51
|
Joung EJ, Lee B, Gwon WG, Shin T, Jung BM, Yoon NY, Choi JS, Oh CW, Kim HR. Sargaquinoic acid attenuates inflammatory responses by regulating NF-κB and Nrf2 pathways in lipopolysaccharide-stimulated RAW 264.7 cells. Int Immunopharmacol 2015; 29:693-700. [PMID: 26442467 DOI: 10.1016/j.intimp.2015.09.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 08/17/2015] [Accepted: 09/10/2015] [Indexed: 10/22/2022]
Abstract
Myagropsis myagroides, a brown alga, showed strong anti-inflammatory activities in the previous studies. In this study, we isolated a strong anti-inflammatory compound, sargaquinoic acid (SQA), from M. myagroides and investigated the anti-inflammatory action using lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. SQA suppressed the production of inducible nitric oxide synthase and cyclooxygenase-2 in LPS-stimulated cells as well as that of reactive oxygen species. As a result, SQA inhibited the production of NO, prostaglandin E2, and pro-inflammatory cytokines. LPS-induced transcriptional activation of nuclear factor-κB (NF-κB) was remarkably inhibited by SQA treatment through the prevention of inhibitor κB-α degradation. The regulation of NF-κB activation was also mediated by the phosphorylation of ERK and Akt in LPS-stimulated RAW 264.7 cells. Moreover, SQA induced the production of heme oxygenase 1 via activation of transcription factor Nrf2. These results indicate that SQA inhibits the LPS-induced expression of inflammatory mediators via suppression of ERK and Akt-mediated NF-κB pathway as well as up-regulation of Nrf2/HO-1 pathway, indicating that SQA has a potential therapeutic and preventive application in various inflammatory diseases.
Collapse
Affiliation(s)
- Eun-Ji Joung
- Department of Food Science and Nutrition, Pukyong National University, Busan 608-737, South Korea
| | - Bonggi Lee
- Department of Food Science and Nutrition, Pukyong National University, Busan 608-737, South Korea
| | - Wi-Gyeong Gwon
- Department of Food Science and Nutrition, Pukyong National University, Busan 608-737, South Korea
| | - Taisun Shin
- Division of Food and Nutrition, Chonnam National University, Gwangju 500-757, South Korea
| | - Bok-Mi Jung
- Division of Food and Nutrition, Chonnam National University, Gwangju 500-757, South Korea
| | - Na-Young Yoon
- Food and Safety Research Division, National Fisheries Research and Development Institute, Gijang-gun, Busan 619-705, South Korea
| | - Jae-Sue Choi
- Department of Food Science and Nutrition, Pukyong National University, Busan 608-737, South Korea
| | - Chul Woong Oh
- Department of Marine Biology, Pukyong National University, Busan 608-737, South Korea
| | - Hyeung-Rak Kim
- Department of Food Science and Nutrition, Pukyong National University, Busan 608-737, South Korea.
| |
Collapse
|
52
|
Xue WL, Bai X, Zhang L. rhTNFR:Fc increases Nrf2 expression via miR-27a mediation to protect myocardium against sepsis injury. Biochem Biophys Res Commun 2015; 464:855-61. [DOI: 10.1016/j.bbrc.2015.07.051] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 07/09/2015] [Indexed: 12/15/2022]
|
53
|
Dhammaraj T, Phintha A, Pinthong C, Medhanavyn D, Tinikul R, Chenprakhon P, Sucharitakul J, Vardhanabhuti N, Jiarpinitnun C, Chaiyen P. p-Hydroxyphenylacetate 3-Hydroxylase as a Biocatalyst for the Synthesis of Trihydroxyphenolic Acids. ACS Catal 2015. [DOI: 10.1021/acscatal.5b00439] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Taweesak Dhammaraj
- Department of Biochemistry and Center of
Excellence in Protein Structure and Function, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand
| | - Aisaraphon Phintha
- Department of Biochemistry and Center of
Excellence in Protein Structure and Function, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand
| | - Chatchadaporn Pinthong
- Department of Biochemistry and Center of
Excellence in Protein Structure and Function, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand
- Institute for Innovative Learning, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Dheeradhach Medhanavyn
- Department of Biochemistry and Center of
Excellence in Protein Structure and Function, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand
| | - Ruchanok Tinikul
- Mahidol University, Nakhonsawan Campus, Nakhonsawan 60130, Thailand
| | - Pirom Chenprakhon
- Institute for Innovative Learning, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Jeerus Sucharitakul
- Department
of Biochemistry, Faculty of Dentistry, Chulalongkorn University, Henri-Dunant
Road, Patumwan, Bangkok 10300, Thailand
| | - Nontima Vardhanabhuti
- Department of Pharmacy,
Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10300, Thailand
| | - Chutima Jiarpinitnun
- Department of Chemistry
and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Pimchai Chaiyen
- Department of Biochemistry and Center of
Excellence in Protein Structure and Function, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand
| |
Collapse
|
54
|
Wu W, Li Y, Wu Y, Zhang Y, Wang Z, Liu X. Lutein suppresses inflammatory responses through Nrf2 activation and NF-κB inactivation in lipopolysaccharide-stimulated BV-2 microglia. Mol Nutr Food Res 2015; 59:1663-73. [PMID: 26016441 DOI: 10.1002/mnfr.201500109] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 05/09/2015] [Accepted: 05/13/2015] [Indexed: 12/19/2022]
Abstract
SCOPE In this study, the effects of lutein on neuroinflammation in lipopolysaccharide (LPS)-activated BV-2 microglia were investigated. METHODS AND RESULTS The production of proinflammatory cytokines tumor necrosis factor-α, interleukin-1β, and nitric oxide was measured in culture medium using enzyme immunoassay and Griess reagent, respectively. The expression of proteins was determined using Western blot. Pretreatment with lutein (50 μM) prior to LPS (1 μg/mL, 12 h) stimulation resulted in a significant inhibition of inducible nitric oxide synthase and cyclooxygenase-2 expression, as well as tumor necrosis factor-α, interleukin-1β, and nitric oxide production (p < 0.05). Further experiments demonstrated that lutein suppressed LPS-induced NF-κB activation by inhibiting the phosphorylation of p38 kinase, c-Jun N-terminal kinase (JNK), and Akt kinase (p < 0.05). Moreover, lutein markedly quenched reactive oxygen species and promoted antioxidant protein expression including heme oxygenase-1 and NAD(P)H quinone oxidoreductase by enhancing the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) mediated NF-E2-related factor 2 (Nrf2) activation (p < 0.05). CONCLUSION These results suggest that lutein attenuates neuroinflammation in LPS-activated BV-2 microglia partly through inhibiting p38-, JNK-, and Akt-stimulated NF-κB activation and promoting ERK-induced Nrf2 activation, suggesting that lutein has great potential as a nutritional preventive strategy in inflammation-related neurodegenerative disorders.
Collapse
Affiliation(s)
- Wanqiang Wu
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yuelian Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yue Wu
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yawen Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Zhen Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| |
Collapse
|
55
|
Dihydroquercetin (DHQ) ameliorated concanavalin A-induced mouse experimental fulminant hepatitis and enhanced HO-1 expression through MAPK/Nrf2 antioxidant pathway in RAW cells. Int Immunopharmacol 2015; 28:938-44. [PMID: 25916679 DOI: 10.1016/j.intimp.2015.04.032] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 04/14/2015] [Indexed: 11/20/2022]
Abstract
Autoimmune hepatitis represents a ubiquitous human health problem and has a poor prognosis. Dihydroquercetin (DHQ), a well-known antioxidant, significantly inhibits fulminant hepatitis through anti-oxidant and anti-inflammation mechanisms. In this study, we show that administration of DHQ ameliorated concanavalin A (ConA)-induced mouse liver injury by increasing the survival rate, reducing the serum ALT and AST level, preventing histopathological injuries and decreasing pro-inflammatory cytokine mRNA expression in hepatic tissue. As macrophages/Kupffer cells in oxidative stress and pro-inflammatory mediators play an important role in the pathogenesis of immune-mediated hepatitis, we further exposed mouse RAW264 macrophage cell lines to ConA in vitro and found that DHQ significantly inhibited mRNA expression and secretion of IFN-γ and TNF-α in cell culture supernatant. In addition, DHQ significantly enhanced heme oxygenase-1 (HO-1) expression in a dose- and time-dependent manner via increased Nrf2 expression in cytoplasm and nuclear translocation. Furthermore, DHQ enhanced phosphorylation of three members of the mitogen-activated protein kinase (MAPK) family, and cell treatment with MEK/ERK (PD98059), p38 (SB203580) and JNK (SP600125) inhibitors reduced DHQ-induced HO-1 expression. These results indicate that DHQ possesses hepatoprotective properties against ConA-induced liver injury, which are attributed to its ability to scavenge oxidative stress and to inhibit the release of inflammatory mediators via upregulation of HO-1 activity through the MAPK/Nrf2 signaling pathway in macrophages/Kupffer cells.
Collapse
|
56
|
Shang K, Zhang J, Amna T, Yang J, Cheng X, Zhang C, Hwang I. Attenuation of cellular toxicity by calpain inhibitor induced by bacterial endotoxin: a mechanistic study using muscle precursor cells as a model system. Mol Biol Rep 2015; 42:1281-8. [PMID: 25813209 DOI: 10.1007/s11033-015-3869-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 03/13/2015] [Indexed: 02/06/2023]
Abstract
This investigation was under taken to explore probable mechanisms and signal pathways involved in cytotoxicity induced by bacterial endotoxin lipopolysaccharide (LPS). Herein, we selected muscle precursor C2C12 myoblasts as representative cells to test effect of calpain inhibitor 3-(4-iodophenyl)-2-mercapto-(Z)-2-propenoic acid (PD150606) on LPS induced inflammation and apoptosis. In order to rule out the toxicity of endotoxin, mouse myoblasts were exposed to various concentrations of LPS and viability of cells and morphology were assessed using CCK-8 assay and simple microscopy respectively. Apoptotic cell death was examined by fluorescence microscope at regular time intervals. Additionally, LPS induced apoptosis in C2C12 cells were determined by mRNA expression of µ-calpain, caspase-3 and tumor necrosis factor alpha (TNF-α) and were quantified by qRT-PCR. Our results point out that LPS stimulation produced dose dependent toxicity in muscle precursor cells. Pre-treatment with a calpain inhibitor can significantly attenuate LPS-induced inflammation/apoptosis. Results of present research determined that mRNA expression of aforesaid genes was amplified (p<0.05) in LPS stimulated C2C12 cells, whereas a noticeable drop off in mRNA expression of these genes was observed when pre-exposed with calpain inhibitor PD150606. Our study has outlined the current understanding regarding the connection between µ-calpain and caspase-3 in skeletal muscle wasting and as a result provides suitable choice for designing promising chemotherapeutic system for muscle illness and atrophy.
Collapse
Affiliation(s)
- Ke Shang
- Department of Animal Science and Biotechnology, Chonbuk National University, Chonju, 561-756, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
57
|
Zhao M, Guo H, Chen J, Fujino M, Ito H, Takahashi K, Abe F, Nakajima M, Tanaka T, Wang J, Huang H, Zheng S, Hei M, Li J, Huang S, Li J, Ma X, Chen Y, Zhao L, Zhuang J, Zhu P, Li XK. 5-aminolevulinic acid combined with sodium ferrous citrate ameliorates H2O2-induced cardiomyocyte hypertrophy via activation of the MAPK/Nrf2/HO-1 pathway. Am J Physiol Cell Physiol 2015; 308:C665-72. [PMID: 25652453 DOI: 10.1152/ajpcell.00369.2014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 02/02/2015] [Indexed: 11/22/2022]
Abstract
Hydrogen peroxide (H2O2) causes cell damage via oxidative stress. Heme oxygenase-1 (HO-1) is an antioxidant enzyme that can protect cardiomyocytes against oxidative stress. In this study, we investigated whether the heme precursor 5-aminolevulinic acid (5-ALA) with sodium ferrous citrate (SFC) could protect cardiomyocytes from H2O2-induced hypertrophy via modulation of HO-1 expression. HL-1 cells pretreated with/without 5-ALA and SFC were exposed to H2O2 to induce a cardiomyocyte hypertrophy model. Hypertrophy was evaluated by planar morphometry, (3)H-leucine incorporation, and RT-PCR analysis of hypertrophy-related gene expressions. Reactive oxygen species (ROS) production was assessed by 5/6-chloromethyl-2',7'-ichlorodihydrofluorescein diacetate acetylester. HO-1 and nuclear factor erythroid 2-related factor 2 (Nrf2) protein expressions were analyzed by Western blot. In our experiments, HL-1 cells were transfected with Nrf2 siRNA or treated with a signal pathway inhibitor. We found several results. 1) ROS production, cell surface area, protein synthesis, and expressions of hypertrophic marker genes, including atrial natriuretic peptide, brain natriuretic peptide, atrial natriuretic factor, and β-myosin heavy chain, were decreased in HL-1 cells pretreated with 5-ALA and SFC. 2) 5-ALA and SFC increased HO-1 expression in a dose- and time-dependent manner, associated with upregulation of Nrf2. Notably, Nrf2 siRNA dramatically reduced HO-1 expression in HL-1 cells. 3) ERK1/2, p38, and SAPK/JNK signaling pathways were activated and modulate 5-ALA- and SFC-enhanced HO-1 expression. SB203580 (p38 kinase), PD98059 (ERK), or SP600125 (JNK) inhibitors significantly reduced this effect. In conclusion, our data suggest that 5-ALA and SFC protect HL-1 cells from H2O2-induced cardiac hypertrophy via activation of the MAPK/Nrf2/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Mingyi Zhao
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Huiming Guo
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jimei Chen
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | | | | | | | | | | | | | - Jinju Wang
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio
| | - Huanlei Huang
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Shaoyi Zheng
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Mingyan Hei
- Department of Pediatrics, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Jiaxin Li
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Shuai Huang
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jiani Li
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xiaotang Ma
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical College, Zhanjiang, China
| | - Yanfang Chen
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio
| | - Lingling Zhao
- Department of Pediatrics, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Jian Zhuang
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Ping Zhu
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China;
| | | |
Collapse
|
58
|
Im NK, Zhou W, Na M, Jeong GS. RETRACTED: Pierisformoside B exhibits neuroprotective and anti-inflammatory effects in murine hippocampal and microglial cells via the HO-1/Nrf2-mediated pathway. Int Immunopharmacol 2015; 24:353-360. [DOI: 10.1016/j.intimp.2014.12.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 12/08/2014] [Accepted: 12/09/2014] [Indexed: 01/19/2023]
|
59
|
Fu K, Lv X, Li W, Wang Y, Li H, Tian W, Cao R. Berberine hydrochloride attenuates lipopolysaccharide-induced endometritis in mice by suppressing activation of NF-κB signal pathway. Int Immunopharmacol 2015; 24:128-32. [PMID: 25479718 DOI: 10.1016/j.intimp.2014.11.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 11/05/2014] [Accepted: 11/05/2014] [Indexed: 01/09/2023]
|
60
|
Kim SP, Nam SH, Friedman M. Rice hull smoke extract protects mice against a Salmonella lipopolysaccharide-induced endotoxemia. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:7753-7759. [PMID: 25068861 DOI: 10.1021/jf501533s] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Endotoxemia (sepsis, septic shock) is an inflammatory, virulent disease that results mainly from infection by Gram-negative bacteria. The present study investigates the inhibitory effects of a rice hull smoke extract (RHSE) against murine endotoxemia induced by Salmonella lipopolysaccharide and d-galactosamine (LPS/GalN). Pretreatment of the mice with RHSE via dietary administration for 2 weeks resulted in the suppression (in %) of LPS/GalN-induced catalase by 70.7, superoxide dismutase (SOD) by 54.6, and transaminase (GOT/GPT) liver enzymes by 40.6/62.5, the amelioration of necrotic liver lesions, and the reduction of tumor necrosis factor-α (TNF-α) by 61.1 and nitrite serum level by 83.4, as well as myeloperoxidase (MPO) enzyme associated with necrotic injury of the lung and kidney by 65.7 and 63.3, respectively. The RHSE also extended the lifespan of the toxemic mice. The results using inflammation biomarkers and from the lifespan studies suggest that the RHSE can protect mice against LPS/GalN-induced liver, lung, and kidney injuries and inflammation by blocking oxidative stress and TNF-α production, thereby increasing the survival of the toxic-shock-induced mice. These beneficial effects and previous studies on the antimicrobial effects against Salmonella Typhimurium in culture and in mice suggest that the smoke extract also has the potential to serve as a new multifunctional resource in human food and animal feeds. Possible mechanisms of the beneficial effects at the cellular and molecular levels and suggested food uses are discussed.
Collapse
Affiliation(s)
- Sung Phil Kim
- Department of Biological Science, Ajou University , Suwon, 443-749, Republic of Korea
| | | | | |
Collapse
|
61
|
Chuang JY, Chang PC, Shen YC, Lin C, Tsai CF, Chen JH, Yeh WL, Wu LH, Lin HY, Liu YS, Lu DY. Regulatory effects of fisetin on microglial activation. Molecules 2014; 19:8820-39. [PMID: 24972270 PMCID: PMC6271444 DOI: 10.3390/molecules19078820] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 06/13/2014] [Accepted: 06/18/2014] [Indexed: 12/31/2022] Open
Abstract
Increasing evidence suggests that inflammatory processes in the central nervous system that are mediated by microglial activation play a key role in neurodegeneration. Fisetin, a plant flavonol commonly found in fruits and vegetables, is frequently added to nutritional supplements due to its antioxidant properties. In the present study, treatment with fisetin inhibited microglial cell migration and ROS (reactive oxygen species) production. Treatment with fisetin also effectively inhibited LPS plus IFN-γ-induced nitric oxide (NO) production, and inducible nitric oxide synthase (iNOS) expression in microglial cells. Furthermore, fisetin also reduced expressions of iNOS and NO by stimulation of peptidoglycan, the major component of the Gram-positive bacterium cell wall. Fisetin also inhibited the enhancement of LPS/IFN-γ- or peptidoglycan-induced inflammatory mediator IL (interlukin)-1 β expression. Besides the antioxidative and anti-inflammatory effects of fisetin, our study also elucidates the manner in fisetin-induced an endogenous anti-oxidative enzyme HO (heme oxygenase)-1 expression. Moreover, the regulatory molecular mechanism of fisetin-induced HO-1 expression operates through the PI-3 kinase/AKT and p38 signaling pathways in microglia. Notably, fisetin also significantly attenuated inflammation-related microglial activation and coordination deficit in mice in vivo. These findings suggest that fisetin may be a candidate agent for the development of therapies for inflammation-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Jing-Yuan Chuang
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 40402, Taiwan.
| | - Pei-Chun Chang
- Department of Bioinformatics, Asia University, Taichung 41354, Taiwan.
| | - Yi-Chun Shen
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 40402, Taiwan.
| | - Chingju Lin
- Department of Physiology, School of Medicine, China Medical University, Taichung 40402, Taiwan.
| | - Cheng-Fang Tsai
- Department of Biotechnology, Asia University, Taichung 41354, Taiwan.
| | - Jia-Hong Chen
- Department of General Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 42743, Taiwan.
| | - Wei-Lan Yeh
- Department of Cell and Tissue Engineering, Changhua Christian Hospital, Changhua 500, Taiwan.
| | - Ling-Hsuan Wu
- Graduate Institute of Basic Medical Science, China Medical University, Taichung 40402, Taiwan.
| | - Hsiao-Yun Lin
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan.
| | - Yu-Shu Liu
- Graduate Institute of Basic Medical Science, China Medical University, Taichung 40402, Taiwan.
| | - Dah-Yuu Lu
- Graduate Institute of Neural and Cognitive Sciences, China Medical University, Taichung 40402, Taiwan.
| |
Collapse
|