARS, Cereal Disease Laboratory, University of Minnesota, St. Paul, MN, 55108, USA.
| |
Collapse
|
85
|
Garvin DF, Porter H, Blankenheim ZJ, Chao S, Dill-Macky R. A spontaneous segmental deletion from chromosome arm 3DL enhances Fusarium head blight resistance in wheat. Genome 2015; 58:479-88. [PMID: 26524120 DOI: 10.1139/gen-2015-0088] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Much effort has been directed at identifying sources of resistance to Fusarium head blight (FHB) in wheat. We sought to identify molecular markers for what we hypothesized was a new major FHB resistance locus originating from the wheat cultivar 'Freedom' and introgressed into the susceptible wheat cultivar 'USU-Apogee'. An F2:3 mapping population from a cross between Apogee and A30, its BC4 near-isoline exhibiting improved FHB resistance, was evaluated for resistance. The distribution of FHB resistance in the population approximated a 1:3 moderately resistant : moderately susceptible + susceptible ratio. Separate disease evaluations established that A30 accumulated less deoxynivalenol and yielded a greater proportion of sound grain than Apogee. Molecular mapping revealed that the FHB resistance of A30 is associated with molecular markers on chromosome arm 3DL that exhibit a null phenotype in A30 but are present in both Apogee and Freedom, indicating a spontaneous deletion occurred during the development of A30. Aneuploid analysis revealed that the size of the deleted segment is approximately 19% of the arm's length. Our results suggest that the deleted interval of chromosome arm 3DL in Apogee may harbor FHB susceptibility genes that promote disease spread in infected spikes, and that their elimination increases FHB resistance in a novel manner.
Collapse
Affiliation(s)
- David F Garvin
- a USDA-ARS Plant Science Research Unit, St. Paul, MN 55108, USA
| | - Hedera Porter
- b Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108, USA
| | | | - Shiaoman Chao
- c USDA-ARS Biosciences Research Laboratory, Fargo, ND, USA
| | - Ruth Dill-Macky
- b Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108, USA
| |
Collapse
|
86
|
Xu H, Yi Y, Ma P, Qie Y, Fu X, Xu Y, Zhang X, An D. Molecular tagging of a new broad-spectrum powdery mildew resistance allele Pm2c in Chinese wheat landrace Niaomai. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2015; 128:2077-84. [PMID: 26133735 DOI: 10.1007/s00122-015-2568-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 06/16/2015] [Indexed: 05/07/2023]
Abstract
A new broad-spectrum powdery mildew resistance allele Pm2c was identified and mapped in Chinese wheat landrace Niaomai. Chinese wheat landrace Niaomai showed resistance to 27 of 28 Chinese Blumeria graminis f. sp tritici (Bgt) races. Genetic analysis of an F2 population and its derived F2:3 families from the cross Niaomai × Mingxian 169 and backcross population, Niaomai/2*Mingxian 169, indicated that the resistance of Niaomai to Bgt races was conferred by a single dominant resistance gene, temporarily designated PmNM. Molecular tagging showed that PmNM was located on chromosome 5DS and flanked by SSR markers Xcfd81 and Xcfd78 with the genetic distances of 0.1/0.4 cM and 4.9/7.5 cM, respectively. Niaomai showed a different array of responses compared to lines with Pm2a, Pm2b, PmD57-5D, PmLX66, PmX3986-2 and Pm48 genes, sharing the same Xcfd81 allele but differing from Xcfd78 allele for Pm2a and Pm2b lines. Allelism tests based on crosses of Niaomai with Ulka/8*Cc and KM2939 showed that PmNM is allelic to Pm2a and Pm2b. We concluded that PmNM is a new allele of Pm2, re-designated Pm2c. Pm2c could be transferred into wheat cultivars by marker-assisted selection to improve the powdery mildew resistance of breeding cultivars/lines.
Collapse
Affiliation(s)
- Hongxing Xu
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050021, Hebei, China
| | - Yanjie Yi
- School of Bioengineering, Henan University of Technology, Zhengzhou, 450001, Henan, China
| | - Pengtao Ma
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050021, Hebei, China
| | - Yanmin Qie
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050021, Hebei, China
| | - Xiaoyi Fu
- Shijiazhuang Academy of Agricultural and Forestry Sciences, Shijiazhuang, 050041, Hebei, China
| | - Yunfeng Xu
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050021, Hebei, China
| | - Xiaotian Zhang
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050021, Hebei, China
| | - Diaoguo An
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050021, Hebei, China.
| |
Collapse
|
87
|
Chhuneja P, Yadav B, Stirnweis D, Hurni S, Kaur S, Elkot AF, Keller B, Wicker T, Sehgal S, Gill BS, Singh K. Fine mapping of powdery mildew resistance genes PmTb7A.1 and PmTb7A.2 in Triticum boeoticum (Boiss.) using the shotgun sequence assembly of chromosome 7AL. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2015; 128:2099-2111. [PMID: 26160336 DOI: 10.1007/s00122-015-2570-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Accepted: 06/19/2015] [Indexed: 06/04/2023]
Abstract
A novel powdery mildew resistance gene and a new allele of Pm1 were identified and fine mapped. DNA markers suitable for marker-assisted selection have been identified. Powdery mildew caused by Blumeria graminis is one of the most important foliar diseases of wheat and causes significant yield losses worldwide. Diploid A genome species are an important genetic resource for disease resistance genes. Two powdery mildew resistance genes, identified in Triticum boeoticum (A(b)A(b)) accession pau5088, PmTb7A.1 and PmTb7A.2 were mapped on chromosome 7AL. In the present study, shotgun sequence assembly data for chromosome 7AL were utilised for fine mapping of these Pm resistance genes. Forty SSR, 73 resistance gene analogue-based sequence-tagged sites (RGA-STS) and 36 single nucleotide polymorphism markers were designed for fine mapping of PmTb7A.1 and PmTb7A.2. Twenty-one RGA-STS, 8 SSR and 13 SNP markers were mapped to 7AL. RGA-STS markers Ta7AL-4556232 and 7AL-4426363 were linked to the PmTb7A.1 and PmTb7A.2, at a genetic distance of 0.6 and 6.0 cM, respectively. The present investigation established that PmTb7A.1 is a new powdery mildew resistance gene that confers resistance to a broad range of Bgt isolates, whereas PmTb7A.2 most probably is a new allele of Pm1 based on chromosomal location and screening with Bgt isolates showing differential reaction on lines with different Pm1 alleles. The markers identified to be linked to the two Pm resistance genes are robust and can be used for marker-assisted introgression of these genes to hexaploid wheat.
Collapse
Affiliation(s)
- Parveen Chhuneja
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, 141 004, India
| | - Bharat Yadav
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, 141 004, India
| | - Daniel Stirnweis
- Institute of Plant Biology, University of Zurich, Zurich, Switzerland
| | - Severine Hurni
- Institute of Plant Biology, University of Zurich, Zurich, Switzerland
| | - Satinder Kaur
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, 141 004, India
| | - Ahmed Fawzy Elkot
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, 141 004, India
- Wheat Research Department, Field Crops Research Institute, Agriculture Research Center, Giza, 12619, Egypt
| | - Beat Keller
- Institute of Plant Biology, University of Zurich, Zurich, Switzerland
| | - Thomas Wicker
- Institute of Plant Biology, University of Zurich, Zurich, Switzerland
| | - Sunish Sehgal
- Wheat Genetics Resource Center, Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
- Department of Plant Science, South Dakota State University, Brookings, 57007, USA
| | - Bikram S Gill
- Wheat Genetics Resource Center, Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
| | - Kuldeep Singh
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, 141 004, India.
| |
Collapse
|
88
|
Feng JY, Wang MN, Chen XM, See DR, Zheng YL, Chao SM, Wan AM. Molecular Mapping of YrSP and Its Relationship with Other Genes for Stripe Rust Resistance in Wheat Chromosome 2BL. PHYTOPATHOLOGY 2015; 105:1206-13. [PMID: 25871858 DOI: 10.1094/phyto-03-15-0060-r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Stripe rust, caused by Puccinia striiformis f. sp. tritici, is an important disease of wheat worldwide. Resistance is the best way to control the disease. YrSP, a gene originally from 'Spaldings Prolific' wheat and providing resistance to a broad spectrum of races, is used for differentiating P. striiformis f. sp. tritici races but its chromosomal location is not clear. To map YrSP, a near-isogenic line (AvSYrSPNIL) was backcrossed to the recurrent parent, Avocet S. Genetic analysis of the BC7F1, BC8, BC7F2, and BC7F3 progenies confirmed a single dominant gene for resistance. In total, 182 BC7F2 plants and their derived BC7F3 lines were phenotyped with an avirulent P. striiformis f. sp. tritici race and genotyped with simple-sequence repeat (SSR), single-nucleotide polymorphism (SNP), and sequence-tagged site (STS) markers. A linkage map was constructed with 3 SSR, 17 SNP, and 3 STS markers covering 23.3 centimorgans (cM). Markers IWA638 and dp269 were 0.6 cM proximal and 1.5 cM distal, respectively, to YrSP. The gene was mapped in chromosome bin 2BL-C-0.5, physically within the proximal 50% of the chromosome 2BL arm. Allelism tests based on F2 phenotypes indicated that YrSP is closely linked to but not allelic with genes Yr5, Yr7, Yr43, Yr44, and Yr53. Infection type data from tests with 10 historical and currently predominant P. striiformis f. sp. tritici races in the United States also demonstrated differences in specificity between YrSP and the other genes. The specificity of YrSP is useful in differentiating P. striiformis f. sp. tritici races and studying the plant-pathogen interactions, and the information of chromosomal location of the gene and its tightly linked markers should be useful in developing resistant cultivars when combined with other genes for resistance to stripe rust.
Collapse
Affiliation(s)
- J Y Feng
- First author: Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, 610061, P.R. China; first, second, third, fourth, and seventh authors: Department of Plant Pathology, Washington State University, Pullman 99164-6430; first and fifth authors: Triticeae Research Institute, Sichuan Agricultural University, Northeast Road No. 555, Wenjiang, Chengdu, Sichuan 611130, P.R. China; third and fourth authors: United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Wheat Genetics, Quality, Physiology and Disease Research Unit, Pullman, WA 99164-6430; and sixth author: USDA-ARS, Cereal Crops Research, Fargo, ND 58102-2775
| | - M N Wang
- First author: Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, 610061, P.R. China; first, second, third, fourth, and seventh authors: Department of Plant Pathology, Washington State University, Pullman 99164-6430; first and fifth authors: Triticeae Research Institute, Sichuan Agricultural University, Northeast Road No. 555, Wenjiang, Chengdu, Sichuan 611130, P.R. China; third and fourth authors: United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Wheat Genetics, Quality, Physiology and Disease Research Unit, Pullman, WA 99164-6430; and sixth author: USDA-ARS, Cereal Crops Research, Fargo, ND 58102-2775
| | - X M Chen
- First author: Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, 610061, P.R. China; first, second, third, fourth, and seventh authors: Department of Plant Pathology, Washington State University, Pullman 99164-6430; first and fifth authors: Triticeae Research Institute, Sichuan Agricultural University, Northeast Road No. 555, Wenjiang, Chengdu, Sichuan 611130, P.R. China; third and fourth authors: United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Wheat Genetics, Quality, Physiology and Disease Research Unit, Pullman, WA 99164-6430; and sixth author: USDA-ARS, Cereal Crops Research, Fargo, ND 58102-2775
| | - D R See
- First author: Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, 610061, P.R. China; first, second, third, fourth, and seventh authors: Department of Plant Pathology, Washington State University, Pullman 99164-6430; first and fifth authors: Triticeae Research Institute, Sichuan Agricultural University, Northeast Road No. 555, Wenjiang, Chengdu, Sichuan 611130, P.R. China; third and fourth authors: United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Wheat Genetics, Quality, Physiology and Disease Research Unit, Pullman, WA 99164-6430; and sixth author: USDA-ARS, Cereal Crops Research, Fargo, ND 58102-2775
| | - Y L Zheng
- First author: Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, 610061, P.R. China; first, second, third, fourth, and seventh authors: Department of Plant Pathology, Washington State University, Pullman 99164-6430; first and fifth authors: Triticeae Research Institute, Sichuan Agricultural University, Northeast Road No. 555, Wenjiang, Chengdu, Sichuan 611130, P.R. China; third and fourth authors: United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Wheat Genetics, Quality, Physiology and Disease Research Unit, Pullman, WA 99164-6430; and sixth author: USDA-ARS, Cereal Crops Research, Fargo, ND 58102-2775
| | - S M Chao
- First author: Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, 610061, P.R. China; first, second, third, fourth, and seventh authors: Department of Plant Pathology, Washington State University, Pullman 99164-6430; first and fifth authors: Triticeae Research Institute, Sichuan Agricultural University, Northeast Road No. 555, Wenjiang, Chengdu, Sichuan 611130, P.R. China; third and fourth authors: United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Wheat Genetics, Quality, Physiology and Disease Research Unit, Pullman, WA 99164-6430; and sixth author: USDA-ARS, Cereal Crops Research, Fargo, ND 58102-2775
| | - A M Wan
- First author: Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, 610061, P.R. China; first, second, third, fourth, and seventh authors: Department of Plant Pathology, Washington State University, Pullman 99164-6430; first and fifth authors: Triticeae Research Institute, Sichuan Agricultural University, Northeast Road No. 555, Wenjiang, Chengdu, Sichuan 611130, P.R. China; third and fourth authors: United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Wheat Genetics, Quality, Physiology and Disease Research Unit, Pullman, WA 99164-6430; and sixth author: USDA-ARS, Cereal Crops Research, Fargo, ND 58102-2775
| |
Collapse
|
89
|
Kobayashi F, Wu J, Kanamori H, Tanaka T, Katagiri S, Karasawa W, Kaneko S, Watanabe S, Sakaguchi T, Hanawa Y, Fujisawa H, Kurita K, Abe C, Iehisa JCM, Ohno R, Šafář J, Šimková H, Mukai Y, Hamada M, Saito M, Ishikawa G, Katayose Y, Endo TR, Takumi S, Nakamura T, Sato K, Ogihara Y, Hayakawa K, Doležel J, Nasuda S, Matsumoto T, Handa H. A high-resolution physical map integrating an anchored chromosome with the BAC physical maps of wheat chromosome 6B. BMC Genomics 2015; 16:595. [PMID: 26265254 PMCID: PMC4534020 DOI: 10.1186/s12864-015-1803-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 07/31/2015] [Indexed: 11/10/2022] Open
Abstract
Background A complete genome sequence is an essential tool for the genetic improvement of wheat. Because the wheat genome is large, highly repetitive and complex due to its allohexaploid nature, the International Wheat Genome Sequencing Consortium (IWGSC) chose a strategy that involves constructing bacterial artificial chromosome (BAC)-based physical maps of individual chromosomes and performing BAC-by-BAC sequencing. Here, we report the construction of a physical map of chromosome 6B with the goal of revealing the structural features of the third largest chromosome in wheat. Results We assembled 689 informative BAC contigs (hereafter reffered to as contigs) representing 91 % of the entire physical length of wheat chromosome 6B. The contigs were integrated into a radiation hybrid (RH) map of chromosome 6B, with one linkage group consisting of 448 loci with 653 markers. The order and direction of 480 contigs, corresponding to 87 % of the total length of 6B, were determined. We also characterized the contigs that contained a part of the nucleolus organizer region or centromere based on their positions on the RH map and the assembled BAC clone sequences. Analysis of the virtual gene order along 6B using the information collected for the integrated map revealed the presence of several chromosomal rearrangements, indicating evolutionary events that occurred on chromosome 6B. Conclusions We constructed a reliable physical map of chromosome 6B, enabling us to analyze its genomic structure and evolutionary progression. More importantly, the physical map should provide a high-quality and map-based reference sequence that will serve as a resource for wheat chromosome 6B. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1803-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fuminori Kobayashi
- Plant Genome Research Unit, National Institute of Agrobiological Sciences, Tsukuba, 305-8602, Japan.
| | - Jianzhong Wu
- Plant Genome Research Unit, National Institute of Agrobiological Sciences, Tsukuba, 305-8602, Japan. .,Advanced Genomics Laboratory, National Institute of Agrobiological Sciences, Tsukuba, 305-8602, Japan.
| | - Hiroyuki Kanamori
- Plant Genome Research Unit, National Institute of Agrobiological Sciences, Tsukuba, 305-8602, Japan.
| | - Tsuyoshi Tanaka
- Bioinformatics Research Unit, National Institute of Agrobiological Sciences, Tsukuba, 305-8602, Japan.
| | - Satoshi Katagiri
- Advanced Genomics Laboratory, National Institute of Agrobiological Sciences, Tsukuba, 305-8602, Japan.
| | - Wataru Karasawa
- Advanced Genomics Laboratory, National Institute of Agrobiological Sciences, Tsukuba, 305-8602, Japan.
| | - Satoko Kaneko
- Laboratory of Plant Genetics, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan.
| | - Shota Watanabe
- Laboratory of Plant Genetics, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan.
| | - Toyotaka Sakaguchi
- Laboratory of Plant Genetics, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan.
| | - Yumiko Hanawa
- Advanced Genomics Laboratory, National Institute of Agrobiological Sciences, Tsukuba, 305-8602, Japan.
| | - Hiroko Fujisawa
- Advanced Genomics Laboratory, National Institute of Agrobiological Sciences, Tsukuba, 305-8602, Japan.
| | - Kanako Kurita
- Plant Genome Research Unit, National Institute of Agrobiological Sciences, Tsukuba, 305-8602, Japan.
| | - Chikako Abe
- Cereal Science Research Center of Tsukuba, Nisshin Flour Milling Inc., Tsukuba, 300-2611, Japan.
| | - Julio C M Iehisa
- Laboratory of Plant Genetics, Graduate School of Agricultural Science, Kobe University, Kobe, 657-8501, Japan.
| | - Ryoko Ohno
- Core Research Division, Organization of Advanced Science and Technology, Kobe University, Kobe, 657-8501, Japan.
| | - Jan Šafář
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, CZ-78371, Olomouc, Czech Republic.
| | - Hana Šimková
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, CZ-78371, Olomouc, Czech Republic.
| | - Yoshiyuki Mukai
- Advanced Genomics Laboratory, National Institute of Agrobiological Sciences, Tsukuba, 305-8602, Japan.
| | - Masao Hamada
- Advanced Genomics Laboratory, National Institute of Agrobiological Sciences, Tsukuba, 305-8602, Japan.
| | - Mika Saito
- Wheat Breeding Group, NARO Tohoku Agricultural Research Center, Morioka, 020-0198, Japan.
| | - Goro Ishikawa
- Wheat Breeding Group, NARO Tohoku Agricultural Research Center, Morioka, 020-0198, Japan.
| | - Yuichi Katayose
- Advanced Genomics Laboratory, National Institute of Agrobiological Sciences, Tsukuba, 305-8602, Japan.
| | - Takashi R Endo
- Laboratory of Plant Genetics, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan.
| | - Shigeo Takumi
- Laboratory of Plant Genetics, Graduate School of Agricultural Science, Kobe University, Kobe, 657-8501, Japan.
| | - Toshiki Nakamura
- Wheat Breeding Group, NARO Tohoku Agricultural Research Center, Morioka, 020-0198, Japan.
| | - Kazuhiro Sato
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046, Japan.
| | - Yasunari Ogihara
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, 244-0813, Japan.
| | - Katsuyuki Hayakawa
- Cereal Science Research Center of Tsukuba, Nisshin Flour Milling Inc., Tsukuba, 300-2611, Japan.
| | - Jaroslav Doležel
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, CZ-78371, Olomouc, Czech Republic.
| | - Shuhei Nasuda
- Laboratory of Plant Genetics, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan.
| | - Takashi Matsumoto
- Plant Genome Research Unit, National Institute of Agrobiological Sciences, Tsukuba, 305-8602, Japan.
| | - Hirokazu Handa
- Plant Genome Research Unit, National Institute of Agrobiological Sciences, Tsukuba, 305-8602, Japan.
| |
Collapse
|
90
|
Du Z, Che M, Li G, Chen J, Quan W, Guo Y, Wang Z, Ren J, Zhang H, Zhang Z. A QTL with major effect on reducing leaf rust severity on the short arm of chromosome 1A of wheat detected across different genetic backgrounds and diverse environments. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2015; 128:1579-94. [PMID: 25982130 DOI: 10.1007/s00122-015-2533-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 05/02/2015] [Indexed: 05/02/2023]
Abstract
Selection for QLr.cau - 1AS (a major QTL detected in wheat for reducing leaf rust severity) based on the DNA marker gpw2246 was as effective as selection for Lr34 based on cssfr5. Leaf rust is an important disease of wheat worldwide. Utilization of slow-rusting resistance constitutes a strategy to sustainably control this disease. The American wheat cultivar Luke exhibits slow leaf-rusting resistance at the adult plant stage. The objectives of this study were to detect and validate QTL for the resistance in Luke. Three winter wheat populations were used, namely, 149 recombinant inbred lines (RILs) derived from the cross Luke × Aquileja, 307 RILs from Luke × AQ24788-83, and 80 F2:3 families selected from Lingxing66 × KA298. Aquileja and Lingxing66 are highly susceptible to leaf rust. AQ24788-83 shows high (susceptible) infection type but contains the slow-rusting gene Lr34 as diagnosed by the gene-specific marker cssfr5. KA298, an F9 RIL selected from Luke × AQ24788-83, contains Lr34 and QLr.cau-1AS (a major QTL originated from Luke, this study). These wheats were evaluated for leaf rust in 12 field and greenhouse environments involving four locations and five seasons. Genotyping was done using simple sequence repeat (SSR) and diversity arrays technology markers. Of the detected QTLs, QLr.cau-1AS was significant consistently across all the genetic backgrounds, test environments, and likely a wide range of pathogen races. QLr.cau-1AS explained 22.3-55.2% of leaf rust phenotypic variation, being comparable to Lr34 in effect size. A co-dominant SSR marker (gpw2246, http://wheat.pw.usda.gov/GG2/index.shtml ) was identified to be tightly linked to QLr.cau-1AS. Selection based on gpw2246 for QLr.cau-1AS was as effective as the selection based on cssfr5 for Lr34. QLr.cau-1AS will be helpful for increasing the genetic diversity of slow leaf-rusting resistance in wheat breeding programs.
Collapse
Affiliation(s)
- Ziyi Du
- Department of Plant Pathology, China Agricultural University, Beijing, 100193, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Shi G, Zhang Z, Friesen TL, Bansal U, Cloutier S, Wicker T, Rasmussen JB, Faris JD. Marker development, saturation mapping, and high-resolution mapping of the Septoria nodorum blotch susceptibility gene Snn3-B1 in wheat. Mol Genet Genomics 2015; 291:107-19. [PMID: 26187026 DOI: 10.1007/s00438-015-1091-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 07/01/2015] [Indexed: 12/29/2022]
Abstract
Septoria nodorum blotch (SNB), caused by Parastagonospora nodorum, is a severe foliar and glume disease on durum and common wheat. Pathogen-produced necrotrophic effectors (NEs) are the major determinants for SNB on leaves. One such NE is SnTox3, which evokes programmed cell death and leads to disease when recognized by the wheat Snn3-B1 gene. Here, we developed saturated genetic linkage maps of the Snn3-B1 region using two F2 populations derived from the SnTox3-sensitive line Sumai 3 crossed with different SnTox3-insensitive lines. Markers were identified and/or developed from various resources including previously mapped simple sequence repeats, bin-mapped expressed sequence tags, single nucleotide polymorphisms, and whole genome survey sequences. Subsequent high-resolution mapping of the Snn3-B1 locus in 5600 gametes delineated the gene to a 1.5 cM interval. Analysis of micro-colinearity of the Snn3-B1 region indicated that it was highly disrupted compared to rice and Brachypodium distachyon. The screening of a collection of durum and common wheat cultivars with tightly linked markers indicated they are not diagnostic for the presence of Snn3-B1, but can be useful for marker-assisted selection if the SnTox3 reactions of lines are first determined. Finally, we developed an ethyl methanesulfonate-induced mutant population of Sumai 3 where the screening of 408 M2 families led to the identification of 17 SnTox3-insensitive mutants. These mutants along with the markers and high-resolution map developed in this research provide a strong foundation for the map-based cloning of Snn3-B1, which will broaden our understanding of the wheat-P. nodorum system and plant-necrotrophic pathogen interactions in general.
Collapse
Affiliation(s)
- Gongjun Shi
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58102, USA
| | - Zengcui Zhang
- USDA-ARS Cereal Crops Research Unit, USDA-ARS NPA NCSL, Red River Valley Agricultural Research Center, 1605 Albrecht BLVD, Fargo, ND, 58102-2765, USA
| | - Timothy L Friesen
- USDA-ARS Cereal Crops Research Unit, USDA-ARS NPA NCSL, Red River Valley Agricultural Research Center, 1605 Albrecht BLVD, Fargo, ND, 58102-2765, USA
| | - Urmil Bansal
- The University of Sydney PBI-Cobbity, Private Bag 4011, Narellan, NSW, 2567, Australia
| | - Sylvie Cloutier
- Eastern Cereal and Oil Research Centre, Agriculture and Agri-Food Canada, K.W. Neatby Building, 960 Carling Avenue, Ottawa, ON, K1A 0C6, Canada
| | - Thomas Wicker
- Institute of Plant Biology, University of Zurich, Zollikerstrasse 107, 8008, Zurich, Switzerland
| | - Jack B Rasmussen
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58102, USA
| | - Justin D Faris
- USDA-ARS Cereal Crops Research Unit, USDA-ARS NPA NCSL, Red River Valley Agricultural Research Center, 1605 Albrecht BLVD, Fargo, ND, 58102-2765, USA.
| |
Collapse
|
92
|
Ahmad FT, Mather DE, Law HY, Li M, Yousif SAJ, Chalmers KJ, Asenstorfer RE, Mares DJ. Genetic control of lutein esterification in wheat (Triticum aestivum L.) grain. J Cereal Sci 2015. [DOI: 10.1016/j.jcs.2015.05.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
93
|
Maccaferri M, Ricci A, Salvi S, Milner SG, Noli E, Martelli PL, Casadio R, Akhunov E, Scalabrin S, Vendramin V, Ammar K, Blanco A, Desiderio F, Distelfeld A, Dubcovsky J, Fahima T, Faris J, Korol A, Massi A, Mastrangelo AM, Morgante M, Pozniak C, N'Diaye A, Xu S, Tuberosa R. A high-density, SNP-based consensus map of tetraploid wheat as a bridge to integrate durum and bread wheat genomics and breeding. PLANT BIOTECHNOLOGY JOURNAL 2015; 13:648-63. [PMID: 25424506 DOI: 10.1111/pbi.12288] [Citation(s) in RCA: 189] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 09/26/2014] [Accepted: 10/03/2014] [Indexed: 05/20/2023]
Abstract
Consensus linkage maps are important tools in crop genomics. We have assembled a high-density tetraploid wheat consensus map by integrating 13 data sets from independent biparental populations involving durum wheat cultivars (Triticum turgidum ssp. durum), cultivated emmer (T. turgidum ssp. dicoccum) and their ancestor (wild emmer, T. turgidum ssp. dicoccoides). The consensus map harboured 30 144 markers (including 26 626 SNPs and 791 SSRs) half of which were present in at least two component maps. The final map spanned 2631 cM of all 14 durum wheat chromosomes and, differently from the individual component maps, all markers fell within the 14 linkage groups. Marker density per genetic distance unit peaked at centromeric regions, likely due to a combination of low recombination rate in the centromeric regions and even gene distribution along the chromosomes. Comparisons with bread wheat indicated fewer regions with recombination suppression, making this consensus map valuable for mapping in the A and B genomes of both durum and bread wheat. Sequence similarity analysis allowed us to relate mapped gene-derived SNPs to chromosome-specific transcripts. Dense patterns of homeologous relationships have been established between the A- and B-genome maps and between nonsyntenic homeologous chromosome regions as well, the latter tracing to ancient translocation events. The gene-based homeologous relationships are valuable to infer the map location of homeologs of target loci/QTLs. Because most SNP and SSR markers were previously mapped in bread wheat, this consensus map will facilitate a more effective integration and exploitation of genes and QTL for wheat breeding purposes.
Collapse
Affiliation(s)
- Marco Maccaferri
- Department of Agricultural Sciences (DipSA), University of Bologna, Bologna, Italy
| | - Andrea Ricci
- Department of Agricultural Sciences (DipSA), University of Bologna, Bologna, Italy
| | - Silvio Salvi
- Department of Agricultural Sciences (DipSA), University of Bologna, Bologna, Italy
| | - Sara Giulia Milner
- Department of Agricultural Sciences (DipSA), University of Bologna, Bologna, Italy
| | - Enrico Noli
- Department of Agricultural Sciences (DipSA), University of Bologna, Bologna, Italy
| | | | - Rita Casadio
- Biocomputing Group, University of Bologna, Bologna, Italy
| | - Eduard Akhunov
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
| | - Simone Scalabrin
- Istituto di Genomica Applicata, Udine, Italy
- Dipartimento di Scienze Agrarie e Ambientali, University of Udine, Udine, Italy
| | - Vera Vendramin
- Istituto di Genomica Applicata, Udine, Italy
- Dipartimento di Scienze Agrarie e Ambientali, University of Udine, Udine, Italy
| | | | - Antonio Blanco
- Dipartimento di Biologia e Chimica Agro-forestale ed ambientale, Università di Bari, Aldo Moro, Bari, Italy
| | - Francesca Desiderio
- Consiglio per la ricerca e la sperimentazione in agricoltura, Genomics Research Centre, Fiorenzuola d'Arda, Italy
| | - Assaf Distelfeld
- Faculty of Life Sciences, Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv, Israel
| | - Jorge Dubcovsky
- Department of Plant Sciences, University of California, Davis, CA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Tzion Fahima
- Department of Evolutionary and Environmental Biology, Institute of Evolution, Faculty of Science and Science Education, University of Haifa, Haifa, Israel
| | - Justin Faris
- USDA-ARS Cereal Crops Research Unit, Fargo, ND, USA
| | - Abraham Korol
- Department of Evolutionary and Environmental Biology, Institute of Evolution, Faculty of Science and Science Education, University of Haifa, Haifa, Israel
| | - Andrea Massi
- Società Produttori Sementi Bologna (PSB), Argelato, Italy
| | - Anna Maria Mastrangelo
- Consiglio per la ricerca e la sperimentazione in agricoltura, Cereal Research Centre, Foggia, Italy
| | - Michele Morgante
- Istituto di Genomica Applicata, Udine, Italy
- Dipartimento di Scienze Agrarie e Ambientali, University of Udine, Udine, Italy
| | - Curtis Pozniak
- Crop Development Centre and Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Amidou N'Diaye
- Crop Development Centre and Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Steven Xu
- USDA-ARS Cereal Crops Research Unit, Fargo, ND, USA
| | - Roberto Tuberosa
- Department of Agricultural Sciences (DipSA), University of Bologna, Bologna, Italy
| |
Collapse
|
94
|
Hou L, Chen X, Wang M, See DR, Chao S, Bulli P, Jing J. Mapping a Large Number of QTL for Durable Resistance to Stripe Rust in Winter Wheat Druchamp Using SSR and SNP Markers. PLoS One 2015; 10:e0126794. [PMID: 25970329 PMCID: PMC4430513 DOI: 10.1371/journal.pone.0126794] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 04/07/2015] [Indexed: 11/22/2022] Open
Abstract
Winter wheat Druchamp has both high-temperature adult-plant (HTAP) resistance and all-stage resistance to stripe rust caused by Puccinia striiformis f. sp. tritici (Pst). The HTAP resistance in Druchamp is durable as the variety has been resistant in adult-plant stage since it was introduced from France to the United States in late 1940s. To map the quantitative trait loci (QTL) for stripe rust resistance, an F8 recombinant inbred line (RIL) population from cross Druchamp × Michigan Amber was phenotyped for stripe rust response in multiple years in fields under natural infection and with selected Pst races under controlled greenhouse conditions, and genotyped with simple sequence repeat (SSR) and single nucleotide polymorphism (SNP) markers. Composite interval mapping (CIM) identified eight HTAP resistance QTL and three all-stage resistance QTL. Among the eight HTAP resistance QTL, QYrdr.wgp-1BL.2 (explaining 2.36-31.04% variation), QYrdr.wgp-2BL (2.81-15.65%), QYrdr.wgp-5AL (2.27-17.22%) and QYrdr.wgp-5BL.2 (2.42-15.13%) were significant in all tests; and QYrdr.wgp-1BL.1 (1.94-10.19%), QYrdr.wgp-1DS (2.04-27.24%), QYrdr.wgp-3AL (1.78-13.85%) and QYrdr.wgp-6BL.2 (1.69-33.71%) were significant in some of the tests. The three all-stage resistance QTL, QYrdr.wgp-5BL.1 (5.47-36.04%), QYrdr.wgp-5DL (9.27-11.94%) and QYrdr.wgp-6BL.1 (13.07-20.36%), were detected based on reactions in the seedlings tested with certain Pst races. Among the eleven QTL detected in Druchamp, at least three (QYrdr.wgp-5DL for race-specific all-stage resistance and QYrdr.wgp-3AL and QYrdr.wgp-6BL.2 for race non-specific HTAP resistance) are new. All these QTL, especially those for durable HTAP resistance, and their closely linked molecular markers could be useful for developing wheat cultivars with durable resistance to stripe rust.
Collapse
Affiliation(s)
- Lu Hou
- Key Laboratory of Agricultural Integrated Pest Management, Institute of Plant Protection, Qinghai Academy of Agriculture and Forestry Sciences, Xining, Qinghai, China
- Department of Plant Pathology, Washington State University, Pullman, Washington, United States of America
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Xianming Chen
- Department of Plant Pathology, Washington State University, Pullman, Washington, United States of America
- US Department of Agriculture, Agricultural Research Service, Wheat Genetics, Quality, Physiology and Disease Research Unit, Pullman, Washington, United States of America
| | - Meinan Wang
- Department of Plant Pathology, Washington State University, Pullman, Washington, United States of America
| | - Deven R. See
- Department of Plant Pathology, Washington State University, Pullman, Washington, United States of America
- US Department of Agriculture, Agricultural Research Service, Wheat Genetics, Quality, Physiology and Disease Research Unit, Pullman, Washington, United States of America
| | - Shiaoman Chao
- US Department of Agriculture, Agricultural Research Service, Cereal Crops Research, Fargo, North Dakota, United States of America
| | - Peter Bulli
- Department of Crop and Soil Sciences, Washington State University, Pullman, Washington, United States of America
| | - Jinxue Jing
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
95
|
Ye X, Lu Y, Liu W, Chen G, Han H, Zhang J, Yang X, Li X, Gao A, Li L. The effects of chromosome 6P on fertile tiller number of wheat as revealed in wheat-Agropyron cristatum chromosome 5A/6P translocation lines. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2015; 128:797-811. [PMID: 25656149 DOI: 10.1007/s00122-015-2466-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 01/17/2015] [Indexed: 05/12/2023]
Abstract
This study explored the genetic constitutions of several wheat- A. cristatum translocation lines and determined the effects of A. cristatum 6P chromosome segments on fertile tiller number in wheat. Progress in wheat breeding is hampered by a relatively narrow range of genetic variation. To overcome this hurdle, wild relatives of common wheat with superior agronomic traits are often used as donors of desirable genes in wheat-breeding programs. One of the successfully utilized wheat wild relatives is Agropyron cristatum (L.) Gaertn (2n = 4x = 28; genomes PPPP). We previously reported that WAT31-13 was a wheat-A. cristatum 5A-6P reciprocal translocation line with higher fertile tiller number and grain number per spike compared to common wheat. However, WAT31-13 was genetically unstable. In this study, we analyzed the 43 genetically stable progenies from WAT31-13 using genomic in situ hybridization, dual-color fluorescence in situ hybridization, and molecular markers. We classified them into three translocation types (TrS, TrL and TrA) and seven subtypes, and also pinpointed the translocation breakpoint. The genotypic data, combined with the phenotypes of each translocation type, enabled us to physically map agronomic traits to specific A. cristatum 6P chromosome arms or segments. Our results indicated that A. cristatum chromosome 6P played an important role in regulating fertile tiller number, and that positive and negative regulators of fertile tiller number existed on the A. cristatum chromosome arm 6PS and 6PL, respectively. By exploring the relationship between fertile tiller number and A. cristatum chromosome segment, this study presented a number of feasible approaches for creation, analysis, and utilization of wheat-alien chromosome translocation lines in genetic improvement of wheat.
Collapse
Affiliation(s)
- Xueling Ye
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Basnet BR, Singh S, Lopez-Vera EE, Huerta-Espino J, Bhavani S, Jin Y, Rouse MN, Singh RP. Molecular Mapping and Validation of SrND643: A New Wheat Gene for Resistance to the Stem Rust Pathogen Ug99 Race Group. PHYTOPATHOLOGY 2015; 105:470-6. [PMID: 25870921 DOI: 10.1094/phyto-01-14-0016-r] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
This study reports the identification of a new gene conferring resistance to the Ug99 lineage of races of Puccinia graminis f. sp. tritici in wheat (Triticum aestivum L.). Because the virulent races of stem rust pathogen continue to pose a serious threat in global wheat production, identification and molecular characterization of new resistance genes remains of utmost important to enhance resistance diversity and durability in wheat germplasm. Advanced wheat breeding line 'ND643/2*Weebill1' carries a stem rust resistance gene, temporarily designated as SrND643, effective against the Ug99 group of P. graminis f. sp. tritici races at both seedling and adult growth stages. This study was conducted to map the chromosomal location of SrND643 and identify closely linked molecular markers to allow its selection in breeding populations. In total, 123 recombinant inbred lines, developed by crossing ND643/2*Weebill1 with susceptible line 'Cacuke', were evaluated for stem rust response in field nurseries at Njoro, Kenya, during two growing seasons in 2010, and were genotyped with DNA markers, including Diversity Arrays Technology, simple sequence repeats (SSR), and single-nucleotide polymorphisms. Linkage mapping tagged SrND643 at the distal end of chromosome 4AL, showing close association with SSR markers Xgwm350 (0.5 centimorgans [cM]), Xwmc219 (4.1 cM), and Xwmc776 (2.9 cM). The race specificity of SrND643 is different from that of Sr7a and Sr7b, indicating that the resistance is conferred by a gene at a new locus or by a new allele of Sr7. The flanking markers Xgwm350 and Xwmc219 were predictive of the presence of SrND643 in advanced germplasm, thus validating the map location and their use in marker-assisted selection.
Collapse
Affiliation(s)
- Bhoja R Basnet
- First, second, third, and eighth authors: International Maize and Wheat Improvement Center (CIMMYT), Mexico D.F. 06600, Mexico; third author: CINVESTAV-IPN, Col. San Pedro Zacatenco, Mexico D.F. 07360, Mexico; fourth author: INIFAP CEVAMEX, Chapingo 56230, Edo. Mexico, Mexico; fifth author: CIMMYT, Nairobi, Kenya; and sixth and seventh authors: United States Department of Agriculture-Agricultural Research Service Cereal Disease Laboratory, St. Paul, MN 55108
| | | | | | | | | | | | | | | |
Collapse
|
97
|
Yu G, Zhang Q, Friesen TL, Rouse MN, Jin Y, Zhong S, Rasmussen JB, Lagudah ES, Xu SS. Identification and mapping of Sr46 from Aegilops tauschii accession CIae 25 conferring resistance to race TTKSK (Ug99) of wheat stem rust pathogen. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2015; 128:431-43. [PMID: 25523501 DOI: 10.1007/s00122-014-2442-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 12/06/2014] [Indexed: 05/28/2023]
Abstract
Mapping studies confirm that resistance to Ug99 race of stem rust pathogen in Aegilops tauschii accession Clae 25 is conditioned by Sr46 and markers linked to the gene were developed for marker-assisted selection. The race TTKSK (Ug99) of Puccinia graminis f. sp. tritici, the causal pathogen for wheat stem rust, is considered as a major threat to global wheat production. To address this threat, researchers across the world have been devoted to identifying TTKSK-resistant genes. Here, we report the identification and mapping of a stem rust resistance gene in Aegilops tauschii accession CIae 25 that confers resistance to TTKSK and the development of molecular markers for the gene. An F2 population of 710 plants from an Ae. tauschii cross CIae 25 × AL8/78 were first evaluated against race TPMKC. A set of 14 resistant and 116 susceptible F2:3 families from the F2 plants were then evaluated for their reactions to TTKSK. Based on the tests, 179 homozygous susceptible F2 plants were selected as the mapping population to identify the simple sequence repeat (SSR) and sequence tagged site (STS) markers linked to the gene by bulk segregant analysis. A dominant stem rust resistance gene was identified and mapped with 16 SSR and five new STS markers to the deletion bin 2DS5-0.47-1.00 of chromosome arm 2DS in which Sr46 was located. Molecular marker and stem rust tests on CIae 25 and two Ae. tauschii accessions carrying Sr46 confirmed that the gene in CIae 25 is Sr46. This study also demonstrated that Sr46 is temperature-sensitive being less effective at low temperatures. The marker validation indicated that two closely linked markers Xgwm210 and Xwmc111 can be used for marker-assisted selection of Sr46 in wheat breeding programs.
Collapse
Affiliation(s)
- Guotai Yu
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58108, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Romanov D, Divashuk M, Havey MJ, Khrustaleva L. Tyramide-FISH mapping of single genes for development of an integrated recombination and cytogenetic map of chromosome 5 of Allium cepa. Genome 2015; 58:111-9. [PMID: 26158384 DOI: 10.1139/gen-2015-0019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Chromosome 5 of onion carries major quantitative trait loci (QTL) that control dry-matter content, pungency and storability of bulbs, amounts and types of epicuticular waxes, and resistances to abiotic factors, all of which are of interest to breeders. SNPs, SSRs, and RFLPs in expressed regions of the onion genome have been genetically mapped, and we used these clones and sequences from the NCBI database to develop DNA probes for in situ hybridization to integrate the genetic and physical maps of onion chromosome 5. We produced genomic amplicons from expressed regions of the onion genome that carried both exons and introns in order to increase the hybridization specificity of the probes and to enlarge the target DNA sizes. Tyramide-FISH technique was used to increase the detection sensitivity of relatively short target DNA regions, which range from 950 to 2100 bp. Through the integration of genetic and chromosomal maps, we were able to estimate the distribution of recombination events along onion chromosome 5. We demonstrated the efficiency of chromosomal in situ mapping of exon-intron genomic clones for the extremely large genome of onion.
Collapse
Affiliation(s)
- Dmitry Romanov
- a Center of Molecular Biotechnology, Russian State Agrarian University - MTAA, Moscow 127550, Russia
| | - Mikhail Divashuk
- a Center of Molecular Biotechnology, Russian State Agrarian University - MTAA, Moscow 127550, Russia
| | - Michael J Havey
- b USDA-ARS and Department of Horticulture, University of Wisconsin, Madison, WI 53706 USA
| | - Ludmila Khrustaleva
- a Center of Molecular Biotechnology, Russian State Agrarian University - MTAA, Moscow 127550, Russia
| |
Collapse
|
99
|
Yaniv E, Raats D, Ronin Y, Korol AB, Grama A, Bariana H, Dubcovsky J, Schulman AH. Evaluation of marker-assisted selection for the stripe rust resistance gene Yr15, introgressed from wild emmer wheat. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2015; 35:43. [PMID: 27818611 PMCID: PMC5091809 DOI: 10.1007/s11032-015-0238-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Stripe rust disease is caused by the fungus Puccinia striiformis f. sp. tritici and severely threatens wheat worldwide, repeatedly breaking resistance conferred by resistance genes and evolving more aggressive strains. Wild emmer wheat, Triticum dicoccoides, is an important source for novel stripe rust resistance (Yr) genes. Yr15, a major gene located on chromosome 1BS of T. dicoccoides, was previously reported to confer resistance to a broad spectrum of stripe rust isolates, at both seedling and adult plant stages. Introgressions of Yr15 into cultivated T. aestivum bread wheat and T. durum pasta wheat that began in the 1980s are widely used. In the present study, we aimed to validate SSR markers from the Yr15 region as efficient tools for marker-assisted selection (MAS) for introgression of Yr15 into wheat and to compare the outcome of gene introgression by MAS and by conventional phenotypic selection. Our findings establish the validity of MAS for introgression of Yr15 into wheat. We show that the size of the introgressed segment, defined by flanking markers, varies for both phenotypic selection and MAS. The genetic distance of the MAS marker from Yr15 and the number of backcross steps were the main factors affecting the length of the introgressed donor segments. Markers Xbarc8 and Xgwm493, which are the nearest flanking markers studied, were consistent and polymorphic in all 34 introgressions reported here and are therefore the most recommended markers for the introgression of Yr15 into wheat cultivars. Introgression directed by markers, rather than by phenotype, will facilitate simultaneous selection for multiple stripe rust resistant genes and will help to avoid escapees during the selection process.
Collapse
Affiliation(s)
- Elitsur Yaniv
- Plant Genomics and Disease Resistance Laboratory, Department of Evolutionary and Environmental Biology, Institute of Evolution, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Dina Raats
- Plant Genomics and Disease Resistance Laboratory, Department of Evolutionary and Environmental Biology, Institute of Evolution, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Yefim Ronin
- Plant Genomics and Disease Resistance Laboratory, Department of Evolutionary and Environmental Biology, Institute of Evolution, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Abraham B Korol
- Plant Genomics and Disease Resistance Laboratory, Department of Evolutionary and Environmental Biology, Institute of Evolution, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Adriana Grama
- Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel
| | - Harbans Bariana
- Department of Plant and Food Sciences, University of Sydney, Sydney, Australia
| | - Jorge Dubcovsky
- Department of Plant Sciences, University of California, Davis, CA, USA
| | - Alan H Schulman
- LUKE/BI Plant Genomics Lab, Institute of Biotechnology, Viikki Biocenter, University of Helsinki, P.O. Box 65, Helsinki, Finland
| |
Collapse
|
100
|
Cormier F, Le Gouis J, Dubreuil P, Lafarge S, Praud S. A genome-wide identification of chromosomal regions determining nitrogen use efficiency components in wheat (Triticum aestivum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2014; 127:2679-93. [PMID: 25326179 DOI: 10.1007/s00122-014-2407-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 10/03/2014] [Indexed: 05/25/2023]
Abstract
This study identified 333 genomic regions associated to 28 traits related to nitrogen use efficiency in European winter wheat using genome-wide association in a 214-varieties panel experimented in eight environments. Improving nitrogen use efficiency is a key factor to sustainably ensure global production increase. However, while high-throughput screening methods remain at a developmental stage, genetic progress may be mainly driven by marker-assisted selection. The objective of this study was to identify chromosomal regions associated with nitrogen use efficiency-related traits in bread wheat (Triticum aestivum L.) using a genome-wide association approach. Two hundred and fourteen European elite varieties were characterised for 28 traits related to nitrogen use efficiency in eight environments in which two different nitrogen fertilisation levels were tested. The genome-wide association study was carried out using 23,603 SNP with a mixed model for taking into account parentage relationships among varieties. We identified 1,010 significantly associated SNP which defined 333 chromosomal regions associated with at least one trait and found colocalisations for 39 % of these chromosomal regions. A method based on linkage disequilibrium to define the associated region was suggested and discussed with reference to false positive rate. Through a network approach, colocalisations were analysed and highlighted the impact of genomic regions controlling nitrogen status at flowering, precocity, and nitrogen utilisation on global agronomic performance. We were able to explain 40 ± 10 % of the total genetic variation. Numerous colocalisations with previously published genomic regions were observed with such candidate genes as Ppd-D1, Rht-D1, NADH-Gogat, and GSe. We highlighted selection pressure on yield and nitrogen utilisation discussing allele frequencies in associated regions.
Collapse
Affiliation(s)
- Fabien Cormier
- Centre de recherche de Chappes, Biogemma, Route d'Ennezat CS90126, 63720, Chappes, France
| | | | | | | | | |
Collapse
|