51
|
Hwang JW, Jeon YT, Lim YJ, Park HP. Sevoflurane Postconditioning-Induced Anti-Inflammation via Inhibition of the Toll-Like Receptor-4/Nuclear Factor Kappa B Pathway Contributes to Neuroprotection against Transient Global Cerebral Ischemia in Rats. Int J Mol Sci 2017; 18:ijms18112347. [PMID: 29113143 PMCID: PMC5713316 DOI: 10.3390/ijms18112347] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 10/12/2017] [Accepted: 10/26/2017] [Indexed: 12/27/2022] Open
Abstract
The anti-inflammatory actions of sevoflurane postconditioning are suggested as an important mechanism of sevoflurane postconditioning-induced neuroprotection against cerebral ischemia. Here, we determined whether the anti-inflammatory effects of sevoflurane postconditioning were mediated via inhibition of the toll-like receptor (TLR)-4/nuclear factor kappa B (NF-κB) pathway after global transient cerebral ischemia in rats. Forty-five rats were randomly assigned to five groups as follows: (1) control (10 min of ischemia, n = 10); (2) sevoflurane postconditioning (two periods of sevoflurane inhalation after ischemia for 10 min with a wash period of 10 min, n = 10); (3) resatorvid (intraperitoneal injection of a selective TLR-4 antagonist (3 mg/kg) 30 min before ischemia, n = 10); (4) sevoflurane postconditioning plus resatorvid (n = 10), and sham (n = 5). The numbers of necrotic and apoptotic cells in the hippocampal CA1 region, the expression levels of TLR-4, NF-κB, cleaved caspase-3, and tumor necrosis factor alpha (TNF-α) in the anterior part of each brain, and the serum levels of TNF-α, interleukin 6 (IL-6), and interleukin 1 beta (IL-1β) were assessed 1 day after ischemia. The necrotic cell counts and expression levels of TLR-4, NF-κB, caspase-3, and TNF-α in brain tissue as well as serum levels of pro-inflammatory cytokines (TNF-α, IL-6, and IL-1β) were significantly higher in the control group than in the other groups. Our findings suggest that the anti-inflammatory actions of sevoflurane postconditioning via inactivation of the TLR-4/NF-κB pathway and subsequent reduction in pro-inflammatory cytokine production, in part, contribute to sevoflurane postconditioning-induced neuroprotection after global transient cerebral ischemia in rats.
Collapse
Affiliation(s)
- Jung-Won Hwang
- Department of Anesthesiology and Pain Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Korea.
| | - Young-Tae Jeon
- Department of Anesthesiology and Pain Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Korea.
| | - Young-Jin Lim
- Department of Anesthesiology and Pain Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Korea.
| | - Hee-Pyoung Park
- Department of Anesthesiology and Pain Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Korea.
| |
Collapse
|
52
|
FGF2 Attenuates Neural Cell Death via Suppressing Autophagy after Rat Mild Traumatic Brain Injury. Stem Cells Int 2017; 2017:2923182. [PMID: 29181034 PMCID: PMC5664312 DOI: 10.1155/2017/2923182] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 08/26/2017] [Accepted: 09/11/2017] [Indexed: 12/19/2022] Open
Abstract
Traumatic brain injury (TBI) can lead to physical and cognitive deficits, which are caused by the secondary injury process. Effective pharmacotherapies for TBI patients are still lacking. Fibroblast growth factor-2 (FGF2) is an important neurotrophic factor that can stimulate neurogenesis and angiogenesis and has been shown to have neuroprotective effects after brain insults. Previous studies indicated that FGF2's neuroprotective effects might be related to its function of regulating autophagy. The present study investigated FGF2's beneficial effects in the early stage of rat mild TBI and the underlying mechanisms. One hundred and forty-four rats were used for creating controlled cortical impact (CCI) models to simulate the pathological damage after TBI. Our results indicated that pretreatment of FGF2 played a neuroprotective role in the early stage of rat mild TBI through alleviating brain edema, reducing neurological deficits, preventing tissue loss, and increasing the number of surviving neurons in injured cortex and the ipsilateral hippocampus. FGF2 could also protect cells from various forms of death such as apoptosis or necrosis through inhibition of autophagy. Finally, autophagy activator rapamycin could abolish the protective effects of FGF2. This study extended our understanding of FGF2's neuroprotective effects and shed lights on the pharmacological therapy after TBI.
Collapse
|
53
|
Joseph B, Khan M, Rhee P. Non-invasive diagnosis and treatment strategies for traumatic brain injury: an update. J Neurosci Res 2017; 96:589-600. [PMID: 28836292 DOI: 10.1002/jnr.24132] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 06/26/2017] [Accepted: 07/10/2017] [Indexed: 12/28/2022]
Abstract
PURPOSE OF REVIEW Traumatic Brain Injury (TBI) remains the leading cause of morbidity and mortality in U.S. Since the last decade, there have been several advances in the understanding and management of TBI that have shown the potential to improve outcomes. The aim of this review is to provide a useful overview of these potential diagnostic and treatment strategies that have yet to be proven, along with an assessment of their impact on outcomes after a TBI. RECENT FINDINGS Recent technical advances in the management of a TBI are grounded in a better understanding of the pathophysiology of primary and secondary insult to the brain after a TBI. Hence, clinical trials on humans should proceed in order to evaluate their efficacy and safety. SUMMARY Mortality associated with TBI remains high. Nonetheless, new diagnostic and therapeutic techniques have the potential to enhance early detection and prevention of secondary brain insult.
Collapse
Affiliation(s)
- Bellal Joseph
- Division of Trauma, Critical Care, Emergency Surgery, and Burns, Department of Surgery, University of Arizona, Tucson, Arizona, USA
| | - Muhammad Khan
- Division of Trauma, Critical Care, Emergency Surgery, and Burns, Department of Surgery, University of Arizona, Tucson, Arizona, USA
| | - Peter Rhee
- Division of Acute Care Surgery, Department of Surgery, Grady Memorial Hospital, Atlanta, Georgia, USA
| |
Collapse
|
54
|
Electroacupuncture Improved Hippocampal Neurogenesis following Traumatic Brain Injury in Mice through Inhibition of TLR4 Signaling Pathway. Stem Cells Int 2017; 2017:5841814. [PMID: 28848607 PMCID: PMC5564094 DOI: 10.1155/2017/5841814] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 07/02/2017] [Accepted: 07/09/2017] [Indexed: 11/18/2022] Open
Abstract
The protective role of electroacupuncture (EA) treatment in diverse neurological diseases such as ischemic stroke is well acknowledged. However, whether and how EA act on hippocampal neurogenesis following traumatic brain injury (TBI) remains poorly understood. This study aims to investigate the effect of EA on hippocampal neurogenesis and neurological functions, as well as its underlying association with toll-like receptor 4 (TLR4) signaling in TBI mice. BrdU/NeuN immunofluorescence was performed to label newborn neurons in the hippocampus after EA treatment. Water maze test and neurological severity score were used to evaluate neurological function posttrauma. The hippocampal level of TLR4 and downstream molecules and inflammatory cytokines were, respectively, detected by Western blot and enzyme-linked immunosorbent assay. EA enhanced hippocampal neurogenesis and inhibited TLR4 expression at 21, 28, and 35 days after TBI, but the beneficial effects of EA on posttraumatic neurogenesis and neurological functions were attenuated by lipopolysaccharide-induced TLR4 activation. In addition, EA exerted an inhibitory effect on both TLR4/Myd88/NF-κB and TLR4/TRIF/NF-κB pathways, as well as the inflammatory cytokine expression in the hippocampus following TBI. In conclusion, EA promoted hippocampal neurogenesis and neurological recovery through inhibition of TLR4 signaling pathway posttrauma, which may be a potential approach to improve the outcome of TBI.
Collapse
|
55
|
Karimy JK, Zhang J, Kurland DB, Theriault BC, Duran D, Stokum JA, Furey CG, Zhou X, Mansuri MS, Montejo J, Vera A, DiLuna ML, Delpire E, Alper SL, Gunel M, Gerzanich V, Medzhitov R, Simard JM, Kahle KT. Inflammation-dependent cerebrospinal fluid hypersecretion by the choroid plexus epithelium in posthemorrhagic hydrocephalus. Nat Med 2017; 23:997-1003. [PMID: 28692063 DOI: 10.1038/nm.4361] [Citation(s) in RCA: 263] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Accepted: 05/31/2017] [Indexed: 02/07/2023]
Abstract
The choroid plexus epithelium (CPE) secretes higher volumes of fluid (cerebrospinal fluid, CSF) than any other epithelium and simultaneously functions as the blood-CSF barrier to gate immune cell entry into the central nervous system. Posthemorrhagic hydrocephalus (PHH), an expansion of the cerebral ventricles due to CSF accumulation following intraventricular hemorrhage (IVH), is a common disease usually treated by suboptimal CSF shunting techniques. PHH is classically attributed to primary impairments in CSF reabsorption, but little experimental evidence supports this concept. In contrast, the potential contribution of CSF secretion to PHH has received little attention. In a rat model of PHH, we demonstrate that IVH causes a Toll-like receptor 4 (TLR4)- and NF-κB-dependent inflammatory response in the CPE that is associated with a ∼3-fold increase in bumetanide-sensitive CSF secretion. IVH-induced hypersecretion of CSF is mediated by TLR4-dependent activation of the Ste20-type stress kinase SPAK, which binds, phosphorylates, and stimulates the NKCC1 co-transporter at the CPE apical membrane. Genetic depletion of TLR4 or SPAK normalizes hyperactive CSF secretion rates and reduces PHH symptoms, as does treatment with drugs that antagonize TLR4-NF-κB signaling or the SPAK-NKCC1 co-transporter complex. These data uncover a previously unrecognized contribution of CSF hypersecretion to the pathogenesis of PHH, demonstrate a new role for TLRs in regulation of the internal brain milieu, and identify a kinase-regulated mechanism of CSF secretion that could be targeted by repurposed US Food and Drug Administration (FDA)-approved drugs to treat hydrocephalus.
Collapse
Affiliation(s)
- Jason K Karimy
- Department of Neurosurgery, Yale School of Medicine, New Haven, Connecticut, USA
| | - Jinwei Zhang
- Department of Neurosurgery, Yale School of Medicine, New Haven, Connecticut, USA
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratory, Exeter, UK
| | - David B Kurland
- Department of Neurosurgery, University of Maryland, School of Medicine, Baltimore, Maryland, USA
| | | | - Daniel Duran
- Department of Neurosurgery, Yale School of Medicine, New Haven, Connecticut, USA
| | - Jesse A Stokum
- Department of Neurosurgery, University of Maryland, School of Medicine, Baltimore, Maryland, USA
| | | | - Xu Zhou
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - M Shahid Mansuri
- Department of Neurosurgery, Yale School of Medicine, New Haven, Connecticut, USA
| | - Julio Montejo
- Department of Neurosurgery, Yale School of Medicine, New Haven, Connecticut, USA
| | - Alberto Vera
- Department of Neurosurgery, Yale School of Medicine, New Haven, Connecticut, USA
| | - Michael L DiLuna
- Department of Neurosurgery, Yale School of Medicine, New Haven, Connecticut, USA
| | - Eric Delpire
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Seth L Alper
- Division of Nephrology, Beth Israel Deaconess Medical Center, Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Vascular Biology Research Center, Beth Israel Deaconess Medical Center, Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Murat Gunel
- Department of Neurosurgery, Yale School of Medicine, New Haven, Connecticut, USA
| | - Volodymyr Gerzanich
- Department of Neurosurgery, University of Maryland, School of Medicine, Baltimore, Maryland, USA
| | - Ruslan Medzhitov
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - J Marc Simard
- Department of Neurosurgery, University of Maryland, School of Medicine, Baltimore, Maryland, USA
- Department of Pathology, University of Maryland, School of Medicine, Baltimore, Maryland, USA
- Department of Physiology, University of Maryland, School of Medicine, Baltimore, Maryland, USA
| | - Kristopher T Kahle
- Department of Neurosurgery, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Pediatrics, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, Connecticut, USA
- Center for Mendelian Genomics, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
56
|
Wang JY, Huang YN, Chiu CC, Tweedie D, Luo W, Pick CG, Chou SY, Luo Y, Hoffer BJ, Greig NH, Wang JY. Pomalidomide mitigates neuronal loss, neuroinflammation, and behavioral impairments induced by traumatic brain injury in rat. J Neuroinflammation 2016; 13:168. [PMID: 27353053 PMCID: PMC4924242 DOI: 10.1186/s12974-016-0631-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 06/16/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) is a global health concern that typically causes emotional disturbances and cognitive dysfunction. Secondary pathologies following TBI may be associated with chronic neurodegenerative disorders and an enhanced likelihood of developing dementia-like disease in later life. There are currently no approved drugs for mitigating the acute or chronic effects of TBI. METHODS The effects of the drug pomalidomide (Pom), an FDA-approved immunomodulatory agent, were evaluated in a rat model of moderate to severe TBI induced by controlled cortical impact. Post-TBI intravenous administration of Pom (0.5 mg/kg at 5 or 7 h and 0.1 mg/kg at 5 h) was evaluated on functional and histological measures that included motor function, fine more coordination, somatosensory function, lesion volume, cortical neurodegeneration, neuronal apoptosis, and the induction of pro-inflammatory cytokines (TNF-α, IL-1β, IL-6). RESULTS Pom 0.5 mg/kg administration at 5 h, but not at 7 h post-TBI, significantly mitigated the TBI-induced injury volume and functional impairments, neurodegeneration, neuronal apoptosis, and cytokine mRNA and protein induction. To evaluate underlying mechanisms, the actions of Pom on neuronal survival, microglial activation, and the induction of TNF-α were assessed in mixed cortical cultures following a glutamate challenge. Pom dose-dependently ameliorated glutamate-mediated cytotoxic effects on cell viability and reduced microglial cell activation, significantly attenuating the induction of TNF-α. CONCLUSIONS Post-injury treatment with a single Pom dose within 5 h significantly reduced functional impairments in a well-characterized animal model of TBI. Pom decreased the injury lesion volume, augmented neuronal survival, and provided anti-inflammatory properties. These findings strongly support the further evaluation and optimization of Pom for potential use in clinical TBI.
Collapse
Affiliation(s)
- Jin-Ya Wang
- />Graduate Institute of Medical Science, College of Medicine, Taipei Medical University, 250 Wu-Hsing St., Taipei, 110 Taiwan
| | - Ya-Ni Huang
- />Graduate Institute of Medical Science, College of Medicine, Taipei Medical University, 250 Wu-Hsing St., Taipei, 110 Taiwan
- />Department of Nursing, Hsin Sheng Junior College of Medical Care and Management, Taoyuan, Taiwan
| | - Chong-Chi Chiu
- />Department of General Surgery, Chi Mei Medical Center, Tainan and Liouying, Taiwan
| | - David Tweedie
- />Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, USA
| | - Weiming Luo
- />Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, USA
| | - Chaim G. Pick
- />Department of Anatomy and Anthropology, Sackler School of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Szu-Yi Chou
- />Graduate Program on Neuroregeneration, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Yu Luo
- />Department of Neurosurgery, Case Western Reserve University School of Medicine, Cleveland, OH USA
| | - Barry J. Hoffer
- />Department of Neurosurgery, Case Western Reserve University School of Medicine, Cleveland, OH USA
| | - Nigel H. Greig
- />Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, USA
| | - Jia-Yi Wang
- />Graduate Institute of Medical Science, College of Medicine, Taipei Medical University, 250 Wu-Hsing St., Taipei, 110 Taiwan
- />Department of Physiology, College of Medicine, Taipei Medical University, 250 Wu-Hsing St., Taipei, 110 Taiwan
| |
Collapse
|