51
|
Xu B, Zhang L, Chen Q, Wang Y, Peng Y, Tang H. Case Report: A Case of Late-Onset Combined Methylmalonic Acidemia and Hyperhomocysteinemia Induced by a Vegetarian Diet. Front Pediatr 2022; 10:896177. [PMID: 35903162 PMCID: PMC9315243 DOI: 10.3389/fped.2022.896177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/21/2022] [Indexed: 11/13/2022] Open
Abstract
Methylmalonic acidemia is a rare autosomal recessive metabolic disease. However, because of the atypical clinical symptoms, the type of late-onset methylmalonic academia is often misdiagnosed. Especially when the blood vitamin B12 and folic acid levels are normal, it is not easy to think of this disease. Herein we report a 9-year-old girl who developed normally on a relatively balanced diet before 7 years of age. However, she presented with fatigue and attention deficit when she followed a vegetarian diet. Laboratory examination showed moderate macrocytic anemia, high levels of homocysteine, high level of propionylcarnitine/acetylcarnitine, urinary methylmalonic acid and methyl citrate. Gene mutation analysis showed c.609G > A and c.80A > G compound heterozygous mutations in the MMACHC gene, supported late-onset combined methylmalonic academia with homocysteinemia. Then treatment performed with add meat to the diet, vitamin B12, folic acid betaine and L-carnitine supplement. One week later, the child's clinical symptoms and the laboratory examinations were significantly improved.
Collapse
Affiliation(s)
- Bei Xu
- Department of Pediatrics, Baoding No. 1 Central Hospital, Baoding, China
| | - Lihong Zhang
- Department of Pediatrics, Baoding No. 1 Central Hospital, Baoding, China
| | - Qiang Chen
- Department of Emergency, Baoding No. 1 Central Hospital, Baoding, China
| | - Yajuan Wang
- Department of Pediatrics, Baoding No. 1 Central Hospital, Baoding, China
| | - Yahong Peng
- Department of Pediatrics, Baoding No. 1 Central Hospital, Baoding, China
| | - Hui Tang
- Department of Pediatrics, Baoding No. 1 Central Hospital, Baoding, China
| |
Collapse
|
52
|
Juan T, Chao-Ying C, Hua-Rong L, Ling W. Rare cause of coronary artery ectasia in children: A case report of methylmalonic acidemia with hyperhomocysteinemia. Front Pediatr 2022; 10:917734. [PMID: 35935352 PMCID: PMC9354574 DOI: 10.3389/fped.2022.917734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/07/2022] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Methylmalonic acidemia (MMA) with hyperhomocysteinemia is caused by cobalamin deficiency, mainly due to disturbance of cobalamin C (cblC) metabolism. Its clinical manifestations involve many organs. However, cases of coronary artery ectasia have been rarely reported. CASE PRESENTATION Here, we report the case of a 4-year-old girl who was hospitalized mainly because of pallor, brown urine, and fatigue, followed by hypertension, renal insufficiency, hemolytic anemia, cardiac enlargement, cardiac insufficiency, and coronary artery ectasia. Thrombotic microangiopathy (TMA) was confirmed by renal pathological examination. Metabolic examination showed hyperhomocysteinemia and methylmalonic aciduria. Furthermore, genetic assessment confirmed MMACHC gene variant, which confirmed the final diagnosis of a cblC defect. Intramuscular injection of hydroxy-cobalamin, oral medications of betaine, levocarnitine, folic acid, and aspirin were administered. Three months later, the patient's condition was significantly improved. Anemia was corrected, and the renal function was normal. Heart size, cardiac function, and coronary artery structure completely returned to normal. CONCLUSION The clinical manifestation of cblC deficiency is atypical. This critical condition may be associated with multiple organ involvement. A rare complication, coronary artery ectasia, can also occur. Early identification, careful evaluation, and appropriate treatment are crucially important for the improvement of this disease prognosis.
Collapse
Affiliation(s)
- Tu Juan
- Department of Nephrology, Children's Hospital Affiliated to Capital Institute of Pediatrics, Beijing, China
| | - Chen Chao-Ying
- Department of Nephrology, Children's Hospital Affiliated to Capital Institute of Pediatrics, Beijing, China
| | - Li Hua-Rong
- Department of Nephrology, Children's Hospital Affiliated to Capital Institute of Pediatrics, Beijing, China
| | - Wan Ling
- Department of Nephrology, Children's Hospital Affiliated to Capital Institute of Pediatrics, Beijing, China
| |
Collapse
|
53
|
Jin L, Han X, He F, Zhang C. Prevalence of methylmalonic acidemia among newborns and the clinical-suspected population: a meta-analyse. J Matern Fetal Neonatal Med 2021; 35:8952-8967. [PMID: 34847798 DOI: 10.1080/14767058.2021.2008351] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
IMPORTANCE Knowing the scale of rare inborn errors is important for screening and resource allocation. Evidence on the prevalence of methylmalonic acidemia (MMA) among newborns and the clinical-suspected population from large-scale screening programs needs to be systematically synthesized. OBJECTIVE To estimate the worldwide prevalence of MMA for newborns and the clinical-suspected population and explore the differences in different regions, periods, and diagnostic technologies. DATA SOURCES MEDLINE, Embase, CRD, Cochrane Library, Scopus, CINAHL, and PROSPERO. Study Selection: All studies reporting the epidemiology characteristics of MMA were selected. DATA EXTRACTION AND SYNTHESIS Characteristics of study, subjects, and epidemiology were extracted, random-effect models were used for meta-analyses. MAIN OUTCOME AND MEASURE Pooled prevalence of MMA. RESULTS This study included 111 studies. The pooled prevalence of MMA worldwide was 1.14 per 100,000 newborns (1516/190,229,777 newborns, 95% CI: 0.99-1.29) and 652.11 per 100,000 clinical-suspected patients (1360/4,805,665 clinical-suspected individuals, CI: 544.14-760.07). Asia and Africa got a higher pooled prevalence of MMA. The prevalence of MMA in newborns increased through the years, while that in the clinical-suspected population decreased. Collecting blood ≥ 72 h after birth had a higher pooled prevalence of MMA than collecting during 24 h-72 h after birth. The combining-use of MS/MS and GC/MS had a higher pooled prevalence than the single-use of MS/MS or GC/MS. Prevalence of cbl C, mut, cbl B, cbl A, isolated MMA, combined MMA and homocystinuria, vitamin B12-responsive MMA was synthesized. CONCLUSIONS AND RELEVANCE Prevalence of MMA among newborns was extremely low, but considerably high in the clinical-suspected population, indicating the need for more efficient newborn screening strategies and closer monitoring of the high-risk population for the early signs of MMA. Asia and Africa should attach importance to the high prevalence of MMA. Further diagnostic tests were recommended for the combining-use vs single-use of MS/MS and GC/MS and for collecting blood after 72 h vs during 24-72 h after birth.
Collapse
Affiliation(s)
- Lizi Jin
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, P. R. China.,Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Xueyan Han
- Department of Medical Statistics, Peking University First Hospital, Beijing, P. R. China
| | - Falin He
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, P. R. China.,Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Chuanbao Zhang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, P. R. China.,Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| |
Collapse
|
54
|
Wei Y, Hao H. Late-onset cobalamin C disease presenting with acute cerebellar ataxia. Neurol Sci 2021; 42:4839-4842. [PMID: 34392393 DOI: 10.1007/s10072-021-05541-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/31/2021] [Indexed: 11/28/2022]
Affiliation(s)
- Yanping Wei
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing Shuaifuyuan 1, Dongcheng District, Beijing, 100730, People's Republic of China
| | - Honglin Hao
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing Shuaifuyuan 1, Dongcheng District, Beijing, 100730, People's Republic of China.
| |
Collapse
|
55
|
Hwang N, Jang JH, Cho EH, Choi R, Choi SJ, Park HD. Prenatal diagnosis of combined methylmalonic acidemia and homocystinuria cobalamin C type using clinical exome sequencing and targeted gene analysis. Mol Genet Genomic Med 2021; 9:e1838. [PMID: 34655177 PMCID: PMC8606215 DOI: 10.1002/mgg3.1838] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/12/2021] [Accepted: 06/30/2021] [Indexed: 01/23/2023] Open
Abstract
Background Combined methylmalonic acidemia and homocystinuria is a rare inherited disorder of intracellular cobalamin metabolism caused by biallelic variants in one of the following genes: MMACHC (cblC), MMADHC (cblD), LMBRD1 (cblF), ABCD4 (cblJ), THAP11 (cblX‐like), and ZNF143 (cblX‐like), or a hemizygous variant in HCFC1 (cblX). Prenatal diagnosis of combined methylmalonic acidemia with homocystinuria is crucial for high‐risk couples since the disorder can be life‐threatening for offspring. We would like to describe two infant deaths both of which are likely attributable to cblC despite not having a genetic confirmation, and subsequent pregnancy and prenatal genetic testing. Methods Parental clinical exome sequencing and targeted Sanger sequencing of MMACHC gene in amniotic fluid was performed to check the carrier status of the fetus. Results Parental clinical exome sequencing revealed a heterozygous pathogenic variant [NM_015506.2:c.217C>T (p.Arg73*)] in the MMACHC gene of the mother and [NM_015506.2:c.609G>A (p.Trp203*)] in the MMACHC gene of the father. Targeted Sanger sequencing of MMACHC gene in amniotic fluid revealed that the fetus carried only one nonsense variant [NM_015506.2:c.609G>A (p.Trp203*)], which was inherited from the father. The mother delivered a healthy baby and the neonate did not show any symptoms or signs of combined methylmalonic acidemia and homocystinuria after birth. Conclusion We present a case of prenatal diagnosis with parental exome sequencing, which successfully diagnosed the carrier status of the fetus and parents in a combined methylmalonic acidemia and homocystinuria family.
Collapse
Affiliation(s)
- Narae Hwang
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Ja-Hyun Jang
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Eun-Hae Cho
- Green Cross Genome, Yongin, Republic of Korea
| | - Rihwa Choi
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Green Cross Laboratories, Yongin, Republic of Korea
| | - Suk-Joo Choi
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hyung-Doo Park
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| |
Collapse
|
56
|
Yu Y, Ling S, Shuai R, Qiu W, Zhang H, Liang L, Ji W, Liu Y, Gu X, Han L. Clinical features and outcomes of patients with cblC type methylmalonic acidemia carrying gene c.609G>A mutation. Zhejiang Da Xue Xue Bao Yi Xue Ban 2021; 50:436-443. [PMID: 34704411 PMCID: PMC8771641 DOI: 10.3724/zdxbyxb-2021-0276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
To explore the clinical features and long-term outcomes of patients with cblC type methylmalonic acidemia (MMA) carrying c.609G>A (p.W203X) mutation of gene. The clinical and laboratory findings of 720 patients with MMA carrying the c.609G>A mutation were retrospectively analyzed. There were 172 cases carrying homozygous mutations of c.609G>A (group A), 169 cases carrying compound heterozygous mutations of c.609G>A with c.482G>A (p.R161Q), c.80A>G or c.394C>T (p.R132X) (group B), and 379 cases carrying compound heterozygous mutations of c.609G>A with c.658_660delAAG(p.K220del), c.315A>Tor c.567dupT(p.I190fs13)(group C).The clinical manifestations, the level of blood acylcarnitine, homocysteine and urinary organic acid, and the therapeutic efficacy were compared among groups. Logistic regression was used to analyze the factors influencing the prognosis of patients. There were 306 patients (42.5%) detected from newborn screening, including 156 cases with disease onset; and 414 patients were not detected from the screening, among whom 10 cases were diagnosed by testing after the sibling confirmed, and the remaining 404 were clinical cases. In 560 patients with disease onset, the median onset age is (3 days to 20 years). The onset age of patients in group B was later than that in group A and group C (<0.01). Patients aged mostly manifested as vomiting, diarrhea, feeding difficulties and convulsions, while those year mostly manifested as movement disorders and mental retardation. Patients with renal disease all carried mutations of c.80A>G or c.482G>A, and patients with pulmonary hypertension all carried c.80A>G mutations. A total of 621 cases had long-term follow-up, 156 cases (25.1%) developed well, 433 cases (69.7%) had development delay and 32 cases (5.2%) died. The available data of 559 cases were analyzed by logistic regression, and the results showed that the neonatal screening, disease onset, age of onset and gene mutation site were significantly associated with the prognosis of patients (<0.05 or <0.01). The c.609G>A mutation in gene is associated with early-onset MMA, and most patients, clinical onset occurred within 1 month after birth. The neonatal screening and early treatment can improve the prognosis of patients,whereas clinical onset is unfavorable for prognosis. Patients with c.609G>A homozygous mutation have a worse prognosis than those with the compound heterozygous mutation of c.609G>A with other mutations.
Collapse
Affiliation(s)
- Yue Yu
- Department of Pediatric Endocrino- and Genetic Metabolism, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Shanghai 200092, China
| | - Shiying Ling
- Department of Pediatric Endocrino- and Genetic Metabolism, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Shanghai 200092, China
| | - Ruixue Shuai
- Department of Pediatric Endocrino- and Genetic Metabolism, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Shanghai 200092, China
| | - Wenjuan Qiu
- Department of Pediatric Endocrino- and Genetic Metabolism, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Shanghai 200092, China
| | - Huiwen Zhang
- Department of Pediatric Endocrino- and Genetic Metabolism, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Shanghai 200092, China
| | - Lili Liang
- Department of Pediatric Endocrino- and Genetic Metabolism, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Shanghai 200092, China
| | - Wenjun Ji
- Department of Pediatric Endocrino- and Genetic Metabolism, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Shanghai 200092, China
| | - Yuchao Liu
- Department of Pediatric Endocrino- and Genetic Metabolism, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Shanghai 200092, China
| | - Xuefan Gu
- Department of Pediatric Endocrino- and Genetic Metabolism, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Shanghai 200092, China
| | - Lianshu Han
- Department of Pediatric Endocrino- and Genetic Metabolism, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Shanghai 200092, China
| |
Collapse
|
57
|
Cavicchi C, Oussalah A, Falliano S, Ferri L, Gozzini A, Gasperini S, Motta S, Rigoldi M, Parenti G, Tummolo A, Meli C, Menni F, Furlan F, Daniotti M, Malvagia S, la Marca G, Chery C, Morange PE, Tregouet D, Donati MA, Guerrini R, Guéant JL, Morrone A. PRDX1 gene-related epi-cblC disease is a common type of inborn error of cobalamin metabolism with mono- or bi-allelic MMACHC epimutations. Clin Epigenetics 2021; 13:137. [PMID: 34215320 PMCID: PMC8254308 DOI: 10.1186/s13148-021-01117-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 06/16/2021] [Indexed: 12/21/2022] Open
Abstract
Background The role of epigenetics in inborn errors of metabolism (IEMs) is poorly investigated. Epigenetic changes can contribute to clinical heterogeneity of affected patients but could also be underestimated determining factors in the occurrence of IEMs. An epigenetic cause of IEMs has been recently described for the autosomal recessive methylmalonic aciduria and homocystinuria, cblC type (cblC disease), and it has been named epi-cblC. Epi-cblC has been reported in association with compound heterozygosity for a genetic variant and an epimutation at the MMACHC locus, which is secondary to a splicing variant (c.515-1G > T or c.515-2A > T) at the adjacent PRDX1 gene. Both these variants cause aberrant antisense transcription and cis-hypermethylation of the MMACHC gene promotor with subsequent silencing. Until now, only nine epi-cblC patients have been reported. Methods We report clinical/biochemical assessment, MMACHC/PRDX1 gene sequencing and genome-wide DNA methylation profiling in 11 cblC patients who had an inconclusive MMACHC gene testing. We also compare clinical phenotype of epi-cblC patients with that of canonical cblC patients. Results All patients turned out to have the epi-cblC disease. One patient had a bi-allelic MMACHC epimutation due to the homozygous PRDX1:c.515-1G > T variant transmitted by both parents. We found that the bi-allelic epimutation produces the complete silencing of MMACHC in the patient’s fibroblasts. The remaining ten patients had a mono-allelic MMACHC epimutation, due to the heterozygous PRDX1:c.515-1G > T, in association with a mono-allelic MMACHC genetic variant. Epi-cblC disease has accounted for about 13% of cblC cases diagnosed by newborn screening in the Tuscany and Umbria regions since November 2001. Comparative analysis showed that clinical phenotype of epi-cblC patients is similar to that of canonical cblC patients. Conclusions We provide evidence that epi-cblC is an underestimated cause of inborn errors of cobalamin metabolism and describe the first instance of epi-cblC due to a bi-allelic MMACHC epimutation. MMACHC epimutation/PRDX1 mutation analyses should be part of routine genetic testing for all patients presenting with a metabolic phenotype that combines methylmalonic aciduria and homocystinuria. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-021-01117-2.
Collapse
Affiliation(s)
- Catia Cavicchi
- Molecular and Cell Biology Laboratory of Neurometabolic Diseases, Paediatric Neurology Unit and Laboratories, Meyer Children's Hospital, Viale Pieraccini 24, 50139, Florence, Italy
| | - Abderrahim Oussalah
- INSERM, UMR_S1256 Nutrition-Genetics-Environmental Risk Exposure and Reference Centre of Inborn Metabolism Diseases, University of Lorraine and University Hospital Centre of Nancy (CHRU Nancy), Nancy, France
| | - Silvia Falliano
- Molecular and Cell Biology Laboratory of Neurometabolic Diseases, Paediatric Neurology Unit and Laboratories, Meyer Children's Hospital, Viale Pieraccini 24, 50139, Florence, Italy
| | - Lorenzo Ferri
- Molecular and Cell Biology Laboratory of Neurometabolic Diseases, Paediatric Neurology Unit and Laboratories, Meyer Children's Hospital, Viale Pieraccini 24, 50139, Florence, Italy
| | - Alessia Gozzini
- Molecular and Cell Biology Laboratory of Neurometabolic Diseases, Paediatric Neurology Unit and Laboratories, Meyer Children's Hospital, Viale Pieraccini 24, 50139, Florence, Italy
| | - Serena Gasperini
- Rare Metabolic Disease Unit, Department of Paediatrics, Fondazione MBBM, Monza, Italy
| | - Serena Motta
- Rare Metabolic Disease Unit, Department of Paediatrics, Fondazione MBBM, Monza, Italy
| | - Miriam Rigoldi
- Mario Negri Institute for Pharmacological Research IRCCS, Bergamo, Italy
| | | | - Albina Tummolo
- Metabolic Disease Unit, Giovanni XXIII Hospital, Bari, Italy
| | - Concetta Meli
- Metabolic Disease Unit, G. Rodolico Hospital, Catania, Italy
| | - Francesca Menni
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Paediatric Highly Intensive Care Unit, Milan, Italy
| | - Francesca Furlan
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Paediatric Highly Intensive Care Unit, Milan, Italy
| | - Marta Daniotti
- Metabolic and Muscular Unit, Meyer Children's Hospital, Florence, Italy
| | - Sabrina Malvagia
- Newborn Screening, Biochemistry and Pharmacology Laboratory, Meyer Children's Hospital, Florence, Italy
| | - Giancarlo la Marca
- Newborn Screening, Biochemistry and Pharmacology Laboratory, Meyer Children's Hospital, Florence, Italy.,Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Céline Chery
- INSERM, UMR_S1256 Nutrition-Genetics-Environmental Risk Exposure and Reference Centre of Inborn Metabolism Diseases, University of Lorraine and University Hospital Centre of Nancy (CHRU Nancy), Nancy, France
| | | | - David Tregouet
- INSERM, UMR_S937, ICAN Institute, Université Pierre et Marie Curie, Paris, France
| | | | - Renzo Guerrini
- Molecular and Cell Biology Laboratory of Neurometabolic Diseases, Paediatric Neurology Unit and Laboratories, Meyer Children's Hospital, Viale Pieraccini 24, 50139, Florence, Italy.,Department of NEUROFARBA, University of Florence, Florence, Italy
| | - Jean-Louis Guéant
- INSERM, UMR_S1256 Nutrition-Genetics-Environmental Risk Exposure and Reference Centre of Inborn Metabolism Diseases, University of Lorraine and University Hospital Centre of Nancy (CHRU Nancy), Nancy, France
| | - Amelia Morrone
- Molecular and Cell Biology Laboratory of Neurometabolic Diseases, Paediatric Neurology Unit and Laboratories, Meyer Children's Hospital, Viale Pieraccini 24, 50139, Florence, Italy. .,Department of NEUROFARBA, University of Florence, Florence, Italy.
| |
Collapse
|
58
|
Kiessling E, Nötzli S, Todorova V, Forny M, Baumgartner MR, Samardzija M, Krijt J, Kožich V, Grimm C, Froese DS. Absence of MMACHC in peripheral retinal cells does not lead to an ocular phenotype in mice. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166201. [PMID: 34147638 DOI: 10.1016/j.bbadis.2021.166201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/25/2021] [Accepted: 06/08/2021] [Indexed: 01/10/2023]
Abstract
Combined methylmalonic aciduria with homocystinuria (cblC type) is a rare disease caused by mutations in the MMACHC gene. MMACHC encodes an enzyme crucial for intracellular vitamin B12 metabolism, leading to the accumulation of toxic metabolites e.g. methylmalonic acid (MMA) and homocysteine (Hcy), and secondary disturbances in folate and one-carbon metabolism when not fully functional. Patients with cblC deficiency often present in the neonatal or early childhood period with a severe multisystem pathology, which comprises a broad spectrum of treatment-resistant ophthalmological phenotypes, including retinal degeneration, impaired vision, and vascular changes. To examine the potential function of MMACHC in the retina and how its loss may impact disease, we performed gene expression studies in human and mouse, which showed that local expression of MMACHC in the retina and retinal pigment epithelium is relatively stable over time. To study whether functional MMACHC is required for retinal function and tissue integrity, we generated a transgenic mouse lacking Mmachc expression in cells of the peripheral retina. Characterization of this mouse revealed accumulation of cblC disease related metabolites, including MMA and the folate-dependent purine synthesis intermediates AICA-riboside and SAICA-riboside in the retina. Nevertheless, fundus appearance, morphology, vasculature, and cellular composition of the retina, as well as ocular function, remained normal in mice up to 6 or 12 months of age. Our data indicates that peripheral retinal neurons do not require intrinsic expression of Mmachc for survival and function and questions whether a local MMACHC deficiency is responsible for the retinal phenotypes in patients.
Collapse
Affiliation(s)
- Eva Kiessling
- Lab for Retinal Cell Biology, Dept. Ophthalmology, University Hospital Zurich, University of Zürich, Switzerland
| | - Sarah Nötzli
- Lab for Retinal Cell Biology, Dept. Ophthalmology, University Hospital Zurich, University of Zürich, Switzerland
| | - Vyara Todorova
- Lab for Retinal Cell Biology, Dept. Ophthalmology, University Hospital Zurich, University of Zürich, Switzerland
| | - Merima Forny
- Division of Metabolism and Children's Research Center, University Children's Hospital Zürich, University of Zürich, Switzerland
| | - Matthias R Baumgartner
- Division of Metabolism and Children's Research Center, University Children's Hospital Zürich, University of Zürich, Switzerland
| | - Marijana Samardzija
- Lab for Retinal Cell Biology, Dept. Ophthalmology, University Hospital Zurich, University of Zürich, Switzerland
| | - Jakub Krijt
- Dept. of Pediatrics and Inherited Metabolic Disorders, Charles University-First Faculty of Medicine and General University Hospital, Prague, Czech Republic
| | - Viktor Kožich
- Dept. of Pediatrics and Inherited Metabolic Disorders, Charles University-First Faculty of Medicine and General University Hospital, Prague, Czech Republic
| | - Christian Grimm
- Lab for Retinal Cell Biology, Dept. Ophthalmology, University Hospital Zurich, University of Zürich, Switzerland.
| | - D Sean Froese
- Division of Metabolism and Children's Research Center, University Children's Hospital Zürich, University of Zürich, Switzerland.
| |
Collapse
|
59
|
Lotz-Havla AS, Weiß KJ, Schiergens KA, Brunet T, Kohlhase J, Regenauer-Vandewiele S, Maier EM. Subcutaneous vitamin B12 administration using a portable infusion pump in cobalamin-related remethylation disorders: a gentle and easy to use alternative to intramuscular injections. Orphanet J Rare Dis 2021; 16:215. [PMID: 33980297 PMCID: PMC8114704 DOI: 10.1186/s13023-021-01847-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/04/2021] [Indexed: 12/03/2022] Open
Abstract
Background Cobalamin (cbl)-related remethylation disorders are a heterogeneous group of inherited disorders comprising the remethylation of homocysteine to methionine and affecting multiple organ systems, most prominently the nervous system and the bone marrow. To date, the parenteral, generally intramuscular, lifelong administration of hydroxycobalamin (OHCbl) is the mainstay of therapy in these disorders. The dosage and frequency of OHCbl is titrated in each patient to the minimum effective dose in order to account for the painful injections. This may result in undertreatment, a possible risk factor for disease progression and disease-related complications. Results We describe parenteral administration of OHCbl using a subcutaneous catheter together with a portable infusion pump in a home therapy setting in four pediatric patients with remethylation disorders, two patients with cblC, one patient with cblG, and one patient with cblE deficiency, in whom intramuscular injections were not or no longer feasible. The placement of the subcutaneous catheters and handling of the infusion pump were readily accomplished and well accepted by the patients and their families. No adverse events occurred. The use of a small, portable syringe driver pump allowed for a most flexible administration of OHCbl in everyday life. The concentrations of total homocysteine levels were determined at regular patient visits and remained within the therapeutic target range. This approach allowed for the continuation of OHCbl therapy or the adjustment of therapy required to improve metabolic control in our patients. Conclusions Subcutaneous infusion using a subcutaneous catheter system and a portable pump for OHCbl administration in combined and isolated remethylation disorders is safe, acceptable, and effective. It decreases disease burden in preventing frequent single injections and providing patient independence. Thus, it may promote long-term adherence to therapy in patients and parents.
Collapse
Affiliation(s)
- Amelie S Lotz-Havla
- Department of Inborn Errors of Metabolism, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Lindwurmstr. 4, 80337, Munich, Germany
| | - Katharina J Weiß
- Department of Inborn Errors of Metabolism, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Lindwurmstr. 4, 80337, Munich, Germany
| | - Katharina A Schiergens
- Department of Inborn Errors of Metabolism, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Lindwurmstr. 4, 80337, Munich, Germany
| | - Theresa Brunet
- Institute of Human Genetics, Technische Universität München, Trogerstr. 32, 81675, Munich, Germany
| | - Jürgen Kohlhase
- SYNLAB Center for Human Genetics, Heinrich-von-Stephan-Str. 5, 79100, Freiburg, Germany
| | - Stephanie Regenauer-Vandewiele
- Department of Inborn Errors of Metabolism, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Lindwurmstr. 4, 80337, Munich, Germany
| | - Esther M Maier
- Department of Inborn Errors of Metabolism, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Lindwurmstr. 4, 80337, Munich, Germany.
| |
Collapse
|
60
|
Inherited Neuromuscular Disorders: Which Role for Serum Biomarkers? Brain Sci 2021; 11:brainsci11030398. [PMID: 33801069 PMCID: PMC8004068 DOI: 10.3390/brainsci11030398] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/08/2021] [Accepted: 03/18/2021] [Indexed: 12/12/2022] Open
Abstract
Inherited neuromuscular disorders (INMD) are a heterogeneous group of rare diseases that involve muscles, motor neurons, peripheral nerves or the neuromuscular junction. Several different lab abnormalities have been linked to INMD: sometimes they are typical of the disorder, but they usually appear to be less specific. Sometimes serum biomarkers can point out abnormalities in presymtomatic or otherwise asymptomatic patients (e.g., carriers). More often a biomarker of INMD is evaluated by multiple clinicians other than expert in NMD before the diagnosis, because of the multisystemic involvement in INMD. The authors performed a literature search on biomarkers in inherited neuromuscular disorders to provide a practical approach to the diagnosis and the correct management of INMD. A considerable number of biomarkers have been reported that support the diagnosis of INMD, but the role of an expert clinician is crucial. Hence, the complete knowledge of such abnormalities can accelerate the diagnostic workup supporting the referral to specialists in neuromuscular disorders.
Collapse
|
61
|
Chen T, Liang L, Zhang H, Ye J, Qiu W, Xiao B, Zhu H, Wang L, Xu F, Gong Z, Gu X, Han L. Value of amniotic fluid homocysteine assay in prenatal diagnosis of combined methylmalonic acidemia and homocystinuria, cobalamin C type. Orphanet J Rare Dis 2021; 16:125. [PMID: 33691766 PMCID: PMC7945211 DOI: 10.1186/s13023-021-01762-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 02/25/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Combined methylmalonic acidemia and homocystinuria, cobalamin C type (cblC defect) is the most common inborn error of cobalamin metabolism, and different approaches have been applied to its prenatal diagnosis. To evaluate the reliability of biochemical method for the prenatal diagnosis of cblC defect, we conducted a retrospective study of our 10-year experience at a single center. METHODS 248 pregnancies whose probands were diagnosed as cblC defect were referred to our center for prenatal diagnosis from January 2010 to December 2019. Prenatal data of Hcy levels determined by enzymatic cycling assay, acylcarnitine analysis using liquid chromatography tandem mass spectrometry, organic acid analysis using gas chromatography mass spectrometry, and genetic analysis by direct sequencing of 248 at-risk fetuses were retrospectively reviewed. RESULTS For 2.0 and 16.0 μmol/L levels of Hcy AF samples, the relative errors were - 2.5% and 2.8%, respectively. The respective measurement uncertainties were 13.07% and 14.20%. For the 248 at-risk fetuses, 63 fetuses were affected and 185 fetuses were unaffected. Hcy level of 13.20 (6.62-43.30) μmol/L in 63 affected fetuses was significantly higher than that in 185 unaffected fetuses of 2.70 (0.00-5.80) μmol/L, and there was no overlap between the affected and unaffected groups. The diagnostic sensitivity and specificity of Hcy were 100% and 92.05%, respectively. The positive and negative predictive values of the combination of Hcy, propionylcarnitine (C3), ratio of C3 to acetylcarnitine (C2; C3/C2), methylmalonic acid (MMA), and methylcitric acid (MCA) were both 100%. Sixteen fetuses displayed inconclusive genetic results of MMACHC variants, in which seven fetuses were determined to be affected with elevated levels of Hcy, C3, C3/C2 and MMA, and their levels were 18.50 (6.70-43.30) μmol/L, 8.53(5.02-11.91) μmol/L, 0.77 (0.52-0.97), 8.96 (6.55-40.32) mmol/mol Cr, respectively. The remaining nine fetuses were considered unaffected based on a normal amniotic fluid metabolite profile. CONCLUSIONS Hcy appears to be another characteristic biomarker for the prenatal diagnosis of cblC defect. The combination of Hcy assay with acylcarnitine and organic acid analysis is a fast, sensitive, and reliable prenatal diagnostic biochemical approach. This approach could overcome the challenge of the lack of genetic analysis for families with at-risk cblC defect fetuses.
Collapse
Affiliation(s)
- Ting Chen
- Department of Pediatric Endocrinology and Genetic, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Yangpu District, Shanghai, 200092, China.,Center for Prenatal Diagnosis, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Lili Liang
- Department of Pediatric Endocrinology and Genetic, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Yangpu District, Shanghai, 200092, China.,Center for Prenatal Diagnosis, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Huiwen Zhang
- Department of Pediatric Endocrinology and Genetic, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Yangpu District, Shanghai, 200092, China.,Center for Prenatal Diagnosis, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Jun Ye
- Department of Pediatric Endocrinology and Genetic, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Yangpu District, Shanghai, 200092, China.,Center for Prenatal Diagnosis, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Wenjuan Qiu
- Department of Pediatric Endocrinology and Genetic, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Yangpu District, Shanghai, 200092, China.,Center for Prenatal Diagnosis, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Bing Xiao
- Department of Pediatric Endocrinology and Genetic, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Yangpu District, Shanghai, 200092, China.,Center for Prenatal Diagnosis, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Hong Zhu
- Center for Prenatal Diagnosis, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Lei Wang
- Center for Prenatal Diagnosis, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Feng Xu
- Department of Pediatric Endocrinology and Genetic, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Yangpu District, Shanghai, 200092, China.,Center for Prenatal Diagnosis, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Zhuwen Gong
- Department of Pediatric Endocrinology and Genetic, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Yangpu District, Shanghai, 200092, China.,Center for Prenatal Diagnosis, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Xuefan Gu
- Department of Pediatric Endocrinology and Genetic, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Yangpu District, Shanghai, 200092, China.,Center for Prenatal Diagnosis, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Lianshu Han
- Department of Pediatric Endocrinology and Genetic, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Yangpu District, Shanghai, 200092, China. .,Center for Prenatal Diagnosis, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
62
|
Hemolytic Uremic Syndrome Due to Methylmalonic Acidemia and Homocystinuria in an Infant: A Case Report and Literature Review. CHILDREN-BASEL 2021; 8:children8020112. [PMID: 33562640 PMCID: PMC7915400 DOI: 10.3390/children8020112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/29/2021] [Accepted: 02/02/2021] [Indexed: 12/20/2022]
Abstract
Methylmalonic acidemia and homocystinuria cobalamin C (cblC) type is the most common inborn error of the intracellular cobalamin metabolism, associated with multisystem involvement and high mortality rates, especially in the early-onset form of the disease. Hemolytic uremic syndrome (HUS) is a rare manifestation and needs to be distinguished from other causes of renal thrombotic microangiopathy. We describe a case of a 3-month-old infant, with failure to thrive, hypotonia and pallor, who developed HUS in the setting of cblC deficit, along with dilated cardiomyopathy, and presented delayed response to optic stimulation in visual evoked potentials, as well as enlarged bilateral subarachnoid spaces and delayed myelination in brain magnetic resonance imaging. Renal damage was reversed, while neurodevelopmental profile and eye contact improved after supplementation with parenteral hydroxycobalamin, oral folic acid, betaine and levocarnitine. Homozygous mutation of c.271dupA in the MMACHC gene was ultimately detected. In this report, we highlight the diagnostic challenges as well as the significance of early recognition and multidisciplinary management of this unusual condition. A brief review of published case reports of early-onset cblC deficit and related HUS is depicted, pointing out the initial clinical presentation, signs of renal damage and outcome, MMACHC gene type of mutations and accompanying extra-renal manifestations.
Collapse
|
63
|
Padma Srivastava MV, Agarwal A, Upadhyay V, Gupta A, Garg A, Vishnu V, Rajan R, Singh M, Bhatia R. Cobalamin c disease: Cognitive dysfunction, spastic ataxic paraparesis, and cerebral white matter hyperintensities in a genetic but easily treatable cause! Ann Indian Acad Neurol 2021; 24:997-999. [PMID: 35359513 PMCID: PMC8965946 DOI: 10.4103/aian.aian_729_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/10/2020] [Accepted: 07/29/2020] [Indexed: 11/04/2022] Open
|
64
|
Ma H, Tang Z, Xiao F, Li L, Li Y, Tang W, Chen L, Kang W, Lu Y, Dong X, Cheng G, Wang L, Lu W, Yang L, Ni Q, Peng X, Wang Y, Cao Y, Wu B, Zhou W, Zhuang D, Lin G, Wang H. Neonatal Metabolic Acidosis in the Neonatal Intensive Care Unit: What Are the Genetic Causes? Front Pediatr 2021; 9:727301. [PMID: 34733806 PMCID: PMC8558493 DOI: 10.3389/fped.2021.727301] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/20/2021] [Indexed: 11/13/2022] Open
Abstract
Neonatal metabolic acidosis (NMA) is a common problem, particularly in critically ill patients in neonatal intensive care units (NICUs). Complex etiologies and atypical clinical signs make diagnosis difficult; thus, it is crucial to investigate the underlying causes of NMA rapidly and provide disorder-specific therapies. Our study aims to provide an overview of the genetic causes of NMA in patients from NICUs. We performed next-generation sequencing (NGS) on neonates with NMA from January 2016 to December 2019. Clinical features, genetic diagnoses, and their effects on clinical interventions were collected for analysis. In the 354 enrolled patients, 131 (37%) received genetic diagnoses; 95 (72.5%) of them were autosomal recessively inherited diseases. Two hundred and fifteen variants spanning 57 genes were classified as pathogenic (P) or likely pathogenic (LP) in 131 patients. The leading cause was metabolic disorders due to 35 genes found in 89 patients (68%). The other 42 NMA patients (32%) with 22 genes had malformations and renal, neuromuscular, and immune-hematological disorders. Seven genes (MMUT, MMACHC, CHD7, NPHS1, OTC, IVD, and PHOX2B) were noted in more than four patients, accounting for 48.9% (64/131) of the identified P/LP variants. Forty-six diagnosed patients with uncorrected NMA died or gave up. In conclusion, 37% of neonates with metabolic acidosis had genetic disorders. Next-generation sequencing should be considered when investigating the etiology of NMA in NICUs. Based on early molecular diagnoses, valuable treatment options can be provided for some genetic diseases to achieve better outcomes.
Collapse
Affiliation(s)
- Haiyan Ma
- Department of Neonatology, Zhuhai Women and Children's Hospital, Zhuhai, China
| | - Zezhong Tang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Feifan Xiao
- Center for Molecular Medicine, Children's Hospital of Fudan University, Shanghai, China
| | - Long Li
- Department of Neonatology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Yangfang Li
- Department of Neonatology, Kunming Children's Hospital, Kunming, China
| | - Wenyan Tang
- Department of Neonatology, Jiangxi Maternal Hospital, Nanchang, China
| | - Liping Chen
- Department of Neonatology, Jiangxi Provincial Children's Hospital, Nanchang, China
| | - Wenqing Kang
- Department of Neonatology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Yulan Lu
- Center for Molecular Medicine, Children's Hospital of Fudan University, Shanghai, China
| | - Xinran Dong
- Center for Molecular Medicine, Children's Hospital of Fudan University, Shanghai, China
| | - Guoqiang Cheng
- Department of Neonatology, Children's Hospital of Fudan University, Key Laboratory of Neonatal Diseases, Ministry of Health, Shanghai, China
| | - Laishuan Wang
- Department of Neonatology, Children's Hospital of Fudan University, Key Laboratory of Neonatal Diseases, Ministry of Health, Shanghai, China
| | - Wei Lu
- Department of Endocrinology and Inherited Metabolic Diseases, Children's Hospital of Fudan University, Shanghai, China
| | - Lin Yang
- Department of Endocrinology and Inherited Metabolic Diseases, Children's Hospital of Fudan University, Shanghai, China
| | - Qi Ni
- Center for Molecular Medicine, Children's Hospital of Fudan University, Shanghai, China
| | - Xiaomin Peng
- Center for Molecular Medicine, Children's Hospital of Fudan University, Shanghai, China
| | - Yao Wang
- Center for Molecular Medicine, Children's Hospital of Fudan University, Shanghai, China
| | - Yun Cao
- Department of Neonatology, Children's Hospital of Fudan University, Key Laboratory of Neonatal Diseases, Ministry of Health, Shanghai, China
| | - Bingbing Wu
- Center for Molecular Medicine, Children's Hospital of Fudan University, Shanghai, China
| | - Wenhao Zhou
- Center for Molecular Medicine, Children's Hospital of Fudan University, Shanghai, China.,Department of Neonatology, Children's Hospital of Fudan University, Key Laboratory of Neonatal Diseases, Ministry of Health, Shanghai, China
| | - Deyi Zhuang
- Xiamen Key Laboratory of Neonatal Diseases, Xiamen Children's Hospital, Xiamen, China
| | - Guang Lin
- Department of Neonatology, Zhuhai Women and Children's Hospital, Zhuhai, China
| | - Huijun Wang
- Center for Molecular Medicine, Children's Hospital of Fudan University, Shanghai, China
| |
Collapse
|
65
|
Li Q, Jin H, Liu Y, Rong Y, Yang T, Nie X, Song W. Determination of Cytokines and Oxidative Stress Biomarkers in Cognitive Impairment Induced by Methylmalonic Acidemia. Neuroimmunomodulation 2021; 28:178-186. [PMID: 34340239 DOI: 10.1159/000511590] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 09/06/2020] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Methylmalonic acidemia (MMA) is the most common organic acidemia in children. Many patients with MMA suffered from cognitive impairments. The aim of this study was to identify the significance of cytokines and oxidative stress biomarkers in MMA-induced cognitive impairment. METHODS We enrolled 64 children with combined MMA and homocystinuria and 64 age- and sex-matched healthy volunteers. Participants were subsequently classified as with or without cognitive impairments using a uniform neuropsychological assessment test. Serum samples were collected. The serum levels of cytokines and oxidative stress biomarkers were measured using the ELISA or chemical methods. RESULTS Compared to control group, the serum levels of tumor necrosis factor (TNF)-α, interleukin (IL)-6, malondialdehyde (MDA), and nitric oxide (NO) in the MMA patients increased markedly (p < 0.05); glutathione (GSH) and superoxide dismutase (SOD) decreased obviously (p < 0.01). The levels of IL-6, TNF-α, NO, and MDA in the serum were negatively associated with DQ or IQ scores. The levels of GSH and SOD in the serum were positively correlated with DQ or IQ scores. After receiver operating characteristic curve analysis, NO was the most useful individual marker for distinguishing the cognitive dysfunction, corresponding to the area under ROC curve (AUC) of 0.82 (95% CI, 0.74-0.91), sensitivity of 76.60%, and specificity of 80.25%. GSH and MDA were also useful for diagnosis of MMA-induced cognitive dysfunction, corresponding to the AUC of 0.80 (95% CI, 0.70-0.89), and 0.73 (95% CI, 0.63-0.82), respectively. The sensitivity and specificity of GSH were 72.34 and 80.25%, respectively. The sensitivity and specificity of MDA were 85.11 and 51.85%, respectively. CONCLUSIONS The high-concentration methylmalonic acid in the blood induced immune cells to release pro-inflammatory cytokines such as TNF-α and IL-6. These cytokines and high-concentration methylmalonic acid stimulated the immune cells to produce reactive oxygen species (ROS) and reactive nitrogen species (RNS). The serum methylmalonic acid, cytokines, ROS, and RNS were across the blood-brain barrier and induced cognitive impairment. The small molecule substances such as serum NO, MDA, and GSH participated in the process of neuroinflammation and oxidative stress injury induced by MMA and could be useful for distinguishing the cognitive impairment.
Collapse
Affiliation(s)
- Qiliang Li
- Department of Medical Laboratory, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Hong Jin
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Ying Liu
- Department of Medical Laboratory, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Yu Rong
- Department of Rehabilitation, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Tana Yang
- Department of Medical Laboratory, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Xiaolu Nie
- Center for Clinical Epidemiology and Evidence-Based Medicine, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Wenqi Song
- Department of Medical Laboratory, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| |
Collapse
|
66
|
Zhu L, Hu C, Ye S, Zhang C. Early Onset Predominantly Diffuse Lung Disease in an Infant of Combined Methylmalonic Acidemia With Hyperhomocysteinemia Cobalamin C Type. Indian Pediatr 2020. [PMID: 33231183 PMCID: PMC7678578 DOI: 10.1007/s13312-020-2045-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lvchang Zhu
- Department of Pediatric Intensive Care Unit, The Children's Hospital of Zhejiang University School of Medicine, 3333 Binsheng Road, Hangzhou, 310003, Zhejiang Province, China
| | - Chanchan Hu
- Department of Pediatric Intensive Care Unit, The Children's Hospital of Zhejiang University School of Medicine, 3333 Binsheng Road, Hangzhou, 310003, Zhejiang Province, China
| | - Sheng Ye
- Department of Pediatric Intensive Care Unit, The Children's Hospital of Zhejiang University School of Medicine, 3333 Binsheng Road, Hangzhou, 310003, Zhejiang Province, China
| | - Chenmei Zhang
- Department of Pediatric Intensive Care Unit, The Children's Hospital of Zhejiang University School of Medicine, 3333 Binsheng Road, Hangzhou, 310003, Zhejiang Province, China.
| |
Collapse
|
67
|
Chang KJ, Zhao Z, Shen HR, Bing Q, Li N, Guo X, Hu J. Adolescent/adult-onset homocysteine remethylation disorders characterized by gait disturbance with/without psychiatric symptoms and cognitive decline: a series of seven cases. Neurol Sci 2020; 42:1987-1993. [PMID: 33000330 DOI: 10.1007/s10072-020-04756-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 09/23/2020] [Indexed: 12/11/2022]
Abstract
Homocysteine remethylation disorders are rare inherited disorders caused by a deficient activity of the enzymes involved in the remethylation of homocysteine to methionine. The adolescent/adult-onset remethylation disorders are rarely reported. We analyzed the clinical and genetic characteristics of seven cases with adolescent/adult remethylation disorders, including 5 cases of the cobalamin C disease (cblC) and 2 cases of the methylenetetrahydrofolate reductase deficiency. The average onset age was 21.1 (range 14 to 40) years. All patients complained of gait disturbances. Other common symptoms included psychiatric symptoms (5/7) and cognitive decline (4/7). Acute encephalopathy, dysarthria, anorexia, vomiting, ketoacidosis, anemia, cataract, and hand tremor were also observed. The mean total homocysteine in serum when the patients were diagnosed was 94.6 (range 53.1-154.5) mol/L. Electrophysiological studies revealed neuropathy in the lower limbs (6/7). The brain MRI showed reversible altered signal from the dorsal portions of the cerebellar hemispheres (1/7), periventricular hyperintensity (2/7), and delayed/impaired myelination (2/7). The sural nerve biopsy performed in one case showed a modest loss of myelinated fibers. Five patients showed heterozygous mutations of the MMACHC gene, including c.482G>A (5/5), c.609G>A (2/5), and c.658-660delAAG (3/5). Two patients showed heterozygous mutations of the MTHFR gene, including c.698C>A (2/2), c.698C>G (1/2), and c.236+1G>A (1/2). The patients responded well to the treatments with significant improvements. Adolescent/adult-onset remethylation disorders are easily misdiagnosed. We recommend testing the serum homocysteine concentrations in young/adult patients with unexplained neuro-psychotic symptoms. Furthermore, individuals with significantly elevated serum homocysteine concentrations should be further tested by organic acid screening and genetic analysis.
Collapse
Affiliation(s)
- Kai-Jie Chang
- Department of Neuromuscular Disorders, The Third Hospital of Hebei Medical University, No 139 Road Ziqiang, Shijiazhuang, 050051, People's Republic of China
| | - Zhe Zhao
- Department of Neuromuscular Disorders, The Third Hospital of Hebei Medical University, No 139 Road Ziqiang, Shijiazhuang, 050051, People's Republic of China
| | - Hong-Rui Shen
- Department of Neuromuscular Disorders, The Third Hospital of Hebei Medical University, No 139 Road Ziqiang, Shijiazhuang, 050051, People's Republic of China
| | - Qi Bing
- Department of Neuromuscular Disorders, The Third Hospital of Hebei Medical University, No 139 Road Ziqiang, Shijiazhuang, 050051, People's Republic of China
| | - Nan Li
- Department of Neuromuscular Disorders, The Third Hospital of Hebei Medical University, No 139 Road Ziqiang, Shijiazhuang, 050051, People's Republic of China
| | - Xuan Guo
- Department of Neuromuscular Disorders, The Third Hospital of Hebei Medical University, No 139 Road Ziqiang, Shijiazhuang, 050051, People's Republic of China
| | - Jing Hu
- Department of Neuromuscular Disorders, The Third Hospital of Hebei Medical University, No 139 Road Ziqiang, Shijiazhuang, 050051, People's Republic of China.
| |
Collapse
|
68
|
Chen RY, Li XZ, Lin Q, Zhu Y, Shen YY, Xu QY, Zhu XM, Chen LQ, Wu HY, Chen XQ. Proteinuria as a presenting sign of combined methylmalonic acidemia and homocysteinemia: case report. BMC MEDICAL GENETICS 2020; 21:183. [PMID: 32957924 PMCID: PMC7507264 DOI: 10.1186/s12881-020-01122-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 09/10/2020] [Indexed: 11/24/2022]
Abstract
Background Disorders of the metabolism and absorption of vitamin B12 can lead to decrease in activity of methionine synthetase and methylmalonate coenzyme A mutase (MMUT), which results in increased levels of methylmalonic acid and homocysteine in blood and urine. Often, combined methylmalonic acidemia (MMA) and homocysteinemia is misdiagnosed due to a lack of specific symptoms. The clinical manifestations are diverse, but proteinuria as the initial presentation is rare. Case presentation Two cases of MMA with homocysteinemia in children are reported. Proteinuria were a primary presenting symptom, followed by anemia and neurologic symptoms (frequent convulsions and unstable walking, respectively). Screening of amino acids and acyl carnitine in serum showed that the propionyl carnitine:acetylcarnitine ratio increased. Profiling of urinary organic acids by gas chromatography–mass spectrometry revealed high levels of methylmalonic acid. Homocysteine content in blood was increased. Comprehensive genetic analyses of peripheral blood-derived DNA demonstrated heterozygous variants of methylmalonic aciduria type C and homocystinuria (MMACHC) and amnionless (AMN) genes in our two patients, respectively. After active treatment, the clinical manifestations in Case 1 were relieved and urinary protein ceased to be observed; Case 2 had persistent proteinuria and was lost to follow-up. Conclusions Analyses of the organic acids in blood and urine suggested MMA combined with homocysteinemia. In such diseases, reports of renal damage are uncommon and proteinuria as the initial presentation is rare. Molecular analysis indicated two different genetic causes. Although the pathologic mechanisms were related to vitamin B12, the severity and prognosis of renal lesions were different. Therefore, gene detection provides new insights into inherited metabolic diseases.
Collapse
Affiliation(s)
- Ru-Yue Chen
- Department of Nephrology and Immunology, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xiao-Zhong Li
- Department of Nephrology and Immunology, Children's Hospital of Soochow University, Suzhou, Jiangsu, China.
| | - Qiang Lin
- Department of Nephrology and Immunology, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yun Zhu
- Department of Nephrology and Immunology, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yun-Yan Shen
- Department of Nephrology and Immunology, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Qin-Ying Xu
- Department of Nephrology and Immunology, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xue-Ming Zhu
- Department of Pathology, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Lin-Qi Chen
- Department of Endocrinology, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Hai-Ying Wu
- Department of Endocrinology, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xu-Qin Chen
- Department of Neurology, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
69
|
Wilson A, Cruz V, Kronick JB. Development of infantile tremor syndrome after initiation of hydroxycobalamin treatment in an infant with a late diagnosis of cobalamin C disorder. JIMD Rep 2020; 55:22-25. [PMID: 32905057 PMCID: PMC7463060 DOI: 10.1002/jmd2.12145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/14/2020] [Accepted: 05/22/2020] [Indexed: 12/29/2022] Open
Abstract
Combined methylmalonic aciduria and homocystinuria (cobalamin C deficiency, cblC) is a well-described disorder of vitamin B12 metabolism caused by mutations in the MMACHC gene with multisystemic manifestations. While there is no cure, combined treatment with intramuscular hydroxycobalamin and oral betaine may reduce the severity of symptoms and improve clinical outcome. We report a female patient diagnosed with late-onset cobalamin C deficiency at the age of 8 months who presented with developmental regression and severe dermatitis. She developed a movement disorder after initiation of hydroxycobalamin treatment. Similar movement disorders have been described in patients with nutritional vitamin B12 deficiencies following cobalamin supplementation but have not previously been reported in patients with cobalamin C disorder. The movement disorder in our patient gradually resolved with clonazepam treatment, despite no seizure activity detected on EEG. She was eventually weaned off the clonazepam and the abnormal movements have not recurred. The patient remains developmentally delayed but is showing no other symptoms related to cobalamin C deficiency. The patient has a younger affected sibling who was treated from birth and who is physically and developmentally entirely normal; she did not have abnormal movements after treatment with hydroxycobalamin was initiated. There is no clear consensus on the cause of movement disorders that develop following initiation of intramuscular vitamin B12 treatment.
Collapse
Affiliation(s)
- Ashley Wilson
- Division of Clinical & Metabolic GeneticsThe Hospital for Sick ChildrenTorontoCanada
| | - Vivian Cruz
- Division of Clinical & Metabolic GeneticsThe Hospital for Sick ChildrenTorontoCanada
| | - Jonathan B. Kronick
- Division of Clinical & Metabolic GeneticsThe Hospital for Sick ChildrenTorontoCanada
- Department of PediatricsThe University of TorontoTorontoCanada
| |
Collapse
|
70
|
Yang L, Guo B, Li X, Liu X, Wei X, Guo L. Brain MRI features of methylmalonic acidemia in children: the relationship between neuropsychological scores and MRI findings. Sci Rep 2020; 10:13099. [PMID: 32753589 PMCID: PMC7403351 DOI: 10.1038/s41598-020-70113-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 07/23/2020] [Indexed: 12/28/2022] Open
Abstract
Methylmalonic acidemia (MMA) is a severe, heterogeneous disorder of methylmalonate and cobalamin (cbl; vitamin B12) metabolism with a poor prognosis that can cause brain damage. Identifying the magnetic resonance imaging (MRI) findings of MMA might help to make accurate diagnoses earlier in the disease course and exploring the relationship between neuropsychological scores and MRI findings, when therapy is more effective and to improve therapeutic efficacy. Cerebral MRI studies from 37 children with MMA were evaluated by a neuroradiologist. Clinical and imaging data were collected from each patient. All tests were performed during routine investigations and in accordance with the ethical principles of the Declaration of Helsinki. Informed consent was obtained from the guardians of all patients for inclusion in the study. The most common and significant findings were periventricular white matter changes (78.4%), ventricular dilation (29.7%) and cerebral atrophy (40.5%). According to the developmental quotient, the 37 patients were divided into the normal intelligence subgroup (NI, developmental quotient ≥ 85) and the low intelligence subgroup (LI, developmental quotient < 85). The incidence of corpus callosal thinning, cortical atrophy, subcortical white matter changes, and ventricular dilation (grades 0-3) was significantly higher in the LI subgroup than in the NI subgroup (P < 0.05). The incidence of no-mild and moderate-severe ventricular dilation was significantly higher in the LI subgroup than in the NI subgroup (P < 0.05). Ventricular dilatation, cerebral atrophy, white matter changes, and corpus callosal thinning are the main MRI abnormalities in MMA patients, and these manifestations are significantly correlated with delayed development in children.
Collapse
Affiliation(s)
- Linfeng Yang
- Jinan Maternal and Child Care Hospital, Jian-Guo Xiao Jing-San Road No. 2, Jinan, 250001, Shandong, People's Republic of China
| | - Bin Guo
- Jinan Maternal and Child Care Hospital, Jian-Guo Xiao Jing-San Road No. 2, Jinan, 250001, Shandong, People's Republic of China
| | - Xue Li
- Jinan Maternal and Child Care Hospital, Jian-Guo Xiao Jing-San Road No. 2, Jinan, 250001, Shandong, People's Republic of China
| | - Xiangyu Liu
- Jinan Maternal and Child Care Hospital, Jian-Guo Xiao Jing-San Road No. 2, Jinan, 250001, Shandong, People's Republic of China
| | - Xinhong Wei
- Department of MRI Room, Shandong Medical Imaging Research Institute, Cheeloo College of Medicine, Shandong University, Jing-wu Road No. 324, Jinan, 250021, Shandong, People's Republic of China
| | - Lingfei Guo
- Department of MRI Room, Shandong Medical Imaging Research Institute, Cheeloo College of Medicine, Shandong University, Jing-wu Road No. 324, Jinan, 250021, Shandong, People's Republic of China.
| |
Collapse
|
71
|
Sloan JL, Achilly NP, Arnold ML, Catlett JL, Blake T, Bishop K, Jones M, Harper U, English MA, Anderson S, Trivedi NS, Elkahloun A, Hoffmann V, Brooks BP, Sood R, Venditti CP. The vitamin B12 processing enzyme, mmachc, is essential for zebrafish survival, growth and retinal morphology. Hum Mol Genet 2020; 29:2109-2123. [PMID: 32186706 PMCID: PMC7399538 DOI: 10.1093/hmg/ddaa044] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/10/2020] [Accepted: 03/11/2020] [Indexed: 12/16/2022] Open
Abstract
Cobalamin C (cblC) deficiency, the most common inborn error of intracellular cobalamin metabolism, is caused by mutations in MMACHC, a gene responsible for the processing and intracellular trafficking of vitamin B12. This recessive disorder is characterized by a failure to metabolize cobalamin into adenosyl- and methylcobalamin, which results in the biochemical perturbations of methylmalonic acidemia, hyperhomocysteinemia and hypomethioninemia caused by the impaired activity of the downstream enzymes, methylmalonyl-CoA mutase and methionine synthase. Cobalamin C deficiency can be accompanied by a wide spectrum of clinical manifestations, including progressive blindness, and, in mice, manifests with very early embryonic lethality. Because zebrafish harbor a full complement of cobalamin metabolic enzymes, we used genome editing to study the loss of mmachc function and to develop the first viable animal model of cblC deficiency. mmachc mutants survived the embryonic period but perished in early juvenile life. The mutants displayed the metabolic and clinical features of cblC deficiency including methylmalonic acidemia, severe growth retardation and lethality. Morphologic and metabolic parameters improved when the mutants were raised in water supplemented with small molecules used to treat patients, including hydroxocobalamin, methylcobalamin, methionine and betaine. Furthermore, mmachc mutants bred to express rod and/or cone fluorescent reporters, manifested a retinopathy and thin optic nerves (ON). Expression analysis using whole eye mRNA revealed the dysregulation of genes involved in phototransduction and cholesterol metabolism. Zebrafish with mmachc deficiency recapitulate the several of the phenotypic and biochemical features of the human disorder, including ocular pathology, and show a response to established treatments.
Collapse
Affiliation(s)
- Jennifer L Sloan
- Organic Acid Research Section, Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD, 20892 USA
| | - Nathan P Achilly
- Organic Acid Research Section, Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD, 20892 USA
| | - Madeline L Arnold
- Organic Acid Research Section, Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD, 20892 USA
| | - Jerrel L Catlett
- Organic Acid Research Section, Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD, 20892 USA
| | - Trevor Blake
- Zebrafish Core Facility, Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, 20892 USA
| | - Kevin Bishop
- Zebrafish Core Facility, Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, 20892 USA
| | - Marypat Jones
- Genomics Core, Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, Bethesda, MD, 20892 USA
| | - Ursula Harper
- Genomics Core, Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, Bethesda, MD, 20892 USA
| | - Milton A English
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, Bethesda, MD, 20892 USA
| | - Stacie Anderson
- Flow Cytometry, National Human Genome Research Institute, Bethesda, MD, 20892 USA
| | - Niraj S Trivedi
- Social Behavioral Research Branch, National Human Genome Research Institute, Bethesda, MD, 20892 USA
| | - Abdel Elkahloun
- Microarray Core, National Human Genome Research Institute, Bethesda, MD, 20892 USA
| | - Victoria Hoffmann
- Diagnostic and Research Services Branch, Division of Veterinary Resources, Office of the Director, National Institutes of Health, Bethesda, MD, 20892 USA
| | - Brian P Brooks
- Office of the Clinical Director, National Eye Institute, Bethesda, MD, 20892 USA
| | - Raman Sood
- Zebrafish Core Facility, Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, 20892 USA
| | - Charles P Venditti
- Organic Acid Research Section, Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD, 20892 USA
| |
Collapse
|
72
|
De Biase I, Gherasim C, La'ulu SL, Asamoah A, Longo N, Yuzyuk T. Laboratory evaluation of homocysteine remethylation disorders and classic homocystinuria: Long-term follow-up using a cohort of 123 patients. Clin Chim Acta 2020; 509:126-134. [PMID: 32533987 DOI: 10.1016/j.cca.2020.06.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/04/2020] [Accepted: 06/06/2020] [Indexed: 12/14/2022]
Abstract
The homocystinurias, caused by defects of remethylation and cystathionine-beta-synthase (CBS) deficiency, are characterized by elevated homocysteine and abnormal methionine levels. Various treatments, including injectable hydroxycobalamin and oral betaine, aim to reduce homocysteine toxicity and normalize methionine, but only limited biochemical data has been reported assessing biochemical response to treatment. We analyzed laboratory results in 812 plasma samples from 56 patients with remethylation disorders and 67 patients with CBS deficiency. Total plasma homocysteine (tHcys) decreased with therapy, but rarely normalized regardless of treatment, with highest levels seen in CBS (116 ± 79 μmol/L) and MTHFR (102 ± 56 μmol/L) deficiencies. In CBS deficiency, tHcys correlated positively with methionine (rs = 0.51, p < 0.0001) and inversely with cystine (rs = -0.57, p < 0.0001) consistent with a metabolic block downstream of homocysteine. In patients with remethylation disorders, methionine was mostly normal on therapy, and inversely correlated with tHcys (rs = -0.57, p < 0.0001) demonstrating effectiveness of hydroxycobalamin and/or betaine in stimulating tHcys remethylation. Betaine also significantly increased sarcosine from its pre-treatment level on average 19-fold in remethylation disorders and 3-fold in CBS deficiency, with sarcosine > 5 μmol/L being 97% sensitive and 95% specific for betaine therapy. These results show that existing therapies improve sulfur amino acid metabolism without completely normalizing it and that sarcosine can determine compliance to betaine supplementation.
Collapse
Affiliation(s)
- Irene De Biase
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, United States; ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, UT, United States.
| | - Carmen Gherasim
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, United States; Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, United States(1)
| | - Sonia L La'ulu
- ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, UT, United States
| | - Alexander Asamoah
- Department of Pediatrics, University of Louisville, Louisville, KY, United States
| | - Nicola Longo
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, United States; ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, UT, United States; Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Tatiana Yuzyuk
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, United States; ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, UT, United States
| |
Collapse
|
73
|
Castro VL, Reyes JF, Reyes-Nava NG, Paz D, Quintana AM. Hcfc1a regulates neural precursor proliferation and asxl1 expression in the developing brain. BMC Neurosci 2020; 21:27. [PMID: 32522152 PMCID: PMC7288482 DOI: 10.1186/s12868-020-00577-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/05/2020] [Indexed: 12/12/2022] Open
Abstract
Background Precise regulation of neural precursor cell (NPC) proliferation and differentiation is essential to ensure proper brain development and function. The HCFC1 gene encodes a transcriptional co-factor that regulates cell proliferation, and previous studies suggest that HCFC1 regulates NPC number and differentiation. However, the molecular mechanism underlying these cellular deficits has not been completely characterized. Methods Here we created a zebrafish harboring mutations in the hcfc1a gene (the hcfc1aco60/+ allele), one ortholog of HCFC1, and utilized immunohistochemistry and RNA-sequencing technology to understand the function of hcfc1a during neural development. Results The hcfc1aco60/+ allele results in an increased number of NPCs and increased expression of neuronal and glial markers. These neural developmental deficits are associated with larval hypomotility and the abnormal expression of asxl1, a polycomb transcription factor, which we identified as a downstream effector of hcfc1a. Inhibition of asxl1 activity and/or expression in larvae harboring the hcfc1aco60/+ allele completely restored the number of NPCs to normal levels. Conclusion Collectively, our data demonstrate that hcfc1a regulates NPC number, NPC proliferation, motor behavior, and brain development.
Collapse
Affiliation(s)
- Victoria L Castro
- Department of Biological Sciences and Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Joel F Reyes
- Department of Biological Sciences and Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Nayeli G Reyes-Nava
- Department of Biological Sciences and Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX, 79968, USA
| | - David Paz
- Department of Biological Sciences and Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Anita M Quintana
- Department of Biological Sciences and Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX, 79968, USA.
| |
Collapse
|
74
|
Wen LY, Guo YK, Shi XQ. Pulmonary hypertension in late-onset Methylmalonic Aciduria and Homocystinemia: a case report. BMC Pediatr 2020; 20:243. [PMID: 32443968 PMCID: PMC7243308 DOI: 10.1186/s12887-020-02130-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 05/06/2020] [Indexed: 12/25/2022] Open
Abstract
Background Methylmalonic Aciduria and Homocystinemia, cobalamin C (cblC) is an inherited disease of vitamin B12 metabolism with a wide spectrum of clinical manifestations. cblC presenting with pulmonary hypertension (PH) as leading sympotom is rare and easily misdiagnosed because of limited awareness. Timely diagnosis is crucial by the relentless progression without appropriate treatment. Case presentation We reported a 12-year-old girl with a 3-year history of progressively reduced activity tolerance and a 3-month history of orthopnea. Metabolic testing revealed increased levels of plasma homocysteine and urine methylmalonic acid. cblC deficiency was subsequently confirmed by genetic testing. The patient was treated with hydroxocobalamin, betaine, folinic acid and levocarnitine for cblC disease. Sildenafil, bosentan, spironolactone and hydrochlorothiazide was administrated for PH and right heart failure. At 3-month follow-up, she had an apparent resolution of dyspnea and cyanosis. Metabolic abnormalities resolved the decrease of plasma homocysteine and urine methylmalonic acid. A right heart catheterization showed a reduced pulmonary pressure. Conclusions This case emphasizes the importance of an early diagnosis and initiation of treatment for cblC deficiency. Unexplained PH in children and young adults should prompt metabolic screening for the differential diagnosis.
Collapse
Affiliation(s)
- Ling-Yi Wen
- Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ying-Kun Guo
- Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiao-Qing Shi
- Department of Cardiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, 20# Section 3 South Renmin Road, Chengdu, Sichuan, China.
| |
Collapse
|
75
|
Wei Y, Guan Y, Hao H. Late-onset cobalamin C disease presenting with acute progressive polyneuropathy. Muscle Nerve 2020; 61:E37-E40. [PMID: 32208535 DOI: 10.1002/mus.26865] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 03/10/2020] [Accepted: 03/16/2020] [Indexed: 01/06/2023]
Affiliation(s)
- Yanping Wei
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuzhou Guan
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Honglin Hao
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
76
|
Philipponnet C, Desenclos J, Brailova M, Aniort J, Kemeny JL, Deville C, Fremeaux-Bacchi V, Souweine B, Heng AE. Cobalamin c deficiency associated with antifactor h antibody-associated hemolytic uremic syndrome in a young adult. BMC Nephrol 2020; 21:96. [PMID: 32164588 PMCID: PMC7066776 DOI: 10.1186/s12882-020-01748-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 02/27/2020] [Indexed: 02/06/2023] Open
Abstract
Background Thrombotic microangiopathy (TMA) syndromes are characterized by the association of hemolytic anemia, thrombocytopenia and organ injury due to arteriolar and capillary thrombosis. Case presentation We report the first case of adult onset cobalamin C (Cbl C) disease associated with anti-factor H antibody-associated hemolytic uremic syndrome (HUS). A 19-year-old woman was admitted to the nephrology department owing to acute kidney failure, proteinuria, and hemolytic anemia with schizocytes. TMA was diagnosed and plasma exchanges were started in emergency. Exhaustive analyses showed 1) circulating anti factor H antibody and 2) hyperhomocysteinemia, hypomethioninemia and high levels of methylmalonic aciduria pointing towards Clb C disease. Cbl C disease has been confirmed by methylmalonic aciduria and homocystinuria type C protein gene sequencing revealing two heterozygous pathogenic variants. The kidney biopsy showed 1) intraglomerular and intravascular thrombi 2) noticeable thickening of the capillary wall with a duplication aspect of the glomerular basement membrane and a glomerular capillary wall IgM associated with Cbl C disease related TMA. We initiated treatment including hydroxycobalamin, folinic acid, betaine and levocarnitine and Eculizumab. Rituximab infusions were performed allowing a high decrease in anti-factor H antibody rate. Six month after the disease onset, Eculizumab was weaning and vitaminotherapy continued. Outcome was favorable with a dramatic improvement in kidney function. Conclusion TMA with renal involvement can have a complex combination of risk factors including anti-FH autoantibody in the presence of cblC deficiency.
Collapse
Affiliation(s)
- C Philipponnet
- Nephrology, Dialysis and Transplantation Department, CHU Clermont Ferrand, University Clermont Auvergne, Clermont Ferrand, France.
| | - J Desenclos
- Nephrology, Dialysis and Transplantation Department, CHU Clermont Ferrand, University Clermont Auvergne, Clermont Ferrand, France
| | - M Brailova
- Biochemistry Department, CHU Clermont Ferrand, University Clermont Auvergne, Clermont Ferrand, France
| | - J Aniort
- Nephrology, Dialysis and Transplantation Department, CHU Clermont Ferrand, University Clermont Auvergne, Clermont Ferrand, France
| | - J L Kemeny
- Anatomy and Pathology Department, CHU Clermont Ferrand, University Clermont Auvergne, Clermont Ferrand, France
| | - C Deville
- Nephrology, Dialysis and Transplantation Department, CHU Clermont Ferrand, University Clermont Auvergne, Clermont Ferrand, France
| | - V Fremeaux-Bacchi
- Assistance Publique-Hopitaux de Paris; Laboratory of Immunology, Georges Pompidou Hospital, Paris, France
| | - B Souweine
- Médecine intensive et réanimation, CHU Clermont Ferrand, University Clermont Auvergne, Clermont Ferrand, France
| | - A E Heng
- Nephrology, Dialysis and Transplantation Department, CHU Clermont Ferrand, University Clermont Auvergne, Clermont Ferrand, France
| |
Collapse
|
77
|
Zhang W, Yang Y, Peng W, Chang J, Mei Y, Yan L, Chen Y, Wei X, Liu Y, Wang Y, Feng Z. A 7-Year Report of Spectrum of Inborn Errors of Metabolism on Full-Term and Premature Infants in a Chinese Neonatal Intensive Care Unit. Front Genet 2020; 10:1302. [PMID: 31998365 PMCID: PMC6967400 DOI: 10.3389/fgene.2019.01302] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 11/26/2019] [Indexed: 12/26/2022] Open
Abstract
Inborn errors of metabolism (IEMs) have great repercussions in neonatal intensive care units (NICUs). However, the integrative analysis of the incidence for full-term and premature neonates of IEMs in NICUs have not been reported. In this study, we aimed to estimate the incidence of IEMs in the NICU population so as to better evaluate the impact of IEMs on Chinese NICUs. A total of 42,257 newborns (proportion of premature as 36.7%) enrolled to the largest Chinese NICU center for a sequential 7 years screen, and 66 were diagnosed with IEMs. The prevalence of IEMs in total, full-term, and premature infants was 1:640, 1:446, and 1:2,584, respectively. In spectrum of our NICU, diseases that cause endogenous intoxication like methylmalonic acidemia accounted for 93.9% (62/66), and this ratio was higher in full-term infants with 98.3% (59/60), while the most prevalent disease in premature newborn was hyperphenylalaninemia (50%, 3/6), respectively. The genetic analysis of 49 cases revealed 62 potentially pathogenic mutations in 10 well-documented pathogenic genes of IEMs, among which 21 were novel. In conclusion, differences in incidence and spectrum of full-term and premature births we obtained in NICU will provide diagnostic guidelines and therapeutic clues of neonatal IEMs for pediatricians.
Collapse
Affiliation(s)
- Wanqiao Zhang
- BaYi Children's Hospital, Seventh Medical Center of PLA General Hospital, Beijing, China.,National Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, Beijing, China.,Beijing Key Laboratory of Pediatric Organ Failure, Beijing, China
| | - Yao Yang
- BaYi Children's Hospital, Seventh Medical Center of PLA General Hospital, Beijing, China.,National Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, Beijing, China.,Beijing Key Laboratory of Pediatric Organ Failure, Beijing, China
| | - Wei Peng
- BaYi Children's Hospital, Seventh Medical Center of PLA General Hospital, Beijing, China.,National Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, Beijing, China.,Beijing Key Laboratory of Pediatric Organ Failure, Beijing, China
| | - Juan Chang
- BaYi Children's Hospital, Seventh Medical Center of PLA General Hospital, Beijing, China.,National Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, Beijing, China.,Beijing Key Laboratory of Pediatric Organ Failure, Beijing, China
| | - Yabo Mei
- BaYi Children's Hospital, Seventh Medical Center of PLA General Hospital, Beijing, China.,National Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, Beijing, China.,Beijing Key Laboratory of Pediatric Organ Failure, Beijing, China
| | - Lei Yan
- BaYi Children's Hospital, Seventh Medical Center of PLA General Hospital, Beijing, China.,National Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, Beijing, China.,Beijing Key Laboratory of Pediatric Organ Failure, Beijing, China
| | - Yuhan Chen
- BaYi Children's Hospital, Seventh Medical Center of PLA General Hospital, Beijing, China.,National Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, Beijing, China.,Beijing Key Laboratory of Pediatric Organ Failure, Beijing, China
| | - Xiujuan Wei
- BaYi Children's Hospital, Seventh Medical Center of PLA General Hospital, Beijing, China.,National Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, Beijing, China.,Beijing Key Laboratory of Pediatric Organ Failure, Beijing, China
| | - Yabin Liu
- BaYi Children's Hospital, Seventh Medical Center of PLA General Hospital, Beijing, China.,National Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, Beijing, China.,Beijing Key Laboratory of Pediatric Organ Failure, Beijing, China
| | - Yan Wang
- BaYi Children's Hospital, Seventh Medical Center of PLA General Hospital, Beijing, China.,National Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, Beijing, China.,Beijing Key Laboratory of Pediatric Organ Failure, Beijing, China
| | - Zhichun Feng
- BaYi Children's Hospital, Seventh Medical Center of PLA General Hospital, Beijing, China.,National Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, Beijing, China.,Beijing Key Laboratory of Pediatric Organ Failure, Beijing, China
| |
Collapse
|
78
|
Methylmalonic Acidemia Complicated by Homocystinuria Diseases: a Report of Three Cases. Adv Ther 2020; 37:630-636. [PMID: 31758516 DOI: 10.1007/s12325-019-01149-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Indexed: 01/30/2023]
Abstract
This study aims to improve our understanding of methylmalonic acidemia (MMA) complicated by homocystinuria disease by analyzing the clinical characteristics, treatment response and prognosis of three patients. Hyperhomocysteinemia and developmental retardation were present in all patients, epilepsy was present in one patient, and hemolytic uremic syndrome was present in one patient. The conditions of two patients were complicated by pulmonary arterial hypertension, one patient by left pulmonary vein ectopic drainage to the coronary sinus and the other by noncompaction of the ventricular myocardium. The two MMA patients with the complication of severe pulmonary arterial hypertension died because of late diagnosis and irregular treatment of MMA. Echocardiography is necessary for patients with combined MMA and homocystinuria, and these patients are susceptible to cardiovascular disease. When a patient with combined MMA and homocystinuria has the complication of severe pulmonary arterial hypertension, the prognosis is poor.
Collapse
|
79
|
Han L, Chen C, Guo F, Ye J, Peng Z, Qiu W, Wang Y, Li W, Zhang H, Liang L, Wang Y, Wang H, Ji X, Sun J, Gu X. Noninvasive prenatal diagnosis of cobalamin C (cblC) deficiency through target region sequencing of cell-free DNA in maternal plasma. Prenat Diagn 2019; 40:324-332. [PMID: 31697851 DOI: 10.1002/pd.5601] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 09/26/2019] [Accepted: 10/15/2019] [Indexed: 01/15/2023]
Abstract
OBJECTIVE This study aimed to validate the feasibility of haplotype-based noninvasive prenatal diagnosis (NIPD) of cobalamin C (cblC) deficiency. METHOD This method includes three steps: First, targeted sequencing was performed on 21 families affected by cblC deficiency (including the couples and probands). Second, parental haplotypes linked with the pathogenic variant were determined using the genotypes of trios. Then, the fetal haplotypes were inferred through a parental haplotype assisted hidden Markov model (HMM). The NIPD results were confirmed by using the invasive procedures. RESULTS Twenty-one fetal genotypes were successfully inferred by NIPD including three compound heterozygotes with cblC deficiency, nine heterozygote carriers of cblC deficiency, and nine normal fetuses. The NIPD results were confirmed using the invasive procedures with 100% concordant rate. CONCLUSION This result has shown that haplotype-based NIPD of cblC deficiency has high concordant rate and indicated potential clinical utility as a pregnancy diagnosis method for high-risk carrier couples.
Collapse
Affiliation(s)
- Lianshu Han
- Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chao Chen
- Tianjin Medical Laboratory, BGI-Tianjin, BGI-Shenzhen, Tianjin, China.,Wuhan BGI Clinical Laboratory Co, Ltd, BGI-Wuhan, BGI-Shenzhen, Wuhan, China
| | - Fengyu Guo
- Tianjin Medical Laboratory, BGI-Tianjin, BGI-Shenzhen, Tianjin, China.,Wuhan BGI Clinical Laboratory Co, Ltd, BGI-Wuhan, BGI-Shenzhen, Wuhan, China
| | - Jun Ye
- Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhiyu Peng
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | - Wenjuan Qiu
- Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yaoshen Wang
- Tianjin Medical Laboratory, BGI-Tianjin, BGI-Shenzhen, Tianjin, China
| | - Wei Li
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | - Huiwen Zhang
- Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lili Liang
- Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Wang
- Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huanhuan Wang
- Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xing Ji
- Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Sun
- Tianjin Medical Laboratory, BGI-Tianjin, BGI-Shenzhen, Tianjin, China.,Wuhan BGI Clinical Laboratory Co, Ltd, BGI-Wuhan, BGI-Shenzhen, Wuhan, China
| | - Xuefan Gu
- Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
80
|
Higashimoto T, Kim AY, Ogawa JT, Sloan JL, Almuqbil MA, Carlson JM, Manoli I, Venditti CP, Gunay-Aygun M, Wang T. High-dose hydroxocobalamin achieves biochemical correction and improvement of neuropsychiatric deficits in adults with late onset cobalamin C deficiency. JIMD Rep 2019; 51:17-24. [PMID: 32071835 PMCID: PMC7012733 DOI: 10.1002/jmd2.12087] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 10/24/2019] [Accepted: 11/14/2019] [Indexed: 12/18/2022] Open
Abstract
Cobalamin C (cblC) deficiency is the most common inborn error of intracellular cobalamin metabolism caused by pathogenic variant(s) in MMACHC and manifests with methylmalonic acidemia, hyperhomocysteinemia, and hypomethioninemia with a variable age of presentation. Individuals with late‐onset cblC may be asymptomatic until manifesting neuropsychiatric symptoms, thromboembolic events, and renal disease. Although hydroxocobalamin provides a foundation for therapy, optimal dose regimen for adult patients has not been systematically evaluated. We report three adult siblings with late‐onset cblC disease, and their biochemical and clinical responses to high‐dose hydroxocobalamin. The 28‐year‐old proband presented with severe psychosis, progressive neurological deterioration, and deep venous thrombosis complicated by a pulmonary embolism. MRI studies identified lesions in the spinal cord, periventricular white matter, and basal ganglia. Serum homocysteine and methylmalonic acid levels were markedly elevated. Hydroxocobalamin at standard dose (1 mg/day) initially resulted in partial metabolic correction. A regimen of high‐dose hydroxocobalamin (25 mg/day) together with betaine and folic acid resulted in rapid and sustainable biochemical correction, resolution of psychosis, improvement of neurological functions, and amelioration of brain and spinal cord lesions. Two siblings who did not manifest neuropsychiatric symptoms or thromboembolism achieved a satisfactory metabolic control with the same high‐dose regimen. Hydroxocobalamin injection was then spaced out to 25 mg weekly with good and sustainable metabolic control. All three patients are compound heterozygotes for c.271dupA p.Arg91LysfsX14 and c.389A > G p.Tyr130Cys. This study highlights the importance of evaluating intracellular cobalamin metabolism in adults with neuropsychiatric manifestations and/or thromboembolic events, and demonstrates that high‐dose hydroxocobalamin achieves rapid and sustainable metabolic control and improvement in neuropsychiatric outcomes in adults with late‐onset cblC disease.
Collapse
Affiliation(s)
- Tomoyasu Higashimoto
- Department of Genetic Medicine and Pediatrics Johns Hopkins University Baltimore Maryland
| | - Alexander Y Kim
- Department of Genetic Medicine and Pediatrics Johns Hopkins University Baltimore Maryland
| | - Jessica T Ogawa
- Department of Genetic Medicine and Pediatrics Johns Hopkins University Baltimore Maryland
| | - Jennifer L Sloan
- Medical Genomics and Metabolic Genetics Branch National Institute of Human Genome Research, National Institutes of Health Bethesda Maryland
| | - Mohammed A Almuqbil
- Department of Genetic Medicine and Pediatrics Johns Hopkins University Baltimore Maryland.,Division of Pediatric Neurology King Saud bin Abdulaziz University for Health Sciences Riyadh Saudi Arabia.,King Abdullah International Medical Research Center King Abdullah Specialist Children's Hospital - Ministry of National Guard Riyadh Saudi Arabia
| | - Julia M Carlson
- Department of Neurology Johns Hopkins University Baltimore Maryland
| | - Irini Manoli
- Medical Genomics and Metabolic Genetics Branch National Institute of Human Genome Research, National Institutes of Health Bethesda Maryland
| | - Charles P Venditti
- Medical Genomics and Metabolic Genetics Branch National Institute of Human Genome Research, National Institutes of Health Bethesda Maryland
| | - Meral Gunay-Aygun
- Department of Genetic Medicine and Pediatrics Johns Hopkins University Baltimore Maryland
| | - Tao Wang
- Department of Genetic Medicine and Pediatrics Johns Hopkins University Baltimore Maryland
| |
Collapse
|
81
|
Yoshizawa H, Nogami K, Yaoi H, Shima M. Pulmonary hypertension with diffuse lung lesions in cobalamin C defect. Pediatr Int 2019; 61:1062-1063. [PMID: 31663237 DOI: 10.1111/ped.13971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 06/08/2019] [Accepted: 07/02/2019] [Indexed: 11/30/2022]
Affiliation(s)
- Hiroyuki Yoshizawa
- Department of Pediatrics, Nara Medical University, Kashihara, Nara, Japan
| | - Keiji Nogami
- Department of Pediatrics, Nara Medical University, Kashihara, Nara, Japan
| | - Hiroaki Yaoi
- Department of Pediatrics, Nara Medical University, Kashihara, Nara, Japan
| | - Midori Shima
- Department of Pediatrics, Nara Medical University, Kashihara, Nara, Japan
| |
Collapse
|
82
|
Abstract
The thrombotic microangiopathies (TMAs) are a group of diseases characterised by microangiopathic haemolysis, thrombocytopenia, and thrombus formation leading to tissue injury. Traditionally, TMAs have been classified as either thrombotic thrombocytopenic purpura (TTP) or haemolytic uremic syndrome (HUS) based on the clinical presentation, with neurological involvement predominating in the former and acute kidney injury in the latter. However, as our understanding of the pathogenesis of these conditions has increased, it has become clear that this is an over-simplification; there is significant overlap in the clinical presentation of TTP and HUS, there are different forms of HUS, and TMAs can occur in other, diverse clinical scenarios. This review will discuss recent developments in the diagnosis of HUS, focusing on the different forms of HUS and how to diagnose and manage these potentially life-threatening diseases.
Collapse
Affiliation(s)
- Neil S Sheerin
- National Renal Complement Therapeutics Centre, Institute of Cellular Medicine, Newcastle University and Biomedical Research Centre, Newcastle-upon-Tyne NHS Foundation Trust, Newcastle-upon-Tyne, UK
| | - Emily Glover
- National Renal Complement Therapeutics Centre, Institute of Cellular Medicine, Newcastle University and Biomedical Research Centre, Newcastle-upon-Tyne NHS Foundation Trust, Newcastle-upon-Tyne, UK
| |
Collapse
|
83
|
Huemer M, Baumgartner MR. The clinical presentation of cobalamin-related disorders: From acquired deficiencies to inborn errors of absorption and intracellular pathways. J Inherit Metab Dis 2019; 42:686-705. [PMID: 30761552 DOI: 10.1002/jimd.12012] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 09/25/2018] [Accepted: 09/27/2018] [Indexed: 12/11/2022]
Abstract
This review gives an overview of clinical characteristics, treatment and outcome of nutritional and acquired cobalamin (Cbl; synonym: vitamin B12) deficiencies, inborn errors of Cbl absorption and intracellular trafficking, as well as methylenetetrahydrofolate dehydrogenase (MTHFD1) and methylene tetrahydrofolate reductase (MTHFR) deficiencies, which impair Cbl-dependent remethylation. Acquired and inborn Cbl-related disorders and MTHFR deficiency cause multisystem, often severe disease. Failure to thrive, neurocognitive or psychiatric symptoms, eye disease, bone marrow alterations, microangiopathy and thromboembolic events are characteristic. The recently identified MTHFD1 defect additionally presents with severe immune deficiency. Deficient Cbl-dependent enzymes cause reduced methylation capacity and metabolite toxicity. Further net-effects of perturbed Cbl function or reduced Cbl supply causing oxidative stress, altered cytokine regulation or immune functions are discussed.
Collapse
Affiliation(s)
- Martina Huemer
- Division of Metabolism and Children's Research Center, University Children's Hospital Zürich, Zürich, Switzerland
- Department of Paediatrics, Landeskrankenhaus Bregenz, Bregenz, Austria
| | - Matthias R Baumgartner
- Division of Metabolism and Children's Research Center, University Children's Hospital Zürich, Zürich, Switzerland
| |
Collapse
|
84
|
Treatable cause of hereditary spastic paraplegia: eight cases of combined homocysteinaemia with methylmalonic aciduria. J Neurol 2019; 266:2434-2439. [PMID: 31203424 DOI: 10.1007/s00415-019-09432-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 06/08/2019] [Accepted: 06/11/2019] [Indexed: 12/24/2022]
Abstract
Combined homocysteinemia with methylmalonic aciduria (MMA/HCY) are genetic disorders of intracellular cobalamin (cbl) transport and processing that cause downstream deficiencies in methylcobalamin and adenosylcobalamin. Untreated disease is characterized biochemically by methylmalonic aciduria and hyperhomocysteinemia, while the clinical features are variable. When spastic paraplegia (SP) dominates, it is difficult to differentiate from hereditary spastic paraplegia (HSP). Clinical, biochemical and imaging features were reviewed in eight patients with MMA/HCY that mimicked HSP. Seven males and one female were enrolled. The median onset age was 13 years old (range 7-26 years old). The median time delay of diagnosis was 20.5 months (range 2-60 months). Spastic gait was the first symptom in four patients, while the other four patients presented with chronic emotional abnormalities or cognitive impairment. The main clinical manifestation was SP, and other neurological symptoms included cognitive impairment (5/8), spastic dysuria (3/8), personality change and depression (3/8), ataxia (2/8), seizures (2/8), limb numbness (2/8), and developmental delay (2/8). When patients were diagnosed, the mean serum homocysteine level, the methylmalonic acid level in urine, the serum propionylcarnitine (C3) level and the ratios of C3-to-acetylcarnitine (C2) and free carnitine (C0) were all dramatically elevated. Cranial MRIs showed nothing remarkable except mild brain atrophy. All spinal MRIs were normal except for case 8. Definite compound heterozygous mutations in MMACHC were detected in five cases. Follow-up indicated partial improvement in all the patients after intramuscular cbl, oral betaine and folate, supporting the diagnosis of MMA/HCY. Our data highlight the need for extensive investigation of intracellular cbl transport and processing, when spastic paraparesis is a prominent component of the clinical picture. Testing for urine methylmalonic acid and serum homocysteine levels is a simple but critical approach in suspected cases. Genetic testing, especially for MMACHC gene mutations, is needed. Raising awareness of this disorder could result in the timely initiation of targeted treatment, which may significantly improve patient outcomes.
Collapse
|
85
|
Lemoine M, Grangé S, Guerrot D. [Kidney disease in cobalamin C deficiency]. Nephrol Ther 2019; 15:201-214. [PMID: 31130431 DOI: 10.1016/j.nephro.2019.03.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 03/06/2019] [Indexed: 12/23/2022]
Abstract
Cobalamin C deficiency (cblC) is the most common inborn error of vitamin B12 metabolism. This autosomal recessive disease is due to mutations in MMACHC gene, encoding a cyanocobalamin decyanase. It leads to hyperhomocysteinemia associated with hypomethioninemia and methylmalonic aciduria. Two distinct phenotypes have been described : early-onset forms occur before the age of one year and are characterized by a severe multisystem disease associating failure to thrive to neurological and ophthalmological manifestations. They are opposed to late-onset forms, less severe and heterogeneous. CblC deficiency-associated kidney lesions remain poorly defined. Thirty-eight cases have been described. Age at initial presentation varied from a few days to 28 years. Most of the patients presented renal thrombotic microangiopathy (TMA) associated with acute renal failure, and 21 patients presented typical lesions of renal thrombotic microangiopathy on kidney biopsy. Prognosis was poor, leading to death in the absence of treatment, and related to the severity of renal lesions in the early-onset forms. Late-onset disease had better prognosis and most of patients were weaned off dialysis after treatment initiation. We suggest that all the patients with renal TMA be screened for cobalamin metabolism disorder, regardless of age and even in the absence of neurological symptoms, to rapidly initiate the appropriate treatment.
Collapse
Affiliation(s)
- Mathilde Lemoine
- Service de néphrologie, dialyse et transplantation, CHU de Rouen, 1, rue de Germont, 76031 Rouen, France.
| | - Steven Grangé
- Service de réanimation médicale, CHU de Rouen, 1, rue de Germont, 76031 Rouen, France
| | - Dominique Guerrot
- Service de néphrologie, dialyse et transplantation, CHU de Rouen, 1, rue de Germont, 76031 Rouen, France; Inserm U1096, UFR médecine pharmacie, 22, boulevard Gambetta, 76183 Rouen, France
| |
Collapse
|
86
|
Wang X, Yang Y, Li X, Li C, Wang C. Distinct clinical, neuroimaging and genetic profiles of late-onset cobalamin C defects (cb1C): a report of 16 Chinese cases. Orphanet J Rare Dis 2019; 14:109. [PMID: 31092259 PMCID: PMC6521494 DOI: 10.1186/s13023-019-1058-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 04/08/2019] [Indexed: 02/08/2023] Open
Abstract
Objective The importance of late-onset cobalamin C (cblC) disorder is underestimated in adults. Improved awareness on its clinical and neuroimaging features helps timely diagnosis and appropriate treatment. Methods Totally 16 late-onset cblC cases were diagnosed based on clinical, biochemical findings and MMAHC gene mutation analysis. Clinical presentations, neuroimaging features and mutational spectrum were reviewed. Results The case series included 10 males and 6 females, with average age of 22 (range 13–40) years. All the 16 patients displayed bilateral pyramidal tract signs, and most of the cases (13) had cognitive impairment. Other symptoms included psychiatric symptoms (6), epilepsy (6), peripheral nerve damage (5), ocular symptoms (4) and lower-limb thrombosis (1). The neuroimaging findings were dominated by cerebral atrophy (11/16), followed by white matter lesions (4), cerebellar lesions/atrophy (2) and spinal cord lesions (1). There were also 2 patients with normal imaging. All the MMACHC mutations were compound heterozygous, of which the most and second frequent was c.482G > A (p.R161Q; 15/16 case; allele frequency: 46.88%) and c.609G > A(p.W203X; 6/16 case; allele frequency: 18.75%). In addition, patients carrying frameshift mutations (deletion/duplication) presented more frequently with psychiatric symptoms (57.1%) and optic nerve damages (42.9%) than those carrying point mutations (22.2 and 11.1%, respectively). In contrast, peripheral nerve (44.4%) and white matter lesions (33.3%) were more frequently identified in point mutation- carriers. However, the differences did not achieve statistical significance (all p > 0.05). Conclusion Compared to the early-onset form, late-onset cblC displayed some clinical, neuroimaging and mutational profiles, which warrants particular attention in adult neurologic practice. These findings not only broaden our insights into the genotypes and phenotypes of the disease, but highlight the importance of early diagnosis and initiation of appropriate treatments. Electronic supplementary material The online version of this article (10.1186/s13023-019-1058-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xianling Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Xicheng District, Beijing, 100053, People's Republic of China
| | - Yanhui Yang
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xuying Li
- Department of Neurobiology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Cunjiang Li
- Department of Neurology, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Xicheng District, Beijing, 100053, People's Republic of China.
| | - Chaodong Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Xicheng District, Beijing, 100053, People's Republic of China.
| |
Collapse
|
87
|
Kasinathan A, Sharawat IK, Sankhyan N, Vyas S, Attri S. Reversible Spastic Paraparesis. Ann Indian Acad Neurol 2019; 22:246-247. [PMID: 31007450 PMCID: PMC6472219 DOI: 10.4103/aian.aian_351_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Affiliation(s)
- Ananthanarayanan Kasinathan
- Department of Pediatrics, Mahatma Gandhi Medical College and Research Institute, Sri Balaji Vidyapeeth University, Puducherry, India
| | - Indar Kumar Sharawat
- Department of Pediatrics, Pediatric Neurology Unit, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Naveen Sankhyan
- Department of Pediatrics, Pediatric Neurology Unit, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sameer Vyas
- Department of Radio-Diagnosis and Imaging, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Savita Attri
- Department of Pediatrics, Division of Pediatric Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
88
|
Zhang K, Gao M, Wang G, Shi Y, Li X, Lv Y, Zhang G, Gai Z, Liu Y. Hydrocephalus in cblC type methylmalonic acidemia. Metab Brain Dis 2019; 34:451-458. [PMID: 30564975 DOI: 10.1007/s11011-018-0351-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 11/22/2018] [Indexed: 12/29/2022]
Abstract
Methylmalonic acidemia (MMA) is a typical type of organic acidemia caused by defects in methylmalonyl-CoA mutase or adenosyl-cobalamin synthesis. Hydrocephalus (HC), results from an imbalance between production and absorption of cerebrospinal fluid (CSF), causeing enlarged cerebral ventricles and increased intracranial pressure, is a condition that requires urgent clinical decision-making. MMA without treatment could result in brain damage. However, HC in MMA was rarely reported. In this study, 147 MMA were identified from 9117 high risk children by gas chromatography mass spectrometry (GC/MS) for organic acidurias screening in urine samples and liquid chromatography-tandem mass spectrometry (LC-MS/MS) for amino acids detection in blood samples. Totally 10 cases with MMA and HC were determined by brain MRI/CT, as well as gene mutation testing either by high throughput sequencing or Sanger sequencing. Besides, homocysteine was also analyzed for the 10 MMA with HC. Out of them, 9 cases carry out compound heterozygous mutations or homozygous mutation in MMACHC gene, and 1 case has MUTmutation. The mutation c.609G > A in MMACHC was the most common in the cbl type patients. Although MMA has a high incidence in Shandong province of China, especially cblC type. All of the 10 patients were not correctly diagnosed before developing HC. As a result, when a child develops progressive and refractory HC, the screening for inherited metabolic diseases should be immediately conducted.
Collapse
Affiliation(s)
- Kaihui Zhang
- Pediatric Research Institute, Qilu Children's Hospital of Shandong University, 23976 Jingshi Road, Jinan, 250022, Shandong, China
| | - Min Gao
- Pediatric Research Institute, Qilu Children's Hospital of Shandong University, 23976 Jingshi Road, Jinan, 250022, Shandong, China
| | - Guangyu Wang
- Department of Neurosurgery, Qilu Children's Hospital of Shandong University, Jinan, 250022, Shandong, China
| | - Yingying Shi
- Department of Imaging, Qilu Children's Hospital of Shandong University, Jinan, 250022, Shandong, China
| | - Xiaoying Li
- Department of Neonatology, Qilu Children's Hospital of Shandong University, Jinan, 250022, Shandong, China
| | - Yvqiang Lv
- Pediatric Research Institute, Qilu Children's Hospital of Shandong University, 23976 Jingshi Road, Jinan, 250022, Shandong, China
| | - Guangye Zhang
- Pediatric Research Institute, Qilu Children's Hospital of Shandong University, 23976 Jingshi Road, Jinan, 250022, Shandong, China
| | - Zhongtao Gai
- Pediatric Research Institute, Qilu Children's Hospital of Shandong University, 23976 Jingshi Road, Jinan, 250022, Shandong, China.
| | - Yi Liu
- Pediatric Research Institute, Qilu Children's Hospital of Shandong University, 23976 Jingshi Road, Jinan, 250022, Shandong, China.
| |
Collapse
|
89
|
Valayannopoulos V, Schiff M, Guffon N, Nadjar Y, García-Cazorla A, Martinez-Pardo Casanova M, Cano A, Couce ML, Dalmau J, Peña-Quintana L, Rigalleau V, Touati G, Aldamiz-Echevarria L, Cathebras P, Eyer D, Brunet D, Damaj L, Dobbelaere D, Gay C, Hiéronimus S, Levrat V, Maillot F. Betaine anhydrous in homocystinuria: results from the RoCH registry. Orphanet J Rare Dis 2019; 14:66. [PMID: 30871635 PMCID: PMC6419445 DOI: 10.1186/s13023-019-1036-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 02/20/2019] [Indexed: 11/10/2022] Open
Abstract
Background The Registry of Adult and Paediatric Patients Treated with Cystadane® – Homocystinuria (RoCH) is a non-interventional, observational, multi-centre, post-authorization safety study that aimed to identify safety of betaine anhydrous (Cystadane®) in the treatment of patients with inborn errors of homocysteine metabolism (homocystinuria) in order to minimise the treatment associated risks and establish better knowledge on its clinical use. The registry included patients of all ages with homocystinuria who were treated with betaine anhydrous in conjunction with other therapies. Clinical data were collected retrospectively from 2007 to 2013, then prospectively up to February 2014. All adverse events (AEs) reported during the study were recorded. The clinical and biological status of patients was monitored at least once a year. Results A total of 125 patients with homocystinuria (adults [> 18 years]: 50; paediatric [≤18 years]: 75) were enrolled at 29 centres in France and Spain. Patients were treated with betaine anhydrous for a mean duration of 7.4 ± 4.3 years. The median total daily dose of betaine anhydrous at the first and last study visits was 6 g/day for cystathionine β-synthase (CBS)-deficient vitamin B6 responders and 9 g/day for methylenetetrahydrofolate reductase-deficient patients, while the median daily dose increased in CBS-deficient B6 non-responders (from 6 to 9 g/day) and cobalamin metabolism-defective patients (from 3 to 6 g/day) between the first and last visits. Treatment caused a mean overall reduction of 29% in plasma homocysteine levels in the study population. A total of 277 AEs were reported during the study, of which two non-serious AEs (bad taste and headache) and one serious AE (interstitial lung disease) were considered to be drug related. Overall, betaine anhydrous was well tolerated with no major safety concerns. Conclusions Data from the RoCH registry provided real-world evidence on the clinical safety and efficacy of betaine anhydrous in the management of homocystinuria in paediatric and adult patients. Electronic supplementary material The online version of this article (10.1186/s13023-019-1036-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Vassili Valayannopoulos
- Hôpital Necker-Enfants Malades, Paris, France. .,Sanofi Genzyme, 500 Kendall St, Cambridge, MA, 02140, USA.
| | | | | | | | | | | | - Aline Cano
- Center of Reference for Inborn Metabolic Disease, CHU La Timone, Marseille, France
| | - Maria L Couce
- Hospital Clínico Universitario, Santiago de Compostela-La Coruña, Spain
| | - Jaime Dalmau
- Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Luis Peña-Quintana
- Hospital Universitario Materno-Infantil, Universidad de Las Palmas de Gran Canaria, CIBER OBN, Las Palmas, Spain
| | | | | | | | | | | | | | | | - Dries Dobbelaere
- Medical Reference Center for Inherited Metabolic Diseases, Jeanne de Flandre University Hospital and RADEME Research Team for Rare Metabolic and Developmental Diseases, Lille, France
| | | | | | | | - François Maillot
- CHRU de Tours, Service de Médecine Interne, Université François Rabelais, Tours, France
| |
Collapse
|
90
|
Zhou W, Li H, Wang C, Wang X, Gu M. Newborn Screening for Methylmalonic Acidemia in a Chinese Population: Molecular Genetic Confirmation and Genotype Phenotype Correlations. Front Genet 2019; 9:726. [PMID: 30728829 PMCID: PMC6351470 DOI: 10.3389/fgene.2018.00726] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 12/22/2018] [Indexed: 12/16/2022] Open
Abstract
Background: Methylmalonic acidemia (MMA) incidence was evaluated based on newborn screening in Xuzhou from November 2015 to December 2017, and the clinical, biochemical and molecular characteristics of patients with MMA harboring MMACHC and MUT mutations were summarized. Methods: During the study, 236,368 newborns were screened for MMA by tandem mass spectrometry (MS/MS) in the Maternity and Child Health Care Hospital of Xuzhou. C3, C3/C2 and methionine, and tHcy if necessary, were measured during the first screening. Blood samples from the infants and/or their family members were used for DNA analysis. The entire coding regions of the MMACHC and MUT genes associated with MMA were sequenced by DNA MassARRAY and next-generation sequencing (NGS). Results: Eleven patients with MMACHC mutations and three with MUT mutations were identified among the 236,368 screened newborns; the estimated total incidence of MMA was 1:16,883. Among the MMA patients, two died of infection-triggered metabolic crisis approximately 3 months after birth. All the patients identified had two mutant alleles except for one individual with early-onset disease. The most common MMACHC mutation was c.609G > A. The laboratory levels of C3 and C3/C2 were elevated in MMA individuals compared to other infants. Importantly, we demonstrate that accelerated C2 degradation is related to air temperature and humidity. Conclusion: Our study reports the clinical characteristics of MMA and diagnosis through MS/MS and NGS. There was a higher incidence of MMA with homocysteinemia than of isolated MMA in Xuzhou. Insight from this study may help explain the high false-positive rate of MMA in summer.
Collapse
Affiliation(s)
- Wei Zhou
- Xuzhou Maternity and Child Health Care Hospital, Xuzhou, China
| | - Huizhong Li
- Xuzhou Maternity and Child Health Care Hospital, Xuzhou, China
| | - Chuanxia Wang
- Xuzhou Maternity and Child Health Care Hospital, Xuzhou, China
| | - Xiuli Wang
- Xuzhou Maternity and Child Health Care Hospital, Xuzhou, China
| | - Maosheng Gu
- Xuzhou Maternity and Child Health Care Hospital, Xuzhou, China
| |
Collapse
|
91
|
Abstract
Objective The aims of this study were to describe the brain magnetic resonance imaging (MRI) features of methylmalonic aciduria and homocystinuria and to evaluate the additional value of 1H-MRS. Patients and Methods Twenty-eight children with methylmalonic aciduria and homocystinuria were included in this study. The control group included 21 healthy children. All the cases underwent MRI and 1H-MRS before treatment. We measured the N-acetylaspartate (NAA), choline (Cho), creatine (Cr), and myoinositol (mI) peaks in the basal ganglia regions. The NAA/Cr, Cho/Cr, mI/Cr, and NAA/Cho ratios were calculated. We also observed whether there were lactic acid peaks. Result We identified that NAA/Cr and NAA/Cho significantly decreased in the basal ganglia and that 3 patients showed lactate peaks, but other metabolites were not significantly altered. Hydrocephalus and diffuse supratentorial white matter edema were the primary MR findings; 7 patients had thinning of the corpus callosum, and 2 patients had subdural hematoma. Six patients showed normal brain MRI findings. Conclusions Methylmalonic aciduria and homocystinuria patients with metabolite changes in the basal ganglia demonstrate compromised neuronal integrity, and anerobic metabolism occurs in acute encephalopathic episodes. 1H-MRS is a useful tool for evaluating brain damage. Hydrocephalus and diffuse supratentorial white matter edema are the main MRI features.
Collapse
|
92
|
Keller R, Chrastina P, Pavlíková M, Gouveia S, Ribes A, Kölker S, Blom HJ, Baumgartner MR, Bártl J, Dionisi-Vici C, Gleich F, Morris AA, Kožich V, Huemer M, Barić I, Ben-Omran T, Blasco-Alonso J, Bueno Delgado MA, Carducci C, Cassanello M, Cerone R, Couce ML, Crushell E, Delgado Pecellin C, Dulin E, Espada M, Ferino G, Fingerhut R, Garcia Jimenez I, Gonzalez Gallego I, González-Irazabal Y, Gramer G, Juan Fita MJ, Karg E, Klein J, Konstantopoulou V, la Marca G, Leão Teles E, Leuzzi V, Lilliu F, Lopez RM, Lund AM, Mayne P, Meavilla S, Moat SJ, Okun JG, Pasquini E, Pedron-Giner CC, Racz GZ, Ruiz Gomez MA, Vilarinho L, Yahyaoui R, Zerjav Tansek M, Zetterström RH, Zeyda M. Newborn screening for homocystinurias: Recent recommendations versus current practice. J Inherit Metab Dis 2019; 42:128-139. [PMID: 30740731 DOI: 10.1002/jimd.12034] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE To assess how the current practice of newborn screening (NBS) for homocystinurias compares with published recommendations. METHODS Twenty-two of 32 NBS programmes from 18 countries screened for at least one form of homocystinuria. Centres provided pseudonymised NBS data from patients with cystathionine beta-synthase deficiency (CBSD, n = 19), methionine adenosyltransferase I/III deficiency (MATI/IIID, n = 28), combined remethylation disorder (cRMD, n = 56) and isolated remethylation disorder (iRMD), including methylenetetrahydrofolate reductase deficiency (MTHFRD) (n = 8). Markers and decision limits were converted to multiples of the median (MoM) to allow comparison between centres. RESULTS NBS programmes, algorithms and decision limits varied considerably. Only nine centres used the recommended second-tier marker total homocysteine (tHcy). The median decision limits of all centres were ≥ 2.35 for high and ≤ 0.44 MoM for low methionine, ≥ 1.95 for high and ≤ 0.47 MoM for low methionine/phenylalanine, ≥ 2.54 for high propionylcarnitine and ≥ 2.78 MoM for propionylcarnitine/acetylcarnitine. These decision limits alone had a 100%, 100%, 86% and 84% sensitivity for the detection of CBSD, MATI/IIID, iRMD and cRMD, respectively, but failed to detect six individuals with cRMD. To enhance sensitivity and decrease second-tier testing costs, we further adapted these decision limits using the data of 15 000 healthy newborns. CONCLUSIONS Due to the favorable outcome of early treated patients, NBS for homocystinurias is recommended. To improve NBS, decision limits should be revised considering the population median. Relevant markers should be combined; use of the postanalytical tools offered by the CLIR project (Collaborative Laboratory Integrated Reports, which considers, for example, birth weight and gestational age) is recommended. tHcy and methylmalonic acid should be implemented as second-tier markers.
Collapse
Affiliation(s)
- Rebecca Keller
- Division of Metabolism and Children's Research Center, University Children's Hospital Zürich, Zürich, Switzerland
- radiz-Rare Disease Initiative Zürich, Clinical Research Priority Program, University of Zürich, Zürich, Switzerland
| | - Petr Chrastina
- Department of Pediatrics and Adolescent Medicine, Charles University-First Faculty of Medicine and General University Hospital, Ke Karlovu 2, 128 08 Praha 2, Czech Republic
| | - Markéta Pavlíková
- Department of Pediatrics and Adolescent Medicine, Charles University-First Faculty of Medicine and General University Hospital, Ke Karlovu 2, 128 08 Praha 2, Czech Republic
- Department of Probability and Mathematical Statistics, Charles University-Faculty of Mathematics and Physics, Prague, Czech Republic
| | - Sofía Gouveia
- Unit of Diagnosis and Treatment of Congenital Metabolic Diseases, S. Neonatology, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, CIBERER, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Antonia Ribes
- Division of Inborn Errors of Metabolism, Department of Biochemistry and Molecular Genetics, Hospital Clinic de Barcelona, CIBERER, Barcelona, Spain
| | - Stefan Kölker
- Division of Neuropaediatrics and Metabolic Medicine, Centre for Paediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Henk J Blom
- Department of Internal Medicine, VU Medical Center, Amsterdam, The Netherlands
| | - Matthias R Baumgartner
- Division of Metabolism and Children's Research Center, University Children's Hospital Zürich, Zürich, Switzerland
- radiz-Rare Disease Initiative Zürich, Clinical Research Priority Program, University of Zürich, Zürich, Switzerland
| | - Josef Bártl
- Department of Pediatrics and Adolescent Medicine, Charles University-First Faculty of Medicine and General University Hospital, Ke Karlovu 2, 128 08 Praha 2, Czech Republic
| | - Carlo Dionisi-Vici
- Division of Metabolism, Bambino Gesù Children's Research Hospital, Rome, Italy
| | - Florian Gleich
- Division of Neuropaediatrics and Metabolic Medicine, Centre for Paediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Andrew A Morris
- Manchester Centre for Genomic Medicine, Manchester University Hospitals NHS Trust, Manchester, UK
| | - Viktor Kožich
- Department of Pediatrics and Adolescent Medicine, Charles University-First Faculty of Medicine and General University Hospital, Ke Karlovu 2, 128 08 Praha 2, Czech Republic
| | - Martina Huemer
- Division of Metabolism and Children's Research Center, University Children's Hospital Zürich, Zürich, Switzerland
- radiz-Rare Disease Initiative Zürich, Clinical Research Priority Program, University of Zürich, Zürich, Switzerland
- Department of Paediatrics, Landeskrankenhaus Bregenz, Bregenz, Austria
| | - Ivo Barić
- School of Medicine, University Hospital Centre Zagreb and University of Zagreb, Zagreb, Croatia
| | - Tawfeq Ben-Omran
- Clinical and Metabolic Genetics, Department of Pediatrics, Hamad Medical Corporation, Doha, Qatar
| | - Javier Blasco-Alonso
- Gastroenterology and Nutrition Unit, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Maria A Bueno Delgado
- Clinical Laboratory of Metabolic Diseases and Occidental Andalucia Newborn Screening Center, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | - Claudia Carducci
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Michela Cassanello
- Laboratory for the Study of Inborn Errors of Metabolism, Istituto Giannina Gaslini, Genoa, Italy
| | - Roberto Cerone
- Regional Center for Neonatal Screening and Diagnosis of Metabolic Diseases, University Department of Pediatrics-Istituto Giannina Gaslini, Genoa, Italy
| | - Maria Luz Couce
- Unit of Diagnosis and Treatment of Congenital Metabolic Diseases, S. Neonatology, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, CIBERER, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Ellen Crushell
- National Centre for Inherited Metabolic Disorders, Temple Street Children's University Hospital, Dublin, Ireland
| | - Carmen Delgado Pecellin
- Clinical Laboratory of Metabolic Diseases and Occidental Andalucia Newborn Screening Center, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | | | - Mercedes Espada
- Clinical Chemistry Unit, Public Health Laboratory of Bilbao, Euskadi, Spain
| | - Giulio Ferino
- Regional Center for Newborn Screening, Pediatric Hospital A. Cao, AOB Brotzu, Cagliari, Italy
| | - Ralph Fingerhut
- Division of Metabolism and Children's Research Center, University Children's Hospital Zürich, Zürich, Switzerland
- Swiss Newborn Screening Laboratory, University Children's Hospital Zurich, Zurich, Switzerland
| | | | | | - Yolanda González-Irazabal
- Unidad de Metabolopatias, Servicio de Bioquímica Clínica, Hospital Universitario Miguel Servet, Zaragoza, Spain
| | - Gwendolyn Gramer
- Division of Neuropaediatrics and Metabolic Medicine, Centre for Paediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Maria Jesus Juan Fita
- Sección Metabolopatías Centro de Bioquímica y Genetica, Hospital Virgen de la Arrixaca, Murcia, Spain
| | - Eszter Karg
- Department of Pediatrics, University of Szeged, Szeged, Hungary
| | - Jeanette Klein
- Newborn Screening Laboratory, Charité-University Medicine Berlin, Berlin, Germany
| | - Vassiliki Konstantopoulou
- Austrian Newborn Screening, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Giancarlo la Marca
- Newborn Screening, Clinical Chemistry and Pharmacology Lab, A. Meyer Children's University Hospital, Florence, Italy
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Elisa Leão Teles
- Metabolic Unit, Department of Pediatrics, San Joao Hospital, Porto, Portugal
| | - Vincenzo Leuzzi
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Franco Lilliu
- Regional Center for Newborn Screening, Pediatric Hospital A. Cao, AOB Brotzu, Cagliari, Italy
| | - Rosa Maria Lopez
- Division of Inborn Errors of Metabolism, Department of Biochemistry and Molecular Genetics, Hospital Clinic de Barcelona, CIBERER, Barcelona, Spain
| | - Allan M Lund
- Centre for Inherited Metabolic Diseases, Departments of Paediatrics and Clinical Genetics, Copenhagen University Hospital, Copenhagen, Denmark
| | - Philip Mayne
- National Newborn Bloodspot Screening Laboratory, Temple Street Children's University Hospital, Dublin, Ireland
| | - Silvia Meavilla
- Gastroenterology, Hepatology and Nutrition Department, Metabolic Unit, Sant Joan de Déu Hospital, Barcelona Hospital Sant Joan de Déu, Barcelona, Spain
| | - Stuart J Moat
- Wales Newborn Screening Laboratory, Department of Medical Biochemistry, Immunology & Toxicology and School of Medicine, Cardiff University, Cardiff, Wales, UK
| | - Jürgen G Okun
- Division of Neuropaediatrics and Metabolic Medicine, Centre for Paediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Elisabeta Pasquini
- Metabolic and Newborn Screening Clinical Unit, Department of Neurosciences, A. Meyer Children's University Hospital, Florence, Italy
| | | | | | - Maria Angeles Ruiz Gomez
- Clinical Lead in Metabolic Pediatric and Neurometabolic Diseases, Son Espases University Hospital, PalmaMallorca Unit, Palma de Mallorca, Spain
| | - Laura Vilarinho
- Newborn Screening, Metabolism & Genetics Unit, National Institute of Health, Porto, Portugal
| | - Raquel Yahyaoui
- Laboratory and Eastern Andalusia Newborn Screening Centre, Málaga Regional University Hospital, Institute of Biomedical Research in Málaga (IBIMA), Málaga, Spain
| | - Moja Zerjav Tansek
- Department of Diabetes, Endocrinology and Metabolic Diseases, University Children's Hospital, UMC Ljubljana, Ljubljana, Slovenia
| | - Rolf H Zetterström
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Maximilian Zeyda
- Austrian Newborn Screening, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
93
|
Wang SJ, Yan CZ, Wen B, Zhao YY. Clinical feature and outcome of late-onset cobalamin C disease patients with neuropsychiatric presentations: a Chinese case series. Neuropsychiatr Dis Treat 2019; 15:549-555. [PMID: 30863077 PMCID: PMC6391119 DOI: 10.2147/ndt.s196924] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVE The Cobalamin C (cblC) disease is an inborn error of cobalamin metabolism. Late-onset cblC disease was diagnosed in patients having overt symptoms after 4 years of age. The late-onset cblC disease patients were rare and easily misdiagnosed. This study analyzed the clinical presentations, gene mutations, and treatments of Chinese patients with late-onset cblC disease. METHODS The clinical data of 26 Han Chinese patients diagnosed with late-onset cblC disease were retrospectively analyzed. All patients underwent serum homocysteine level exam, urine concentrations of organic acids measurement, neuroimaging scans, gene analysis, and treatments evaluations. RESULTS The mean age at disease onset and diagnosis was 17.8±7.0 years. The most frequent neuropsychiatric disturbances were lower limb weakness (50%), psychiatric disturbances (46.2%), and gait instability (42.3%). The mean methylmalonic acid level in urine was 107.4±56.6 μmol/L, and mean serum total homocysteine was 105.4±41.0 μmol/L. The most common abnormal radioimaging changes were observed in the spinal cord (88%) and brain (32%). Scoliosis was detected in 85.7% of patients. The methylmalonic aciduria and homocystinuria type C protein gene analysis showed that c.482G>A (57.7%) and c.609G>A (34.6%) mutations were the most frequent genotypes. After treatments with hydroxycobalamin, betaine, folic acid, L-carnitine, and compound vitamin B, the clinical features and biochemical parameters of patients with late-onset cblC disease were found to be alleviated. CONCLUSION In our late-onset cblC disease cases, lower limb weakness, psychiatric disturbances, and gait instability were the most frequent manifestations. Patients responded well to the drug treatments with hydrocobalamin and betaine. When juvenile or adult patients with hyperhomocysteinemia present with neurological symptoms, cblC disease needs to be considered.
Collapse
Affiliation(s)
- Sheng-Jun Wang
- Department of Neurology, Qilu Hospital, Shandong University, Jinan, China,
| | - Chuan-Zhu Yan
- Department of Neurology, Qilu Hospital, Shandong University, Jinan, China,
| | - Bing Wen
- Department of Neurology, Qilu Hospital, Shandong University, Jinan, China,
| | - Yu-Ying Zhao
- Department of Neurology, Qilu Hospital, Shandong University, Jinan, China,
| |
Collapse
|
94
|
Hu S, Mei S, Liu N, Kong X. Molecular genetic characterization of cblC defects in 126 pedigrees and prenatal genetic diagnosis of pedigrees with combined methylmalonic aciduria and homocystinuria. BMC MEDICAL GENETICS 2018; 19:154. [PMID: 30157807 PMCID: PMC6116561 DOI: 10.1186/s12881-018-0666-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 08/15/2018] [Indexed: 11/21/2022]
Abstract
Background We sought to analyse MMACHC variants among 126 pedigrees with cobalamin (cbl) C deficiency and combined methylmalonic aciduria and homocystinuria by Sanger sequencing, characterize the spectrum of MMACHC gene variants, and perform prenatal genetic diagnosis by chorionic villus sampling among these pedigrees. Methods Peripheral blood was collected from 126 probands and their parents who visited the Genetic Counseling Clinic at our hospital between January 2014 and December 2017, and DNA was extracted from the blood. Then, we amplified the coding sequence and splicing regions of the MMACHC gene by PCR, and the PCR products were further sequenced to detect the variants in each pedigree. In 62 families, pregnant women were subjected to chorionic villus sampling for prenatal genetic diagnosis. Results In total, 31 distinct variants were detected in the 126 pedigrees, and the most frequent variants were c.609G > A (p.Trp203Ter), c.658_660delAAG (p.Lys220del), c.567dupT (p.Ile190Tyrfs*13) and c.80A > G (p.Gln27Arg). Two of these variants have not been previously reported in the literature. One variant [c.463_465delGGG (p.Gly155del)] is a small-scale deletion, and the other variant [c.637G>T(p.Glu213Ter)] is a nonsense mutation. Among the 62 pedigrees who received a prenatal diagnosis, 16 foetuses were normal, 34 foetuses were carriers of heterozygous variants, and the remaining 12 foetuses harboured compound heterozygous variants or homozygous variants. Couples whose foetuses were normal or carriers continued the pregnancy, whereas couples whose foetuses harboured compound heterozygous variants or homozygous variants decided to terminate the pregnancy. The follow-up results were consistent with the prenatal diagnosis. Conclusions Two novel MMACHC variants were identified, and prenatal genetic diagnosis is an accurate and convenient method that helps avoid the delivery of combined methylmalonic aciduria and homocystinuria patients. Electronic supplementary material The online version of this article (10.1186/s12881-018-0666-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shuang Hu
- The Center for Genetics and Prenatal Diagnosis, The First Affiliated Hospital of Zhengzhou University, Jianshe Road, Zhengzhou, 450052, China
| | - Shiyue Mei
- The Center for Genetics and Prenatal Diagnosis, The First Affiliated Hospital of Zhengzhou University, Jianshe Road, Zhengzhou, 450052, China
| | - Ning Liu
- The Center for Genetics and Prenatal Diagnosis, The First Affiliated Hospital of Zhengzhou University, Jianshe Road, Zhengzhou, 450052, China
| | - Xiangdong Kong
- The Center for Genetics and Prenatal Diagnosis, The First Affiliated Hospital of Zhengzhou University, Jianshe Road, Zhengzhou, 450052, China.
| |
Collapse
|
95
|
Ma M, Wu M, Li Y, Wu D, Zhang B. Shunt surgery for early-onset severe hydrocephalus in methylmalonic acidemia: report on two cases and review of the literature. Childs Nerv Syst 2018; 34:1417-1421. [PMID: 29488077 DOI: 10.1007/s00381-018-3753-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 02/07/2018] [Indexed: 11/25/2022]
Abstract
OBJECT Methylmalonic acidemia (MMA) with early-onset severe hydrocephalus is rare. In this paper, we described two cases of MMA with hydrocephalus and review the literature to elucidate the clinical features of the disease, treatment options, and follow-up results. METHODS The PubMed and Embase databases were searched for clinical reports on MMA with severe hydrocephalus, and two unreported cases were presented to illustrate the clinical spectrum. RESULTS Six cases of MMA with severe hydrocephalus were observed in the previous literature. Our two patients with severe hydrocephalus but not bulging fontanelle received a ventriculo-peritoneal shunt, and intracranial hypertension was confirmed in both cases during the operation. These patients' clinical symptoms significantly improved after the operation. CONCLUSIONS Intracranial hypertension can exist in early-onset severe hydrocephalus in MMA, even if the bulging anterior fontanelle is not apparent. These patients could benefit from a ventriculo-peritoneal shunt.
Collapse
Affiliation(s)
- Minglei Ma
- Department of Neurosurgery, Capital Institute of Pediatrics, Chaoyang District, Beijing, 100020, People's Republic of China
| | - Mingxing Wu
- Department of Neurosurgery, Capital Institute of Pediatrics, Chaoyang District, Beijing, 100020, People's Republic of China
| | - Yanbin Li
- Department of Neurosurgery, Capital Institute of Pediatrics, Chaoyang District, Beijing, 100020, People's Republic of China
| | - Di Wu
- Department of Neurosurgery, Capital Institute of Pediatrics, Chaoyang District, Beijing, 100020, People's Republic of China
| | - Bingke Zhang
- Department of Neurosurgery, Capital Institute of Pediatrics, Chaoyang District, Beijing, 100020, People's Republic of China.
| |
Collapse
|
96
|
Cobalamin C Deficiency Induces a Typical Histopathological Pattern of Renal Arteriolar and Glomerular Thrombotic Microangiopathy. Kidney Int Rep 2018; 3:1153-1162. [PMID: 30197982 PMCID: PMC6127440 DOI: 10.1016/j.ekir.2018.05.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 05/29/2018] [Indexed: 12/16/2022] Open
Abstract
Introduction Cobalamin C (cblC) deficiency is the most common inborn error of vitamin B12 metabolism. Renal failure attributed to thrombotic microangiopathy (TMA) has occasionally been described in the late-onset presentation of cblC deficiency, but kidney lesions associated with cblC deficiency remain poorly defined. This study aims to describe the characteristics of kidney disease in cblC deficiency, and to provide a comparative histological analysis with cblC-independent renal TMA. Methods We performed a multicenter retrospective study including 7 patients with cblC deficiency and 16 matched controls with cblC-independent TMA. The patients included were aged 6 to 26 years at the time of the first manifestations. All patients presented with acute renal failure, proteinuria, and hemolysis; 5 patients required dialysis. Results The histological study revealed arteriolar and glomerular TMA in all patients. After comparison with the cblC-independent TMA control group, a vacuolated aspect of the glomerular basement membrane and the intensity of glomerular capillary wall IgM deposits were more present in cblC deficiency patients than in controls. Six patients were treated with hydroxycobalamin. All of them improved, with disappearance of hemolysis, and 3 of the 4 patients requiring renal replacement therapy were weaned off dialysis. Conclusion This study provides a precise description of kidney pathology in cblC deficiency. Due to major therapeutic implications, we suggest that patients with renal TMA be screened for cblC deficiency regardless of age, particularly when the kidney biopsy provides evidence of long-lasting TMA, including a vacuolated aspect of the glomerular basement membrane and glomerular capillary wall IgM deposition.
Collapse
|
97
|
Chen L, Yin J, He J, Xu B. Pulmonary embolism in a child with combined methylmalonic acidemia and homocystinuria. Pediatr Investig 2018; 2:131-133. [PMID: 32851247 PMCID: PMC7331298 DOI: 10.1002/ped4.12047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 06/04/2018] [Indexed: 11/06/2022] Open
Affiliation(s)
- Lanqin Chen
- China National Clinical Research Center for Respiratory Diseases, Resiratory DepartmentBeijing Children's HospitalCapital Medical UniversityNational Center for Children's HealthBeijingChina
| | - Ju Yin
- China National Clinical Research Center for Respiratory Diseases, Resiratory DepartmentBeijing Children's HospitalCapital Medical UniversityNational Center for Children's HealthBeijingChina
| | - Jianxin He
- China National Clinical Research Center for Respiratory Diseases, Resiratory DepartmentBeijing Children's HospitalCapital Medical UniversityNational Center for Children's HealthBeijingChina
| | - Baoping Xu
- China National Clinical Research Center for Respiratory Diseases, Resiratory DepartmentBeijing Children's HospitalCapital Medical UniversityNational Center for Children's HealthBeijingChina
| |
Collapse
|
98
|
Wang SJ, Yan CZ, Liu YM, Zhao YY. Late-onset cobalamin C deficiency Chinese sibling patients with neuropsychiatric presentations. Metab Brain Dis 2018; 33:829-835. [PMID: 29374341 DOI: 10.1007/s11011-018-0189-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 01/17/2018] [Indexed: 01/06/2023]
Abstract
The Cobalamin C deficiency (cblC), characterized with elevated methylmalonic acidemia and homocystinuria in plasma, is an inborn error of cobalamin metabolism. The late-onset cblC siblings patients were rarely reported. In this study, we analyzed the clinical presentations and treatment outcomes of late-onset cblC in Chinese sibling patients with neuropsychiatric presentations. The clinical data of four pairs of Chinese patients were retrospectively analyzed. Serum homocysteine, urine organic acids measurements, neuroimaging exams and gene analysis were carried out in all patents. Patients were reevaluated after treatments with cobalamin, folate, betaine, L-carnitine and compound vitamin B. The mean age at disease onset was 13.7 (range 2-19) years. The neuropsychiatric disturbances including cognitive decline (3/8), psychiatric disturbances (4/8), gait instability (2/8), lower extremity weakness and numbness (3/8) and thromboembolic events (1/8). Two patients suffered nephropathy. The mean serum homocysteine when patients were diagnosed was 109.4 (range 69.5-138) μM/L. The abnormal radioimaging included scoliosis by X-ray (5/6), cerebral atrophy (4/6) and spinal cord atrophy (3/6) by MRI scan. Three pairs of siblings showed heterozygous mutations of MMACHC gene including c.482G > A (4/6), c.354G > C (2/6), c.570insT (2/6), c.445_446del (2/6) and c.656_4658del (2/6). The other two siblings showed homozygous mutation with c.452A > G in MMACHC gene. After treatments, the psychiatric symptoms were obviously relieved in all the patients. In Chinese siblings with late-onset cblC, the main clinic manifestation and abnormal radioimaging were cognitive decline and cerebral atrophy respectively. The most common gene mutation was c.482G > A of MMACHC gene. The patients responded well to the treatments.
Collapse
Affiliation(s)
- Sheng-Jun Wang
- Department of Neurology, Qilu Hospital, Shandong University, 107#,Wen Hua Xi Road, Ji'nan, 250012, People's Republic of China
| | - Chuan-Zhu Yan
- Department of Neurology, Qilu Hospital, Shandong University, 107#,Wen Hua Xi Road, Ji'nan, 250012, People's Republic of China
| | - Yi-Ming Liu
- Department of Neurology, Qilu Hospital, Shandong University, 107#,Wen Hua Xi Road, Ji'nan, 250012, People's Republic of China
| | - Yu-Ying Zhao
- Department of Neurology, Qilu Hospital, Shandong University, 107#,Wen Hua Xi Road, Ji'nan, 250012, People's Republic of China.
| |
Collapse
|
99
|
Delbet JD, Ulinski T. Thrombotic microangiopathy and breastfeeding: where is the link? Answers. Pediatr Nephrol 2018; 33:987-989. [PMID: 28812187 DOI: 10.1007/s00467-017-3762-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 07/05/2017] [Accepted: 07/07/2017] [Indexed: 11/27/2022]
Affiliation(s)
- Jean Daniel Delbet
- Pediatric Nephrology, Armand Trousseau Hospital, Assistance publique-Hôpitaux de Paris, 26 Avenue du Docteur Arnold Netter, 75012, Paris, France.,University Pierre and Marie Curie, Paris 6, Paris, France.,DHU 2iB (Inflammation, Immunotherapy and Biotherapy), UPMC Hospital Pitié-Salpêtrière, Paris, France
| | - Tim Ulinski
- Pediatric Nephrology, Armand Trousseau Hospital, Assistance publique-Hôpitaux de Paris, 26 Avenue du Docteur Arnold Netter, 75012, Paris, France. .,University Pierre and Marie Curie, Paris 6, Paris, France. .,DHU 2iB (Inflammation, Immunotherapy and Biotherapy), UPMC Hospital Pitié-Salpêtrière, Paris, France.
| |
Collapse
|
100
|
Hemolytic uremic syndrome with dual caution in an infant: cobalamin C defect and complement dysregulation successfully treated with eculizumab. Pediatr Nephrol 2018; 33:1093-1096. [PMID: 29558000 DOI: 10.1007/s00467-018-3941-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 03/04/2018] [Accepted: 03/06/2018] [Indexed: 01/12/2023]
Abstract
BACKGROUND Hemolytic uremic syndrome (HUS) is a clinical syndrome characterized by hemolytic anemia, thrombocytopenia, and acute kidney injury. Atypical hemolytic uremic syndrome (aHUS) is a devastating disease with significant mortality and high risk of progression to end-stage kidney disease. It is mostly caused by dysregulation of the alternative complement pathway. Cobalamin C (Cbl C) defect is a genetic disorder of cobalamin metabolism and is a rare cause of HUS. CASE-DIAGNOSIS/TREATMENT We present a 6-month-old male infant who was admitted to the pediatric intensive care unit (PICU) due to restlessness, severe hypertension, anemia, respiratory distress, and acute kidney injury. Metabolic screening revealed elevated plasma homocysteine levels, low methionine levels, and methylmalonic aciduria, and the patient was diagnosed as having HUS secondary to Cbl C defect. Additionally, complement factor H (CFH) and complement C3 levels were decreased. The infant was treated with betaine, hydroxycobalamin, and folic acid. After treatment, the homocysteine and methylmalonic acid levels were normalized but hemolysis and acute kidney failure persisted. He required continued renal replacement treatment (CRRT) and plasma exchange due to thrombotic microangiopathy (TMA). Therefore, we considered a second mechanism in the pathogenesis as complement dysregulation and gave eculizumab to the patient. After eculizumab treatment, the renal and hematologic indices improved and he was free of dialysis. CONCLUSIONS To the best of our knowledge, our patient is the first to have Cbl C defect-HUS accompanied by complement dysregulation, who responded well to eculizumab therapy.
Collapse
|