57
|
Cohen O, Bar Kutiel P, Gamliel A, Katan J, Kurzbaum E, Weber G, Schubert I, Riov J. Rain-based soil solarization for reducing the persistent seed banks of invasive plants in natural ecosystems - Acacia saligna as a model. PEST MANAGEMENT SCIENCE 2019; 75:1933-1941. [PMID: 30575278 DOI: 10.1002/ps.5306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 12/13/2018] [Accepted: 12/13/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND A large persistent seed bank of invasive plants is a significant obstacle to restoration programs. Soil solarization was demonstrated to be an effective method for reducing the seed bank of Australian acacias. However, use of this method in natural habitats might be limited due to the requirement to moisten the soil by irrigation. This study examined the possibility of replacing irrigation by trapping the soil moisture caused by the most recent rainfall, i.e. rain-based soil solarization (RBS). RESULTS Exposure of Acacia saligna seeds to 57 °C at 20% soil moisture for 68 h resulted in almost complete loss of seed viability. Similarly, RBS treatment significantly reduced the viability of A. saligna seeds buried at a soil depth of 1-19 cm as well as seed density in the natural seed bank, and almost completely eliminated seedling emergence from natural seed banks of A. saligna and other environmental weeds. CONCLUSION Our results indicate that RBS is an effective method for reducing the seed bank of invasive plants in natural habitats located in various climate regions characterized by different soil types. This is the first demonstration of a successful application of RBS for soil disinfestation. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Oded Cohen
- Unit of environmental sciences and ecology, Shamir Research Institute, University of Haifa, Katzrin, Israel
| | - Pua Bar Kutiel
- Department of Geography and Environmental Development, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Abraham Gamliel
- Unit of Agricultural Engineering, Laboratory for Pest Research, Institute of Agricultural Engineering, ARO, Volcani Center, Bet Dagan, Israel
| | - Jaacov Katan
- The Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Eyal Kurzbaum
- Unit of environmental sciences and ecology, Shamir Research Institute, University of Haifa, Katzrin, Israel
| | - Gil Weber
- Unit of environmental sciences and ecology, Shamir Research Institute, University of Haifa, Katzrin, Israel
| | - Iris Schubert
- Unit of environmental sciences and ecology, Shamir Research Institute, University of Haifa, Katzrin, Israel
| | - Joseph Riov
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
58
|
Fenesi A, Sándor D, Pyšek P, Dawson W, Ruprecht E, Essl F, Kreft H, Pergl J, Weigelt P, Winter M, Van Kleunen M. The role of fruit heteromorphism in the naturalization of Asteraceae. ANNALS OF BOTANY 2019; 123:1043-1052. [PMID: 30715141 PMCID: PMC6589514 DOI: 10.1093/aob/mcz012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 01/10/2019] [Indexed: 05/14/2023]
Abstract
BACKGROUND AND AIMS Fruit heteromorphism is considered to be a bet-hedging strategy to cope with spatially or temporally heterogeneous environments. The different behaviours of the fruit morphs of the same species might also be beneficial during naturalization, once the species has been introduced to a new range. Yet, no study to date has tested the association between fruit heteromorphism and global-scale naturalization success for a large set of plant species. METHODS We compiled two large datasets on fruit heteromorphism in Asteraceae. One dataset was on native species in Central Europe (n = 321) and the other was on species frequently planted as ornamentals (n = 584). Using phylogenetic linear and logistic regressions, we tested whether heteromorphic species are more likely to naturalize outside their native range, and in more regions of the world than monomorphic species. We also tested whether the effect of heteromorphism is modulated by life history and height of the species. KEY RESULTS We show that heteromorphic species were more likely to naturalize outside their native range. However, among the naturalized species, heteromorphic and monomorphic species did not differ in the number of world regions where they became naturalized. A short life span and tall stature both promoted naturalization success and, when life history and height were included in the models, the effect of fruit heteromorphism on the ability to naturalize became non-significant. Nevertheless, among tall plants, heteromorphic ornamental species were significantly more likely to become naturalized in general and in more regions than monomorphic species. CONCLUSIONS Our results provide evidence that in Asteraceae the production of heteromorphic fruits is associated with naturalization success. It appears, however, that not fruit heteromorphism per se, but a successful combination of other biological traits in fruit heteromorphic species, namely short life span and tall stature, contributes to their naturalization success.
Collapse
Affiliation(s)
- Annamária Fenesi
- Hungarian Department of Biology and Ecology, Babeş-Bolyai University, Cluj-Napoca, Romania
- For correspondence.
| | - Dorottya Sándor
- Hungarian Department of Biology and Ecology, Babeş-Bolyai University, Cluj-Napoca, Romania
| | - Petr Pyšek
- The Czech Academy of Sciences, Institute of Botany, Department of Invasion Ecology, Průhonice, Czech Republic
- Department of Ecology, Faculty of Science, Charles University, Prague 2, Czech Republic
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Matieland, South Africa
| | - Wayne Dawson
- Department of Biosciences, Durham University, Durham, UK
| | - Eszter Ruprecht
- Hungarian Department of Biology and Ecology, Babeş-Bolyai University, Cluj-Napoca, Romania
| | - Franz Essl
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Matieland, South Africa
- Division of Conservation Biology, Vegetation and Landscape Ecology, University of Vienna, Wien, Austria
| | - Holger Kreft
- Biodiversity, Macroecology & Biogeography, University of Goettingen, Göttingen, Germany
- Centre of Biodiversity and Sustainable Land Use (CBL), University of Goettingen, Göttingen, Germany
| | - Jan Pergl
- The Czech Academy of Sciences, Institute of Botany, Department of Invasion Ecology, Průhonice, Czech Republic
| | - Patrick Weigelt
- Biodiversity, Macroecology & Biogeography, University of Goettingen, Göttingen, Germany
| | - Marten Winter
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Mark Van Kleunen
- Ecology, Department of Biology, University of Konstanz, Konstanz, Germany
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, China
| |
Collapse
|
61
|
Saatkamp A, Cochrane A, Commander L, Guja LK, Jimenez-Alfaro B, Larson J, Nicotra A, Poschlod P, Silveira FAO, Cross AT, Dalziell EL, Dickie J, Erickson TE, Fidelis A, Fuchs A, Golos PJ, Hope M, Lewandrowski W, Merritt DJ, Miller BP, Miller RG, Offord CA, Ooi MKJ, Satyanti A, Sommerville KD, Tangney R, Tomlinson S, Turner S, Walck JL. A research agenda for seed-trait functional ecology. THE NEW PHYTOLOGIST 2019; 221:1764-1775. [PMID: 30269352 DOI: 10.1111/nph.15502] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 09/17/2018] [Indexed: 06/08/2023]
Abstract
Trait-based approaches have improved our understanding of plant evolution, community assembly and ecosystem functioning. A major challenge for the upcoming decades is to understand the functions and evolution of early life-history traits, across levels of organization and ecological strategies. Although a variety of seed traits are critical for dispersal, persistence, germination timing and seedling establishment, only seed mass has been considered systematically. Here we suggest broadening the range of morphological, physiological and biochemical seed traits to add new understanding on plant niches, population dynamics and community assembly. The diversity of seed traits and functions provides an important challenge that will require international collaboration in three areas of research. First, we present a conceptual framework for a seed ecological spectrum that builds upon current understanding of plant niches. We then lay the foundation for a seed-trait functional network, the establishment of which will underpin and facilitate trait-based inferences. Finally, we anticipate novel insights and challenges associated with incorporating diverse seed traits into predictive evolutionary ecology, community ecology and applied ecology. If the community invests in standardized seed-trait collection and the implementation of rigorous databases, major strides can be made at this exciting frontier of functional ecology.
Collapse
Affiliation(s)
- Arne Saatkamp
- Aix Marseille Université, Université d'Avignon, CNRS, IRD, IMBE, Facultés St Jérôme, case 421, 13397, Marseille, France
| | - Anne Cochrane
- Department of Biodiversity, Conservation and Attractions, Science and Conservation, Locked Bag 104, Bentley Delivery Centre, Bentley, WA, 6983, Australia
- Division of Ecology & Evolution, The Australian National University, 46 Sullivans Creek Road, Acton, ACT, 2601, Australia
| | - Lucy Commander
- Department of Biodiversity, Conservation and Attractions, Kings Park Science, 1 Kattidj Close, Kings Park, WA, 6005, Australia
- School of Biological Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Lydia K Guja
- Centre for Australian National Biodiversity Research, CSIRO National Research Collections Australia, Clunies Ross St, Acton, ACT, 2601, Australia
- Biodiversity Science Section, Australian National Botanic Gardens, Clunies Ross St, Canberra, ACT, 2601, Australia
| | - Borja Jimenez-Alfaro
- Research Unit of Biodiversity (CSIC/UO/PA), Universidad de Oviedo, Edificio de Investigación, 33600, Mieres, Spain
| | - Julie Larson
- Department of Ecology & Evolutionary Biology, University of Colorado, Boulder, CO, 80309, USA
| | - Adrienne Nicotra
- Division of Ecology & Evolution, The Australian National University, 46 Sullivans Creek Road, Acton, ACT, 2601, Australia
| | - Peter Poschlod
- Ecology & Conservation Biology, Institute of Plant Sciences, University of Regensburg, D-93040, Regensburg, Germany
| | - Fernando A O Silveira
- Department of Botany, Federal University of Minas Gerais, Avenida Antônio Carlos, 6627, Belo Horizonte, MG, Brazil
| | - Adam T Cross
- School of Molecular and Life Sciences, Curtin University, Kent Street, Bentley, WA, 6102, Australia
| | - Emma L Dalziell
- Department of Biodiversity, Conservation and Attractions, Kings Park Science, 1 Kattidj Close, Kings Park, WA, 6005, Australia
- School of Molecular and Life Sciences, Curtin University, Kent Street, Bentley, WA, 6102, Australia
| | - John Dickie
- Royal Botanic Gardens Kew, Wakehurst Place, Ardingly, RH17 6TN, UK
| | - Todd E Erickson
- Department of Biodiversity, Conservation and Attractions, Kings Park Science, 1 Kattidj Close, Kings Park, WA, 6005, Australia
- School of Biological Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Alessandra Fidelis
- Lab of Vegetation Ecology, Departamento de Botânica, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Avenida 24-A 1515, 13506-900, Rio Claro, Brazil
| | - Anne Fuchs
- Centre for Australian National Biodiversity Research, CSIRO National Research Collections Australia, Clunies Ross St, Acton, ACT, 2601, Australia
- Biodiversity Science Section, Australian National Botanic Gardens, Clunies Ross St, Canberra, ACT, 2601, Australia
| | - Peter J Golos
- Department of Biodiversity, Conservation and Attractions, Kings Park Science, 1 Kattidj Close, Kings Park, WA, 6005, Australia
- School of Biological Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Michael Hope
- Centre for Australian National Biodiversity Research, CSIRO National Research Collections Australia, Clunies Ross St, Acton, ACT, 2601, Australia
- Atlas of Living Australia, CSIRO, Canberra, ACT, 2601, Australia
| | - Wolfgang Lewandrowski
- Department of Biodiversity, Conservation and Attractions, Kings Park Science, 1 Kattidj Close, Kings Park, WA, 6005, Australia
- School of Biological Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - David J Merritt
- Department of Biodiversity, Conservation and Attractions, Kings Park Science, 1 Kattidj Close, Kings Park, WA, 6005, Australia
- School of Biological Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Ben P Miller
- Department of Biodiversity, Conservation and Attractions, Kings Park Science, 1 Kattidj Close, Kings Park, WA, 6005, Australia
- School of Biological Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Russell G Miller
- Department of Biodiversity, Conservation and Attractions, Kings Park Science, 1 Kattidj Close, Kings Park, WA, 6005, Australia
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA, 6150, Australia
| | - Catherine A Offord
- The Australian Plant Bank, Royal Botanic Gardens and Domain Trust, Mount Annan, NSW, 2567, Australia
| | - Mark K J Ooi
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Annisa Satyanti
- Division of Ecology & Evolution, The Australian National University, 46 Sullivans Creek Road, Acton, ACT, 2601, Australia
- Biodiversity Science Section, Australian National Botanic Gardens, Clunies Ross St, Canberra, ACT, 2601, Australia
- Center for Plant Conservation, Bogor Botanic Gardens, Indonesian Institute of Sciences, Jalan Ir. H. Juanda, Bogor, West Java, 16001, Indonesia
| | - Karen D Sommerville
- The Australian Plant Bank, Royal Botanic Gardens and Domain Trust, Mount Annan, NSW, 2567, Australia
| | - Ryan Tangney
- Department of Biodiversity, Conservation and Attractions, Kings Park Science, 1 Kattidj Close, Kings Park, WA, 6005, Australia
- School of Molecular and Life Sciences, Curtin University, Kent Street, Bentley, WA, 6102, Australia
| | - Sean Tomlinson
- Department of Biodiversity, Conservation and Attractions, Kings Park Science, 1 Kattidj Close, Kings Park, WA, 6005, Australia
- School of Molecular and Life Sciences, Curtin University, Kent Street, Bentley, WA, 6102, Australia
| | - Shane Turner
- Department of Biodiversity, Conservation and Attractions, Kings Park Science, 1 Kattidj Close, Kings Park, WA, 6005, Australia
- School of Biological Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Jeffrey L Walck
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, 37130, USA
| |
Collapse
|