51
|
Magrini E, Villa A, Angiolini F, Doni A, Mazzarol G, Rudini N, Maddaluno L, Komuta M, Topal B, Prenen H, Schachner M, Confalonieri S, Dejana E, Bianchi F, Mazzone M, Cavallaro U. Endothelial deficiency of L1 reduces tumor angiogenesis and promotes vessel normalization. J Clin Invest 2014; 124:4335-50. [PMID: 25157817 DOI: 10.1172/jci70683] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 07/17/2014] [Indexed: 01/11/2023] Open
Abstract
While tumor blood vessels share many characteristics with normal vasculature, they also exhibit morphological and functional aberrancies. For example, the neural adhesion molecule L1, which mediates neurite outgrowth, fasciculation, and pathfinding, is expressed on tumor vasculature. Here, using an orthotopic mouse model of pancreatic carcinoma, we evaluated L1 functionality in cancer vessels. Tumor-bearing mice specifically lacking L1 in endothelial cells or treated with anti-L1 antibodies exhibited decreased angiogenesis and improved vascular stabilization, leading to reduced tumor growth and metastasis. In line with these dramatic effects of L1 on tumor vasculature, the ectopic expression of L1 in cultured endothelial cells (ECs) promoted phenotypical and functional alterations, including proliferation, migration, tubulogenesis, enhanced vascular permeability, and endothelial-to-mesenchymal transition. L1 induced global changes in the EC transcriptome, altering several regulatory networks that underlie endothelial pathophysiology, including JAK/STAT-mediated pathways. In particular, L1 induced IL-6-mediated STAT3 phosphorylation, and inhibition of the IL-6/JAK/STAT signaling axis prevented L1-induced EC proliferation and migration. Evaluation of patient samples revealed that, compared with that in noncancerous tissue, L1 expression is specifically enhanced in blood vessels of human pancreatic carcinomas and in vessels of other tumor types. Together, these data indicate that endothelial L1 orchestrates multiple cancer vessel functions and represents a potential target for tumor vascular-specific therapies.
Collapse
|
52
|
|
53
|
Circulating fibronectin controls tumor growth. Neoplasia 2014; 15:925-38. [PMID: 23908593 DOI: 10.1593/neo.13762] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 05/21/2013] [Accepted: 05/23/2013] [Indexed: 01/01/2023] Open
Abstract
Fibronectin is ubiquitously expressed in the extracellular matrix, and experimental evidence has shown that it modulates blood vessel formation. The relative contribution of local and circulating fibronectin to blood vessel formation in vivo remains unknown despite evidence for unexpected roles of circulating fibronectin in various diseases. Using transgenic mouse models, we established that circulating fibronectin facilitates the growth of bone metastases by enhancing blood vessel formation and maturation. This effect is more relevant than that of fibronectin produced by endothelial cells and pericytes, which only exert a small additive effect on vessel maturation. Circulating fibronectin enhances its local production in tumors through a positive feedback loop and increases the amount of vascular endothelial growth factor (VEGF) retained in the matrix. Both fibronectin and VEGF then cooperate to stimulate blood vessel formation. Fibronectin content in the tumor correlates with the number of blood vessels and tumor growth in the mouse models. Consistent with these results, examination of three separate arrays from patients with breast and prostate cancers revealed that a high staining intensity for fibronectin in tumors is associated with increased mortality. These results establish that circulating fibronectin modulates blood vessel formation and tumor growth by modifying the amount of and the response to VEGF. Furthermore, determination of the fibronectin content can serve as a prognostic biomarker for breast and prostate cancers and possibly other cancers.
Collapse
|
54
|
van Lookeren Campagne M, LeCouter J, Yaspan BL, Ye W. Mechanisms of age-related macular degeneration and therapeutic opportunities. J Pathol 2013; 232:151-64. [DOI: 10.1002/path.4266] [Citation(s) in RCA: 222] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 09/09/2013] [Accepted: 09/11/2013] [Indexed: 12/27/2022]
Affiliation(s)
| | - Jennifer LeCouter
- Molecular Biology Department; Genentech; South San Francisco CA 94080 USA
| | - Brian L Yaspan
- ITGR Human Genetics Department; Genentech; South San Francisco CA 94080 USA
| | - Weilan Ye
- Molecular Biology Department; Genentech; South San Francisco CA 94080 USA
| |
Collapse
|
55
|
Logsdon EA, Finley SD, Popel AS, Mac Gabhann F. A systems biology view of blood vessel growth and remodelling. J Cell Mol Med 2013; 18:1491-508. [PMID: 24237862 PMCID: PMC4190897 DOI: 10.1111/jcmm.12164] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 09/16/2013] [Indexed: 12/29/2022] Open
Abstract
Blood travels throughout the body in an extensive network of vessels – arteries, veins and capillaries. This vascular network is not static, but instead dynamically remodels in response to stimuli from cells in the nearby tissue. In particular, the smallest vessels – arterioles, venules and capillaries – can be extended, expanded or pruned, in response to exercise, ischaemic events, pharmacological interventions, or other physiological and pathophysiological events. In this review, we describe the multi-step morphogenic process of angiogenesis – the sprouting of new blood vessels – and the stability of vascular networks in vivo. In particular, we review the known interactions between endothelial cells and the various blood cells and plasma components they convey. We describe progress that has been made in applying computational modelling, quantitative biology and high-throughput experimentation to the angiogenesis process.
Collapse
Affiliation(s)
- Elizabeth A Logsdon
- Institute for Computational Medicine and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | | | | | | |
Collapse
|
56
|
Mahoney WM, Gunaje J, Daum G, Dong XR, Majesky MW. Regulator of G-protein signaling - 5 (RGS5) is a novel repressor of hedgehog signaling. PLoS One 2013; 8:e61421. [PMID: 23637832 PMCID: PMC3630190 DOI: 10.1371/journal.pone.0061421] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 03/10/2013] [Indexed: 01/11/2023] Open
Abstract
Hedgehog (Hh) signaling plays fundamental roles in morphogenesis, tissue repair, and human disease. Initiation of Hh signaling is controlled by the interaction of two multipass membrane proteins, patched (Ptc) and smoothened (Smo). Recent studies identify Smo as a G-protein coupled receptor (GPCR)-like protein that signals through large G-protein complexes which contain the Gαi subunit. We hypothesize Regulator of G-Protein Signaling (RGS) proteins, and specifically RGS5, are endogenous repressors of Hh signaling via their ability to act as GTPase activating proteins (GAPs) for GTP-bound Gαi, downstream of Smo. In support of this hypothesis, we demonstrate that RGS5 over-expression inhibits sonic hedgehog (Shh)-mediated signaling and osteogenesis in C3H10T1/2 cells. Conversely, signaling is potentiated by siRNA-mediated knock-down of RGS5 expression, but not RGS4 expression. Furthermore, using immuohistochemical analysis and co-immunoprecipitation (Co-IP), we demonstrate that RGS5 is present with Smo in primary cilia. This organelle is required for canonical Hh signaling in mammalian cells, and RGS5 is found in a physical complex with Smo in these cells. We therefore conclude that RGS5 is an endogenous regulator of Hh-mediated signaling and that RGS proteins are potential targets for novel therapeutics in Hh-mediated diseases.
Collapse
Affiliation(s)
- William M. Mahoney
- Department of Pathology, University of Washington, Seattle, Washington, United States of America
- Center for Cardiovascular Biology, University of Washington, Seattle, Washington, United States of America
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, United States of America
- * E-mail: (WMM); (MWM)
| | - Jagadambika Gunaje
- Department of Pathology, University of Washington, Seattle, Washington, United States of America
- Center for Cardiovascular Biology, University of Washington, Seattle, Washington, United States of America
| | - Guenter Daum
- Department of Surgery, University of Washington, Seattle, Washington, United States of America
- Center for Cardiovascular Biology, University of Washington, Seattle, Washington, United States of America
| | - Xiu Rong Dong
- Seattle Children’s Research Institute, University of Washington, Seattle, Washington, United States of America
| | - Mark W. Majesky
- Department of Pathology, University of Washington, Seattle, Washington, United States of America
- Department of Pediatrics, University of Washington, Seattle, Washington, United States of America
- Center for Cardiovascular Biology, University of Washington, Seattle, Washington, United States of America
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, United States of America
- Seattle Children’s Research Institute, University of Washington, Seattle, Washington, United States of America
- * E-mail: (WMM); (MWM)
| |
Collapse
|
57
|
Gene-expression profiling of microdissected breast cancer microvasculature identifies distinct tumor vascular subtypes. Breast Cancer Res 2012; 14:R120. [PMID: 22906178 PMCID: PMC3680943 DOI: 10.1186/bcr3246] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 08/14/2012] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION Angiogenesis represents a potential therapeutic target in breast cancer. However, responses to targeted antiangiogenic therapies have been reported to vary among patients. This suggests that the tumor vasculature may be heterogeneous and that an appropriate choice of treatment would require an understanding of these differences. METHODS To investigate whether and how the breast tumor vasculature varies between individuals, we isolated tumor-associated and matched normal vasculature from 17 breast carcinomas by laser-capture microdissection, and generated gene-expression profiles. Because microvessel density has previously been associated with disease course, tumors with low (n = 9) or high (n = 8) microvessel density were selected for analysis to maximize heterogeneity for this feature. RESULTS We identified differences between tumor and normal vasculature, and we describe two subtypes present within tumor vasculature. These subtypes exhibit distinct gene-expression signatures that reflect features including hallmarks of vessel maturity. Potential therapeutic targets (MET, ITGAV, and PDGFRβ) are differentially expressed between subtypes. Taking these subtypes into account has allowed us to derive a vascular signature associated with disease outcome. CONCLUSIONS Our results further support a role for tumor microvasculature in determining disease progression. Overall, this study provides a deeper molecular understanding of the heterogeneity existing within the breast tumor vasculature and opens new avenues toward the improved design and targeting of antiangiogenic therapies.
Collapse
|
58
|
Kaufman-Francis K, Koffler J, Weinberg N, Dor Y, Levenberg S. Engineered vascular beds provide key signals to pancreatic hormone-producing cells. PLoS One 2012; 7:e40741. [PMID: 22808248 PMCID: PMC3395696 DOI: 10.1371/journal.pone.0040741] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2012] [Accepted: 06/12/2012] [Indexed: 12/13/2022] Open
Abstract
The mechanisms underlying early islet graft failure are not entirely clear, but are thought to involve ischemic injury due to delayed vascularization. We hypothesize that blood vessels play an active role in cell-cell communications supporting islet survival and engraftment. To test this hypothesis and to uncouple endothelial cell (EC)-generated signaling stimuli from their nutritional and gas exchange functions, we developed three dimensional (3D) endothelial vessel networks in engineered pancreatic tissues prepared from islets, fibroblasts and ECs. The tri-culture setup, seeded on highly porous biocompatible polymeric scaffolds closely mimics the natural anatomical context of pancreatic vasculature. Enhanced islet survival correlating with formation of functional tube-like endothelial vessels was demonstrated. Addition of foreskin fibroblasts to islet-endothelial cultures promoted tube-like structure formation, which further supported islet survival as well as insulin secretion. Gene expression profiles of EC growth factors, extracellular matrix (ECM), morphogenes and differentiation markers were significantly different in 2D versus 3D culture systems and were further modified upon addition of fibroblasts. Implantation of prevascularized islets into diabetic mice promoted survival, integration and function of the engrafted engineered tissue, supporting the suggested role of ECs in islet survival. These findings present potential strategies for preparation of transplantable islets with increased survival prospects.
Collapse
Affiliation(s)
- Keren Kaufman-Francis
- Department of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
- Biotechnology Interdisciplinary Unit, Technion - Israel Institute of Technology, Haifa, Israel
| | - Jacob Koffler
- Department of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
- Biotechnology Interdisciplinary Unit, Technion - Israel Institute of Technology, Haifa, Israel
| | - Noa Weinberg
- Department of Cellular Biochemistry and Human Genetics, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yuval Dor
- Department of Cellular Biochemistry and Human Genetics, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shulamit Levenberg
- Department of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
- * E-mail:
| |
Collapse
|
59
|
Regulator of G-Protein Signaling 5 Reduces HeyA8 Ovarian Cancer Cell Proliferation and Extends Survival in a Murine Tumor Model. Biochem Res Int 2012; 2012:518437. [PMID: 22792465 PMCID: PMC3389655 DOI: 10.1155/2012/518437] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Accepted: 04/19/2012] [Indexed: 01/02/2023] Open
Abstract
The regulator of G-protein signaling 5 (RGS5) belongs to a family of GTPase activators that terminate signaling cascades initiated by extracellular mediators and G-protein-coupled receptors. RGS5 has an interesting dual biological role. One functional RGS5 role is as a pericyte biomarker influencing the switch to angiogenesis during malignant progression. Its other functional role is to promote apoptosis in hypoxic environments. We set out to clarify the extent to which RGS5 expression regulates tumor progression—whether it plays a pathogenic or protective role in ovarian tumor biology. We thus constructed an inducible gene expression system to achieve RGS5 expression in HeyA8-MDR ovarian cancer cells. Through this we observed that inducible RGS5 expression significantly reduces in vitro BrdU-positive HeyA8-MDR cells, although this did not correlate with a reduction in tumor volume observed using an in vivo mouse model of ovarian cancer. Interestingly, mice bearing RGS5-expressing tumors demonstrated an increase in survival compared with controls, which might be attributed to the vast regions of necrosis observed by pathological examination. Additionally, mice bearing RGS5-expressing tumors were less likely to have ulcerated tumors. Taken together, this data supports the idea that temporal expression and stabilization of RGS5 could be a valuable tactic within the context of a multicomponent approach for modulating tumor progression.
Collapse
|
60
|
Abler LL, Keil KP, Mehta V, Joshi PS, Schmitz CT, Vezina CM. A high-resolution molecular atlas of the fetal mouse lower urogenital tract. Dev Dyn 2011; 240:2364-77. [PMID: 21905163 DOI: 10.1002/dvdy.22730] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2011] [Indexed: 12/15/2022] Open
Abstract
Epithelial-stromal interactions in the lower urogenital tract (LUT) are integral to prostatic and seminal vesicle development in males, vaginal and uterine development in females, and urethral development in both sexes. Gene expression profiling of isolated LUT stroma and epithelium has unraveled mechanisms of LUT development, but such studies are confounded by heterogeneous and ill-defined cell sub-populations contained within each tissue compartment. We used in situ hybridization to synthesize a high-resolution molecular atlas of 17-day post-coitus fetal mouse LUT. We identified mRNAs that mark selective cell populations of the seminal vesicle, ejaculatory duct, prostate, urethra, and vagina, subdividing these tissues into 16 stromal and 8 epithelial sub-compartments. These results provide a powerful tool for mapping LUT gene expression patterns and also reveal previously uncharacterized sub-compartments that may play mechanistic roles in LUT development of which we were previously unaware.
Collapse
Affiliation(s)
- Lisa L Abler
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison Wisconsin, USA
| | | | | | | | | | | |
Collapse
|
61
|
Mahoney WM, Fleming JN, Schwartz SM. A unifying hypothesis for scleroderma: identifying a target cell for scleroderma. Curr Rheumatol Rep 2011; 13:28-36. [PMID: 21181314 DOI: 10.1007/s11926-010-0152-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
We propose that a recent change in the conception of the role of type 1 interferon and the identification of adventitial stem cells suggests a unifying hypothesis for scleroderma. This hypothesis begins with vasospasm. Vasospasm is fully reversible unless, as proposed here, the resulting ischemia leads to apoptosis and activation of type 1 interferon. The interferon, we propose, initiates immune amplification, including characteristic scleroderma-specific antibodies. We propose that the interferon also acts on adventitial stem cells, producing myofibroblasts, rarefaction, and intimal hyperplasia--three morphologic changes that characterize this disease. Regulator of G-protein signaling 5 (RGS5), a regulator of vasoactive G-protein-coupled receptors, is a cell type-specific marker of pericytes and scleroderma myofibroblasts. RGS5 may provide a key link between initial hyperplasia and fibrosis in this disease.
Collapse
Affiliation(s)
- William M Mahoney
- Department of Pathology, Center for Cardiovascular Biology, University of Washington School of Medicine, 815 Mercer Street, Seattle, WA 98109, USA.
| | | | | |
Collapse
|
62
|
Gunaje JJ, Bahrami AJ, Schwartz SM, Daum G, Mahoney WM. PDGF-dependent regulation of regulator of G protein signaling-5 expression and vascular smooth muscle cell functionality. Am J Physiol Cell Physiol 2011; 301:C478-89. [PMID: 21593453 DOI: 10.1152/ajpcell.00348.2010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Regulator of G protein signaling (RGS) proteins, and notably members of the RGS-R4 subfamily, control vasocontractility by accelerating the inactivation of Gα-dependent signaling. RGS5 is the most highly and differently expressed RGS-R4 subfamily member in arterial smooth muscle. Expression of RGS5 first appears in pericytes during development of the afferent vascular tree, suggesting that RGS5 is a good candidate for a regulator of arterial contractility and, perhaps, for determining the mass of the smooth muscle coats required to regulate blood flow in the branches of the arterial tree. Consistent with this hypothesis, using cultured vascular smooth muscle cells (VSMCs), we demonstrate RGS5 overexpression inhibits G protein-coupled receptor (GPCR)-mediated hypertrophic responses. The next objective was to determine which physiological agonists directly control RGS5 expression in VSMCs. GPCR agonists failed to directly regulate RGS5 mRNA expression; however, platelet-derived growth factor (PDGF) acutely represses expression. Downregulation of RGS5 results in the induction of migration and the activation of the GPCR-mediated signaling pathways. This stimulation leads to the activation of mitogen-activated protein kinases directly downstream of receptor stimulation, and ultimately VSMC hypertrophy. These results demonstrate that RGS5 expression is a critical mediator of both VSMC contraction and potentially, arterial remodeling.
Collapse
Affiliation(s)
- Jagadambika J Gunaje
- Department of Pathology and Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA
| | | | | | | | | |
Collapse
|
63
|
Kamouchi M, Ago T, Kitazono T. Brain pericytes: emerging concepts and functional roles in brain homeostasis. Cell Mol Neurobiol 2011; 31:175-93. [PMID: 21061157 PMCID: PMC11498428 DOI: 10.1007/s10571-010-9605-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Accepted: 09/22/2010] [Indexed: 11/30/2022]
Abstract
Brain pericytes are an important constituent of neurovascular unit. They encircle endothelial cells and contribute to the maturation and stabilization of the capillaries in the brain. Recent studies have revealed that brain pericytes play pivotal roles in a variety of brain functions, such as regulation of capillary flow, angiogenesis, blood brain barrier, immune responses, and hemostasis. In addition, brain pericytes are pluripotent and can differentiate into different lineages similar to mesenchymal stem cells. The brain pericytes are revisited as a key player to maintain brain function and repair brain damage.
Collapse
Affiliation(s)
- Masahiro Kamouchi
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | | | | |
Collapse
|
64
|
|
65
|
Huang G, Chen L. Recombinant human endostatin improves anti-tumor efficacy of paclitaxel by normalizing tumor vasculature in Lewis lung carcinoma. J Cancer Res Clin Oncol 2010; 136:1201-11. [PMID: 20130910 DOI: 10.1007/s00432-010-0770-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Accepted: 01/14/2010] [Indexed: 12/01/2022]
Abstract
PURPOSE Normalization of the tumor vasculature and microenvironment by several angiogenesis inhibitors has been reported. Given that recombinant human endostatin (rh-endostatin) is also an endogenous angiogenesis inhibitor, a comprehensive evaluation of the effects of rh-endostatin on tumor vasculature and microenvironment and chemotherapy sensitivity would be favorable. METHODS Multiple treatment schedules of the combination of rh-endostatin and paclitaxel were tested in Lewis lung carcinoma. Further, we monitored microvascular density, tumor hypoxic fraction, and collagen covered tumor vessels at three different time points following the treatment of rh-endostatin, as well as the transcription of angiogenesis related factors (vascular endothelial growth factor-A and thrombospondin-1) and vasculature markers (regulator of G-protein signaling 5 and platelet/endothelial cell adhesion molecule-1). RESULTS The anti-tumor efficacy of paclitaxel was significantly improved 7 days after the treatment of rh-endostatin. Tumor microvascular density was decreased by rh-endostatin, although it became even higher 7 days after termination of rh-endostatin. Non-necrotic hypoxic fraction was significantly reduced 7 days after treatment of rh-endostatin, accompanied with increased collagen covered tumor vessels and coverage of pericytes around endothelial cells. Rh-endostatin could transiently upregulate the transcription of thrombospondin-1 and modulate the imbalance between vascular endothelial growth factor-A and thrombospondin-1. CONCLUSION Rh-endostatin could normalize the tumor vasculature and microenvironment in Lewis lung carcinoma probably via modulation of the balance between vascular endothelial growth factor-A and thrombospondin-1. During the time of vascular normalization, paclitaxel treatment was found to have maximal effect on tumor growth delay.
Collapse
Affiliation(s)
- Guichun Huang
- Medical Oncology Department of Jinling Hospital, Medical School of Nanjing University, 305 ZhongShan Eastern Road, Nanjing, 210002, People's Republic of China.
| | | |
Collapse
|
66
|
Huang G, Chen L. Discrepancies between antiangiogenic and antitumor effects of recombinant human endostatin. Cancer Biother Radiopharm 2010; 24:589-96. [PMID: 19877889 DOI: 10.1089/cbr.2009.0653] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
It has been widely accepted that antiangiogenesis therapy could deprive tumor cells of nutrients and oxygen and suppress tumor growth. However, in the present study, Lewis lung carcinomas and A549 adenocarcinomas established in male C57BL/6 and BALB/c nude mice, respectively, were treated with recombinant human endostatin (rh-endostatin). Earlier studies document discrepancies in the antiangiogenic and antitumor outcomes of rh-endostatin treatment, at doses equivalent to clinical usage. Although there was no significant regression of tumor growth, tumor vasculature was widely disrupted within the first few days of treatment with rh-endostatin, as indicated by reduced blood perfusion (visualized by dynamic-contrast-enhanced magnetic resonance imaging) and reduced microvascular density. Interestingly, when rh-endostatin treatment was discontinued, there was an elevation in the diffusion of oxygen and tetramethylrhodamine isothiocyanate-dextran in both tumor classes, which was detected by hypoxyprobe (pimonidazole) and fluorescence microscopy. We conclude that the paradoxic outcomes in the antiangiogenic and antitumor properties of rh-endostatin might derive from the tumors' tolerance to antiangiogenesis inhibitors. Additionally, rh-endostatin might have the ability to transiently normalize tumor vasculature.
Collapse
Affiliation(s)
- Guichun Huang
- Medical Oncology Department of Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, People's Republic of China
| | | |
Collapse
|