51
|
Zhang X, Li G, Yang X, Wang L, Wang Y, Guo X, Li H, Xu B. Identification of a DnaJC3 gene in Apis cerana cerana and its involvement in various stress responses. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 160:171-180. [PMID: 31519252 DOI: 10.1016/j.pestbp.2019.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 08/23/2019] [Accepted: 08/29/2019] [Indexed: 06/10/2023]
Abstract
As molecular chaperones, DnaJs play critical roles in maintaining cytoplasmic structure and resisting various stresses. However, the functions of DnaJs in insects are poorly understood. In this study, we identified a DnaJC3 from Apis cerana cerana (AccDnaJC3) and investigated its roles in adverse conditions. Real-time quantitative PCR analysis showed that AccDnaJC3 was highly expressed in muscle and epidermis. In addition, AccDnaJC3 was induced by a variety of stresses, such as 4 °C, 24 °C, 44 °C, H2O2, HgCl2, VC, UV, cyhalothrin, abamectin and emamectin benzoate treatments, whereas it was inhibited by CdCl2 and paraquat treatments. Disc diffusion experiments indicated that overexpression of recombinant AccDnaJC3 enhanced Escherichia coli tolerance to some stress conditions. In contrast to the control group, when AccDnaJC3 was knocked down with RNAi technology, several other antioxidant genes were downregulated, suggesting that AccDnaJC3 may play important roles in stress response. Furthermore, we found that the enzyme activities of superoxide dismutase, peroxidase and catalase were lower in AccDnaJC3-knockdown bees than in control bees. Taken together, these results suggest that AccDnaJC3 may be involved in various stress responses in Apis cerana cerana.
Collapse
Affiliation(s)
- Xuemei Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Guilin Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Xinxin Yang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Lijun Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Ying Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Xingqi Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Han Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China.
| | - Baohua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, PR China.
| |
Collapse
|
52
|
Matsumoto D, Tao R. Recognition of S-RNases by an S locus F-box like protein and an S haplotype-specific F-box like protein in the Prunus-specific self-incompatibility system. PLANT MOLECULAR BIOLOGY 2019; 100:367-378. [PMID: 30937702 DOI: 10.1007/s11103-019-00860-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 03/25/2019] [Indexed: 06/09/2023]
Abstract
S-RNase was demonstrated to be predominantly recognized by an S locus F-box-like protein and an S haplotype-specific F-box-like protein in compatible pollen tubes of sweet cherry. Self-incompatibility (SI) is a reproductive barrier that rejects self-pollen and inhibits self-fertilization to promote outcrossing. In Solanaceae and Rosaceae, S-RNase-based gametophytic SI (GSI) comprises S-RNase and F-box protein(s) as the pistil and pollen S determinants, respectively. Compatible pollen tubes are assumed to detoxify the internalized cytotoxic S-RNases to maintain growth. S-RNase detoxification is conducted by the Skp1-cullin1-F-box protein complex (SCF) formed by pollen S determinants, S locus F-box proteins (SLFs), in Solanaceae. In Prunus, the general inhibitor (GI), but not pollen S determinant S haplotype-specific F-box protein (SFB), is hypothesized to detoxify S-RNases. Recently, SLF-like proteins 1-3 (SLFL1-3) were suggested as GI candidates, although it is still possible that other proteins function predominantly in GI. To identify the other GI candidates, we isolated four other pollen-expressed SLFL and SFB-like (SFBL) proteins PavSLFL6, PavSLFL7A, PavSFBL1, and PavSFBL2 in sweet cherry. Binding assays with four PavS-RNases indicated that PavSFBL2 bound to PavS1, 6-RNase while the others bound to nothing. PavSFBL2 was confirmed to form an SCF complex in vitro. A co-immunoprecipitation assay using the recombinant PavS6-RNase as bait against pollen extracts and a mass spectrometry analysis identified the SCF complex components of PavSLFLs and PavSFBL2, M-locus-encoded glutathione S-transferase (MGST), DnaJ-like protein, and other minor proteins. These results suggest that SLFLs and SFBLs could act as predominant GIs in Prunus-specific S-RNase-based GSI.
Collapse
Affiliation(s)
- Daiki Matsumoto
- Laboratory of Pomology, Faculty of Agriculture, Yamagata University, Tsuruoka, 997-8555, Japan.
| | - Ryutaro Tao
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| |
Collapse
|
53
|
Hsp70 molecular chaperones: multifunctional allosteric holding and unfolding machines. Biochem J 2019; 476:1653-1677. [PMID: 31201219 DOI: 10.1042/bcj20170380] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/17/2019] [Accepted: 05/21/2019] [Indexed: 12/20/2022]
Abstract
The Hsp70 family of chaperones works with its co-chaperones, the nucleotide exchange factors and J-domain proteins, to facilitate a multitude of cellular functions. Central players in protein homeostasis, these jacks-of-many-trades are utilized in a variety of ways because of their ability to bind with selective promiscuity to regions of their client proteins that are exposed when the client is unfolded, either fully or partially, or visits a conformational state that exposes the binding region in a regulated manner. The key to Hsp70 functions is that their substrate binding is transient and allosterically cycles in a nucleotide-dependent fashion between high- and low-affinity states. In the past few years, structural insights into the molecular mechanism of this allosterically regulated binding have emerged and provided deep insight into the deceptively simple Hsp70 molecular machine that is so widely harnessed by nature for diverse cellular functions. In this review, these structural insights are discussed to give a picture of the current understanding of how Hsp70 chaperones work.
Collapse
|
54
|
Selection of reference genes for qPCR normalization in buffalobur (Solanum rostratum Dunal). Sci Rep 2019; 9:6948. [PMID: 31061419 PMCID: PMC6502881 DOI: 10.1038/s41598-019-43438-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 04/24/2019] [Indexed: 12/11/2022] Open
Abstract
Buffalobur (Solanum rostratum Dunal), which belongs to the Solanaceae family, is a worldwide noxious invasive weed and is listed as one of the top 10 alien invasive species in China. It is harmful to humans and livestock because the entire plant is covered with spines containing toxins. Many studies have analysed the gene expression in this weed species under different stress conditions using quantitative real-time PCR (qPCR). However, until now, there has been no report on suitable reference genes in buffalobur. Herein, 14 candidate reference genes were selected and evaluated for their expression stability in buffalobur in different tissues, at different developmental stages, and in response to several stress conditions using the geNorm, NormFinder, BestKeeper and RefFinder statistical algorithms. The results showed that EF1α, ACT and SAND are suitable reference genes across all samples tested. We recommend the normalization of target gene expression under different experimental conditions using these three genes together. Validation of selected reference genes was achieved by assessing the relative expression levels of P5CS and GI. This work identified the appropriate reference genes for transcript normalization in buffalobur, which will be helpful in future genetic studies of this invasive weed.
Collapse
|
55
|
iTRAQ-based quantitative proteomics analysis of cold stress-induced mechanisms in grafted watermelon seedlings. J Proteomics 2019; 192:311-320. [DOI: 10.1016/j.jprot.2018.09.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/05/2018] [Accepted: 09/20/2018] [Indexed: 12/21/2022]
|
56
|
HSFA2 Functions in the Physiological Adaptation of Undifferentiated Plant Cells to Spaceflight. Int J Mol Sci 2019; 20:ijms20020390. [PMID: 30658467 PMCID: PMC6359015 DOI: 10.3390/ijms20020390] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/29/2018] [Accepted: 01/11/2019] [Indexed: 11/16/2022] Open
Abstract
Heat Shock Factor A2 (HsfA2) is part of the Heat Shock Factor (HSF) network, and plays an essential role beyond heat shock in environmental stress responses and cellular homeostatic control. Arabidopsis thaliana cell cultures derived from wild type (WT) ecotype Col-0 and a knockout line deficient in the gene encoding HSFA2 (HSFA2 KO) were grown aboard the International Space Station (ISS) to ascertain whether the HSF network functions in the adaptation to the novel environment of spaceflight. Microarray gene expression data were analyzed using a two-part comparative approach. First, genes differentially expressed between the two environments (spaceflight to ground) were identified within the same genotype, which represented physiological adaptation to spaceflight. Second, gene expression profiles were compared between the two genotypes (HSFA2 KO to WT) within the same environment, which defined genes uniquely required by each genotype on the ground and in spaceflight-adapted states. Results showed that the endoplasmic reticulum (ER) stress and unfolded protein response (UPR) define the HSFA2 KO cells' physiological state irrespective of the environment, and likely resulted from a deficiency in the chaperone-mediated protein folding machinery in the mutant. Results further suggested that additional to its universal stress response role, HsfA2 also has specific roles in the physiological adaptation to spaceflight through cell wall remodeling, signal perception and transduction, and starch biosynthesis. Disabling HsfA2 altered the physiological state of the cells, and impacted the mechanisms induced to adapt to spaceflight, and identified HsfA2-dependent genes that are important to the adaption of wild type cells to spaceflight. Collectively these data indicate a non-thermal role for the HSF network in spaceflight adaptation.
Collapse
|
57
|
Kim SW, Gupta R, Min CW, Lee SH, Cheon YE, Meng QF, Jang JW, Hong CE, Lee JY, Jo IH, Kim ST. Label-free quantitative proteomic analysis of Panax ginseng leaves upon exposure to heat stress. J Ginseng Res 2018; 43:143-153. [PMID: 30662303 PMCID: PMC6323179 DOI: 10.1016/j.jgr.2018.09.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/28/2018] [Accepted: 09/27/2018] [Indexed: 11/25/2022] Open
Abstract
Background Ginseng is one of the well-known medicinal plants, exhibiting diverse medicinal effects. Its roots possess anticancer and antiaging properties and are being used in the medical systems of East Asian countries. It is grown in low-light and low-temperature conditions, and its growth is strongly inhibited at temperatures above 25°C. However, the molecular responses of ginseng to heat stress are currently poorly understood, especially at the protein level. Methods We used a shotgun proteomics approach to investigate the effect of heat stress on ginseng leaves. We monitored their photosynthetic efficiency to confirm physiological responses to a high-temperature stress. Results The results showed a reduction in photosynthetic efficiency on heat treatment (35°C) starting at 48 h. Label-free quantitative proteome analysis led to the identification of 3,332 proteins, of which 847 were differentially modulated in response to heat stress. The MapMan analysis showed that the proteins with increased abundance were mainly associated with antioxidant and translation-regulating activities, whereas the proteins related to the receptor and structural-binding activities exhibited decreased abundance. Several other proteins including chaperones, G-proteins, calcium-signaling proteins, transcription factors, and transfer/carrier proteins were specifically downregulated. Conclusion These results increase our understanding of heat stress responses in the leaves of ginseng at the protein level, for the first time providing a resource for the scientific community.
Collapse
Affiliation(s)
- So Wun Kim
- Department of Plant Bioscience, Pusan National University, Miryang, Republic of Korea
| | - Ravi Gupta
- Department of Plant Bioscience, Pusan National University, Miryang, Republic of Korea
| | - Cheol Woo Min
- Department of Plant Bioscience, Pusan National University, Miryang, Republic of Korea
| | - Seo Hyun Lee
- Department of Plant Bioscience, Pusan National University, Miryang, Republic of Korea
| | - Ye Eun Cheon
- Department of Plant Bioscience, Pusan National University, Miryang, Republic of Korea
| | - Qing Feng Meng
- Department of Plant Bioscience, Pusan National University, Miryang, Republic of Korea
| | - Jeong Woo Jang
- Department of Plant Bioscience, Pusan National University, Miryang, Republic of Korea
| | - Chi Eun Hong
- Department of Herbal Crop Research, Rural Development Administration, Eumseong, Republic of Korea
| | - Ji Yoon Lee
- National Instrumentation Center for Environmental Management, Seoul National University, Seoul, Republic of Korea
| | - Ick Hyun Jo
- Department of Herbal Crop Research, Rural Development Administration, Eumseong, Republic of Korea
| | - Sun Tae Kim
- Department of Plant Bioscience, Pusan National University, Miryang, Republic of Korea
| |
Collapse
|
58
|
Wang G, Zhou S, Luo Y, Ma C, Gong Y, Zhou Y, Gao S, Huang Z, Yan L, Hu Y, Bian Y. The heat shock protein 40 LeDnaJ regulates stress resistance and indole-3-acetic acid biosynthesis in Lentinula edodes. Fungal Genet Biol 2018; 118:37-44. [PMID: 30003956 DOI: 10.1016/j.fgb.2018.07.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 07/05/2018] [Accepted: 07/09/2018] [Indexed: 12/22/2022]
Abstract
DnaJ proteins, termed heat shock proteins based on their molecular weight, function as molecular chaperones that play critical roles in regulating organism growth and development as well as adaptation to the environment. However, little has been reported on their gene function in higher basidiomycetes. Here, the heat shock protein 40 (LeDnaJ) gene was cloned and characterized from Lentinula edodes. RNA interference was used to explore the function of LeDnaJ in response to heat stress and Trichoderma atroviride. Integration of the target gene into the L. edodes genome was confirmed by Southern blot analysis, and the silence efficiency of LeDnaJ was analyzed by qRT-PCR. The results revealed that LeDnaJ silence caused defects in mycelial growth and resistance to heat stress and T. atroviride, but increased the mycelial density compared with the wild type (WT) strain S606. Additionally, the IAA content showed a more than 10-fold increase in the WT after heat stress, but an about two-fold increase in the two LeDnaJ RNAi transfortants (LeDnaJ-i-6 and LeDnaJ-i-8). Previous study has shown that enhanced IAA (indole-3-acetic acid) content enhanced the thermotolerance of the heat-sensitive strain YS3357. In this study, it was documented that IAA amendments could partly restore the resistance to T. atroviride and thermotolerance of the two LeDnaJ RNAi transformants. Overall, LeDnaJ is nvolved in fungal growth, T. atroviride resistance, and thermotolerance by regulating the IAA biosynthesis in L. edodes.
Collapse
Affiliation(s)
- Gangzheng Wang
- Institute of Applied Mycology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Agro-Microbial Resource Comprehensive Utilization, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, China
| | - ShaSha Zhou
- Institute of Applied Mycology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Agro-Microbial Resource Comprehensive Utilization, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yi Luo
- Institute of Applied Mycology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Agro-Microbial Resource Comprehensive Utilization, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Chaojun Ma
- Institute of Applied Mycology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Agro-Microbial Resource Comprehensive Utilization, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yuhua Gong
- Institute of Applied Mycology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Agro-Microbial Resource Comprehensive Utilization, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yan Zhou
- Institute of Applied Mycology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Agro-Microbial Resource Comprehensive Utilization, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Shuangshuang Gao
- Institute of Applied Mycology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Zhicheng Huang
- Institute of Applied Mycology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Lianlian Yan
- Institute of Applied Mycology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Agro-Microbial Resource Comprehensive Utilization, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yue Hu
- Institute of Applied Mycology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Agro-Microbial Resource Comprehensive Utilization, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yinbing Bian
- Institute of Applied Mycology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Agro-Microbial Resource Comprehensive Utilization, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, China.
| |
Collapse
|
59
|
Faus I, Niñoles R, Kesari V, Llabata P, Tam E, Nebauer SG, Santiago J, Hauser MT, Gadea J. Arabidopsis ILITHYIA protein is necessary for proper chloroplast biogenesis and root development independent of eIF2α phosphorylation. JOURNAL OF PLANT PHYSIOLOGY 2018; 224-225:173-182. [PMID: 29680783 DOI: 10.1016/j.jplph.2018.04.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 04/05/2018] [Accepted: 04/08/2018] [Indexed: 05/20/2023]
Abstract
One of the main mechanisms blocking translation after stress situations is mediated by phosphorylation of the α-subunit of the eukaryotic initiation factor 2 (eIF2), performed in Arabidopsis by the protein kinase GCN2 which interacts and is activated by ILITHYIA(ILA). ILA is involved in plant immunity and its mutant lines present phenotypes not shared by the gcn2 mutants. The functional link between these two genes remains elusive in plants. In this study, we show that, although both ILA and GCN2 genes are necessary to mediate eIF2α phosphorylation upon treatments with the aromatic amino acid biosynthesis inhibitor glyphosate, their mutants develop distinct root and chloroplast phenotypes. Electron microscopy experiments reveal that ila mutants, but not gcn2, are affected in chloroplast biogenesis, explaining the macroscopic phenotype previously observed for these mutants. ila3 mutants present a complex transcriptional reprogramming affecting defense responses, photosynthesis and protein folding, among others. Double mutant analyses suggest that ILA has a distinct function which is independent of GCN2 and eIF2α phosphorylation. These results suggest that these two genes may have common but also distinct functions in Arabidopsis.
Collapse
Affiliation(s)
- I Faus
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Ciudad Politécnica de la Innovación (CPI), Ed. 8E, C/Ingeniero Fausto Elio s/n, 46022, Valencia, Spain.
| | - R Niñoles
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Ciudad Politécnica de la Innovación (CPI), Ed. 8E, C/Ingeniero Fausto Elio s/n, 46022, Valencia, Spain.
| | - V Kesari
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Ciudad Politécnica de la Innovación (CPI), Ed. 8E, C/Ingeniero Fausto Elio s/n, 46022, Valencia, Spain.
| | - P Llabata
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Ciudad Politécnica de la Innovación (CPI), Ed. 8E, C/Ingeniero Fausto Elio s/n, 46022, Valencia, Spain.
| | - E Tam
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Ciudad Politécnica de la Innovación (CPI), Ed. 8E, C/Ingeniero Fausto Elio s/n, 46022, Valencia, Spain.
| | - S G Nebauer
- Departamento de Producción Vegetal, Universitat Politècnica de València (UPV), Camino de Vera s/n 46022, Valencia, Spain.
| | - J Santiago
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Ciudad Politécnica de la Innovación (CPI), Ed. 8E, C/Ingeniero Fausto Elio s/n, 46022, Valencia, Spain.
| | - M T Hauser
- Institute of Applied Genetics and Cell Biology (IAGZ), University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria.
| | - J Gadea
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Ciudad Politécnica de la Innovación (CPI), Ed. 8E, C/Ingeniero Fausto Elio s/n, 46022, Valencia, Spain.
| |
Collapse
|
60
|
Zhang B, Qiu HL, Qu DH, Ruan Y, Chen DH. Phylogeny-dominant classification of J-proteins in Arabidopsis thaliana and Brassica oleracea. Genome 2018; 61:405-415. [PMID: 29620479 DOI: 10.1139/gen-2017-0206] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hsp40s or DnaJ/J-proteins are evolutionarily conserved in all organisms as co-chaperones of molecular chaperone HSP70s that mainly participate in maintaining cellular protein homeostasis, such as protein folding, assembly, stabilization, and translocation under normal conditions as well as refolding and degradation under environmental stresses. It has been reported that Arabidopsis J-proteins are classified into four classes (types A-D) according to domain organization, but their phylogenetic relationships are unknown. Here, we identified 129 J-proteins in the world-wide popular vegetable Brassica oleracea, a close relative of the model plant Arabidopsis, and also revised the information of Arabidopsis J-proteins based on the latest online bioresources. According to phylogenetic analysis with domain organization and gene structure as references, the J-proteins from Arabidopsis and B. oleracea were classified into 15 main clades (I-XV) separated by a number of undefined small branches with remote relationship. Based on the number of members, they respectively belong to multigene clades, oligo-gene clades, and mono-gene clades. The J-protein genes from different clades may function together or separately to constitute a complicated regulatory network. This study provides a constructive viewpoint for J-protein classification and an informative platform for further functional dissection and resistant genes discovery related to genetic improvement of crop plants.
Collapse
Affiliation(s)
- Bin Zhang
- a Key Laboratory of Education, Department of Hunan Province on Plant Genetics and Molecular Biology, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Han-Lin Qiu
- b State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, Zhejiang 311300, China
| | - Dong-Hai Qu
- a Key Laboratory of Education, Department of Hunan Province on Plant Genetics and Molecular Biology, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Ying Ruan
- a Key Laboratory of Education, Department of Hunan Province on Plant Genetics and Molecular Biology, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Dong-Hong Chen
- b State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, Zhejiang 311300, China
| |
Collapse
|
61
|
Zhou W, Wei D, Jiang W, Wang Z, Wang H, Tang Q. The protein J3 regulates flowering through directly interacting with the promoter of SOC1 in Brassica juncea. Biochem Biophys Res Commun 2018; 496:1217-1221. [PMID: 29397941 DOI: 10.1016/j.bbrc.2018.01.174] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 01/29/2018] [Indexed: 10/18/2022]
Abstract
DNA J HOMOLOG 3 (J3) is a special transcriptional regulator in flowering time control, but the molecular mechanism of J3 in regulating flowering time has not been thoroughly revealed in B. juncea which is one important oilseed and vegetable crop. In this study, J3 gene was cloned from B. juncea (BjuJ3). Phylogenetic relationship analysis showed that the BjuJ3 had high amino acid sequence similarity (>93%) with other Brassica plants. The BjuJ3-transgenic tobacco plants exhibited early flowering, suggesting that BjuJ3 was an activator of flowering time. The qRT-PCR analysis found that BjuJ3 could be ubiquitously induced by the long-day and vernalization treatments in all the tissues of B. juncea. Yeast two-hybrid assays and GST pull-down experiments revealed that BjuJ3 could not directly interact with BjuSOC1, BjuSVP and BjuAGL24. Whereas, yeast one-hybrid and Dual-Glo® Luciferase assays found that BjuJ3 could not interact with BjuAGL24 promoter but could specifically bind to BjuSOC1-1 which is one of truncated fragments of BjuSOC1 promoter. Our research will provide valuable information for unraveling regulatory mechanisms of flowering time in B. juncea.
Collapse
Affiliation(s)
- Wenwen Zhou
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China; Key Laboratory of Horticulture Science for Southern Mountains Regions, Ministry of Education, Chongqing, 400715, China
| | - Dayong Wei
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China; Key Laboratory of Horticulture Science for Southern Mountains Regions, Ministry of Education, Chongqing, 400715, China
| | - Wei Jiang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China; Key Laboratory of Horticulture Science for Southern Mountains Regions, Ministry of Education, Chongqing, 400715, China
| | - Zhimin Wang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China; Key Laboratory of Horticulture Science for Southern Mountains Regions, Ministry of Education, Chongqing, 400715, China
| | - Hebing Wang
- Chongqing Academy of Agricultural Sciences, Chongqing, 401329, China
| | - Qinglin Tang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China; Key Laboratory of Horticulture Science for Southern Mountains Regions, Ministry of Education, Chongqing, 400715, China.
| |
Collapse
|
62
|
Lee KW, Rahman MA, Kim KY, Choi GJ, Cha JY, Cheong MS, Shohael AM, Jones C, Lee SH. Overexpression of the alfalfa DnaJ-like protein (MsDJLP) gene enhances tolerance to chilling and heat stresses in transgenic tobacco plants. Turk J Biol 2018; 42:12-22. [PMID: 30814866 DOI: 10.3906/biy-1705-30] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Heat shock proteins (HSPs) are generally considered as important molecular chaperones; they are known to perform critical functions in plant development and abiotic stress response processes. In this study, we examined the role of a HSP, the Medicago sativa DnaJ-like protein (MsDJLP), in alfalfa and its potential application for the development of abiotic stress tolerance in plants. We found that expression of the MsDJLP gene was induced by chilling (4 °C) and heat (42 °C), but not by cadmium (500 µM) or arsenic (500 µM) stresses. We then cloned the MsDJLP gene downstream of the strong constitutive CaMV 35S promoter and transformed it into tobacco plants. Ectopic expression of MsDJLP conferred enhanced tolerance to both chilling and heat stresses in transgenic tobacco plants. Under chilling stress, the transgenic tobacco plants showed lower H2O2 accumulation and electrolyte leakage (EL) activity, and better photosystem II efficiency than wild-type (WT) plants, indicating that photoinhibition was less severe in transgenic compared to WT plants. Following heat treatment, the transgenic plants showed better relative chlorophyll and water contents, and lower malondialdehyde accumulation than WT plants. Our study provides evidence for a pivotal role of MsDJLP for chilling and heat stress tolerance in transgenic tobacco plants.
Collapse
Affiliation(s)
- Ki-Won Lee
- Molecular Breeding Laboratory, Grassland and Forages Division, National Institute of Animal Science, Rural Development Administration , Cheonan , Republic of Korea
| | - Md Atikur Rahman
- Molecular Breeding Laboratory, Grassland and Forages Division, National Institute of Animal Science, Rural Development Administration , Cheonan , Republic of Korea
| | - Ki-Yong Kim
- Molecular Breeding Laboratory, Grassland and Forages Division, National Institute of Animal Science, Rural Development Administration , Cheonan , Republic of Korea
| | - Gi Jun Choi
- Molecular Breeding Laboratory, Grassland and Forages Division, National Institute of Animal Science, Rural Development Administration , Cheonan , Republic of Korea
| | - Joon-Yung Cha
- Division of Applied Life Science (BK21Plus), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University , Jinju , Republic of Korea
| | - Mi Sun Cheong
- Division of Applied Life Science (BK21Plus), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University , Jinju , Republic of Korea
| | | | - Chris Jones
- Feed and Forage Biosciences, International Livestock Research Institute , Addis Ababa , Ethiopia
| | - Sang-Hoon Lee
- Molecular Breeding Laboratory, Grassland and Forages Division, National Institute of Animal Science, Rural Development Administration , Cheonan , Republic of Korea
| |
Collapse
|
63
|
Pulido P, Leister D. Novel DNAJ-related proteins in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2018; 217:480-490. [PMID: 29271039 DOI: 10.1111/nph.14827] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Classical DNAJ proteins are co-chaperones that together with HSP70s control protein homeostasis. All three classical types of DNAJ proteins (DNAJA, DNAJB and DNAJC types) possess the J-domain for interaction with HSP70. DNAJA proteins contain, in addition, both the zinc-finger motif and the C-terminal domain which are involved in substrate binding, while DNAJB retains only the latter and DNAJC comprises only the J-domain. There is increasing evidence that some of the activities of DNAJ proteins do not require the J-domain, highlighting the functional significance of the other two domains. Indeed, the so-called DNAJ-like proteins with a degenerate J-domain have been previously coined as DNAJD proteins, and also proteins containing only a DNAJ-like zinc-finger motif appear to be involved in protein homeostasis. Therefore, we propose to extend the classification of DNAJ-related proteins into three different groups. The DNAJD type comprises proteins with a J-like domain only, and has 15 members in Arabidopsis thaliana, whereas proteins of the DNAJE (33 Arabidopsis members) and DNAJF (three Arabidopsis members) types contain a DNAJA-like zinc-finger domain and DNAJA/B-like C-terminal domain, respectively. Here, we provide an overview of the entire repertoire of these proteins in A. thaliana with respect to their physiological function and possible evolutionary origin.
Collapse
Affiliation(s)
- Pablo Pulido
- Plant Molecular Biology, Department Biology I, Ludwig-Maximilians-Universität München, D-82152, Planegg-Martinsried, Germany
- Copenhagen Plant Science Centre, University of Copenhagen, 1871, Frederiksberg C, Denmark
| | - Dario Leister
- Plant Molecular Biology, Department Biology I, Ludwig-Maximilians-Universität München, D-82152, Planegg-Martinsried, Germany
| |
Collapse
|
64
|
Planas-Marquès M, Lema A S, Coll NS. Detection and Quantification of Protein Aggregates in Plants. Methods Mol Biol 2017; 1450:195-203. [PMID: 27424755 DOI: 10.1007/978-1-4939-3759-2_15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Plants are constantly exposed to a complex and changing environment that challenges their cellular homeostasis. Stress responses triggered as a consequence of unfavorable conditions result in increased protein aggregate formation at the cellular level. When the formation of misfolded proteins surpasses the capacity of the cell to remove them, insoluble protein aggregates accumulate. In the animal field, an enormous effort is being placed to uncover the mechanisms regulating aggregate formation because of its implications in many important human diseases. Because of its importance for cellular functionality and fitness, it is equally important to expand plant research in this field. Here, we describe a cell fractionation-based method to obtain very pure insoluble protein aggregate fractions that can be subsequently semiquantified using image analysis. This method can be used as a first step to evaluate whether a particular condition results in an alteration of protein aggregate formation levels.
Collapse
Affiliation(s)
- Marc Planas-Marquès
- Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), 08195, Bellaterra, Spain
| | - Saul Lema A
- Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), 08195, Bellaterra, Spain
| | - Núria S Coll
- Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), 08195, Bellaterra, Spain.
| |
Collapse
|
65
|
Park CJ, Wei T, Sharma R, Ronald PC. Overexpression of Rice Auxilin-Like Protein, XB21, Induces Necrotic Lesions, up-Regulates Endocytosis-Related Genes, and Confers Enhanced Resistance to Xanthomonas oryzae pv. oryzae. RICE (NEW YORK, N.Y.) 2017; 10:27. [PMID: 28577284 PMCID: PMC5457384 DOI: 10.1186/s12284-017-0166-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 05/24/2017] [Indexed: 05/29/2023]
Abstract
BACKGROUND The rice immune receptor XA21 confers resistance to the bacterial pathogen, Xanthomonas oryzae pv. oryzae (Xoo). To elucidate the mechanism of XA21-mediated immunity, we previously performed a yeast two-hybrid screening for XA21 interactors and identified XA21 binding protein 21 (XB21). RESULTS Here, we report that XB21 is an auxilin-like protein predicted to function in clathrin-mediated endocytosis. We demonstrate an XA21/XB21 in vivo interaction using co-immunoprecipitation in rice. Overexpression of XB21 in rice variety Kitaake and a Kitaake transgenic line expressing XA21 confers a necrotic lesion phenotype and enhances resistance to Xoo. RNA sequencing reveals that XB21 overexpression results in the differential expression of 8735 genes (4939 genes up- and 3846 genes down-regulated) (≥2-folds, FDR ≤0.01). The up-regulated genes include those predicted to be involved in 'cell death' and 'vesicle-mediated transport'. CONCLUSION These results indicate that XB21 plays a role in the plant immune response and in regulation of cell death. The up-regulation of genes controlling 'vesicle-mediated transport' in XB21 overexpression lines is consistent with a functional role for XB21 as an auxilin.
Collapse
Affiliation(s)
- Chang-Jin Park
- Department of Plant Pathology and the Genome Center, University of California Davis, Davis, CA, 95616, USA
- Department of Bioresources Engineering and the Plant Engineering Research Institute, Sejong University, Seoul, 05006, Republic of Korea
| | - Tong Wei
- Department of Plant Pathology and the Genome Center, University of California Davis, Davis, CA, 95616, USA
- Feedstocks Division, Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Rita Sharma
- Department of Plant Pathology and the Genome Center, University of California Davis, Davis, CA, 95616, USA
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Pamela C Ronald
- Department of Plant Pathology and the Genome Center, University of California Davis, Davis, CA, 95616, USA.
- Feedstocks Division, Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|
66
|
Functional Characterization of Waterlogging and Heat Stresses Tolerance Gene Pyruvate decarboxylase 2 from Actinidia deliciosa. Int J Mol Sci 2017; 18:ijms18112377. [PMID: 29120390 PMCID: PMC5713346 DOI: 10.3390/ijms18112377] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 11/02/2017] [Accepted: 11/07/2017] [Indexed: 11/17/2022] Open
Abstract
A previous report showed that both Pyruvatedecarboxylase (PDC) genes were significantly upregulated in kiwifruit after waterlogging treatment using Illumina sequencing technology, and that the kiwifruit AdPDC1 gene was required during waterlogging, but might not be required during other environmental stresses. Here, the function of another PDC gene, named AdPDC2, was analyzed. The expression of the AdPDC2 gene was determined using qRT-PCR, and the results showed that the expression levels of AdPDC2 in the reproductive organs were much higher than those in the nutritive organs. Waterlogging, NaCl, and heat could induce the expression of AdPDC2. Overexpression of kiwifruit AdPDC2 in transgenic Arabidopsis enhanced resistance to waterlogging and heat stresses in five-week-old seedlings, but could not enhance resistance to NaCl and mannitol stresses at the seed germination stage and in early seedlings. These results suggested that the kiwifruit AdPDC2 gene may play an important role in waterlogging resistance and heat stresses in kiwifruit.
Collapse
|
67
|
Evolutionary Conservation and Emerging Functional Diversity of the Cytosolic Hsp70:J Protein Chaperone Network of Arabidopsis thaliana. G3-GENES GENOMES GENETICS 2017; 7:1941-1954. [PMID: 28450372 PMCID: PMC5473770 DOI: 10.1534/g3.117.042291] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Heat shock proteins of 70 kDa (Hsp70s) partner with structurally diverse Hsp40s (J proteins), generating distinct chaperone networks in various cellular compartments that perform myriad housekeeping and stress-associated functions in all organisms. Plants, being sessile, need to constantly maintain their cellular proteostasis in response to external environmental cues. In these situations, the Hsp70:J protein machines may play an important role in fine-tuning cellular protein quality control. Although ubiquitous, the functional specificity and complexity of the plant Hsp70:J protein network has not been studied. Here, we analyzed the J protein network in the cytosol of Arabidopsis thaliana and, using yeast genetics, show that the functional specificities of most plant J proteins in fundamental chaperone functions are conserved across long evolutionary timescales. Detailed phylogenetic and functional analysis revealed that increased number, regulatory differences, and neofunctionalization in J proteins together contribute to the emerging functional diversity and complexity in the Hsp70:J protein network in higher plants. Based on the data presented, we propose that higher plants have orchestrated their "chaperome," especially their J protein complement, according to their specialized cellular and physiological stipulations.
Collapse
|
68
|
Zagari N, Sandoval-Ibañez O, Sandal N, Su J, Rodriguez-Concepcion M, Stougaard J, Pribil M, Leister D, Pulido P. SNOWY COTYLEDON 2 Promotes Chloroplast Development and Has a Role in Leaf Variegation in Both Lotus japonicus and Arabidopsis thaliana. MOLECULAR PLANT 2017; 10:721-734. [PMID: 28286296 DOI: 10.1016/j.molp.2017.02.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 02/17/2017] [Accepted: 02/26/2017] [Indexed: 05/20/2023]
Abstract
Plants contain various factors that transiently interact with subunits or intermediates of the thylakoid multiprotein complexes, promoting their stable association and integration. Hence, assembly factors are essential for chloroplast development and the transition from heterotrophic to phototrophic growth. Snowy cotyledon 2 (SCO2) is a DNAJ-like protein involved in thylakoid membrane biogenesis and interacts with the light-harvesting chlorophyll-binding protein LHCB1. In Arabidopsis thaliana, SCO2 function was previously reported to be restricted to cotyledons. Here we show that disruption of SCO2 in Lotus japonicus results not only in paler cotyledons but also in variegated true leaves. Furthermore, smaller and pale-green true leaves can also be observed in A. thaliana sco2 (atsco2) mutants under short-day conditions. In both species, SCO2 is required for proper accumulation of PSII-LHCII complexes. In contrast to other variegated mutants, inhibition of chloroplastic translation strongly affects L. japonicus sco2 mutant development and fails to suppress their variegated phenotype. Moreover, inactivation of the suppressor of variegation AtClpR1 in the atsco2 background results in an additive double-mutant phenotype with variegated true leaves. Taken together, our results indicate that SCO2 plays a distinct role in PSII assembly or repair and constitutes a novel factor involved in leaf variegation.
Collapse
Affiliation(s)
- Nicola Zagari
- Plant Molecular Biology, Department of Biology I, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany; Copenhagen Plant Science Center, University of Copenhagen, 1871 Frederiksberg C, Denmark; Research and Innovation Center, Fondazione Edmund Mach, via E. Mach 1, 38010 San Michele all'Adige, Italy
| | - Omar Sandoval-Ibañez
- Copenhagen Plant Science Center, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Niels Sandal
- Centre for Carbohydrate Recognition and Signalling, Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus C, Denmark
| | - Junyi Su
- Centre for Carbohydrate Recognition and Signalling, Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus C, Denmark
| | - Manuel Rodriguez-Concepcion
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, 08193 Barcelona, Spain
| | - Jens Stougaard
- Centre for Carbohydrate Recognition and Signalling, Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus C, Denmark
| | - Mathias Pribil
- Copenhagen Plant Science Center, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Dario Leister
- Plant Molecular Biology, Department of Biology I, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany; Copenhagen Plant Science Center, University of Copenhagen, 1871 Frederiksberg C, Denmark.
| | - Pablo Pulido
- Plant Molecular Biology, Department of Biology I, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany; Copenhagen Plant Science Center, University of Copenhagen, 1871 Frederiksberg C, Denmark
| |
Collapse
|
69
|
Xu J, Zhang M, Liu G, Yang X, Hou X. Comparative transcriptome profiling of chilling stress responsiveness in grafted watermelon seedlings. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 109:561-570. [PMID: 27837724 DOI: 10.1016/j.plaphy.2016.11.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 11/03/2016] [Accepted: 11/03/2016] [Indexed: 05/03/2023]
Abstract
Rootstock grafting may improve the resistance of watermelon plants to low temperatures. However, information regarding the molecular responses of rootstock grafted plants to chilling stress is limited. To elucidate the molecular mechanisms of chilling tolerance in grafted plants, the transcriptomic responses of grafted watermelon under chilling stress were analyzed using RNA-seq analysis. Sequencing data were used for digital gene expression (DGE) analysis to characterize the transcriptomic responses in grafted watermelon seedlings. A total of 702 differentially-expressed genes (DEGs) were found in rootstock grafted (RG) watermelon relative to self-grafted (SG) watermelon; among these genes, 522 genes were up-regulated and 180 were down-regulated. Additionally, 164 and 953 genes were found to specifically expressed in RG and SG seedlings under chilling stress, respectively. Functional annotations revealed that up-regulated DEGs are involved in protein processing, plant-pathogen interaction and the spliceosome, whereas down-regulated DEGs are associated with photosynthesis. Moreover, 13 DEGs were randomly selected for quantitative real time PCR (qRT-PCR) analysis. The expression profiles of these 13 DEGs were consistent with those detected by the DGE analysis, supporting the reliability of the DGE data. This work provides additional insight into the molecular basis of grafted watermelon responses to chilling stress.
Collapse
Affiliation(s)
- Jinhua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China; Institute of Vegetable, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, Jiangsu, China
| | - Man Zhang
- Institute of Vegetable, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, Jiangsu, China
| | - Guang Liu
- Institute of Vegetable, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, Jiangsu, China
| | - Xingping Yang
- Institute of Vegetable, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, Jiangsu, China
| | - Xilin Hou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| |
Collapse
|
70
|
Wu Y, Luo L, Chen L, Tao X, Huang M, Wang H, Chen Z, Xiao W. Chromosome mapping, molecular cloning and expression analysis of a novel gene response for leaf width in rice. Biochem Biophys Res Commun 2016; 480:394-401. [PMID: 27771249 DOI: 10.1016/j.bbrc.2016.10.061] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 10/18/2016] [Indexed: 11/25/2022]
Abstract
Genetic analysis revealed that narrow leaf, small panicle, thin and slender stems as well as low fertility rate of an Indica rice variety were recessive traits and controlled by a single gene. Applying map-based cloning strategy, a novel narrow leaf gene, which was named nal11 was delimited to an interval of 58.3 kb between the InDel markers N10 and InD5016. There are 9 genes in the mapping interval, and only a heat shock DNAJ protein encode gene (Os07g09450) has a specific G to T SNP, which was occurred at the last base of the second exon of Os07g09450 in ZYX. 5' and 3' RACE result shown that there were two transcripts in NAL11, and the SNP in nal11 leads to a variable shear of mRNA. In addition, this type of mRNA alternative splicing together with a stop codon closely followed the SNP which caused termination of translation destroyed the DNAJ domain of nal11's product. These results suggested that the heat shock DNAJ gene was most likely to be the candidate gene of nal11. The results of RT-PCR and real-time PCR further verified that the SNP in the ZYX-nal11 gene affects mRNA splicing pattern. Phenotype of ZYX may be caused by a statistically significant reduction in the total number of small veins in leaf, size and number of small vascular bundles and cells in stems, similar to several previous reported mutations. The basic molecular information we provide here will be useful for further investigations of the physiological function of the heat shock DNAJ gene, which will be helpful in better understanding the role of the DNAJ family in regulation of plant type traits such as leaf width of rice.
Collapse
Affiliation(s)
- Yahui Wu
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Lixin Luo
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Likai Chen
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Xingxing Tao
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Ming Huang
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Hui Wang
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Zhiqiang Chen
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China.
| | - Wuming Xiao
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
71
|
Kissen R, Øverby A, Winge P, Bones AM. Allyl-isothiocyanate treatment induces a complex transcriptional reprogramming including heat stress, oxidative stress and plant defence responses in Arabidopsis thaliana. BMC Genomics 2016; 17:740. [PMID: 27639974 PMCID: PMC5027104 DOI: 10.1186/s12864-016-3039-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 08/24/2016] [Indexed: 01/30/2023] Open
Abstract
Background Isothiocyanates (ITCs) are degradation products of the plant secondary metabolites glucosinolates (GSLs) and are known to affect human health as well as plant herbivores and pathogens. To investigate the processes engaged in plants upon exposure to isothiocyanate we performed a genome scale transcriptional profiling of Arabidopsis thaliana at different time points in response to an exogenous treatment with allyl-isothiocyanate. Results The treatment triggered a substantial response with the expression of 431 genes affected (P < 0.05 and log2 ≥ 1 or ≤ -1) already after 30 min and that of 3915 genes affected after 9 h of exposure, most of the affected genes being upregulated. These are involved in a considerable number of different biological processes, some of which are described in detail: glucosinolate metabolism, sulphate uptake and assimilation, heat stress response, oxidative stress response, elicitor perception, plant defence and cell death mechanisms. Conclusion Exposure of Arabidopsis thaliana to vapours of allyl-isothiocyanate triggered a rapid and substantial transcriptional response affecting numerous biological processes. These include multiple stress stimuli such as heat stress response and oxidative stress response, cell death and sulphur secondary defence metabolism. Hence, effects of isothiocyanates on plants previously reported in the literature were found to be regulated at the gene expression level. This opens some avenues for further investigations to decipher the molecular mechanisms underlying the effects of isothiocyanates on plants. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3039-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ralph Kissen
- Department of Biology, Norwegian University of Science and Technology (NTNU), NO-7491, Trondheim, Norway
| | - Anders Øverby
- Department of Biology, Norwegian University of Science and Technology (NTNU), NO-7491, Trondheim, Norway.,Present address: Center for Clinical Pharmacy and Clinical Sciences, School of Pharmaceutical Sciences, Kitasato University, Minato-ku, Tokyo, Japan
| | - Per Winge
- Department of Biology, Norwegian University of Science and Technology (NTNU), NO-7491, Trondheim, Norway
| | - Atle M Bones
- Department of Biology, Norwegian University of Science and Technology (NTNU), NO-7491, Trondheim, Norway.
| |
Collapse
|
72
|
Ajit Tamadaddi C, Sahi C. J domain independent functions of J proteins. Cell Stress Chaperones 2016; 21:563-70. [PMID: 27145962 PMCID: PMC4908003 DOI: 10.1007/s12192-016-0697-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 04/04/2016] [Accepted: 04/25/2016] [Indexed: 01/19/2023] Open
Abstract
Heat shock proteins of 40 kDa (Hsp40s), also called J proteins, are obligate partners of Hsp70s. Via their highly conserved and functionally critical J domain, J proteins interact and modulate the activity of their Hsp70 partners. Mutations in the critical residues in the J domain often result in the null phenotype for the J protein in question. However, as more J proteins have been characterized, it is becoming increasingly clear that a significant number of J proteins do not "completely" rely on their J domains to carry out their cellular functions, as previously thought. In some cases, regions outside the highly conserved J domain have become more important making the J domain dispensable for some, if not for all functions of a J protein. This has profound effects on the evolution of such J proteins. Here we present selected examples of J proteins that perform J domain independent functions and discuss this in the context of evolution of J proteins with dispensable J domains and J-like proteins in eukaryotes.
Collapse
Affiliation(s)
- Chetana Ajit Tamadaddi
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Chandan Sahi
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India.
| |
Collapse
|
73
|
Jia N, Lv TT, Li MX, Wei SS, Li YY, Zhao CL, Li B. The J-protein AtDjB1 is required for mitochondrial complex I activity and regulates growth and development through ROS-mediated auxin signalling. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:3481-3496. [PMID: 27117341 DOI: 10.1093/jxb/erw171] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
AtDjB1 is a mitochondria-located J-protein in Arabidopsis thaliana It is involved in the regulation of plant growth and development; however, the exact mechanisms remain to be determined. We performed comparison analyses of phenotypes, auxin signalling, redox status, mitochondrial structure and function using wild-type plants, AtDjB1 mutants, rescued AtDjB1 mutants by AtDjB1 or YUCCA2 (an auxin synthesis gene), and AtDjB1 overexpression plants. AtDjB1 mutants (atj1-1 or atj1-4) exhibited inhibition of growth and development and reductions in the level of IAA and the expression of YUCCA genes compared to wild-type plants. The introduction of AtDjB1 or YUCCA2 into atj1-1 largely rescued phenotypic defects and the IAA level, indicating that AtDjB1 probably regulates growth and development via auxin. Furthermore, atj1-1 plants displayed a significant reduction in amount/activity of mitochondrial complex I compared to wild-type plants; this resulted in the accumulation of reactive oxygen species (ROS). Moreover, exogenous H2O2 markedly inhibited the expression of YUCCA genes in wild-type plants. In contrast, the reducing agent ascorbate increased the expression of YUCCA genes and IAA level in atj1-1 plants, indicating that the low auxin level observed in atj1-1 was probably due to the high oxidation status. Overall, the data presented here suggest that AtDjB1 is required for mitochondrial complex I activity and regulates growth and development through ROS-mediated auxin signalling in Arabidopsis.
Collapse
Affiliation(s)
- Ning Jia
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Ting-Ting Lv
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Mi-Xin Li
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Shan-Shan Wei
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Yan-Yi Li
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Chun-Lan Zhao
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Bing Li
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijiazhuang 050024, China
| |
Collapse
|
74
|
Guzmán-López JA, Abraham-Juárez MJ, Lozano-Sotomayor P, de Folter S, Simpson J. Arabidopsis thaliana gonidialess A/Zuotin related factors (GlsA/ZRF) are essential for maintenance of meristem integrity. PLANT MOLECULAR BIOLOGY 2016; 91:37-51. [PMID: 26826012 DOI: 10.1007/s11103-016-0439-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 01/12/2016] [Indexed: 06/05/2023]
Abstract
Observation of a differential expression pattern, including strong expression in meristematic tissue of an Agave tequilana GlsA/ZRF ortholog suggested an important role for this gene during bulbil formation and developmental changes in this species. In order to better understand this role, the two GlsA/ZFR orthologs present in the genome of Arabidopsis thaliana were functionally characterized by analyzing expression patterns, double mutant phenotypes, promoter-GUS fusions and expression of hormone related or meristem marker genes. Patterns of expression for A. thaliana show that GlsA/ZFR genes are strongly expressed in SAMs and RAMs in mature plants and developing embryos and double mutants showed multiple changes in morphology related to both SAM and RAM tissues. Typical double mutants showed stunted growth of aerial and root tissue, formation of multiple ectopic meristems and effects on cotyledons, leaves and flowers. The KNOX genes STM and BP were overexpressed in double mutants whereas CLV3, WUSCHEL and AS1 were repressed and lack of AtGlsA expression was also associated with changes in localization of auxin and cytokinin. These results suggest that GlsA/ZFR is an essential component of the machinery that maintains the integrity of SAM and RAM tissue and underline the potential to identify new genes or gene functions based on observations in non-model plants.
Collapse
Affiliation(s)
- José Alfredo Guzmán-López
- Department of Plant Genetic Engineering, CINVESTAV Unidad Irapuato, Km. 9.6 Libramiento Norte Carretera Irapuato-León, Apdo. Postal 629, 36821, Irapuato, Guanajuato, Mexico
| | - María Jazmín Abraham-Juárez
- Department of Plant Genetic Engineering, CINVESTAV Unidad Irapuato, Km. 9.6 Libramiento Norte Carretera Irapuato-León, Apdo. Postal 629, 36821, Irapuato, Guanajuato, Mexico
- Plant Gene Expression Center, USDA-ARS, UC Berkeley, 800 Buchanan Street, Albany, CA, 94710, USA
| | - Paulina Lozano-Sotomayor
- Laboratorio Nacional de Genómica para la Biodiversidad (LANGEBIO), CINVESTAV Irapuato, Km. 9.6 Libramiento Norte Carretera Irapuato-León, Apdo. Postal 629, 36821, Irapuato, Guanajuato, Mexico
| | - Stefan de Folter
- Laboratorio Nacional de Genómica para la Biodiversidad (LANGEBIO), CINVESTAV Irapuato, Km. 9.6 Libramiento Norte Carretera Irapuato-León, Apdo. Postal 629, 36821, Irapuato, Guanajuato, Mexico
| | - June Simpson
- Department of Plant Genetic Engineering, CINVESTAV Unidad Irapuato, Km. 9.6 Libramiento Norte Carretera Irapuato-León, Apdo. Postal 629, 36821, Irapuato, Guanajuato, Mexico.
| |
Collapse
|
75
|
Salas-Muñoz S, Rodríguez-Hernández AA, Ortega-Amaro MA, Salazar-Badillo FB, Jiménez-Bremont JF. Arabidopsis AtDjA3 Null Mutant Shows Increased Sensitivity to Abscisic Acid, Salt, and Osmotic Stress in Germination and Post-germination Stages. FRONTIERS IN PLANT SCIENCE 2016; 7:220. [PMID: 26941772 PMCID: PMC4766394 DOI: 10.3389/fpls.2016.00220] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 02/09/2016] [Indexed: 05/21/2023]
Abstract
DnaJ proteins are essential co-chaperones involved in abiotic and biotic stress responses. Arabidopsis AtDjA3 gene encodes a molecular co-chaperone of 420 amino acids, which belongs to the J-protein family. In this study, we report the functional characterization of the AtDjA3 gene using the Arabidopsis knockout line designated j3 and the 35S::AtDjA3 overexpression lines. Loss of AtDjA3 function was associated with small seed production. In fact, j3 mutant seeds showed a reduction of 24% in seed weight compared to Col-0 seeds. Expression analysis showed that the AtDjA3 gene was modulated in response to NaCl, glucose, and abscisic acid (ABA). The j3 line had increased sensitivity to NaCl and glucose treatments in the germination and cotyledon development in comparison to parental Col-0. Furthermore, the j3 mutant line exhibited higher ABA sensitivity in comparison to parental Col-0 and 35S::AtDjA3 overexpression lines. In addition, we examined the expression of ABI3 gene, which is a central regulator in ABA signaling, in j3 mutant and 35S::AtDjA3 overexpression lines. Under 5 μM ABA treatment at 24 h, j3 mutant seedlings displayed higher ABI3 expression, whereas in 35S::AtDjA3 overexpression lines, ABI3 gene expression was repressed. Taken together, these results demonstrate that the AtDjA3 gene is involved in seed development and abiotic stress tolerance.
Collapse
Affiliation(s)
| | | | | | | | - Juan F. Jiménez-Bremont
- Laboratorio de Biotecnología Molecular de Plantas, División de Biología Molecular, Instituto Potosino de Investigación Científica y TecnológicaSan Luis Potosí, México
| |
Collapse
|
76
|
Barat A, Sahoo PK, Kumar R, Goel C, Singh AK. Transcriptional response to heat shock in liver of snow trout (Schizothorax richardsonii)--a vulnerable Himalayan Cyprinid fish. Funct Integr Genomics 2016; 16:203-13. [PMID: 26810178 DOI: 10.1007/s10142-016-0477-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 01/10/2016] [Accepted: 01/14/2016] [Indexed: 12/15/2022]
Abstract
The snow trout (Schizothorax richardsonii) belonging to family Cyprinidae, is an endemic fish of the Himalayan region. The species is tagged as vulnerable species in the IUCN red list of threatened species. The fish thrives well in snowmelt water of several streams and rivers in the region but are occasionally exposed to more than 20 °C during the summer season. Therefore, we have used deep RNA sequencing to decipher the transcriptome of snow trout and characterize the genes and molecular pathways involved in heat shock response. In this study 72,601,298 and 65,428,283 raw reads for heat-shocked and control, respectively, were obtained by Illumina paired-end sequencing technology. The de novo assembled transcriptome was tested for differential gene expression across the treatment groups. The quality of assembly was high with N75 and N50 lengths of 461 and 1274 bases, respectively. A total of 65 unique transcripts were differentially expressed in liver under heat shock and control. Annotated blast matches reveal that differentially expressed transcripts correspond to critical chaperones and molecular pathways, previously shown to be important for thermal stress in other fish species. Eight randomly selected heat-stressed responsive transcripts were also observed to be upregulated during qRT-PCR analysis. This study is the preliminary step to understanding the responses during sudden environmental changes like heat shock. The reference transcriptome database would also aid further studies on biological and physiological aspects of the snow trout under abiotic stresses.
Collapse
Affiliation(s)
- Ashoktaru Barat
- Molecular Genetics Laboratory, ICAR-Directorate of Coldwater Fisheries Research, (Indian Council of Agricultural Research), Bhimtal-263136, Nainital, Uttarakhand, India.
| | - Prabhati Kumari Sahoo
- Molecular Genetics Laboratory, ICAR-Directorate of Coldwater Fisheries Research, (Indian Council of Agricultural Research), Bhimtal-263136, Nainital, Uttarakhand, India
| | - Rohit Kumar
- Molecular Genetics Laboratory, ICAR-Directorate of Coldwater Fisheries Research, (Indian Council of Agricultural Research), Bhimtal-263136, Nainital, Uttarakhand, India
| | - Chirag Goel
- Molecular Genetics Laboratory, ICAR-Directorate of Coldwater Fisheries Research, (Indian Council of Agricultural Research), Bhimtal-263136, Nainital, Uttarakhand, India
| | - Atul Kumar Singh
- Molecular Genetics Laboratory, ICAR-Directorate of Coldwater Fisheries Research, (Indian Council of Agricultural Research), Bhimtal-263136, Nainital, Uttarakhand, India
| |
Collapse
|
77
|
Nguyen CC, Nakaminami K, Matsui A, Kobayashi S, Kurihara Y, Toyooka K, Tanaka M, Seki M. Oligouridylate Binding Protein 1b Plays an Integral Role in Plant Heat Stress Tolerance. FRONTIERS IN PLANT SCIENCE 2016; 7:853. [PMID: 27379136 PMCID: PMC4911357 DOI: 10.3389/fpls.2016.00853] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 05/31/2016] [Indexed: 05/03/2023]
Abstract
Stress granules (SGs), which are formed in the plant cytoplasm under stress conditions, are transient dynamic sites (particles) for mRNA storage. SGs are actively involved in protecting mRNAs from degradation. Oligouridylate binding protein 1b (UBP1b) is a component of SGs. The formation of microscopically visible cytoplasmic foci, referred to as UBP1b SG, was induced by heat treatment in UBP1b-overexpressing Arabidopsis plants (UBP1b-ox). A detailed understanding of the function of UBP1b, however, is still not clear. UBP1b-ox plants displayed increased heat tolerance, relative to control plants, while ubp1b mutants were more sensitive to heat stress than control plants. Microarray analysis identified 117 genes whose expression was heat-inducible and higher in the UBP1b-ox plants. RNA decay analysis was performed using cordycepin, a transcriptional inhibitor. In order to determine if those genes serve as targets of UBP1b, the rate of RNA degradation of a DnaJ heat shock protein and a stress-associated protein (AtSAP3) in UBP1b-ox plants was slower than in control plants; indicating that the mRNAs of these genes were protected within the UBP1b SG granule. Collectively, these data demonstrate that UBP1b plays an integral role in heat stress tolerance in plants.
Collapse
Affiliation(s)
- Cam Chau Nguyen
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource ScienceYokohama, Japan
- Kihara Institute for Biological Research, Yokohama City UniversityYokohama, Japan
| | - Kentaro Nakaminami
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource ScienceYokohama, Japan
| | - Akihiro Matsui
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource ScienceYokohama, Japan
| | - Shuhei Kobayashi
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource ScienceYokohama, Japan
- Kihara Institute for Biological Research, Yokohama City UniversityYokohama, Japan
| | - Yukio Kurihara
- Synthetic Genomics Research Group, Biomass Engineering Program Cooperation Division, RIKEN Center for Sustainable Resource ScienceYokohama, Japan
| | - Kiminori Toyooka
- Mass Spectrometry and Microscopy Unit, RIKEN Center for Sustainable Resource ScienceYokohama, Japan
| | - Maho Tanaka
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource ScienceYokohama, Japan
| | - Motoaki Seki
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource ScienceYokohama, Japan
- Kihara Institute for Biological Research, Yokohama City UniversityYokohama, Japan
- Core Research for Evolutional Science and Technology, Japan Science and TechnologyKawaguchi, Japan
- *Correspondence: Motoaki Seki
| |
Collapse
|
78
|
Gray J, Rustgi S, von Wettstein D, Reinbothe C, Reinbothe S. Common functions of the chloroplast and mitochondrial co-chaperones cpDnaJL (CDF1) and mtDnaJ (PAM16) in protein import and ROS scavenging in Arabidopsis thaliana. Commun Integr Biol 2015; 9:e1119343. [PMID: 27829973 PMCID: PMC5100655 DOI: 10.1080/19420889.2015.1119343] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 10/30/2015] [Accepted: 10/30/2015] [Indexed: 10/26/2022] Open
Abstract
As semi-autonomous cell organelles that contain only limited coding information in their own DNA, chloroplasts and mitochondria must import the vast majority of their protein constituents from the cytosol. Respective protein import machineries have been identified that mediate the uptake of chloroplast and mitochondrial proteins and interact with molecular chaperones of the HEAT-SHOCK PROTEIN (HSP) 70 family operating as import motors. Recent work identified unexpected new functions of 2 DnaJ co-chaperones in mitochondrial and chloroplast protein translocation and suggest a common mechanism of reactive oxygen species (ROS) scavenging that shall be discussed here.
Collapse
Affiliation(s)
- John Gray
- Department of Biological Sciences, University of Toledo , Toledo, OH, USA
| | - Sachin Rustgi
- Department of Crop and Soil Sciences, School of Molecular Biosciences, Center for Reproductive Biology, Washington State University , Pullman, WA, USA
| | - Diter von Wettstein
- Department of Crop and Soil Sciences, School of Molecular Biosciences, Center for Reproductive Biology, Washington State University , Pullman, WA, USA
| | - Christiane Reinbothe
- Biologie Environnementale et systémique (BEeSy), Université Joseph Fourier , Grenoble, France
| | - Steffen Reinbothe
- Biologie Environnementale et systémique (BEeSy), Université Joseph Fourier , Grenoble, France
| |
Collapse
|
79
|
Yi F, Chen J, Yu J. Global analysis of uncapped mRNA changes under drought stress and microRNA-dependent endonucleolytic cleavages in foxtail millet. BMC PLANT BIOLOGY 2015; 15:241. [PMID: 26444665 PMCID: PMC4594888 DOI: 10.1186/s12870-015-0632-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 09/30/2015] [Indexed: 05/20/2023]
Abstract
BACKGROUND mRNA degradation plays an important role in the determination of mRNA abundance and can quickly regulate gene expression. The production of uncapped mRNAs, an important mechanism of mRNA degradation, can be initiated by decapping enzymes, endonucleases or small RNAs such as microRNAs (miRNAs). Little is known, however, about the role of uncapped mRNAs in plants under environmental stress. RESULTS Using a novel approach called parallel analysis of RNA ends (PARE), we performed a global study of uncapped mRNAs under drought stress in foxtail millet (Setaria italica [L.] P. Beauv.). When both gene degradation (PARE) and gene transcription (RNA-sequencing) data were considered, four types of mRNA decay patterns were identified under drought stress. In addition, 385 miRNA-target interactions were identified in the PARE data using PAREsnip. The PARE analysis also suggested that two miRNA hairpin processing mechanisms--loop-last and loop-first processing--operate in foxtail millet, with both miR319 and miR156 gene families undergoing precise processing via the unusual loop-first mechanism. Finally, we found 11 C4 photosynthesis-related enzymes encoded by drought-responsive genes. CONCLUSIONS We performed a global analysis of mRNA degradation under drought stress and uncovered diverse drought-response mechanisms in foxtail millet. This information will deepen our understanding of mRNA expression under stressful environmental conditions in gramineous plants. In addition, PARE analysis identified many miRNA targets and revealed miRNA-precursor processing modes in foxtail millet.
Collapse
Affiliation(s)
- Fei Yi
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| | - Jian Chen
- State Key Laboratory of Agrobiotechnology, College of Agriculture and Biotechnology, China Agricultural University, Beijing, 100193, China.
| | - Jingjuan Yu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
80
|
Marcolino-Gomes J, Rodrigues FA, Fuganti-Pagliarini R, Nakayama TJ, Ribeiro Reis R, Bouças Farias JR, Harmon FG, Correa Molinari HB, Correa Molinari MD, Nepomuceno A. Transcriptome-Wide Identification of Reference Genes for Expression Analysis of Soybean Responses to Drought Stress along the Day. PLoS One 2015; 10:e0139051. [PMID: 26407065 PMCID: PMC4583485 DOI: 10.1371/journal.pone.0139051] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 09/07/2015] [Indexed: 01/02/2023] Open
Abstract
The soybean transcriptome displays strong variation along the day in optimal growth conditions and also in response to adverse circumstances, like drought stress. However, no study conducted to date has presented suitable reference genes, with stable expression along the day, for relative gene expression quantification in combined studies on drought stress and diurnal oscillations. Recently, water deficit responses have been associated with circadian clock oscillations at the transcription level, revealing the existence of hitherto unknown processes and increasing the demand for studies on plant responses to drought stress and its oscillation during the day. We performed data mining from a transcriptome-wide background using microarrays and RNA-seq databases to select an unpublished set of candidate reference genes, specifically chosen for the normalization of gene expression in studies on soybean under both drought stress and diurnal oscillations. Experimental validation and stability analysis in soybean plants submitted to drought stress and sampled during a 24 h timecourse showed that four of these newer reference genes (FYVE, NUDIX, Golgin-84 and CYST) indeed exhibited greater expression stability than the conventionally used housekeeping genes (ELF1-β and β-actin) under these conditions. We also demonstrated the effect of using reference candidate genes with different stability values to normalize the relative expression data from a drought-inducible soybean gene (DREB5) evaluated in different periods of the day.
Collapse
Affiliation(s)
- Juliana Marcolino-Gomes
- Embrapa Soybean, Brazilian Agricultural Research Corporation, Londrina, Paraná, Brazil
- Department of Biology, State University of Londrina, Londrina, Paraná, Brazil
| | | | | | - Thiago Jonas Nakayama
- Embrapa Soybean, Brazilian Agricultural Research Corporation, Londrina, Paraná, Brazil
- Department of Crop Science, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | - Rafaela Ribeiro Reis
- Embrapa Soybean, Brazilian Agricultural Research Corporation, Londrina, Paraná, Brazil
- Department of Biology, State University of Londrina, Londrina, Paraná, Brazil
| | | | - Frank G. Harmon
- Plant Gene Expression Center, ARS/USDA, Albany, California, United States of America
- Department of Plant and Microbial Biology, University of California-Berkeley, Berkeley, California, United States of America
| | | | - Mayla Daiane Correa Molinari
- Embrapa Soybean, Brazilian Agricultural Research Corporation, Londrina, Paraná, Brazil
- Department of Biology, State University of Londrina, Londrina, Paraná, Brazil
| | - Alexandre Nepomuceno
- Embrapa Soybean, Brazilian Agricultural Research Corporation, Londrina, Paraná, Brazil
| |
Collapse
|
81
|
Zhu X, Liang S, Yin J, Yuan C, Wang J, Li W, He M, Wang J, Chen W, Ma B, Wang Y, Qin P, Li S, Chen X. The DnaJ OsDjA7/8 is essential for chloroplast development in rice (Oryza sativa). Gene 2015. [PMID: 26210810 DOI: 10.1016/j.gene.2015.07.067] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
DnaJ proteins belong to chaperones of Hsp40 family that ubiquitously participate in various cellular processes. Previous studies have shown chloroplast-targeted DnaJs are involved in the development of chloroplast in some plant species. However, little is known about the function of DnaJs in rice, one of the main staple crops. In this study, we characterized a type I DnaJ protein OsDjA7/8. We found that the gene OsDjA7/8 was expressed in all collected tissues, with a priority in the vigorous growth leaf. Subcellular localization revealed that the protein OsDjA7/8 was mainly distributed in chloroplast. Reduced expression of OsDjA7/8 in rice led to albino lethal at the seedling stage. Transmission electron microscopy observation showed that the chloroplast structures were abnormally developed in the plants silenced for OsDjA7/8. In addition, the transcriptional expression of the genes tightly associated with the development of chloroplast was deeply reduced in the plants silenced for OsDjA7/8. Collectively, our study reveals that OsDjA7/8 encodes a chloroplast-localized protein and is essential for chloroplast development and differentiation in rice.
Collapse
Affiliation(s)
- Xiaobo Zhu
- Rice Research Institute, Key Laboratory of Major Crop Diseases, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China; State Key Laboratory of Hybrid Rice, Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin at Sichuan, Chengdu 611130, China
| | - Sihui Liang
- Rice Research Institute, Key Laboratory of Major Crop Diseases, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China; State Key Laboratory of Hybrid Rice, Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin at Sichuan, Chengdu 611130, China
| | - Junjie Yin
- Rice Research Institute, Key Laboratory of Major Crop Diseases, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China; State Key Laboratory of Hybrid Rice, Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin at Sichuan, Chengdu 611130, China
| | - Can Yuan
- Rice Research Institute, Key Laboratory of Major Crop Diseases, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China; State Key Laboratory of Hybrid Rice, Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin at Sichuan, Chengdu 611130, China
| | - Jing Wang
- Rice Research Institute, Key Laboratory of Major Crop Diseases, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China; State Key Laboratory of Hybrid Rice, Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin at Sichuan, Chengdu 611130, China
| | - Weitao Li
- Rice Research Institute, Key Laboratory of Major Crop Diseases, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China; State Key Laboratory of Hybrid Rice, Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin at Sichuan, Chengdu 611130, China
| | - Min He
- Rice Research Institute, Key Laboratory of Major Crop Diseases, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China; State Key Laboratory of Hybrid Rice, Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin at Sichuan, Chengdu 611130, China
| | - Jichun Wang
- Rice Research Institute, Key Laboratory of Major Crop Diseases, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China; State Key Laboratory of Hybrid Rice, Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin at Sichuan, Chengdu 611130, China
| | - Weilan Chen
- Rice Research Institute, Key Laboratory of Major Crop Diseases, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China; State Key Laboratory of Hybrid Rice, Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin at Sichuan, Chengdu 611130, China
| | - Bingtian Ma
- Rice Research Institute, Key Laboratory of Major Crop Diseases, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China; State Key Laboratory of Hybrid Rice, Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin at Sichuan, Chengdu 611130, China
| | - Yuping Wang
- Rice Research Institute, Key Laboratory of Major Crop Diseases, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China; State Key Laboratory of Hybrid Rice, Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin at Sichuan, Chengdu 611130, China
| | - Peng Qin
- Rice Research Institute, Key Laboratory of Major Crop Diseases, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China; State Key Laboratory of Hybrid Rice, Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin at Sichuan, Chengdu 611130, China
| | - Shigui Li
- Rice Research Institute, Key Laboratory of Major Crop Diseases, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China; State Key Laboratory of Hybrid Rice, Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin at Sichuan, Chengdu 611130, China
| | - Xuewei Chen
- Rice Research Institute, Key Laboratory of Major Crop Diseases, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China; State Key Laboratory of Hybrid Rice, Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin at Sichuan, Chengdu 611130, China.
| |
Collapse
|
82
|
Cell growth defect factor 1 is crucial for the plastid import of NADPH:protochlorophyllide oxidoreductase A in Arabidopsis thaliana. Proc Natl Acad Sci U S A 2015; 112:5838-43. [PMID: 25901327 DOI: 10.1073/pnas.1506339112] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Tetrapyrroles such as chlorophyll, heme, and bacteriochlorophyll play fundamental roles in the energy absorption and transduction of all photosynthetic organisms. They are synthesized via a complex pathway taking place in chloroplasts. Chlorophyll biosynthesis in angiosperms involves 16 steps of which only one is light-requiring and driven by the NADPH:protochlorophyllide oxidoreductase (POR). Three POR isoforms have been identified in Arabidopsis thaliana--designated PORA, PORB, and PORC--that are differentially expressed in etiolated, light-exposed, and light-adapted plants. All three isoforms are encoded by nuclear genes, are synthesized as larger precursors in the cytosol (pPORs), and are imported posttranslationally into the plastid compartment. Import of the precursor to the dark-specific isoform PORA (pPORA) is protochlorophyllide (Pchlide)-dependent and due to the operation of a unique translocon complex dubbed PTC (Pchlide-dependent translocon complex) in the plastid envelope. Here, we identified a ∼30-kDa protein that participates in pPORA import. The ∼30-kDa protein is identical to the previously identified CELL GROWTH DEFECT FACTOR 1 (CDF1) in Arabidopsis that is conserved in higher plants and Synechocystis. CDF1 operates in pPORA import and stabilization and hereby acts as a chaperone for PORA protein translocation. CDF1 permits tight interactions between Pchlide synthesized in the plastid envelope and the importing PORA polypeptide chain such that no photoexcitative damage occurs through the generation of singlet oxygen operating as a cell death inducer. Together, our results identify an ancient mechanism dating back to the endosymbiotic origin of chloroplasts as a key element of Pchlide-dependent pPORA import.
Collapse
|
83
|
Fragkostefanakis S, Simm S, Paul P, Bublak D, Scharf KD, Schleiff E. Chaperone network composition in Solanum lycopersicum explored by transcriptome profiling and microarray meta-analysis. PLANT, CELL & ENVIRONMENT 2015; 38:693-709. [PMID: 25124075 DOI: 10.1111/pce.12426] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 08/05/2014] [Indexed: 05/28/2023]
Abstract
Heat shock proteins (Hsps) are molecular chaperones primarily involved in maintenance of protein homeostasis. Their function has been best characterized in heat stress (HS) response during which Hsps are transcriptionally controlled by HS transcription factors (Hsfs). The role of Hsfs and Hsps in HS response in tomato was initially examined by transcriptome analysis using the massive analysis of cDNA ends (MACE) method. Approximately 9.6% of all genes expressed in leaves are enhanced in response to HS, including a subset of Hsfs and Hsps. The underlying Hsp-Hsf networks with potential functions in stress responses or developmental processes were further explored by meta-analysis of existing microarray datasets. We identified clusters with differential transcript profiles with respect to abiotic stresses, plant organs and developmental stages. The composition of two clusters points towards two major chaperone networks. One cluster consisted of constitutively expressed plastidial chaperones and other genes involved in chloroplast protein homeostasis. The second cluster represents genes strongly induced by heat, drought and salinity stress, including HsfA2 and many stress-inducible chaperones, but also potential targets of HsfA2 not related to protein homeostasis. This observation attributes a central regulatory role to HsfA2 in controlling different aspects of abiotic stress response and tolerance in tomato.
Collapse
Affiliation(s)
- Sotirios Fragkostefanakis
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, 60438, Frankfurt/Main, Germany; Cluster of Excellence Frankfurt, Goethe University, 60438, Frankfurt/Main, Germany
| | | | | | | | | | | |
Collapse
|
84
|
Mishra RC, Grover A. Intergenic sequence between Arabidopsis caseinolytic protease B-cytoplasmic/heat shock protein100 and choline kinase genes functions as a heat-inducible bidirectional promoter. PLANT PHYSIOLOGY 2014; 166:1646-58. [PMID: 25281707 PMCID: PMC4226371 DOI: 10.1104/pp.114.250787] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
In Arabidopsis (Arabidopsis thaliana), the At1g74310 locus encodes for caseinolytic protease B-cytoplasmic (ClpB-C)/heat shock protein100 protein (AtClpB-C), which is critical for the acquisition of thermotolerance, and At1g74320 encodes for choline kinase (AtCK2) that catalyzes the first reaction in the Kennedy pathway for phosphatidylcholine biosynthesis. Previous work has established that the knockout mutants of these genes display heat-sensitive phenotypes. While analyzing the AtClpB-C promoter and upstream genomic regions in this study, we noted that AtClpB-C and AtCK2 genes are head-to-head oriented on chromosome 1 of the Arabidopsis genome. Expression analysis showed that transcripts of these genes are rapidly induced in response to heat stress treatment. In stably transformed Arabidopsis plants harboring this intergenic sequence between head-to-head oriented green fluorescent protein and β-glucuronidase reporter genes, both transcripts and proteins of the two reporters were up-regulated upon heat stress. Four heat shock elements were noted in the intergenic region by in silico analysis. In the homozygous transfer DNA insertion mutant Salk_014505, 4,393-bp transfer DNA is inserted at position -517 upstream of ATG of the AtClpB-C gene. As a result, AtCk2 loses proximity to three of the four heat shock elements in the mutant line. Heat-inducible expression of the AtCK2 transcript was completely lost, whereas the expression of AtClpB-C was not affected in the mutant plants. Our results suggest that the 1,329-bp intergenic fragment functions as a heat-inducible bidirectional promoter and the region governing the heat inducibility is possibly shared between the two genes. We propose a model in which AtClpB-C shares its regulatory region with heat-induced choline kinase, which has a possible role in heat signaling.
Collapse
Affiliation(s)
- Ratnesh Chandra Mishra
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| | - Anil Grover
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| |
Collapse
|
85
|
Park MY, Kim SY. The Arabidopsis J Protein AtJ1 is Essential for Seedling Growth, Flowering Time Control and ABA Response. ACTA ACUST UNITED AC 2014; 55:2152-63. [DOI: 10.1093/pcp/pcu145] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
86
|
Petti C, Nair M, DeBolt S. The involvement of J-protein AtDjC17 in root development in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2014; 5:532. [PMID: 25339971 PMCID: PMC4189540 DOI: 10.3389/fpls.2014.00532] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 09/18/2014] [Indexed: 05/29/2023]
Abstract
In a screen for root hair morphogenesis mutants in Arabidopsis thaliana L. we identified a T-DNA insertion within a type III J-protein AtDjC17 caused altered root hair development and reduced hair length. Root hairs were observed to develop from trichoblast and atrichoblast cell files in both Atdjc17 and 35S::AtDJC17. Localization of gene expression in the root using transgenic plants expressing proAtDjC17::GUS revealed constitutive expression in stele cells. No AtDJC17 expression was observed in epidermal, endodermal, or cortical layers. To explore the contrast between gene expression in the stele and epidermal phenotype, hand cut transverse sections of Atdjc17 roots were examined showing that the endodermal and cortical cell layers displayed increased anticlinal cell divisions. Aberrant cortical cell division in Atdjc17 is proposed as causal in ectopic root hair formation via the positional cue requirement that exists between cortical and epidermal cell in hair cell fate determination. Results indicate a requirement for AtDJC17 in position-dependent cell fate determination and illustrate an intriguing requirement for molecular co-chaperone activity during root development.
Collapse
Affiliation(s)
| | | | - Seth DeBolt
- Department of Horticulture, University of KentuckyLexington, KY, USA
| |
Collapse
|
87
|
Wang X, Jia N, Zhao C, Fang Y, Lv T, Zhou W, Sun Y, Li B. Knockout of AtDjB1, a J-domain protein from Arabidopsis thaliana, alters plant responses to osmotic stress and abscisic acid. PHYSIOLOGIA PLANTARUM 2014; 152:286-300. [PMID: 24521401 DOI: 10.1111/ppl.12169] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 01/18/2014] [Accepted: 01/21/2014] [Indexed: 05/26/2023]
Abstract
AtDjB1 is a member of the Arabidopsis thaliana J-protein family. AtDjB1 is targeted to the mitochondria and plays a crucial role in A. thaliana heat and oxidative stress resistance. Herein, the role of AtDjB1 in adapting to saline and drought stress was studied in A. thaliana. AtDjB1 expression was induced through salinity, dehydration and abscisic acid (ABA) in young seedlings. Reverse genetic analyses indicate that AtDjB1 is a negative regulator in plant osmotic stress tolerance. Further, AtDjB1 knockout mutant plants (atj1-1) exhibited greater ABA sensitivity compared with the wild-type (WT) plants and the mutant lines with a rescued AtDjB1 gene. AtDjB1 gene knockout also altered the expression of several ABA-responsive genes, which suggests that AtDjB1 is involved in osmotic stress tolerance through its effects on ABA signaling pathways. Moreover, atj1-1 plants exhibited higher glucose levels and greater glucose sensitivity in the post-germination development stage. Applying glucose promoted an ABA response in seedlings, and the promotion was more evident in atj1-1 than WT seedlings. Taken together, higher glucose levels in atj1-1 plants are likely responsible for the greater ABA sensitivity and increased osmotic stress tolerance.
Collapse
Affiliation(s)
- Xingxing Wang
- Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Science, Hebei Normal University, Shijiazhuang, 050024, PR China
| | | | | | | | | | | | | | | |
Collapse
|
88
|
Xia Z, Zhang X, Li J, Su X, Liu J. Overexpression of a tobacco J-domain protein enhances drought tolerance in transgenic Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 83:100-6. [PMID: 25128645 DOI: 10.1016/j.plaphy.2014.07.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Accepted: 07/27/2014] [Indexed: 05/05/2023]
Abstract
DnaJ proteins constitute a DnaJ/Hsp40 family and are important regulators involved in diverse cellular functions. To date, the molecular mechanisms of DnaJ proteins involved in response to drought stress in plants are largely unknown. In this study, a putative DnaJ ortholog from Nicotiana tabacum (NtDnaJ1), which encodes a putative type-I J-protein, was isolated. The transcript levels of NtDnaJ1 were higher in aerial tissues and were markedly up-regulated by drought stress. Over-expression of NtDnaJ1 in Arabidopsis plants enhanced their tolerance to osmotic or drought stress. Quantitative determination of H2O2 accumulation has shown that H2O2 content increased in wild-type and transgenic seedlings under osmotic stress, but was significantly lower in both transgenic lines compared with the wild-type. Expression analysis of stress-responsive genes in NtDnaJ1-transgenic Arabidopsis revealed that there was significantly increased expression of genes involved in the ABA-dependent signaling pathway (AtRD20, AtRD22 and AtAREB2) and antioxidant genes (AtSOD1, AtSOD2, and AtCAT1). Collectively, these data demonstrate that NtDnaJ1 could be involved in drought stress response and its over-expression enhances drought tolerance possibly through regulating expression of stress-responsive genes. This study may facilitate our understandings of the biological roles of DnaJ protein-mediated abiotic stress in higher plants and accelerate genetic improvement of crop plants tolerant to environmental stresses.
Collapse
Affiliation(s)
- Zongliang Xia
- Henan Agricultural University, Zhengzhou 450002, PR China.
| | - Xiaoquan Zhang
- Henan Agricultural University, Zhengzhou 450002, PR China
| | - Junqi Li
- Henan Agricultural University, Zhengzhou 450002, PR China
| | - Xinhong Su
- Henan Tobacco Company, Zhengzhou 450008, PR China
| | - Jianjun Liu
- Zhengzhou Branch, Henan Tobacco Company, Zhengzhou 450001, PR China
| |
Collapse
|
89
|
Wang G, Cai G, Kong F, Deng Y, Ma N, Meng Q. Overexpression of tomato chloroplast-targeted DnaJ protein enhances tolerance to drought stress and resistance to Pseudomonas solanacearum in transgenic tobacco. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 82:95-104. [PMID: 24929777 DOI: 10.1016/j.plaphy.2014.05.011] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 05/22/2014] [Indexed: 05/21/2023]
Abstract
DnaJ proteins as co-chaperones have critical functions in biotic and abiotic stress responses, but their biological functions remain largely uninvestigated. This study investigates the function of a tomato (Lycopersicon esculentum) chloroplast-targeted DnaJ protein (LeCDJ2) using transgenic tobacco. Quantitative real-time polymerase chain reaction analysis showed that LeCDJ2 expression was triggered by salicylic acid (SA), drought and pathogen attack. Ectopic expression of LeCDJ2 in transgenic tobacco reduced the accumulation of superoxide anion radical (O2(-)) and hydrogen peroxide (H2O2) under drought stress. Compared with Vec plants, the maximum photochemical efficiency of photosystem II (PSII) (Fv/Fm), net photosynthetic rate (Pn), and content of D1 protein were relatively higher in transgenic plants. The transgenic plants showes better growth, higher chlorophyll content, lower malondialdehyde (MDA) accumulation and relative electrolyte leakage (REL) under drought stress. In addition, overexpression of LeCDJ2 improved the resistance to the pathogen Pseudomonas solanacearum in transgenic tobacco. These results indicate that overexpression of a tomato chloroplast-targeted DnaJ gene enhances tolerance to drought stress and resistance to P. solanacearum in transgenic tobacco.
Collapse
Affiliation(s)
- Guodong Wang
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Guohua Cai
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Fanying Kong
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Yongsheng Deng
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Nana Ma
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Qingwei Meng
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong 271018, PR China.
| |
Collapse
|
90
|
Ioakeimidis F, Ott C, Kozjak-Pavlovic V, Violitzi F, Rinotas V, Makrinou E, Eliopoulos E, Fasseas C, Kollias G, Douni E. A splicing mutation in the novel mitochondrial protein DNAJC11 causes motor neuron pathology associated with cristae disorganization, and lymphoid abnormalities in mice. PLoS One 2014; 9:e104237. [PMID: 25111180 PMCID: PMC4128653 DOI: 10.1371/journal.pone.0104237] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 07/09/2014] [Indexed: 11/18/2022] Open
Abstract
Mitochondrial structure and function is emerging as a major contributor to neuromuscular disease, highlighting the need for the complete elucidation of the underlying molecular and pathophysiological mechanisms. Following a forward genetics approach with N-ethyl-N-nitrosourea (ENU)-mediated random mutagenesis, we identified a novel mouse model of autosomal recessive neuromuscular disease caused by a splice-site hypomorphic mutation in a novel gene of unknown function, DnaJC11. Recent findings have demonstrated that DNAJC11 protein co-immunoprecipitates with proteins of the mitochondrial contact site (MICOS) complex involved in the formation of mitochondrial cristae and cristae junctions. Homozygous mutant mice developed locomotion defects, muscle weakness, spasticity, limb tremor, leucopenia, thymic and splenic hypoplasia, general wasting and early lethality. Neuropathological analysis showed severe vacuolation of the motor neurons in the spinal cord, originating from dilatations of the endoplasmic reticulum and notably from mitochondria that had lost their proper inner membrane organization. The causal role of the identified mutation in DnaJC11 was verified in rescue experiments by overexpressing the human ortholog. The full length 63 kDa isoform of human DNAJC11 was shown to localize in the periphery of the mitochondrial outer membrane whereas putative additional isoforms displayed differential submitochondrial localization. Moreover, we showed that DNAJC11 is assembled in a high molecular weight complex, similarly to mitofilin and that downregulation of mitofilin or SAM50 affected the levels of DNAJC11 in HeLa cells. Our findings provide the first mouse mutant for a putative MICOS protein and establish a link between DNAJC11 and neuromuscular diseases.
Collapse
Affiliation(s)
- Fotis Ioakeimidis
- Department of Biotechnology, Agricultural University of Athens, Athens, Greece
- Division of Immunology, Biomedical Sciences Research Center “Alexander Fleming”, Vari, Greece
| | - Christine Ott
- Department of Microbiology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Vera Kozjak-Pavlovic
- Department of Microbiology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Foteini Violitzi
- Department of Biotechnology, Agricultural University of Athens, Athens, Greece
- Division of Immunology, Biomedical Sciences Research Center “Alexander Fleming”, Vari, Greece
| | - Vagelis Rinotas
- Department of Biotechnology, Agricultural University of Athens, Athens, Greece
- Division of Immunology, Biomedical Sciences Research Center “Alexander Fleming”, Vari, Greece
| | - Eleni Makrinou
- Division of Immunology, Biomedical Sciences Research Center “Alexander Fleming”, Vari, Greece
| | - Elias Eliopoulos
- Department of Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Costas Fasseas
- Department of Crop Science, Agricultural University of Athens, Athens, Greece
| | - George Kollias
- Division of Immunology, Biomedical Sciences Research Center “Alexander Fleming”, Vari, Greece
| | - Eleni Douni
- Department of Biotechnology, Agricultural University of Athens, Athens, Greece
- Division of Immunology, Biomedical Sciences Research Center “Alexander Fleming”, Vari, Greece
- * E-mail:
| |
Collapse
|
91
|
So HA, Chung E, Lee JH. Arabidopsis atDjC53 encoding a type III J-protein plays a negative role in heat shock tolerance. Genes Genomics 2014. [DOI: 10.1007/s13258-014-0207-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
92
|
Chen DH, Huang Y, Liu C, Ruan Y, Shen WH. Functional conservation and divergence of J-domain-containing ZUO1/ZRF orthologs throughout evolution. PLANTA 2014; 239:1159-1173. [PMID: 24659052 DOI: 10.1007/s00425-014-2058-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 03/05/2014] [Indexed: 06/03/2023]
Abstract
Heat shock protein 40s (Hsp40s), also known as J-proteins, are conserved in prokaryotes and eukaryotes. The Zuotin/Zuotin-related factor (ZUO1/ZRF) family belongs to a novel Hsp40 clade exclusively found in eukaryotes. Zuotin/Zuotin-related factor proteins are characterized by a large N terminal ZUO1 domain originally identified in the yeast ZUO1 protein. The ZUO1 domain is characterized by a highly conserved J-domain, together with an atypical UBD domain first identified in the human ZRF1 protein. Furthermore, ZUO1/ZRF protein families in animals and plants harbor a pair of C terminal SANT domains, suggesting the divergence of their functions with those in fungi. Zuotin/Zuotin-related factor proteins retain the ancestral function as an Hsp70co-chaperone implicated in protein folding and renaturation after stress; these proteins also perform diverse neofunctions in the cytoplasm and transcriptional and/or epigenetic regulatory functions in the nucleus. Therefore, these proteins are involved in translational fidelity control, ribosomal biogenesis, asymmetric cell division, cell cycle, apoptosis, differentiation, and tumorigenesis. The results of sequence and domain organization analysis of proteins from diverse organisms provided valuable insights into the evolutionary conservation and diversity of ZUO1/ZRF protein family. Further, phylogenetic analysis provides a platform for future functional investigation on the ZUO1/ZRF protein family, particularly in higher plants.
Collapse
|
93
|
Predicting the types of J-proteins using clustered amino acids. BIOMED RESEARCH INTERNATIONAL 2014; 2014:935719. [PMID: 24804260 PMCID: PMC3996952 DOI: 10.1155/2014/935719] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 03/04/2014] [Accepted: 03/13/2014] [Indexed: 01/24/2023]
Abstract
J-proteins are molecular chaperones and present in a wide variety of organisms from prokaryote to eukaryote. Based on their domain organizations, J-proteins can be classified into 4 types, that is, Type I, Type II, Type III, and Type IV. Different types of J-proteins play distinct roles in influencing cancer properties and cell death. Thus, reliably annotating the types of J-proteins is essential to better understand their molecular functions. In the present work, a support vector machine based method was developed to identify the types of J-proteins using the tripeptide composition of reduced amino acid alphabet. In the jackknife cross-validation, the maximum overall accuracy of 94% was achieved on a stringent benchmark dataset. We also analyzed the amino acid compositions by using analysis of variance and found the distinct distributions of amino acids in each family of the J-proteins. To enhance the value of the practical applications of the proposed model, an online web server was developed and can be freely accessed.
Collapse
|
94
|
Dam S, Dyrlund TF, Ussatjuk A, Jochimsen B, Nielsen K, Goffard N, Ventosa M, Lorentzen A, Gupta V, Andersen SU, Enghild JJ, Ronson CW, Roepstorff P, Stougaard J. Proteome reference maps of the Lotus japonicus nodule and root. Proteomics 2014; 14:230-40. [PMID: 24293220 DOI: 10.1002/pmic.201300353] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 10/11/2013] [Accepted: 11/11/2013] [Indexed: 12/29/2022]
Abstract
Legume symbiosis with rhizobia results in the formation of a specialized organ, the root nodule, where atmospheric dinitrogen is reduced to ammonia. In Lotus japonicus (Lotus), several genes involved in nodule development or nodule function have been defined using biochemistry, genetic approaches, and high-throughput transcriptomics. We have employed proteomics to further understand nodule development. Two developmental stages representing nodules prior to nitrogen fixation (white) and mature nitrogen fixing nodules (red) were compared with roots. In addition, the proteome of a spontaneous nodule formation mutant (snf1) was determined. From nodules and roots, 780 and 790 protein spots from 2D gels were identified and approximately 45% of the corresponding unique gene accessions were common. Including a previous proteomics set from Lotus pod and seed, the common gene accessions were decreased to 7%. Interestingly, an indication of more pronounced PTMs in nodules than in roots was determined. Between the two nodule developmental stages, higher levels of pathogen-related 10 proteins, HSPs, and proteins involved in redox processes were found in white nodules, suggesting a higher stress level at this developmental stage. In contrast, protein spots corresponding to nodulins such as leghemoglobin, asparagine synthetase, sucrose synthase, and glutamine synthetase were prevalent in red nodules. The distinct biochemical state of nodules was further highlighted by the conspicuous presence of several nitrilases, ascorbate metabolic enzymes, and putative rhizobial effectors.
Collapse
Affiliation(s)
- Svend Dam
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark; Centre for Carbohydrate Recognition and Signalling, Aarhus University, Aarhus, Denmark
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Kong F, Deng Y, Wang G, Wang J, Liang X, Meng Q. LeCDJ1, a chloroplast DnaJ protein, facilitates heat tolerance in transgenic tomatoes. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2014; 56:63-74. [PMID: 24148796 DOI: 10.1111/jipb.12119] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 10/15/2013] [Indexed: 05/22/2023]
Abstract
The roles of a tomato (Lycopersicon esculentum) chloroplast-targeted DnaJ protein (LeCDJ1) were investigated using wild-type (WT) and sense transgenic tomatoes. The LeCDJ1 expression was upregulated by 38 °C, 42 °C, 45 °C, NaCl, PEG, methyl viologen (MV) and hydrogen peroxide (H2O2), but not by 30 °C and 35 °C. Meanwhile, LeCDJ1 was involved in the response of plants to abscisic acid (ABA). Under heat stress, the sense plants showed better growth, higher chlorophyll content, lower malondialdehyde (MDA) accumulation and relative electrical conductivity (REC), and also less PSII photoinhibition than WT. Interestingly, the sense plants treated with streptomycin (SM), an inhibitor of organellar translation, still showed higher maximum photochemistry efficiency of PSII (Fv/Fm) and D1 protein levels than the SM-untreated WT, suggesting that the protective effect of LeCDJ1 on PSII was, at least partially, independent of D1 protein synthesis. Furthermore, the relatively lower superoxide radical (O2(•-)) and H2O2 levels in the sense plants were considered to be due to the higher ascorbate peroxidase (APX) and superoxide dismutase (SOD) activity, which seemed unlikely dependent on their transcription level. These results indicated that LeCDJ1 overexpression facilitated heat tolerance in transgenic tomatoes.
Collapse
Affiliation(s)
- Fanying Kong
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | | | | | | | | | | |
Collapse
|
96
|
Lucioli A, Berardi A, Gatti F, Tavazza R, Pizzichini D, Tavazza M. Tomato yellow leaf curl Sardinia virus-resistant tomato plants expressing the multifunctional N-terminal domain of the replication-associated protein show transcriptional changes resembling stress-related responses. MOLECULAR PLANT PATHOLOGY 2014; 15:31-43. [PMID: 23910556 PMCID: PMC6638761 DOI: 10.1111/mpp.12063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The N-terminal domain (amino acids 1-130) of the replication-associated protein (Rep130 ) of Tomato yellow leaf curl Sardinia virus (TYLCSV) retains the ability of full-length Rep to localize to the nucleus and to down-regulate C1 transcription when ectopically expressed in plants, both functions being required to inhibit homologous viral replication. In this study, we analysed the effect of Rep130 expression on virus resistance and the plant transcriptome in the natural and agronomically important host species of TYLCSV, Solanum lycopersicum. Tomato plants accumulating high levels of Rep130 were generated and proved to be resistant to TYLCSV. Using an in vitro assay, we showed that plant-expressed Rep130 also retains the catalytic activity of Rep, thus supporting the notion that this protein domain is fully functional. Interestingly, Rep130 -expressing tomatoes were characterized by an altered transcriptional profile resembling stress-related responses. Notably, the serine-type protease inhibitor (Ser-PI) category was over-represented among the 20 up-regulated genes. The involvement of Rep130 in the alteration of host mRNA steady-state levels was confirmed using a distinct set of virus-resistant transgenic tomato plants expressing the same TYLCSV Rep130 , but from a different, synthetic, gene. Eight genes were found to be up-regulated in both types of transgenic tomato and two encoded Ser-PIs. Four of these eight genes were also up-regulated in TYLCSV-infected wild-type tomato plants. Implications with regard to the ability of this Rep domain to interfere with viral infections and to alter the host transcriptome are discussed.
Collapse
Affiliation(s)
- Alessandra Lucioli
- Agenzia Nazionale per le Nuove Tecnologie, l'Energia e l'Ambiente (ENEA), UTAGRI-INN, C.R. Casaccia, Via Anguillarese 301, 00123, Rome, Italy
| | | | | | | | | | | |
Collapse
|
97
|
Kong F, Deng Y, Zhou B, Wang G, Wang Y, Meng Q. A chloroplast-targeted DnaJ protein contributes to maintenance of photosystem II under chilling stress. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:143-58. [PMID: 24227338 PMCID: PMC3883286 DOI: 10.1093/jxb/ert357] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
DnaJ proteins act as essential molecular chaperones in protein homeostasis and protein complex stabilization under stress conditions. The roles of a tomato (Lycopersicon esculentum) chloroplast-targeted DnaJ protein (LeCDJ1), whose expression was upregulated by treatment at 4 and 42 °C, and with high light, NaCl, polyethylene glycol, and H2O2, were investigated here using sense and antisense transgenic tomatoes. The sense plants exhibited not only higher chlorophyll content, fresh weight and net photosynthetic rate, but also lower accumulation of reactive oxygen species and membrane damage under chilling stress. Moreover, the maximal photochemistry efficiency of photosystem II (PSII) (F v/F m) and D1 protein content were higher in the sense plants and lower in the antisense plants, and the photoinhibitory quenching was lower in the sense plants and higher in the antisense plants, suggesting that the inhibition of PSII was less severe in the sense plants and more severe in the antisense plants compared with the wild type. Furthermore, the PSII protein complexes were also more stable in the sense plants. Interestingly, the sense plants treated with streptomycin (SM), an inhibitor of organellar translation, still showed higher F v/F m, D1 protein content and PSII stability than the SM-untreated antisense plants. This finding suggested that the protective effect of LeCDJ1 on PSII was, at least partially, independent of D1 protein synthesis. Furthermore, chloroplast heat-shock protein 70 was identified as the partner of LeCDJ1. These results indicate that LeCDJ1 has essential functions in maintaining PSII under chilling stress.
Collapse
Affiliation(s)
| | | | | | | | | | - Qingwei Meng
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
98
|
Du Y, Zhao J, Chen T, Liu Q, Zhang H, Wang Y, Hong Y, Xiao F, Zhang L, Shen Q, Liu Y. Type I J-domain NbMIP1 proteins are required for both Tobacco mosaic virus infection and plant innate immunity. PLoS Pathog 2013; 9:e1003659. [PMID: 24098120 PMCID: PMC3789785 DOI: 10.1371/journal.ppat.1003659] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 08/09/2013] [Indexed: 11/18/2022] Open
Abstract
Tm-2² is a coiled coil-nucleotide binding-leucine rich repeat resistance protein that confers durable extreme resistance against Tomato mosaic virus (ToMV) and Tobacco mosaic virus (TMV) by recognizing the viral movement protein (MP). Here we report that the Nicotiana benthamiana J-domain MIP1 proteins (NbMIP1s) associate with tobamovirus MP, Tm-2² and SGT1. Silencing of NbMIP1s reduced TMV movement and compromised Tm-2²-mediated resistance against TMV and ToMV. Furthermore, silencing of NbMIP1s reduced the steady-state protein levels of ToMV MP and Tm-2². Moreover, NbMIP1s are required for plant resistance induced by other R genes and the nonhost pathogen Pseudomonas syringae pv. tomato (Pst) DC3000. In addition, we found that SGT1 associates with Tm-2² and is required for Tm-2²-mediated resistance against TMV. These results suggest that NbMIP1s function as co-chaperones during virus infection and plant immunity.
Collapse
Affiliation(s)
- Yumei Du
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jinping Zhao
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Tianyuan Chen
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Qi Liu
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Haili Zhang
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yan Wang
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yiguo Hong
- Research Centre for Plant RNA Signaling, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Fangming Xiao
- Department of Plant, Soil and Entomological Science, University of Idaho, Moscow, Idaho, United States of America
| | - Ling Zhang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Qianhua Shen
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yule Liu
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
99
|
Lee JY, Lee HS, Song JY, Jung YJ, Reinbothe S, Park YI, Lee SY, Pai HS. Cell growth defect factor1/chaperone-like protein of POR1 plays a role in stabilization of light-dependent protochlorophyllide oxidoreductase in Nicotiana benthamiana and Arabidopsis. THE PLANT CELL 2013; 25:3944-60. [PMID: 24151298 PMCID: PMC3877821 DOI: 10.1105/tpc.113.111096] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 09/11/2013] [Accepted: 09/30/2013] [Indexed: 05/20/2023]
Abstract
Angiosperms require light for chlorophyll biosynthesis because one reaction in the pathway, the reduction of protochlorophyllide (Pchlide) to chlorophyllide, is catalyzed by the light-dependent protochlorophyllide oxidoreductase (POR). Here, we report that Cell growth defect factor1 (Cdf1), renamed here as chaperone-like protein of POR1 (CPP1), an essential protein for chloroplast development, plays a role in the regulation of POR stability and function. Cdf1/CPP1 contains a J-like domain and three transmembrane domains, is localized in the thylakoid and envelope membranes, and interacts with POR isoforms in chloroplasts. CPP1 can stabilize POR proteins with its holdase chaperone activity. CPP1 deficiency results in diminished POR protein accumulation and defective chlorophyll synthesis, leading to photobleaching and growth inhibition of plants under light conditions. CPP1 depletion also causes reduced POR accumulation in etioplasts of dark-grown plants and as a result impairs the formation of prolamellar bodies, which subsequently affects chloroplast biogenesis upon illumination. Furthermore, in cyanobacteria, the CPP1 homolog critically regulates POR accumulation and chlorophyll synthesis under high-light conditions, in which the dark-operative Pchlide oxidoreductase is repressed by its oxygen sensitivity. These findings and the ubiquitous presence of CPP1 in oxygenic photosynthetic organisms suggest the conserved nature of CPP1 function in the regulation of POR.
Collapse
Affiliation(s)
- Jae-Yong Lee
- Department of Systems Biology, Yonsei University, Seoul 120-749, Korea
| | - Ho-Seok Lee
- Department of Systems Biology, Yonsei University, Seoul 120-749, Korea
| | - Ji-Young Song
- Department of Biological Science and Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 305-764, Korea
| | - Young Jun Jung
- Division of Applied Life Sciences, Gyeongsang National University, Jinju 660-701, Korea
| | - Steffen Reinbothe
- Biologie Environnementale et Systémique, Université Joseph Fourier LBFA, BP53F 38041 Grenoble cedex 9 France
| | - Youn-Il Park
- Department of Biological Science and Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 305-764, Korea
| | - Sang Yeol Lee
- Division of Applied Life Sciences, Gyeongsang National University, Jinju 660-701, Korea
| | - Hyun-Sook Pai
- Department of Systems Biology, Yonsei University, Seoul 120-749, Korea
| |
Collapse
|
100
|
An imprinted gene underlies postzygotic reproductive isolation in Arabidopsis thaliana. Dev Cell 2013; 26:525-35. [PMID: 24012484 DOI: 10.1016/j.devcel.2013.08.006] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 06/18/2013] [Accepted: 08/10/2013] [Indexed: 12/18/2022]
Abstract
Postzygotic reproductive isolation in response to interploidy hybridizations is a well-known phenomenon in plants that forms a major path for sympatric speciation. A main determinant for the failure of interploidy hybridizations is the endosperm, a nutritious tissue supporting embryo growth, similar to the functional role of the placenta in mammals. Although it has been suggested that deregulated imprinted genes underpin dosage sensitivity of the endosperm, the molecular basis for this phenomenon remained unknown. In a genetic screen for suppressors of triploid seed abortion, we have identified the paternally expressed imprinted gene ADMETOS (ADM). Here, we present evidence that increased dosage of ADM causes triploid seed arrest. A large body of theoretical work predicted that deregulated imprinted genes establish the barrier to interploidy hybridization. Our study thus provides evidence strongly supporting this hypothesis and generates the molecular basis for our understanding of postzygotic hybridization barriers in plants.
Collapse
|