51
|
Pandey R, Ahmad Z. Nanomedicine and experimental tuberculosis: facts, flaws, and future. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2011; 7:259-72. [DOI: 10.1016/j.nano.2011.01.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2010] [Revised: 01/03/2011] [Accepted: 01/20/2011] [Indexed: 10/18/2022]
|
52
|
Inhaled therapies for tuberculosis and the relevance of activation of lung macrophages by particulate drug-delivery systems. Ther Deliv 2011; 2:753-68. [DOI: 10.4155/tde.11.34] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Pathogenic strains of Mycobacterium tuberculosis (Mtb) induce ‘alternative activation’ of lung macrophages that they colonize, in order to create conditions that promote the establishment and progression of infection. There is some evidence to indicate that such macrophages may be rescued from alternative activation by inhalable microparticles containing a variety of drugs. This review summarizes the experience of various groups of researchers, relating to observations of induction of a number of classical macrophage activation pathways. Restoration of a ‘respiratory burst’ and upregulation of reactive oxygen species and nitrogen intermediates through the phagocyte oxidase and nitric oxide synthetase enzyme systems; induction of proinflammatory macrophage cytokines; and finally induction of apoptosis rather than necrosis of the infected macrophage are discussed. It is suggested that there is scope to co-opt host responses in the management of tuberculosis, through the route of pulmonary drug delivery.
Collapse
|
53
|
Misra A, Hickey AJ, Rossi C, Borchard G, Terada H, Makino K, Fourie PB, Colombo P. Inhaled drug therapy for treatment of tuberculosis. Tuberculosis (Edinb) 2011; 91:71-81. [DOI: 10.1016/j.tube.2010.08.009] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 08/12/2010] [Accepted: 08/29/2010] [Indexed: 11/16/2022]
|
54
|
Microbiological insights into respiratory infections and the opportunities for inhaled therapy. J Drug Deliv Sci Technol 2011. [DOI: 10.1016/s1773-2247(11)50047-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
55
|
Aillon KL, El-Gendy N, Dennis C, Norenberg JP, McDonald J, Berkland C. Iodinated NanoClusters as an inhaled computed tomography contrast agent for lung visualization. Mol Pharm 2010; 7:1274-82. [PMID: 20575527 DOI: 10.1021/mp1000718] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Improvements to contrast media formulations may be an effective way to increase the accuracy and effectiveness of thoracic computed tomography (CT) imaging in disease evaluation. To achieve contrast enhancement in the lungs, a relatively large localized concentration of contrast media must be delivered. Inhalation offers a noninvasive alternative to intrapleural injections for local lung delivery, but effective aerosolization may deter successful imaging strategies. Here, NanoCluster technology was applied to N1177, a diatrizoic acid derivative, to formulate low density nanoparticle agglomerates with aerodynamic diameters <or=5 microm. Excipient-free N1177 NanoCluster powders were delivered to rats by insufflation or inhalation and scanned using CT up to 1 h post dose. CT images after inhalation showed a approximately 120 (HU) Hounsfield units contrast increase in the lungs, which was more than sufficient contrast for thoracic CT imaging. Lung tissue histology demonstrated that N1177 NanoClusters did not damage the lungs. NanoCluster particle engineering technology offers a novel approach to safely and efficiently disseminate high concentrations of contrast agents to the lung periphery.
Collapse
Affiliation(s)
- Kristin L Aillon
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047, USA
| | | | | | | | | | | |
Collapse
|
56
|
Abstract
Although treatment of drug-susceptible tuberculosis (TB) under ideal conditions may be successful in >or=95% of cases, cure rates in the field are often significantly lower due to the logistical challenges of administering and properly supervising the intake of combination chemotherapy for 6-9 months. Success rates are far worse for multidrug-resistant and extensively drug-resistant TB cases. There is general agreement that new anti-TB drugs are needed to shorten or otherwise simplify treatment for drug-susceptible and multidrug-resistant/extensively drug-resistant-TB, including TB associated with HIV infection. For the first time in over 40 years, a nascent pipeline of new anti-TB drug candidates has been assembled. Eleven candidates from seven classes are currently being evaluated in clinical trials. They include novel chemical entities belonging to entirely new classes of antibacterials, agents approved for use against infections other than TB, and an agent already approved for limited use against TB. In this article, we review the current state of TB treatment and its limitations and provide updates on the status of new drugs in clinical trials. In the conclusion, we briefly highlight ongoing efforts to discover new compounds and recent advances in alternative drug delivery systems.
Collapse
Affiliation(s)
- Eric L Nuermberger
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231-1002, USA.
| | | | | |
Collapse
|
57
|
|
58
|
Dartois V, Barry CE. Clinical pharmacology and lesion penetrating properties of second- and third-line antituberculous agents used in the management of multidrug-resistant (MDR) and extensively-drug resistant (XDR) tuberculosis. CURRENT CLINICAL PHARMACOLOGY 2010; 5:96-114. [PMID: 20156156 PMCID: PMC6344931 DOI: 10.2174/157488410791110797] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Accepted: 12/17/2009] [Indexed: 11/22/2022]
Abstract
Failure of first-line chemotherapy to cure tuberculosis (TB) patients occurs, in part, because of the development of resistance to isoniazid (INH) and rifampicin (RIF) the two most sterilizing agents in the four-drug regimen used to treat primary infections. Strains resistant to both INH and RIF are termed multidrug-resistant (MDR). Treatment options for MDR patients involve a complex array of twenty different drugs only two classes of which are considered to be highly effective (fluoroquinolones and aminoglycosides). Resistance to these two classes results in strains known as extensively drug-resistant (XDR) and these types of infections are becoming increasingly common. Many of the remaining agents have poorly defined pharmacology but nonetheless are widely used in the treatment of this disease. Several of these agents are known to have highly variable exposures in healthy volunteers and little is known in the patients in which they must be used. Therapeutic drug monitoring (TDM) is infrequently used in the management of MDR or XDR disease yet the clinical pharmacokinetic studies that have been done suggest this might have a large impact on disease outcome. We review what is known about the pharmacologic properties of each of the major classes of second- and third-line antituberculosis agents and suggest where judicious use of TDM would have the maximum possible impact. We summarize the state of knowledge of drug-drug interactions (DDI) in these classes of agents and those that are currently in clinical trials. Finally we consider what little is known about the ability of TB drugs to reach their ultimate site of action--the interior of a granuloma by penetrating the diseased lung area. Careful consideration of the pharmacology of these agents is essential if we are to avoid further fueling the growing epidemic of highly drug-resistant TB and critical in the development of new antituberculosis drugs.
Collapse
Affiliation(s)
- Véronique Dartois
- The Novartis Institute for Tropical Diseases, Biopolis, Singapore, Singapore.
| | | |
Collapse
|
59
|
The near future: Improving the activity of rifamycins and pyrazinamide. Tuberculosis (Edinb) 2010; 90:177-81. [DOI: 10.1016/j.tube.2010.03.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Accepted: 03/09/2010] [Indexed: 11/19/2022]
|
60
|
El-Gendy N, Gorman EM, Munson EJ, Berkland C. Budesonide nanoparticle agglomerates as dry powder aerosols with rapid dissolution. J Pharm Sci 2010; 98:2731-46. [PMID: 19130469 DOI: 10.1002/jps.21630] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Nanoparticle technology represents an attractive approach for formulating poorly water-soluble pulmonary medicines. Unfortunately, nanoparticle suspensions used in nebulizers or metered dose inhalers often suffer from physical instability in the form of uncontrolled agglomeration or Ostwald ripening. In addition, processing such suspensions into dry powders can yield broad particle size distributions. To address these encumbrances, a controlled nanoparticle flocculation process has been developed. Nanosuspensions of the poorly water-soluble drug budesonide were prepared by dissolving the drug in organic solvent containing surfactants followed by rapid solvent extraction in water. Different surfactants were employed to control the size and surface charge of the precipitated nanoparticles. Nanosuspensions were flocculated using leucine and lyophilized. Selected budesonide nanoparticle suspensions exhibited an average particle size ranging from approximately 160 to 230 nm, high yield and high drug content. Flocculated nanosuspensions produced micron-sized agglomerates. Freeze-drying the nanoparticle agglomerates yielded dry powders with desirable aerodynamic properties for inhalation therapy. In addition, the dissolution rates of dried nanoparticle agglomerate formulations were significantly faster than that of stock budesonide. The results of this study suggest that nanoparticle agglomerates possess the microstructure desired for lung deposition and the nanostructure to facilitate rapid dissolution of poorly water-soluble drugs.
Collapse
Affiliation(s)
- Nashwa El-Gendy
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas 66047, USA
| | | | | | | |
Collapse
|
61
|
El-Gendy N, Aillon KL, Berkland C. Dry powdered aerosols of diatrizoic acid nanoparticle agglomerates as a lung contrast agent. Int J Pharm 2010; 391:305-12. [PMID: 20214960 DOI: 10.1016/j.ijpharm.2010.03.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2009] [Revised: 02/23/2010] [Accepted: 03/01/2010] [Indexed: 11/25/2022]
Abstract
Aerosolized contrast agents may improve the resolution of biomedical imaging modalities and enable more accurate diagnosis of lung diseases. Many iodinated compounds, such as diatrizoic acid, have been shown to be safe and useful for radiographic examination of the airways. Formulations of such compounds must be improved in order to allow imaging of the smallest airways. Here, diatrizoic acid nanoparticle agglomerates were created by assembling nanoparticles into inhalable microparticles that may augment deposition in the lung periphery. Nanoparticle agglomerates were fully characterized and safety was determined in vivo. After dry powder insufflation to rats, no acute alveolar tissue damage was observed 2h post-dose. Diatrizoic acid nanoparticle agglomerates possess the characteristics of an efficient and safe inhalable lung contrast agent.
Collapse
Affiliation(s)
- Nashwa El-Gendy
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS 66047, United States
| | | | | |
Collapse
|
62
|
Dry powder PA-824 aerosols for treatment of tuberculosis in guinea pigs. Antimicrob Agents Chemother 2010; 54:1436-42. [PMID: 20086154 DOI: 10.1128/aac.01471-09] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Novel treatments for multidrug-resistant tuberculosis (MDR-TB), extensively drug-resistant tuberculosis (XDR-TB), or latent TB are needed urgently. Recently, we reported the formulation and characterization of the nitroimidazo-oxazine PA-824 for efficient aerosol delivery as dry powder porous particles and the subsequent disposition in guinea pigs after pulmonary administration. The objective of the present study was to evaluate the effects of these PA-824 therapeutic aerosols on the extent of TB infection in the low-inoculum aerosol infection guinea pig model. Four weeks after infection by the pulmonary route, animals received daily treatment for 4 weeks of either a high or a low dose of PA-824 dry powder aerosol. Animals received PA-824 cyclodextrin/lecithin suspensions orally as positive controls, and those receiving placebo particles or no treatment were negative controls. The lungs and spleens of animals receiving the high dose of inhaled PA-824 particles exhibited a lower degree of inflammation (indicated by wet tissue weights), bacterial burden, and tissue damage (indicated by histopathology) than those of untreated or placebo animals. Treatment with oral PA-824 cyclodextrin/lecithin suspension resulted in a more significant reduction in the bacterial burden of lungs and spleen, consistent with a dose that was larger than inhaled doses (eight times the inhaled low dose and four times the inhaled high dose). However, histopathological analysis revealed that the extent of tissue damage was comparable in groups receiving the oral or either inhaled dose. The present studies indicate the potential use of PA-824 dry powder aerosols in the treatment of TB.
Collapse
|
63
|
Blasi P, Schoubben A, Giovagnoli S, Rossi C, Ricci M. Fighting tuberculosis: old drugs, new formulations. Expert Opin Drug Deliv 2009; 6:977-93. [PMID: 19678791 DOI: 10.1517/17425240903130577] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
This review reports the state of the art on innovative drug delivery strategies designed for antitubercular chemotherapeutics. The introduction contains the fundamental biological background concerning tuberculosis and a review of the current antitubercular therapy, and is followed by a critical report of the micrometric and nanometric particulate systems designed and investigated to improve tuberculosis chemotherapy.
Collapse
Affiliation(s)
- Paolo Blasi
- University of Perugia, School of Pharmacy, Department of Chemistry and Technology of Drugs, Perugia, Italy.
| | | | | | | | | |
Collapse
|
64
|
|
65
|
El-Gendy N, Berkland C. Combination chemotherapeutic dry powder aerosols via controlled nanoparticle agglomeration. Pharm Res 2009; 26:1752-63. [PMID: 19415471 PMCID: PMC4123657 DOI: 10.1007/s11095-009-9886-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Accepted: 03/27/2009] [Indexed: 01/01/2023]
Abstract
PURPOSE To develop an aerosol system for efficient local lung delivery of chemotherapeutics where nanotechnology holds tremendous potential for developing more valuable cancer therapies. Concurrently, aerosolized chemotherapy is generating interest as a means to treat certain types of lung cancer more effectively with less systemic exposure to the compound. METHODS Nanoparticles of the potent anticancer drug, paclitaxel, were controllably assembled to form low density microparticles directly after preparation of the nanoparticle suspension. The amino acid, L-leucine, was used as a colloid destabilizer to drive the assembly of paclitaxel nanoparticles. A combination chemotherapy aerosol was formed by assembling the paclitaxel nanoparticles in the presence of cisplatin in solution. RESULTS Freeze-dried powders of the combination chemotherapy possessed desirable aerodynamic properties for inhalation. In addition, the dissolution rates of dried nanoparticle agglomerate formulations (approximately 60% to 66% after 8 h) were significantly faster than that of micronized paclitaxel powder as received (approximately 18% after 8 h). Interestingly, the presence of the water soluble cisplatin accelerated the dissolution of paclitaxel. CONCLUSIONS Nanoparticle agglomerates of paclitaxel alone or in combination with cisplatin may serve as effective chemotherapeutic dry powder aerosols to enable regional treatment of certain lung cancers.
Collapse
Affiliation(s)
- Nashwa El-Gendy
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas 66047, USA
| | - Cory Berkland
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas 66047, USA
- Department of Chemical and Petroleum Engineering, The University of Kansas, Lawrence, Kansas 66047, USA
- The University of Kansas, 2030 Becker Drive, Lawrence, Kansas 66047, USA
| |
Collapse
|
66
|
Sung JC, Padilla DJ, Garcia-Contreras L, VerBerkmoes JL, Durbin D, Peloquin CA, Elbert KJ, Hickey AJ, Edwards DA. Formulation and Pharmacokinetics of Self-Assembled Rifampicin Nanoparticle Systems for Pulmonary Delivery. Pharm Res 2009; 26:1847-55. [DOI: 10.1007/s11095-009-9894-2] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Accepted: 04/11/2009] [Indexed: 10/20/2022]
|
67
|
Mitnick CD, McGee B, Peloquin CA. Tuberculosis pharmacotherapy: strategies to optimize patient care. Expert Opin Pharmacother 2009; 10:381-401. [PMID: 19191677 PMCID: PMC2674232 DOI: 10.1517/14656560802694564] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
INTRODUCTION The treatment of tuberculosis (TB) is a mature discipline, with more than 60 years of clinical experience accrued across the globe. The requisite Multi-drug treatment of drug-susceptible TB, however, lasts 6 months and has never been optimized according to current standards. Multi-drug resistant TB and TB in individuals coinfected with HIV present additional treatment challenges. OBJECTIVE This article reviews the role that existing drugs and new compounds could have in shortening or improving treatment for TB. The key to treatment shortening seems to be sterilizing activity, or the ability of drugs to kill mycobacteria that persist after the initial days of multi-drug treatment. RESULTS Among existing anti-TB drugs, the rifamycins hold the greatest potential for shortening treatment and improving outcomes, in both HIV-infected and HIV-uninfected populations, without dramatic increases in toxicity. Clinical studies underway or being planned, are supported by in vitro , animal and human evidence of increased sterilizing activity--without significant increases in toxicity--at elevated daily doses. Fluoroquinolones also seem to have significant sterilizing activity. At present, at least two class members are being evaluated for treatment shortening with different combinations of first-line drugs. However, in light of apparent rapid selection for fluoroquinolone-resistant mutants, relative frequency of serious adverse events and a perceived need to 'reserve' fluoroquinolones for the treatment of drug-resistant TB, their exact role in TB treatment remains to be determined. Other possible improvements may come from inhaled delivery or split dosing (linezolid) of anti-TB drugs for which toxicity (ethionamide) or lack of absorption (aminoglycosides and polypeptides) precludes delivery of maximally effective, oral doses, once daily. New classes of drugs with novel mechanisms of action, nitroimidazopyrans and a diarylquinoline, among others, may soon provide opportunities for improving treatment of drug-resistant TB or shortening treatment of drug-susceptible TB. CONCLUSION More potential options for improved TB treatment currently exist than at any other time in the last 30 years. The challenge in TB pharmacotherapy is to devise well-tolerated, efficacious, short-duration regimens that can be used successfully against drug-resistant and drug-resistant TB in a heterogeneous population of patients.
Collapse
Affiliation(s)
- Carole D Mitnick
- Department of Global Health & Social Medicine, Harvard Medical School, 643 Huntington Ave., 4th Floor, Boston, MA 02215, USA
| | | | | |
Collapse
|
68
|
Dry powder nitroimidazopyran antibiotic PA-824 aerosol for inhalation. Antimicrob Agents Chemother 2009; 53:1338-43. [PMID: 19139288 DOI: 10.1128/aac.01389-08] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We formulated PA-824, a nitroimidazopyran with promise for the treatment of tuberculosis, for efficient aerosol delivery to the lungs in a dry powder porous particle form. The objectives of this study were to prepare and characterize a particulate form of PA-824, assess the stability of this aerosol formulation under different environmental conditions, and determine the pharmacokinetic parameters for the powder after pulmonary administration. The drug was spray dried into porous particles containing a high drug load and possessing desirable aerosol properties for efficient deposition in the lungs. The physical, aerodynamic, and chemical properties of the dry powder were stable at room temperature for 6 months and under refrigerated conditions for at least 1 year. Pharmacokinetic parameters were determined in guinea pigs after the pulmonary administration of the PA-824 powder formulation at three doses (20, 40, and 60 mg/kg of body weight) and compared to those after the intravenous (20 mg/kg) and oral (40 mg/kg) delivery of the drug. Oral and inhaled delivery of PA-824 achieved equivalent systemic delivery at the same body dose within the first 12 h of dosing. However, animals dosed by the pulmonary route showed drug loads that remained locally in the lungs for 32 h postexposure, whereas those given the drug orally cleared the drug more rapidly. Therefore, we expect from these pharmacokinetic data that pulmonary delivery may achieve the same efficacy as oral delivery at the same body dose, with a potential improvement in efficacy related to pulmonary infection. This may translate into the ability to deliver lower body doses of this drug for the treatment of tuberculosis by aerosol.
Collapse
|