51
|
Srilekha V, Krishna G, Seshasrinivas V, Charya MAS. Antibacterial and anti-inflammatory activities of marine Brevibacterium sp. Res Pharm Sci 2017; 12:283-289. [PMID: 28855939 PMCID: PMC5566002 DOI: 10.4103/1735-5362.212045] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The marine environment covers three quarters of the surface of the planet and is estimated to be home to more than 80% of life but yet it remains largely unexplored. It harbours a number of macro and microorganisms that have developed unique metabolic abilities to ensure their survival in diverse and hostile habitats, resulting in the biosynthesis of an array of secondary metabolites with specific activities. In this study, pigment forming bacterial strains were isolated from the sea surface inter tidal zones at different sampling sites along the Visakhapatnam coastal region. The bacterial isolates showed various types of colour pigments like pink, yellow, orange, and brown. Out of 26 pigmented isolates obtained, the bacterial isolate with bright yellow pigmentation was selected for further study. This strain was identified as Brevibacterium sp by using morphological, physiological, biochemical and 16s rRNA sequencing methods. The pigment was extracted in methanol solvent and antibacterial activity of the pigments extracted from the bacteria was determined and it was found active against pathogenic bacteria. The pigment extract was tested In vivo for anti-inflammatory activity and was effective.
Collapse
Affiliation(s)
- Vennam Srilekha
- Department of Biotechnology, Jawaharlal Nehru Technological University, Hyderabad 500085 (Telangana), India
| | - Gudikandula Krishna
- Department of Microbiology, Kakatiya University, Warangal-506009 (Telangana), India
| | | | | |
Collapse
|
52
|
White CR, Datta G, Giordano S. High-Density Lipoprotein Regulation of Mitochondrial Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 982:407-429. [PMID: 28551800 DOI: 10.1007/978-3-319-55330-6_22] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Lipoproteins play a key role in regulating plasma and tissue levels of cholesterol. Apolipoprotein B (apoB)-containing lipoproteins, including chylomicrons, very-low density lipoprotein (VLDL) and low-density lipoprotein (LDL), serve as carriers of triglycerides and cholesterol and deliver these metabolites to peripheral tissues. In contrast, high-density lipoprotein (HDL) mediates Reverse Cholesterol Transport (RCT), a process by which excess cholesterol is removed from the periphery and taken up by hepatocytes where it is metabolized and excreted. Anti-atherogenic properties of HDL have been largely ascribed to apoA-I, the major protein component of the lipoprotein particle. The inflammatory response associated with atherosclerosis and ischemia-reperfusion (I-R) injury has been linked to the development of mitochondrial dysfunction. Under these conditions, an increase in reactive oxygen species (ROS) formation induces damage to mitochondrial structural elements, leading to a reduction in ATP synthesis and initiation of the apoptotic program. Recent studies suggest that HDL-associated apoA-I and lysosphingolipids attenuate mitochondrial injury by multiple mechanisms, including the suppression of ROS formation and induction of autophagy. Other apolipoproteins, however, present in lower abundance in HDL particles may exert opposing effects on mitochondrial function. This chapter examines the role of HDL-associated apolipoproteins and lipids in the regulation of mitochondrial function and bioenergetics.
Collapse
Affiliation(s)
- C Roger White
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Geeta Datta
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Samantha Giordano
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
53
|
Brown SA, Nhola L, Herrmann J. Cardiovascular Toxicities of Small Molecule Tyrosine Kinase Inhibitors: An Opportunity for Systems-Based Approaches. Clin Pharmacol Ther 2016; 101:65-80. [DOI: 10.1002/cpt.552] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 10/31/2016] [Accepted: 10/31/2016] [Indexed: 12/12/2022]
Affiliation(s)
- S-A Brown
- Department of Cardiovascular Diseases; Mayo Clinic; Rochester Minnesota USA
| | - L Nhola
- Department of Cardiovascular Diseases; Mayo Clinic; Rochester Minnesota USA
| | - J Herrmann
- Department of Cardiovascular Diseases; Mayo Clinic; Rochester Minnesota USA
| |
Collapse
|
54
|
Brand MD. Mitochondrial generation of superoxide and hydrogen peroxide as the source of mitochondrial redox signaling. Free Radic Biol Med 2016; 100:14-31. [PMID: 27085844 DOI: 10.1016/j.freeradbiomed.2016.04.001] [Citation(s) in RCA: 731] [Impact Index Per Article: 81.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 04/02/2016] [Accepted: 04/06/2016] [Indexed: 02/07/2023]
Abstract
This review examines the generation of reactive oxygen species by mammalian mitochondria, and the status of different sites of production in redox signaling and pathology. Eleven distinct mitochondrial sites associated with substrate oxidation and oxidative phosphorylation leak electrons to oxygen to produce superoxide or hydrogen peroxide: oxoacid dehydrogenase complexes that feed electrons to NAD+; respiratory complexes I and III, and dehydrogenases, including complex II, that use ubiquinone as acceptor. The topologies, capacities, and substrate dependences of each site have recently clarified. Complex III and mitochondrial glycerol 3-phosphate dehydrogenase generate superoxide to the external side of the mitochondrial inner membrane as well as the matrix, the other sites generate superoxide and/or hydrogen peroxide exclusively in the matrix. These different site-specific topologies are important for redox signaling. The net rate of superoxide or hydrogen peroxide generation depends on the substrates present and the antioxidant systems active in the matrix and cytosol. The rate at each site can now be measured in complex substrate mixtures. In skeletal muscle mitochondria in media mimicking muscle cytosol at rest, four sites dominate, two in complex I and one each in complexes II and III. Specific suppressors of two sites have been identified, the outer ubiquinone-binding site in complex III (site IIIQo) and the site in complex I active during reverse electron transport (site IQ). These suppressors prevent superoxide/hydrogen peroxide production from a specific site without affecting oxidative phosphorylation, making them excellent tools to investigate the status of the sites in redox signaling, and to suppress the sites to prevent pathologies. They allow the cellular roles of mitochondrial superoxide/hydrogen peroxide production to be investigated without catastrophic confounding bioenergetic effects. They show that sites IIIQo and IQ are active in cells and have important roles in redox signaling (e.g. hypoxic signaling and ER-stress) and in causing oxidative damage in a variety of biological contexts.
Collapse
Affiliation(s)
- Martin D Brand
- Buck Institute for Research on Aging, Novato, CA 94945, United States.
| |
Collapse
|
55
|
Cacciapaglia F, Grazia Anelli M, Rizzo D, Morelli E, Mazzotta D, Scioscia C, Iannone F, Lapadula G. Effective tumour necrosis factor-blocking therapy reduces reactive oxygen metabolite level in rheumatoid arthritis. J Int Med Res 2016; 44:28-32. [PMID: 27683135 PMCID: PMC5536522 DOI: 10.1177/0300060515593227] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Objective To assess circulating levels of derived reactive oxygen metabolites (ROMs) in patients with active rheumatoid arthritis (RA), before and during antitumour necrosis factor (TNF)-α therapy. Methods Patients with active RA and failed previous treatment with disease-modifying antirheumatic drugs received subcutaneous anti-TNF-α for 52 weeks. Circulating hydrogen peroxide was quantified as a marker of oxidative stress at baseline and at 24 and 52 weeks. Results The study included 40 patients. Circulating dROM levels were significantly reduced compared with baseline after 24 and 52 weeks’ of anti-TNF-α treatment (33.2 ± 10.0 mgH2O2/dl, 29.5 ± 7.0 mgH2O2/dl and 29.3 ± 9.0 mgH2O2/dl, respectively). There was a significant direct correlation between disease activity score and ROM levels. Conclusion TNF-α inhibition can control disease activity and reduce circulating levels of reactive oxygen species in patients with RA.
Collapse
Affiliation(s)
- Fabio Cacciapaglia
- Internal Medicine Unit and Rheumatology Clinic - N. Melli Hospital, San Pietro Vernotico, Brindisi, Italy
| | - Maria Grazia Anelli
- Department of Medicine - Rheumatology Unit, Medical School, University of Bari, Bari, Italy
| | | | - Emma Morelli
- Morelli & Di Pierro Lab, Squinzano, Lecce, Italy
| | - Daniela Mazzotta
- Internal Medicine Unit and Rheumatology Clinic - N. Melli Hospital, San Pietro Vernotico, Brindisi, Italy
| | - Crescenzio Scioscia
- Department of Medicine - Rheumatology Unit, Medical School, University of Bari, Bari, Italy
| | - Florenzo Iannone
- Department of Medicine - Rheumatology Unit, Medical School, University of Bari, Bari, Italy
| | - Giovanni Lapadula
- Department of Medicine - Rheumatology Unit, Medical School, University of Bari, Bari, Italy
| |
Collapse
|
56
|
Skarpengland T, Dahl TB, Skjelland M, Scheffler K, de Sousa MML, Gregersen I, Kuśnierczyk A, Sharma A, Slupphaug G, Eide L, Segers FM, Skagen KR, Dahl CP, Russell D, Folkersen L, Krohg-Sørensen K, Holm S, Bjørås M, Aukrust P, Halvorsen B. Enhanced base excision repair capacity in carotid atherosclerosis may protect nuclear DNA but not mitochondrial DNA. Free Radic Biol Med 2016; 97:386-397. [PMID: 27381496 DOI: 10.1016/j.freeradbiomed.2016.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 06/13/2016] [Accepted: 07/01/2016] [Indexed: 01/05/2023]
Abstract
BACKGROUND Lesional and systemic oxidative stress has been implicated in the pathogenesis of atherosclerosis, potentially leading to accumulation of DNA base lesions within atherosclerotic plaques. Although base excision repair (BER) is a major pathway counteracting oxidative DNA damage, our knowledge on BER and accumulation of DNA base lesions in clinical atherosclerosis is scarce. Here, we evaluated the transcriptional profile of a wide spectrum of BER components as well as DNA damage accumulation in atherosclerotic and non-atherosclerotic arteries. METHODS BER gene expression levels were analyzed in 162 carotid plaques, 8 disease-free carotid specimens from patients with carotid plaques and 10 non-atherosclerotic control arteries. Genomic integrity, mitochondrial (mt) DNA copy number, oxidative DNA damage and BER proteins were evaluated in a subgroup of plaques and controls. RESULTS Our major findings were: (i) The BER pathway showed a global increased transcriptional response in plaques as compared to control arteries, accompanied by increased expression of several BER proteins. (ii) Whereas nuclear DNA stability was maintained within carotid plaques, mtDNA integrity and copy number were decreased. (iii) Within carotid plaques, mRNA levels of several BER genes correlated with macrophage markers. (iv) In vitro, some of the BER genes were highly expressed in the anti-inflammatory and pro-resolving M2 macrophages, showing increased expression upon exposure to modified lipids. CONCLUSIONS The increased transcriptional response of BER genes in atherosclerosis may contribute to lesional nuclear DNA stability but appears insufficient to maintain mtDNA integrity, potentially influencing mitochondrial function in cells within the atherosclerotic lesion.
Collapse
Affiliation(s)
- Tonje Skarpengland
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Tuva B Dahl
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Mona Skjelland
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Norway; Department of Neurology, Oslo University Hospital Rikshospitalet, Norway
| | - Katja Scheffler
- Department of Medical Biochemistry, Oslo University Hospital Rikshospitalet, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Mirta Mittelsted Leal de Sousa
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway; PROMEC Core Facility for Proteomics and Metabolomics, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ida Gregersen
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Anna Kuśnierczyk
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway; PROMEC Core Facility for Proteomics and Metabolomics, Norwegian University of Science and Technology, Trondheim, Norway
| | - Animesh Sharma
- PROMEC Core Facility for Proteomics and Metabolomics, Norwegian University of Science and Technology, Trondheim, Norway
| | - Geir Slupphaug
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway; PROMEC Core Facility for Proteomics and Metabolomics, Norwegian University of Science and Technology, Trondheim, Norway
| | - Lars Eide
- Department of Medical Biochemistry, Oslo University Hospital Rikshospitalet, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Filip M Segers
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Norway
| | | | - Christen P Dahl
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Norway; Department of Cardiology, Oslo University Hospital Rikshospitalet, Norway; Center of Heart Failure Research, University of Oslo, Oslo, Norway
| | - David Russell
- Department of Neurology, Oslo University Hospital Rikshospitalet, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Lasse Folkersen
- Center for Biological Sequence Analysis, Technical University of Denmark, Copenhagen, Denmark
| | - Kirsten Krohg-Sørensen
- Department of Thoracic and Cardiovascular Surgery, Oslo University Hospital Rikshospitalet, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Sverre Holm
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Norway; Lillehammer Hospital for Rheumatic Diseases, Lillehammer, Norway
| | - Magnar Bjørås
- Department of Microbiology, Oslo University Hospital Rikshospitalet, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Norway; Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway; K.G. Jebsen Inflammatory Research Center, University of Oslo, Oslo, Norway
| | - Bente Halvorsen
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway; K.G. Jebsen Inflammatory Research Center, University of Oslo, Oslo, Norway
| |
Collapse
|
57
|
Mellouk Z, Agustina M, Ramirez M, Pena K, Arivalo J. [The therapeutic effects of dietary krill oil (Euphausia superba) supplementation on oxidative stress and DNA damages markers in cafeteria diet-overfed rats]. Ann Cardiol Angeiol (Paris) 2016; 65:223-8. [PMID: 27184514 DOI: 10.1016/j.ancard.2016.04.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 04/12/2016] [Indexed: 01/09/2023]
Abstract
AIM To evaluate the therapeutic effects of dietary krill oil supplementation in modulation of oxidative stress components and DNA oxidative damages marker in cafeteria diet-overfed-rats. MATERIAL AND METHODS Eighteen aging male Wistar rats were divided into three groups of six each and were exposed for the ensuing 8 weeks to one of the diets: control group (TS) which was submitted to standard chow (330kcal/100g), containing 24% of proteins, 5% of lipids and 70% of carbohydrates. Cafeteria standard group (TC) exposed to cafeteria diet (420kcal/100g). The last group received a cafeteria diet enriched in oral force-feeding krill oil 2% (CK). The plasma and tissues pro-oxydant status were assessed by assaying thiobarbituric acid reactive substances, hydroperoxydes, and isoprostans. The determination of DNA oxidative damages was evaluated by the measurement of the major products of DNA oxidation (8-OHdG). RESULTS Exposure to a cafeteria diet increases the metabolic response to the radical attack and DNA oxidative damages in both plasma and key tissues involved in antioxidant defense. Krill oil supplementation in cafeteria diet relieves oxidative stress and DNA damages by lowering several lipid peroxidation components and the main marker of DNA oxidation in obese rats.
Collapse
Affiliation(s)
- Z Mellouk
- Département de biologie, laboratoire de biochimie clinique et métabolique, université d'Oran 1 Ahmed Ben Bella, BP 1524, El M'Naouer, 31100 Oran, Algérie.
| | - M Agustina
- Unité de recherche, nutrition et maladies métaboliques, université d'Alicante, 03690 Alicante, Espagne
| | - M Ramirez
- Unité de recherche, nutrition et maladies métaboliques, université d'Alicante, 03690 Alicante, Espagne
| | - K Pena
- Unité de recherche, nutrition et maladies métaboliques, université d'Alicante, 03690 Alicante, Espagne
| | - J Arivalo
- Unité de recherche, nutrition et maladies métaboliques, université d'Alicante, 03690 Alicante, Espagne
| |
Collapse
|
58
|
Sorokin AV, Kotani K, Bushueva OY, Polonikov AV. Antioxidant-related gene polymorphisms associated with the cardio-ankle vascular index in young Russians. Cardiol Young 2016; 26:677-682. [PMID: 26081749 DOI: 10.1017/s104795111500102x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The cardio-ankle vascular index is a measure of arterial stiffness, whereas oxidative stress underlies arterial pathology. This study aimed to investigate the association between the cardio-ankle vascular index and antioxidant-related gene polymorphisms in young Russians. A total of 89 patients (mean age, 21.6 years) were examined by the cardio-ankle vascular index and for 15 gene polymorphisms related to antioxidant enzymes including FMO3 (flavin-containing monooxygenase 3), GPX1 (glutathione peroxidase 1), and GPX4 (glutathione peroxidase 4). A higher cardio-ankle vascular index level was detected in carriers with the KK-genotype of FMO3 polymorphism rs2266782 than in those without (mean levels: 6.2 versus 5.6, respectively, p<0.05). Similarly, a higher cardio-ankle vascular index level was seen in carriers with the CC-genotype of GPX4 polymorphism rs713041 than in those without (6.0 versus 5.5, respectively, p<0.05). We did not observe significant associations between the cardio-ankle vascular index levels and the other gene polymorphisms. Although carriers with the LL-genotype of GPX1 polymorphism rs1050450 showed a higher diastolic blood pressure level than those without, the polymorphism did not affect the cardio-ankle vascular index level. This study showed a significant association between rs2266782 and rs713041 polymorphisms and arterial stiffness, as measured by the cardio-ankle vascular index, in young Russians. The pathways utilised by antioxidant enzymes may be responsible for early arterial stiffening in the Russian population.
Collapse
Affiliation(s)
- Alexander V Sorokin
- 1Department of Internal Medicine,Kursk State Medical University,Kursk,Russia
| | - Kazuhiko Kotani
- 2Department of Clinical Laboratory Medicine,Jichi Medical University,Tochigi,Japan
| | - Olga Y Bushueva
- 3Department of Biology, Medical Genetics and Ecology,Kursk State Medical University,Kursk,Russia
| | - Alexey V Polonikov
- 3Department of Biology, Medical Genetics and Ecology,Kursk State Medical University,Kursk,Russia
| |
Collapse
|
59
|
Estrada V, Monge S, Gómez-Garre MD, Sobrino P, Masiá M, Berenguer J, Portilla J, Viladés C, Martínez E, Blanco JR. Relationship between plasma bilirubin level and oxidative stress markers in HIV-infected patients on atazanavir- vs. efavirenz-based antiretroviral therapy. HIV Med 2016; 17:653-61. [PMID: 26935006 DOI: 10.1111/hiv.12368] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2015] [Indexed: 12/14/2022]
Abstract
OBJECTIVES Chronic oxidative stress (OS) may play a role in cardiovascular disease in HIV-infected patients, and increased bilirubin levels may have a beneficial role in counteracting OS. Atazanavir (ATV) inhibits UDP-glucuronosyl-transferase 1A1 (UGT1A1), thus increasing unconjugated bilirubin levels. We aimed to compare changes in OS markers in patients on ATV/ritonavir (ATV/r)- vs. efavirenz (EFV)-based first-line antiretroviral therapy (ART). METHODS A multicentre, prospective cohort study of HIV-infected patients who started first-line ART with either ATV/r or EFV was conducted. Lipoprotein-associated phospholipase A2 (Lp-PLA2), myeloperoxidase (MPO) and oxidized low-density lipoprotein (oxLDL) were measured for 145 patients in samples obtained at baseline and after at least 9 months of ART during which the initial regimen was maintained and the patient was virologically suppressed. The change in OS markers was modelled using multiple linear regressions adjusting for baseline values and confounders. RESULTS After adjustment for baseline variables, patients on ATV/r had a significantly greater decrease in Lp-PLA2 [estimated difference -16.3; 95% confidence interval (CI) -31.4, -1.25; P = 0.03] and a significantly smaller increase in OxLDL (estimated difference -21.8; 95% CI -38.0, -5.6; P < 0.01) relative to those on EFV, whereas changes in MPO were not significantly different (estimated difference 1.2; 95% CI -14.3, 16.7; P = 0.88). Adjusted changes in bilirubin were significantly greater for the ATV/r group than for the EFV group (estimated difference 1.33 mg/dL; 95% CI 1.03, 1.52 mg/dL; P < 0.01). Changes in bilirubin and changes in OS markers were significantly correlated. CONCLUSIONS When compared with EFV, ATV/r-based therapy was associated with lower levels of oxidative stress biomarkers, which was in part attributable to increased bilirubin levels.
Collapse
Affiliation(s)
- V Estrada
- Hospital Clínico San Carlos-IdiSSC, Universidad Complutense, Madrid, Spain
| | - S Monge
- Universidad de Alcalá de Henares, CIBERESP, Spain
| | - M D Gómez-Garre
- Hospital Clínico San Carlos-IdiSSC, Universidad Complutense, Madrid, Spain
| | - P Sobrino
- Universidad de Alcalá de Henares, CIBERESP, Spain
| | - M Masiá
- Hospital General de Elche, Elche, Spain
| | - J Berenguer
- Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - J Portilla
- Hospital General Universitario de Alicante, Alicante, Spain
| | - C Viladés
- Hospital Universitari de Tarragona Joan XXIII, Universitat Rovira i Virgili, Tarragona, Spain
| | | | - J R Blanco
- Hospital San Pedro-CIBIR, Logroño, Spain
| | | |
Collapse
|
60
|
Differential Mitochondrial Adaptation in Primary Vascular Smooth Muscle Cells from a Diabetic Rat Model. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:8524267. [PMID: 27034743 PMCID: PMC4737048 DOI: 10.1155/2016/8524267] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 11/10/2015] [Accepted: 11/19/2015] [Indexed: 02/07/2023]
Abstract
Diabetes affects more than 330 million people worldwide and causes elevated cardiovascular disease risk. Mitochondria are critical for vascular function, generate cellular reactive oxygen species (ROS), and are perturbed by diabetes, representing a novel target for therapeutics. We hypothesized that adaptive mitochondrial plasticity in response to nutrient stress would be impaired in diabetes cellular physiology via a nitric oxide synthase- (NOS-) mediated decrease in mitochondrial function. Primary smooth muscle cells (SMCs) from aorta of the nonobese, insulin resistant rat diabetes model Goto-Kakizaki (GK) and the Wistar control rat were exposed to high glucose (25 mM). At baseline, significantly greater nitric oxide evolution, ROS production, and respiratory control ratio (RCR) were observed in GK SMCs. Upon exposure to high glucose, expression of phosphorylated eNOS, uncoupled respiration, and expression of mitochondrial complexes I, II, III, and V were significantly decreased in GK SMCs (p < 0.05). Mitochondrial superoxide increased with high glucose in Wistar SMCs (p < 0.05) with no change in the GK beyond elevated baseline concentrations. Baseline comparisons show persistent metabolic perturbations in a diabetes phenotype. Overall, nutrient stress in GK SMCs caused a persistent decline in eNOS and mitochondrial function and disrupted mitochondrial plasticity, illustrating eNOS and mitochondria as potential therapeutic targets.
Collapse
|
61
|
Vendrov AE, Vendrov KC, Smith A, Yuan J, Sumida A, Robidoux J, Runge MS, Madamanchi NR. NOX4 NADPH Oxidase-Dependent Mitochondrial Oxidative Stress in Aging-Associated Cardiovascular Disease. Antioxid Redox Signal 2015; 23:1389-409. [PMID: 26054376 PMCID: PMC4692134 DOI: 10.1089/ars.2014.6221] [Citation(s) in RCA: 162] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
AIMS Increased oxidative stress and vascular inflammation are implicated in increased cardiovascular disease (CVD) incidence with age. We and others demonstrated that NOX1/2 NADPH oxidase inhibition, by genetic deletion of p47phox, in Apoe(-/-) mice decreases vascular reactive oxygen species (ROS) generation and atherosclerosis in young age. The present study examined whether NOX1/2 NADPH oxidases are also pivotal to aging-associated CVD. RESULTS Both aged (16 months) Apoe(-/-) and Apoe(-/-)/p47phox(-/-) mice had increased atherosclerotic lesion area, aortic stiffness, and systolic dysfunction compared with young (4 months) cohorts. Cellular and mitochondrial ROS (mtROS) levels were significantly higher in aortic wall and vascular smooth muscle cells (VSMCs) from aged wild-type and p47phox(-/-) mice. VSMCs from aged mice had increased mitochondrial protein oxidation and dysfunction and increased vascular cell adhesion molecule 1 expression, which was abrogated with (2-(2,2,6,6-Tetramethylpiperidin-1-oxyl-4-ylamino)-2-oxoethyl)triphenylphosphonium chloride (MitoTEMPO) treatment. NOX4 expression was increased in the vasculature and mitochondria of aged mice and its suppression with shRNA in VSMCs from aged mice decreased mtROS levels and improved function. Increased mtROS levels were associated with enhanced mitochondrial NOX4 expression in aortic VSMCs from aged subjects, and NOX4 expression levels in arterial wall correlated with age and atherosclerotic severity. Aged Apoe(-/-) mice treated with MitoTEMPO and 2-(2-chlorophenyl)-4-methyl-5-(pyridin-2-ylmethyl)-1H-pyrazolo[4,3-c]pyridine-3,6(2H,5H)-dione had decreased vascular ROS levels and atherosclerosis and preserved vascular and cardiac function. INNOVATION AND CONCLUSION These data suggest that NOX4, but not NOX1/2, and mitochondrial oxidative stress are mediators of CVD in aging under hyperlipidemic conditions. Regulating NOX4 activity/expression and using mitochondrial antioxidants are potential approaches to reducing aging-associated CVD.
Collapse
Affiliation(s)
- Aleksandr E Vendrov
- 1 Department of Medicine, McAllister Heart Institute, University of North Carolina , Chapel Hill, North Carolina
| | - Kimberly C Vendrov
- 2 Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina , Chapel Hill, North Carolina
| | - Alberto Smith
- 3 Cardiovascular Division, Academic Department of Surgery, National Institute for Health Research Biomedical Research Center at Guy's and St Thomas' National Health Service Foundation Trust , King's College London British Heart Foundation Centre of Excellence, London, United Kingdom
| | - Jinling Yuan
- 1 Department of Medicine, McAllister Heart Institute, University of North Carolina , Chapel Hill, North Carolina
| | - Arihiro Sumida
- 1 Department of Medicine, McAllister Heart Institute, University of North Carolina , Chapel Hill, North Carolina
| | - Jacques Robidoux
- 4 Department of Pharmacology and Toxicology, The East Carolina Diabetes and Obesity Institute, East Carolina University , Greenville, North Carolina
| | - Marschall S Runge
- 1 Department of Medicine, McAllister Heart Institute, University of North Carolina , Chapel Hill, North Carolina
| | - Nageswara R Madamanchi
- 1 Department of Medicine, McAllister Heart Institute, University of North Carolina , Chapel Hill, North Carolina
| |
Collapse
|
62
|
|
63
|
Lee ES, Kim HM, Kang JS, Lee EY, Yadav D, Kwon MH, Kim YM, Kim HS, Chung CH. Oleanolic acid and N-acetylcysteine ameliorate diabetic nephropathy through reduction of oxidative stress and endoplasmic reticulum stress in a type 2 diabetic rat model. Nephrol Dial Transplant 2015; 31:391-400. [PMID: 26567248 DOI: 10.1093/ndt/gfv377] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 10/08/2015] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Hyperglycemia-induced endoplasmic reticulum (ER) stress and oxidative stress could be causes of renal fibrosis in diabetes. Oleanolic acid (OA) naturally occurs in fruits and vegetables. It has anti-inflammatory, antihyperlipidemic and antioxidant effects. N-acetylcysteine (NAC) is a precursor of glutathione, which has a strong antioxidant effect in the body. In this study, we investigated the therapeutic effects of OA and NAC in diabetic nephropathy (DN). METHODS Otsuka Long-Evans Tokushima Fatty rats were treated with OA (100 mg/kg/day) or NAC (300 mg/kg/day) for 20 weeks by oral gavage. RESULTS The OA or NAC administration increased blood insulin secretion and superoxide dismutase levels, and decreased triglycerides and urinary albumin/creatinine levels. In the kidney, the damaged renal structure recovered with OA or NAC administration, through an increase in nephrin and endothelial selective adhesion molecules and a decrease in transforming growth factor-β/p-smad2/3 and ER stress. Reactive oxygen species and ER stress were increased by high glucose and ER stress inducers in cultured mesangial cells, and these levels recovered with OA (5.0 μM) or NAC (2.5 mM) treatment. CONCLUSION The findings in this study suggest that OA and NAC have therapeutic effects for DN through an antioxidant effect and ER stress reduction.
Collapse
Affiliation(s)
- Eun Soo Lee
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, 162 Ilsan-Dong, Wonju, Gangwon-Do 220-701, Republic of Korea
| | - Hong Min Kim
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, 162 Ilsan-Dong, Wonju, Gangwon-Do 220-701, Republic of Korea
| | - Jeong Suk Kang
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan 330-721, Republic of Korea
| | - Eun Young Lee
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan 330-721, Republic of Korea
| | - Dhananjay Yadav
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, 162 Ilsan-Dong, Wonju, Gangwon-Do 220-701, Republic of Korea
| | - Mi-Hye Kwon
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, 162 Ilsan-Dong, Wonju, Gangwon-Do 220-701, Republic of Korea
| | - You Mi Kim
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, 162 Ilsan-Dong, Wonju, Gangwon-Do 220-701, Republic of Korea
| | - Hyeon Soo Kim
- Department of Anatomy, Korea University College of Medicine, Seoul 136-701, Republic of Korea
| | - Choon Hee Chung
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, 162 Ilsan-Dong, Wonju, Gangwon-Do 220-701, Republic of Korea
| |
Collapse
|
64
|
The antiradical activity of some selected flavones and flavonols. Experimental and quantum mechanical study. J Mol Model 2015; 21:307. [DOI: 10.1007/s00894-015-2848-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 10/23/2015] [Indexed: 10/22/2022]
|
65
|
Correlation between Mitochondrial Reactive Oxygen and Severity of Atherosclerosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:7843685. [PMID: 26635912 PMCID: PMC4655284 DOI: 10.1155/2016/7843685] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 06/07/2015] [Accepted: 06/22/2015] [Indexed: 12/11/2022]
Abstract
Atherosclerosis has been associated with mitochondria dysfunction and damage. Our group demonstrated previously that hypercholesterolemic mice present increased mitochondrial reactive oxygen (mtROS) generation in several tissues and low NADPH/NADP+ ratio. Here, we investigated whether spontaneous atherosclerosis in these mice could be modulated by treatments that replenish or spare mitochondrial NADPH, named citrate supplementation, cholesterol synthesis inhibition, or both treatments simultaneously. Robust statistical analyses in pooled group data were performed in order to explain the variation of atherosclerosis lesion areas as related to the classic atherosclerosis risk factors such as plasma lipids, obesity, and oxidative stress, including liver mtROS. Using three distinct statistical tools (univariate correlation, adjusted correlation, and multiple regression) with increasing levels of stringency, we identified a novel significant association and a model that reliably predicts the extent of atherosclerosis due to variations in mtROS. Thus, results show that atherosclerosis lesion area is positively and independently correlated with liver mtROS production rates. Based on these findings, we propose that modulation of mitochondrial redox state influences the atherosclerosis extent.
Collapse
|
66
|
RETRACTED: Effect of thioredoxin-interacting protein on Wnt/β-catenin signaling pathway and diabetic myocardial infarction. ASIAN PAC J TROP MED 2015; 8:976-982. [DOI: 10.1016/j.apjtm.2015.10.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Revised: 09/20/2015] [Accepted: 09/30/2015] [Indexed: 11/22/2022] Open
|
67
|
Lv J, Yang X, Ma H, Hu X, Wei Y, Zhou W, Li L. The oxidative stability of microalgae oil (Schizochytrium aggregatum) and its antioxidant activity after simulated gastrointestinal digestion: Relationship with constituents. EUR J LIPID SCI TECH 2015. [DOI: 10.1002/ejlt.201400588] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Junwei Lv
- Key Laboratory of Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, National Research and Development Center for Aquatic Product Processing; Ministry of Agriculture; Guangzhou P. R. China
- Shanghai Ocean University; Shanghai P. R. China
| | - Xianqing Yang
- Key Laboratory of Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, National Research and Development Center for Aquatic Product Processing; Ministry of Agriculture; Guangzhou P. R. China
| | - Haixia Ma
- Key Laboratory of Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, National Research and Development Center for Aquatic Product Processing; Ministry of Agriculture; Guangzhou P. R. China
| | - Xiao Hu
- Key Laboratory of Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, National Research and Development Center for Aquatic Product Processing; Ministry of Agriculture; Guangzhou P. R. China
| | - Ya Wei
- Key Laboratory of Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, National Research and Development Center for Aquatic Product Processing; Ministry of Agriculture; Guangzhou P. R. China
| | - Wanjun Zhou
- Key Laboratory of Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, National Research and Development Center for Aquatic Product Processing; Ministry of Agriculture; Guangzhou P. R. China
| | - Laihao Li
- Key Laboratory of Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, National Research and Development Center for Aquatic Product Processing; Ministry of Agriculture; Guangzhou P. R. China
| |
Collapse
|
68
|
Ménoret A, Crocker SJ, Rodriguez A, Rathinam VA, Clark RB, Vella AT. Transition from identity to bioactivity-guided proteomics for biomarker discovery with focus on the PF2D platform. Proteomics Clin Appl 2015. [PMID: 26201056 DOI: 10.1002/prca.201500029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Proteomic strategies provide a valuable tool kit to identify proteins involved in diseases. With recent progress in MS technology, high throughput proteomics has accelerated protein identification for potential biomarkers. Numerous biomarker candidates have been identified in several diseases, and many are common among pathologies. An overall strategy that could complement and strengthen the search for biomarkers is combining protein identity with biological outcomes. This review describes an emerging framework of bridging bioactivity to protein identity, exploring the possibility that some biomarkers will have a mechanistic role in the disease process. A review of pulmonary, cardiovascular, and CNS biomarkers will be discussed to demonstrate the utility of combining bioactivity with identification as a means to not only find meaningful biomarkers, but also to uncover functional mediators of disease.
Collapse
Affiliation(s)
- Antoine Ménoret
- Department of Immunology, University of Connecticut Health Center, Farmington, CT, USA
| | - Stephen J Crocker
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, USA
| | - Annabelle Rodriguez
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT, USA
| | - Vijay A Rathinam
- Department of Immunology, University of Connecticut Health Center, Farmington, CT, USA
| | - Robert B Clark
- Department of Immunology, University of Connecticut Health Center, Farmington, CT, USA
| | - Anthony T Vella
- Department of Immunology, University of Connecticut Health Center, Farmington, CT, USA
| |
Collapse
|
69
|
Lin P, Liu J, Ren M, Ji K, Li L, Zhang B, Gong Y, Yan C. Idebenone protects against oxidized low density lipoprotein induced mitochondrial dysfunction in vascular endothelial cells via GSK3β/β-catenin signalling pathways. Biochem Biophys Res Commun 2015; 465:548-55. [DOI: 10.1016/j.bbrc.2015.08.058] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 08/13/2015] [Indexed: 11/28/2022]
|
70
|
Rovenko BM, Kubrak OI, Gospodaryov DV, Yurkevych IS, Sanz A, Lushchak OV, Lushchak VI. Restriction of glucose and fructose causes mild oxidative stress independently of mitochondrial activity and reactive oxygen species in Drosophila melanogaster. Comp Biochem Physiol A Mol Integr Physiol 2015; 187:27-39. [PMID: 25941153 DOI: 10.1016/j.cbpa.2015.04.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 04/17/2015] [Accepted: 04/23/2015] [Indexed: 01/25/2023]
Abstract
Our recent study showed different effects of glucose and fructose overconsumption on the development of obese phenotypes in Drosophila. Glucose induced glucose toxicity due to the increase in circulating glucose, whereas fructose was more prone to induce obesity promoting accumulation of reserve lipids and carbohydrates (Rovenko et al., Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2015, 180, 75-85). Searching for mechanisms responsible for these phenotypes in this study, we analyzed mitochondrial activity, mitochondrial density, mtROS production, oxidative stress markers and antioxidant defense in fruit flies fed 0.25%, 4% and 10% glucose or fructose. It is shown that there is a complex interaction between dietary monosaccharide concentrations, mitochondrial activity and oxidative modifications to proteins and lipids. Glucose at high concentration (10%) reduced mitochondrial protein density and consequently respiration in flies, while fructose did not affect these parameters. The production of ROS by mitochondria did not reflect activities of mitochondrial complexes. Moreover, there was no clear connection between mtROS production and antioxidant defense or between antioxidant defense and developmental survival, shown in our previous study (Rovenko et al., Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2015, 180, 75-85). Instead, mtROS and antioxidant machinery cooperated to maintain a redox state that determined survival rates, and paradoxically, pro-oxidant conditions facilitated larva survival independently of the type of carbohydrate. It seems that in this complex system glucose controls the amount of oxidative modification regulating mitochondrial activity, while fructose regulates steady-state mRNA levels of antioxidant enzymes.
Collapse
Affiliation(s)
- Bohdana M Rovenko
- Department of Biochemistry and Biotechnology, Vassyl Stefanyk Precarpathian National University, Ivano-Frankivsk 76018, Ukraine
| | - Olga I Kubrak
- Department of Biochemistry and Biotechnology, Vassyl Stefanyk Precarpathian National University, Ivano-Frankivsk 76018, Ukraine
| | - Dmytro V Gospodaryov
- Department of Biochemistry and Biotechnology, Vassyl Stefanyk Precarpathian National University, Ivano-Frankivsk 76018, Ukraine
| | - Ihor S Yurkevych
- Department of Biochemistry and Biotechnology, Vassyl Stefanyk Precarpathian National University, Ivano-Frankivsk 76018, Ukraine
| | - Alberto Sanz
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle-Upon-Tyne NE4 5PL, UK; Newcastle University Institute for Ageing, Newcastle University, Newcastle-Upon-Tyne NE4 5PL, UK
| | - Oleh V Lushchak
- Department of Biochemistry and Biotechnology, Vassyl Stefanyk Precarpathian National University, Ivano-Frankivsk 76018, Ukraine.
| | - Volodymyr I Lushchak
- Department of Biochemistry and Biotechnology, Vassyl Stefanyk Precarpathian National University, Ivano-Frankivsk 76018, Ukraine.
| |
Collapse
|
71
|
Oh B, Melchert RB, Lee CH. Biomimicking Robust Hydrogel for the Mesenchymal Stem Cell Carrier. Pharm Res 2015; 32:3213-27. [PMID: 25911596 DOI: 10.1007/s11095-015-1698-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 04/14/2015] [Indexed: 01/15/2023]
Abstract
PURPOSE This study was aimed to develop a hydrogel-nanofiber as an advanced carrier for adipose derived human mesenchymal stem cells (AD-MSCs) and evaluate its potential for immunomodulatory therapies applicable to surface coating of drug eluting stent (DES) against coronary artery diseases (CAD). METHODS A mixture of dispersing-nanofibers (dNFs) and poly (ethylene glycol)-diacrylate (PEGDA) were blended with sodium alginate to achieve robust mechanical strength. The effects of stem cell niche on cell viability and proliferation rates were evaluated using LDH assay and alamar blue assay, respectively. The amount of Nile-red microparticles (NR-MPs) remained in the hydrogel scaffolds was examined as an index for the physical strength of hydrogels. To evaluate the immunomodulatory activity of AD-MSCs as well as their influence by ROS, the level of L-Kynurenine was determined as tryptophan replacement compounds in parallel with IDO secreted from AD-MSCs using a colorimetric assay of L-amino acid. RESULTS Both SA-cys-PEG and SA-cys-dNF-PEG upon being coated on stents using electrophoretic deposition technique displayed superior mechanical properties against the perfused flow. d-NFs had a significant impact on the stability of SA-cys-dNF-PEG, as evidenced by the substantial amount of NR-MPs remained in them. An enhanced subcellular level of ROS by spheroidal cluster yielded the high concentrations of L-Kynurenine (1.67 ± 0.6 μM without H2O2, 5.2 ± 1.14 μM with 50 μM of H2O2 and 8.8 ± 0.51 μM with 100 μM of H2O2), supporting the IDO-mediated tryptophan replacement process. CONCLUSION The "mud-and-straw" hydrogels are robust in mechanical property and can serve as an ideal niche for AD-MSCs with immunomodulatory effects.
Collapse
Affiliation(s)
- Byeongtaek Oh
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri, 64108, USA
| | - Russell B Melchert
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri, 64108, USA
| | - Chi H Lee
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri, 64108, USA. .,Division of Pharmaceutical Sciences, University of Missouri at Kansas City, 2464 Charlotte Street, HSB-4242, Kansas City, Missouri, 64108, USA.
| |
Collapse
|
72
|
Abayomi SF, Adeleke A, Bukunola OA, Olugbenga OO, Kuburat TO, Emmanuel OA. Separate and co-administration of Amaranthus spinosus and vitamin C modulates cardiovascular disease risk in high fat diet-fed experimental rats. ACTA ACUST UNITED AC 2015. [DOI: 10.5897/jpp2014.0340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
73
|
Magrone T, Jirillo E. Childhood obesity: immune response and nutritional approaches. Front Immunol 2015; 6:76. [PMID: 25759691 PMCID: PMC4338791 DOI: 10.3389/fimmu.2015.00076] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 02/09/2015] [Indexed: 12/15/2022] Open
Abstract
Childhood obesity is characterized by a low-grade inflammation status depending on the multicellular release of cytokines, adipokines, and reactive oxygen species. In particular, the imbalance between anti-inflammatory T regulatory cells and inflammatory T helper 17 cells seems to sustain such a phlogistic condition. Alterations of gut microbiota since childhood also contribute to the maintenance of inflammation. Therefore, besides preventive measures and caloric restrictions, dietary intake of natural products endowed with anti-oxidant and anti-inflammatory activities may represent a valid interventional approach for preventing and/or attenuating the pathological consequences of obesity. In this regard, the use of prebiotics, probiotics, polyphenols, polyunsaturated fatty acids, vitamins, and melatonin in human clinical trials will be described.
Collapse
Affiliation(s)
- Thea Magrone
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, University of Bari , Bari , Italy
| | - Emilio Jirillo
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, University of Bari , Bari , Italy
| |
Collapse
|
74
|
Litvinova L, Atochin DN, Fattakhov N, Vasilenko M, Zatolokin P, Kirienkova E. Nitric oxide and mitochondria in metabolic syndrome. Front Physiol 2015; 6:20. [PMID: 25741283 PMCID: PMC4330700 DOI: 10.3389/fphys.2015.00020] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 01/12/2015] [Indexed: 12/15/2022] Open
Abstract
Metabolic syndrome (MS) is a cluster of metabolic disorders that collectively increase the risk of cardiovascular disease. Nitric oxide (NO) plays a crucial role in the pathogeneses of MS components and is involved in different mitochondrial signaling pathways that control respiration and apoptosis. The present review summarizes the recent information regarding the interrelations of mitochondria and NO in MS. Changes in the activities of different NO synthase isoforms lead to the formation of metabolic disorders and therefore are highlighted here. Reduced endothelial NOS activity and NO bioavailability, as the main factors underlying the endothelial dysfunction that occurs in MS, are discussed in this review in relation to mitochondrial dysfunction. We also focus on potential therapeutic strategies involving NO signaling pathways that can be used to treat patients with metabolic disorders associated with mitochondrial dysfunction. The article may help researchers develop new approaches for the diagnosis, prevention and treatment of MS.
Collapse
Affiliation(s)
- Larisa Litvinova
- Laboratory of Immunology and Cellular Biotechnologies, Innovation Park of the Immanuel Kant Baltic Federal UniversityKaliningrad, Russia
| | - Dmitriy N. Atochin
- Cardiology Division, Department of Medicine, Cardiovascular Research Center, Harvard Medical School, Massachusetts General HospitalBoston, MA, USA
| | - Nikolai Fattakhov
- Laboratory of Immunology and Cellular Biotechnologies, Innovation Park of the Immanuel Kant Baltic Federal UniversityKaliningrad, Russia
| | - Mariia Vasilenko
- Laboratory of Immunology and Cellular Biotechnologies, Innovation Park of the Immanuel Kant Baltic Federal UniversityKaliningrad, Russia
| | - Pavel Zatolokin
- Department of Reconstructive and Endoscopic Surgery, Kaliningrad Regional HospitalKaliningrad, Russia
| | - Elena Kirienkova
- Laboratory of Immunology and Cellular Biotechnologies, Innovation Park of the Immanuel Kant Baltic Federal UniversityKaliningrad, Russia
| |
Collapse
|
75
|
Ibero-Baraibar I, Azqueta A, Lopez de Cerain A, Martinez JA, Zulet MA. Assessment of DNA damage using comet assay in middle-aged overweight/obese subjects after following a hypocaloric diet supplemented with cocoa extract. Mutagenesis 2014; 30:139-46. [DOI: 10.1093/mutage/geu056] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
76
|
Conti FF, Brito JDO, Bernardes N, Dias DDS, Sanches IC, Malfitano C, Llesuy SF, Irigoyen MC, De Angelis K. Cardiovascular autonomic dysfunction and oxidative stress induced by fructose overload in an experimental model of hypertension and menopause. BMC Cardiovasc Disord 2014; 14:185. [PMID: 25495455 PMCID: PMC4279597 DOI: 10.1186/1471-2261-14-185] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 11/17/2014] [Indexed: 01/24/2023] Open
Abstract
Background Metabolic syndrome is characterized by the association of 3 or more risk factors, including: abdominal obesity associated with an excess of abdominal fat, insulin resistance, type 2 diabetes, dyslipidemia and hypertension. Moreover, the prevalence of hypertension and metabolic dysfunctions sharply increases after the menopause. However, the mechanisms involved in these changes are not well understood. Thus, the aim of this study was to assess the effects of fructose overload on cardiovascular autonomic modulation, inflammation and cardiac oxidative stress in an experimental model of hypertension and menopause. Methods Female SHR rats were divided into (n = 8/group): hypertensive (H), hypertensive ovariectomized (HO) and hypertensive ovariectomized undergoing fructose overload (100 g/L in drinking water) (FHO). Arterial pressure (AP) signals were directly recorded. Cardiac autonomic modulation was evaluated by spectral analysis. Oxidative stress was evaluated in cardiac tissue. Results AP was higher in the FHO group when compared to the other groups. Fructose overload promoted an increase in body and fat weight, triglyceride concentration and a reduction in insulin sensitivity. IL-10 was reduced in the FHO group when compared to the H group. TNF-α was higher in the FHO when compared to all other groups. Lipoperoxidation was higher and glutathione redox balance was reduced in the FHO group when compared to other groups, an indication of increased oxidative stress. A negative correlation was found between IL-10 and adipose tissue. Conclusion Fructose overload promoted an impairment in cardiac autonomic modulation associated with inflammation and oxidative stress in hypertensive rats undergoing ovarian hormone deprivation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Kátia De Angelis
- Laboratory of Translational Physiology, Universidade Nove de Julho (UNINOVE), São Paulo, SP, Brasil.
| |
Collapse
|
77
|
Stachowicz A, Olszanecki R, Suski M, Wiśniewska A, Totoń-Żurańska J, Madej J, Jawień J, Białas M, Okoń K, Gajda M, Głombik K, Basta-Kaim A, Korbut R. Mitochondrial aldehyde dehydrogenase activation by Alda-1 inhibits atherosclerosis and attenuates hepatic steatosis in apolipoprotein E-knockout mice. J Am Heart Assoc 2014; 3:e001329. [PMID: 25392542 PMCID: PMC4338726 DOI: 10.1161/jaha.114.001329] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background Mitochondrial dysfunction has been shown to play an important role in the development of atherosclerosis and nonalcoholic fatty liver disease (NAFLD). Mitochondrial aldehyde dehydrogenase (ALDH2), an enzyme responsible for the detoxification of reactive aldehydes, is considered to exert protective function in mitochondria. We investigated the influence of Alda‐1, an activator of ALDH2, on atherogenesis and on the liver steatosis in apolipoprotein E knockout (apoE−/−) mice. Methods and Results Alda‐1 caused decrease of atherosclerotic lesions approximately 25% as estimated by “en face” and “cross‐section” methods without influence on plasma lipid profile, atherosclerosis‐related markers of inflammation, and macrophage and smooth muscle content in the plaques. Plaque nitrotyrosine was not changed upon Alda‐1 treatment, and there were no changes in aortic mRNA levels of factors involved in antioxidative defense, regulation of apoptosis, mitogenesis, and autophagy. Hematoxylin/eosin staining showed decrease of steatotic changes in liver of Alda‐1‐treated apoE−/− mice. Alda‐1 attenuated formation of 4‐hydroxy‐2‐nonenal (4‐HNE) protein adducts and decreased triglyceride content in liver tissue. Two‐dimensional electrophoresis coupled with mass spectrometry identified 20 differentially expressed mitochondrial proteins upon Alda‐1 treatment in liver of apoE−/− mice, mostly proteins related to metabolism and oxidative stress. The most up‐regulated were the proteins that participated in beta oxidation of fatty acids. Conclusions Collectively, Alda‐1 inhibited atherosclerosis and attenuated NAFLD in apoE−/− mice. The pattern of changes suggests a beneficial effect of Alda‐1 in NAFLD; however, the exact liver functional consequences of the revealed alterations as well as the mechanism(s) of antiatherosclerotic Alda‐1 action require further investigation.
Collapse
Affiliation(s)
- Aneta Stachowicz
- Department of Pharmacology, Jagiellonian University Medical College, Krakow, Poland (A.S., R.O., M.S., A.W., J.T., M., J.J., R.K.)
| | - Rafał Olszanecki
- Department of Pharmacology, Jagiellonian University Medical College, Krakow, Poland (A.S., R.O., M.S., A.W., J.T., M., J.J., R.K.)
| | - Maciej Suski
- Department of Pharmacology, Jagiellonian University Medical College, Krakow, Poland (A.S., R.O., M.S., A.W., J.T., M., J.J., R.K.)
| | - Anna Wiśniewska
- Department of Pharmacology, Jagiellonian University Medical College, Krakow, Poland (A.S., R.O., M.S., A.W., J.T., M., J.J., R.K.)
| | - Justyna Totoń-Żurańska
- Department of Pharmacology, Jagiellonian University Medical College, Krakow, Poland (A.S., R.O., M.S., A.W., J.T., M., J.J., R.K.)
| | - Józef Madej
- Department of Pharmacology, Jagiellonian University Medical College, Krakow, Poland (A.S., R.O., M.S., A.W., J.T., M., J.J., R.K.)
| | - Jacek Jawień
- Department of Pharmacology, Jagiellonian University Medical College, Krakow, Poland (A.S., R.O., M.S., A.W., J.T., M., J.J., R.K.)
| | - Magdalena Białas
- Department of Pathomorphology, Jagiellonian University Medical College, Krakow, Poland (M.B., K.O.)
| | - Krzysztof Okoń
- Department of Pathomorphology, Jagiellonian University Medical College, Krakow, Poland (M.B., K.O.)
| | - Mariusz Gajda
- Department of Histology, Jagiellonian University Medical College, Krakow, Poland (M.G.)
| | - Katarzyna Głombik
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland (K., A.B.K.)
| | - Agnieszka Basta-Kaim
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland (K., A.B.K.)
| | - Ryszard Korbut
- Department of Pharmacology, Jagiellonian University Medical College, Krakow, Poland (A.S., R.O., M.S., A.W., J.T., M., J.J., R.K.)
| |
Collapse
|
78
|
The Effects of High Glucose Levels on Reactive Oxygen Species-Induced Apoptosis and Involved Signaling in Human Vascular Endothelial Cells. Cardiovasc Toxicol 2014; 15:140-6. [DOI: 10.1007/s12012-014-9276-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
79
|
Csató V, Pető A, Koller Á, Édes I, Tóth A, Papp Z. Hydrogen peroxide elicits constriction of skeletal muscle arterioles by activating the arachidonic acid pathway. PLoS One 2014; 9:e103858. [PMID: 25093847 PMCID: PMC4122381 DOI: 10.1371/journal.pone.0103858] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 07/02/2014] [Indexed: 02/07/2023] Open
Abstract
Aims The molecular mechanisms of the vasoconstrictor responses evoked by hydrogen peroxide (H2O2) have not been clearly elucidated in skeletal muscle arterioles. Methods and Results Changes in diameter of isolated, cannulated and pressurized gracilis muscle arterioles (GAs) of Wistar-Kyoto rats were determined under various test conditions. H2O2 (10–100 µM) evoked concentration-dependent constrictions in the GAs, which were inhibited by endothelium removal, or by antagonists of phospholipase A (PLA; 100 µM 7,7-dimethyl-(5Z,8Z)-eicosadienoic acid), protein kinase C (PKC; 10 µM chelerythrine), phospholipase C (PLC; 10 µM U-73122), or Src family tyrosine kinase (Src kinase; 1 µM Src Inhibitor-1). Antagonists of thromboxane A2 (TXA2; 1 µM SQ-29548) or the non-specific cyclooxygenase (COX) inhibitor indomethacin (10 µM) converted constrictions to dilations. The COX-1 inhibitor (SC-560, 1 µM) demonstrated a greater reduction in constriction and conversion to dilation than that of COX-2 (celecoxib, 3 µM). H2O2 did not elicit significant changes in arteriolar Ca2+ levels measured with Fura-2. Conclusions These data suggest that H2O2 activates the endothelial Src kinase/PLC/PKC/PLA pathway, ultimately leading to the synthesis and release of TXA2 by COX-1, thereby increasing the Ca2+ sensitivity of the vascular smooth muscle cells and eliciting constriction in rat skeletal muscle arterioles.
Collapse
Affiliation(s)
- Viktória Csató
- Division of Clinical Physiology, Institute of Cardiology, University of Debrecen, Debrecen, Hungary
- Research Centre for Molecular Medicine, University of Debrecen, Debrecen, Hungary
| | - Attila Pető
- Division of Clinical Physiology, Institute of Cardiology, University of Debrecen, Debrecen, Hungary
- Research Centre for Molecular Medicine, University of Debrecen, Debrecen, Hungary
| | - Ákos Koller
- Department of Pathophysiology and Gerontology, University of Pécs, Pécs, Hungary
- Department of Pathophysiology, Semmelweis University, Budapest, Hungary
- Department of Physiology, New York Medical College, Valhalla, New York, United States of America
| | - István Édes
- Division of Clinical Physiology, Institute of Cardiology, University of Debrecen, Debrecen, Hungary
- Research Centre for Molecular Medicine, University of Debrecen, Debrecen, Hungary
| | - Attila Tóth
- Division of Clinical Physiology, Institute of Cardiology, University of Debrecen, Debrecen, Hungary
- Research Centre for Molecular Medicine, University of Debrecen, Debrecen, Hungary
| | - Zoltán Papp
- Division of Clinical Physiology, Institute of Cardiology, University of Debrecen, Debrecen, Hungary
- Research Centre for Molecular Medicine, University of Debrecen, Debrecen, Hungary
- * E-mail:
| |
Collapse
|
80
|
Carvalho C, Katz PS, Dutta S, Katakam PVG, Moreira PI, Busija DW. Increased susceptibility to amyloid-β toxicity in rat brain microvascular endothelial cells under hyperglycemic conditions. J Alzheimers Dis 2014; 38:75-83. [PMID: 23948922 DOI: 10.3233/jad-130464] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We hypothesized that hyperglycemia-induced mitochondrial dysfunction and oxidative stress are closely associated with amyloid-β peptide (Aβ) toxicity in endothelial cells. Brain microvascular endothelial cells from rat (RBMEC) and mice (MBMEC) were isolated from adult Sprague-Dawley rats and homozygous db/db (Leprdb/Leprdb) and heterozygous (Dock7m/Leprdb) mice, and cultured under normo- and hyperglycemic conditions for 7 d followed by 24 h exposure to Aβ1-40. Some experiments were also performed with two mitochondrial superoxide (O2•-) scavengers, MitoTempo and Peg-SOD. Cell viability was measured by the Alamar blue assay and mitochondrial membrane potential (ΔΨm) by confocal microscopy. Mitochondrial O2•- and hydrogen peroxide (H2O2) production was assessed by fluorescence microscopy and H2O2 production was confirmed by microplate reader. Hyperglycemia or Aβ1-40 alone did not affect cell viability in RBMEC. However, the simultaneous presence of high glucose and Aβ1-40 reduced cell viability and ΔΨm, and enhanced mitochondrial O2•- and H2O2 production. MitoTempo and PEG-SOD prevented Aβ1-40 toxicity. Interestingly, MBMEC presented a similar pattern of alterations with db/db cultures presenting higher susceptibility to Aβ1-40. Overall, our results show that high glucose levels increase the susceptibility of brain microvascular endothelial cells to Aβ toxicity supporting the idea that hyperglycemia is a major risk factor for vascular injury associated with AD.
Collapse
Affiliation(s)
- Cristina Carvalho
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal Department of Life Sciences - Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal
| | | | | | | | | | | |
Collapse
|
81
|
Barroso M, Florindo C, Kalwa H, Silva Z, Turanov AA, Carlson BA, de Almeida IT, Blom HJ, Gladyshev VN, Hatfield DL, Michel T, Castro R, Loscalzo J, Handy DE. Inhibition of cellular methyltransferases promotes endothelial cell activation by suppressing glutathione peroxidase 1 protein expression. J Biol Chem 2014; 289:15350-62. [PMID: 24719327 PMCID: PMC4140892 DOI: 10.1074/jbc.m114.549782] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
S-adenosylhomocysteine (SAH) is a negative regulator of most methyltransferases and the precursor for the cardiovascular risk factor homocysteine. We have previously identified a link between the homocysteine-induced suppression of the selenoprotein glutathione peroxidase 1 (GPx-1) and endothelial dysfunction. Here we demonstrate a specific mechanism by which hypomethylation, promoted by the accumulation of the homocysteine precursor SAH, suppresses GPx-1 expression and leads to inflammatory activation of endothelial cells. The expression of GPx-1 and a subset of other selenoproteins is dependent on the methylation of the tRNA(Sec) to the Um34 form. The formation of methylated tRNA(Sec) facilitates translational incorporation of selenocysteine at a UGA codon. Our findings demonstrate that SAH accumulation in endothelial cells suppresses the expression of GPx-1 to promote oxidative stress. Hypomethylation stress, caused by SAH accumulation, inhibits the formation of the methylated isoform of the tRNA(Sec) and reduces GPx-1 expression. In contrast, under these conditions, the expression and activity of thioredoxin reductase 1, another selenoprotein, is increased. Furthermore, SAH-induced oxidative stress creates a proinflammatory activation of endothelial cells characterized by up-regulation of adhesion molecules and an augmented capacity to bind leukocytes. Taken together, these data suggest that SAH accumulation in endothelial cells can induce tRNA(Sec) hypomethylation, which alters the expression of selenoproteins such as GPx-1 to contribute to a proatherogenic endothelial phenotype.
Collapse
Affiliation(s)
- Madalena Barroso
- From the Cardiovascular and ,the Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL) and
| | - Cristina Florindo
- the Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL) and
| | | | - Zélia Silva
- the Chronic Diseases Research Center, Departamento de Imunologia, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1099-085 Lisbon, Portugal
| | - Anton A. Turanov
- Genetics Divisions, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115
| | - Bradley A. Carlson
- the Molecular Biology of Selenium Section, Mouse Cancer Genetics Program, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, and
| | - Isabel Tavares de Almeida
- the Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL) and ,Department of Biochemistry and Human Biology, Faculty of Pharmacy, University of Lisbon, 1649-004 Lisbon, Portugal
| | - Henk J. Blom
- the Department of General Pediatrics, Center for Pediatrics and Adolescent Medicine, University Hospital, 79106 Freiburg, Germany
| | - Vadim N. Gladyshev
- Genetics Divisions, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115
| | - Dolph L. Hatfield
- the Molecular Biology of Selenium Section, Mouse Cancer Genetics Program, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, and
| | | | - Rita Castro
- the Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL) and ,Department of Biochemistry and Human Biology, Faculty of Pharmacy, University of Lisbon, 1649-004 Lisbon, Portugal
| | | | - Diane E. Handy
- From the Cardiovascular and , To whom correspondence should be addressed: Cardiovascular Div., Dept. of Medicine, Brigham and Women's Hospital and Harvard Medical School, 77 Ave. Louis Pasteur, Boston, MA, 02115. Tel.: 617-525-4845; Fax: 617-525-4830; E-mail:
| |
Collapse
|
82
|
Andrews M, Soto N, Arredondo-Olguín M. Association between ferritin and hepcidin levels and inflammatory status in patients with type 2 diabetes mellitus and obesity. Nutrition 2014; 31:51-7. [PMID: 25441587 DOI: 10.1016/j.nut.2014.04.019] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 04/16/2014] [Accepted: 04/16/2014] [Indexed: 01/14/2023]
Abstract
OBJECTIVE The aim of this study was to determine the association between iron parameters and inflammation in obese individuals with and without type 2 diabetes mellitus (T2DM). METHODS We studied 132 obese individuals (OB), 60 individuals with T2DM, 106 obese individuals with T2DM (T2DOB), and 146 controls (C). All of were men aged >30 y. Biochemical, iron nutrition, and oxidative stress parameters were determined. Peripheral mononuclear cells were isolated and total RNA was extracted to quantify tumor necrosis factor (TNF)-α, nuclear factor (NF)-κB, interleukin (IL)-6, toll-like receptor (TLR)-2/4 and hepcidin by quantitative reverse transcription polymerase chain reaction. RESULTS OB, T2DM, and T2DOB individuals had higher ferritin, retinol-binding protein 4, and thiobarbituric acid reactive substance (TBAR) levels than controls. T2DOB and T2DM individuals showed high high-sensitivity C-reactive protein (hsCRP) levels and OB with and without T2DM had elevated levels of serum hepcidin. Heme oxygenase activity was high in OB and T2DM and there were no differences observed in superoxide dismutase and glutathione parameters. A correlation between TBARS and ferritin in T2DOB was observed (r = 0.31; P < 0.006). Multiple linear regression analysis showed an association between diabetes and obesity with ferritin, TBARS, and hsCRP levels. The upper quartiles of ferritin, TBARS and hepcidin showed an adjusted odd ratio for T2DM of 1.782, 2.250, and 4.370, respectively. TNF-α, IL-6, hepcidin, NF-κB, TLR-2/4 mRNA abundances were increased in T2DM and T2DOB. CONCLUSION Elevated hsCRP and hepcidin levels, and increased gene expression of TNF-α, IL-6, NF-κB, and TLR-2/4 in patients with diabetes, obesity, or both exacerbate and perpetuate the insulin resistance and inflammatory state.
Collapse
Affiliation(s)
- Mónica Andrews
- Micronutrient Laboratory, Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, Chile
| | - Néstor Soto
- Endocrinology and diabetes Unit, Hospital San Borja Arriarán, Santiago, Chile
| | - Miguel Arredondo-Olguín
- Micronutrient Laboratory, Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, Chile.
| |
Collapse
|
83
|
Szczesny B, Módis K, Yanagi K, Coletta C, Le Trionnaire S, Perry A, Wood ME, Whiteman M, Szabo C. AP39, a novel mitochondria-targeted hydrogen sulfide donor, stimulates cellular bioenergetics, exerts cytoprotective effects and protects against the loss of mitochondrial DNA integrity in oxidatively stressed endothelial cells in vitro. Nitric Oxide 2014; 41:120-30. [PMID: 24755204 DOI: 10.1016/j.niox.2014.04.008] [Citation(s) in RCA: 218] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 04/08/2014] [Accepted: 04/14/2014] [Indexed: 12/12/2022]
Abstract
The purpose of the current study was to investigate the effect of the recently synthesized mitochondrially-targeted H2S donor, AP39 [(10-oxo-10-(4-(3-thioxo-3H-1,2-dithiol-5yl)phenoxy)decyl) triphenylphosphonium bromide], on bioenergetics, viability, and mitochondrial DNA integrity in bEnd.3 murine microvascular endothelial cells in vitro, under normal conditions, and during oxidative stress. Intracellular H2S was assessed by the fluorescent dye 7-azido-4-methylcoumarin. For the measurement of bioenergetic function, the XF24 Extracellular Flux Analyzer was used. Cell viability was estimated by the combination of the MTT and LDH methods. Oxidative protein modifications were measured by the Oxyblot method. Reactive oxygen species production was monitored by the MitoSOX method. Mitochondrial and nuclear DNA integrity were assayed by the Long Amplicon PCR method. Oxidative stress was induced by addition of glucose oxidase. Addition of AP39 (30-300 nM) to bEnd.3 cells increased intracellular H2S levels, with a preferential response in the mitochondrial regions. AP39 exerted a concentration-dependent effect on mitochondrial activity, which consisted of a stimulation of mitochondrial electron transport and cellular bioenergetic function at lower concentrations (30-100 nM) and an inhibitory effect at the higher concentration of 300 nM. Under oxidative stress conditions induced by glucose oxidase, an increase in oxidative protein modification and an enhancement in MitoSOX oxidation was noted, coupled with an inhibition of cellular bioenergetic function and a reduction in cell viability. AP39 pretreatment attenuated these responses. Glucose oxidase induced a preferential damage to the mitochondrial DNA; AP39 (100 nM) pretreatment protected against it. In conclusion, the current paper documents antioxidant and cytoprotective effects of AP39 under oxidative stress conditions, including a protection against oxidative mitochondrial DNA damage.
Collapse
Affiliation(s)
- Bartosz Szczesny
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Katalin Módis
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Kazunori Yanagi
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Ciro Coletta
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Sophie Le Trionnaire
- University of Exeter Medical School, St. Luke's Campus, Exeter, England, United Kingdom
| | - Alexis Perry
- Biosciences, College of Life and Environmental Science, University of Exeter, England, United Kingdom
| | - Mark E Wood
- Biosciences, College of Life and Environmental Science, University of Exeter, England, United Kingdom
| | - Matthew Whiteman
- University of Exeter Medical School, St. Luke's Campus, Exeter, England, United Kingdom.
| | - Csaba Szabo
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
84
|
Nanofiber-Coated Drug Eluting Stent for the Stabilization of Mast Cells. Pharm Res 2014; 31:2463-78. [DOI: 10.1007/s11095-014-1341-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 02/13/2014] [Indexed: 12/21/2022]
|
85
|
Hajjar DP, Gotto AM. Biological relevance of inflammation and oxidative stress in the pathogenesis of arterial diseases. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 182:1474-81. [PMID: 23608224 DOI: 10.1016/j.ajpath.2013.01.010] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 12/19/2012] [Accepted: 01/04/2013] [Indexed: 01/26/2023]
Abstract
Over the past three decades, age-adjusted rates of cardiovascular morbidity and mortality have fallen in the United States, but the prevalence of obesity and associated metabolic disorders has risen dramatically. Recent studies have begun to unravel the complex linkages between adipose and vascular tissues that may accelerate the development of atherosclerosis in the context of obesity. Experimental models indicate that inflammation and oxidative stress, which mutually amplify each other within the vasculature and in visceral fat, are key processes that drive the initiation, progression, and subsequent rupture of the atherosclerotic lesion. Emerging research is further elucidating the contributions made by chemokines and their receptors, adipokines, and miRNAs to arterial disease. Translation of these basic science findings to clinical applications represents a tantalizing possibility for reducing the global burden of obesity-associated atherosclerosis and other cardiovascular diseases.
Collapse
Affiliation(s)
- David P Hajjar
- Department of Biochemistry, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA.
| | | |
Collapse
|
86
|
Mitochondrial morphofunctional alterations in smooth muscle cells of aorta in rats. ISRN CARDIOLOGY 2014; 2014:739526. [PMID: 24653842 PMCID: PMC3933528 DOI: 10.1155/2014/739526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 12/19/2013] [Indexed: 12/21/2022]
Abstract
In an experimental model of atherogenesis induced by hyperfibrinogenemia (HF), the pharmacological response of vitamin E was studied in order to assess its antioxidant effect on the mitochondrial morphofunctional alterations in aortic smooth muscle cells. Three groups of male rats were used: (Ctr) control, (AI) atherogenesis induced for 120 days, and (AIE) atherogenesis induced for 120 days and treated with vitamin E. HF was induced by adrenalin injection (0.1 mg/day/rat) for 120 days. AIE group was treated with the administration of 3.42 mg/day/rat of vitamin E for 105 days after the first induction. Mitochondria morphology was analyzed by electronic microscopy (EM) and mitochondrial complexes (MC) by spectrophotometry. In group AI the total and mean number of mitochondria reduced significantly, the intermembranous matrix increased, and swelling was observed with respect to Ctr and AIE (P < 0.01). These damages were related to a significant decrease in the activity of citrate synthase and complexes I, II, III, and IV in group AI in comparison to Ctr (P < 0.001). Similar behavior was presented by group AI compared to AIE (P < 0.001). These results show that vitamin E produces a significative regression of inflammatory and oxidative stress process and it resolved the morphofunctional mitochondrial alterations in this experimental model of atherogenic disease.
Collapse
|
87
|
Zhao Y, Yu Y, Tian X, Yang X, Li X, Jiang F, Chen Y, Shi M. Association study to evaluate FoxO1 and FoxO3 gene in CHD in Han Chinese. PLoS One 2014; 9:e86252. [PMID: 24489705 PMCID: PMC3904908 DOI: 10.1371/journal.pone.0086252] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 12/10/2013] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Coronary heart disease (CHD) is one of the leading causes of mortality and morbidity in China. Genetic factors that predispose individuals to CHD are unclear. In the present study, we aimed to determine whether the variation of FoxOs, a novel genetic factor associated with longevity, was associated with CHD in Han Chinese populations. METHODS 1271 CHD patients and 1287 age-and sex-matched controls from Beijing and Harbin were included. We selected four tagging single nucleotide polymorphisms (SNPs) of FoxO1 (rs2755209, rs2721072, rs4325427 and rs17592371) and two tagging SNPs of FoxO3 (rs768023 and rs1268165). And the genotypes of these SNPs were determined in both CHD patients and non-CHD controls. RESULTS For population from Beijing, four SNPs of FoxO1 and two SNPs of FoxO3 were found not to be associated with CHD (p>0.05). And this was validated in the other population from Harbin (p>0.05). After combining the two geographically isolated case-control populations, the results showed that the six SNPs did not necessarily predispose to CHD in Han Chinese(p>0.05). In stratified analysis according to gender, the history of smoking, hypertension, diabetes mellitus, hyperlipidemia and the metabolic syndrome, we further explored that neither the variants of FoxO1 nor the variants of FoxO3 might be associated with CHD (p>0.05). CONCLUSION The variants of FoxO1 and FoxO3 may not increase the prevalence of CHD in Han Chinese population.
Collapse
Affiliation(s)
- Ying Zhao
- Department of Geriatrics, Jinan Military General Hospital, Jinan, China
| | - Yanbo Yu
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, China
| | - Xiaoli Tian
- Department of Human Population Genetics, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Xi Yang
- Department of Human Population Genetics, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Xueqi Li
- Department of Cardiology, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Feng Jiang
- Department of Cardiology, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yundai Chen
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Maowei Shi
- Department of Geriatrics, Jinan Military General Hospital, Jinan, China
| |
Collapse
|
88
|
Portilla EC, Muñoz W, Sierra CH. Mecanismos celulares y moleculares de la aterotrombosis. REVISTA COLOMBIANA DE CARDIOLOGÍA 2014. [DOI: 10.1016/s0120-5633(14)70009-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
89
|
Pant S, Deshmukh A, Gurumurthy GS, Pothineni NV, Watts TE, Romeo F, Mehta JL. Inflammation and atherosclerosis--revisited. J Cardiovasc Pharmacol Ther 2013; 19:170-8. [PMID: 24177335 DOI: 10.1177/1074248413504994] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Atherogenesis has been traditionally viewed as a metabolic disease representing arterial obstruction by fatty deposits in its wall. Today, it is believed that atherogenesis involves highly specific biochemical and molecular responses with constant interactions between various cellular players. Despite the presence of inflammatory reaction in each and every step of atherosclerosis from its inception to terminal manifestation, the cause--effect relationship of these 2 processes remains unclear. In this article, we have attempted to review the role of inflammation in the development of atherosclerosis and in its major complication--coronary heart disease.
Collapse
Affiliation(s)
- Sadip Pant
- 1Department of Medicine, University of Arkansas for Medical Sciences and Central Arkansas Veterans Healthcare System, Little Rock, AR, USA
| | | | | | | | | | | | | |
Collapse
|
90
|
|
91
|
Chen S, Hou Y, Cheng G, Zhang C, Wang S, Zhang J. Cerium oxide nanoparticles protect endothelial cells from apoptosis induced by oxidative stress. Biol Trace Elem Res 2013; 154:156-66. [PMID: 23740524 DOI: 10.1007/s12011-013-9678-8] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 04/17/2013] [Indexed: 12/18/2022]
Abstract
Oxidative stress is well documented to cause injury to endothelial cells (ECs), which in turn trigger cardiovascular diseases. Previous studies revealed that cerium oxide nanoparticles (nanoceria) had antioxidant property, but the protective effect of nanoceria on ROS injury to ECs and cardiovascular diseases has not been reported. In the current study, we investigated the protective effect and underlying mechanisms of nanoceria on oxidative injury to ECs. The cell viability, lactate dehydrogenase release, cellular uptake, intracellular localization and reactive oxygen species (ROS) levels, endocytosis mechanism, cell apoptosis, and mitochondrial membrane potential were performed. The results indicated that nanoceria had no cytotoxicity on ECs but had the ability to prevent injury by H2O2. Nanoceria could be uptaken into ECs through caveolae- and clathrin-mediated endocytosis and distributed throughout the cytoplasma. The internalized nanoceria effectively attenuated ROS overproduction induced by H2O2. Apoptosis was also alleviated greatly by nanoceria pretreatment. These results may be helpful for more rational application of nanoceria in biomedical fields in the future.
Collapse
Affiliation(s)
- Shizhu Chen
- College of Chemistry and Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding, People's Republic of China
| | | | | | | | | | | |
Collapse
|
92
|
Cure MC, Cure E, Kirbas A, Cicek AC, Yuce S. The effects of Gilbert's syndrome on the mean platelet volume and other hematological parameters. Blood Coagul Fibrinolysis 2013; 24:484-488. [PMID: 23348429 DOI: 10.1097/mbc.0b013e32835e4230] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The protective effect of increased levels of indirect bilirubin on atherosclerotic heart disease in patients of Gilbert's syndrome is well known. The aim of the study was to investigate the effects of increased levels of bilirubin on the mean platelet volume (MPV) and other hematological parameters. Thirty-two men and 36 women (a total of 68 Gilbert's syndrome patients) and a similar age group of 68 healthy individuals (32 men and 36 women) were included in the study. Hematologic tests, C-reactive protein (CRP) and biochemical values of the two groups were checked. MPV level of Gilbert's syndrome group was 7.8±1.0fl and CRP 0.2±0.27mg/dl. In the control group MPV was 8.6±1.0fl and CRP 0.3±0.38mg/dl. MPV of patients group (P<0.001) and CRP (P=0.037) were significantly lower than the control group. When dividing Gilbert's syndrome and control groups according to sex into subgroups the level of indirect bilirubin in men with Gilbert's syndrome (1.8±0.8mg/dl) was found to be higher than other groups. Healthy men had higher levels of MPV (8.8±0.9fl) whereas Gilbert's syndrome male patients had lower levels (7.7±1.1fl), (P<0.001). The elevated levels of bilirubin and decreasing levels of MPV and CRP in Gilbert's syndrome patients may have an effect on the slowing down of the atherosclerotic process.
Collapse
Affiliation(s)
- Medine C Cure
- Department of Biochemistry, University of Recep Tayyip Erdogan, Rize, Turkey.
| | | | | | | | | |
Collapse
|
93
|
Lee JC, Hou MF, Huang HW, Chang FR, Yeh CC, Tang JY, Chang HW. Marine algal natural products with anti-oxidative, anti-inflammatory, and anti-cancer properties. Cancer Cell Int 2013; 13:55. [PMID: 23724847 PMCID: PMC3674937 DOI: 10.1186/1475-2867-13-55] [Citation(s) in RCA: 171] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Accepted: 05/27/2013] [Indexed: 02/07/2023] Open
Abstract
For their various bioactivities, biomaterials derived from marine algae are important ingredients in many products, such as cosmetics and drugs for treating cancer and other diseases. This mini-review comprehensively compares the bioactivities and biological functions of biomaterials from red, green, brown, and blue-green algae. The anti-oxidative effects and bioactivities of several different crude extracts of algae have been evaluated both in vitro and in vivo. Natural products derived from marine algae protect cells by modulating the effects of oxidative stress. Because oxidative stress plays important roles in inflammatory reactions and in carcinogenesis, marine algal natural products have potential for use in anti-cancer and anti-inflammatory drugs.
Collapse
Affiliation(s)
- Jin-Ching Lee
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | | | | | | | | | | | | |
Collapse
|
94
|
Oxidative stress in cardiovascular diseases and obesity: role of p66Shc and protein kinase C. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:564961. [PMID: 23606925 PMCID: PMC3625561 DOI: 10.1155/2013/564961] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 01/25/2013] [Accepted: 02/14/2013] [Indexed: 01/09/2023]
Abstract
Reactive oxygen species (ROS) are a byproduct of the normal metabolism of oxygen and have important roles in cell signalling and homeostasis. An imbalance between ROS production and the cellular antioxidant defence system leads to oxidative stress. Environmental factors and genetic interactions play key roles in oxidative stress mediated pathologies. In this paper, we focus on cardiovascular diseases and obesity, disorders strongly related to each other; in which oxidative stress plays a fundamental role. We provide evidence of the key role played by p66(Shc) protein and protein kinase C (PKC) in these pathologies by their intracellular regulation of redox balance and oxidative stress levels. Additionally, we discuss possible therapeutic strategies aimed at attenuating the oxidative damage in these diseases.
Collapse
|
95
|
Abstract
PURPOSE OF REVIEW Dietary n-3 polyunsaturated fatty acids (n-3 PUFAs) may be related to a number of chronic metabolic abnormalities, including metabolic syndrome. This review presents an update on the effects of n-3 PUFAs on risk factors of metabolic syndrome, especially adipose tissue inflammation, oxidative stress and underlying mechanisms of these effects. RECENT FINDINGS Anti-inflammatory actions of n-3 PUFAs are thought to be mediated by the formation of their active metabolites (eicosanoids and other lipid mediators) as well as their regulation of the production of inflammatory mediators (e.g., adipocytokines, cytokines) and immune cell infiltration into adipose tissue. n-3 PUFAs mediate these effects by modulating several pathways, such as those involving nuclear factor-κB, peroxisome proliferator-activated receptors and Toll-like receptors. The antioxidative effects of n-3 PUFAs in adipocytes appear to inhibit reactive oxygen species production and alter mitochondrial function. SUMMARY This review summarizes the evidence for beneficial effects of n-3 PUFAs on adipose tissue inflammation and oxidative stress. More studies are necessary to investigate the mechanisms underlying these effects and to relate this topic to human health.
Collapse
Affiliation(s)
- Chaonan Fan
- Key Laboratory of Major Disease in Children and National Key Discipline of Pediatrics (Capital Medical University), Ministry of Education, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | | | | |
Collapse
|
96
|
Marcovina SM, Sirtori C, Peracino A, Gheorghiade M, Borum P, Remuzzi G, Ardehali H. Translating the basic knowledge of mitochondrial functions to metabolic therapy: role of L-carnitine. Transl Res 2013; 161:73-84. [PMID: 23138103 PMCID: PMC3590819 DOI: 10.1016/j.trsl.2012.10.006] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 10/15/2012] [Accepted: 10/16/2012] [Indexed: 01/07/2023]
Abstract
Mitochondria play important roles in human physiological processes, and therefore, their dysfunction can lead to a constellation of metabolic and nonmetabolic abnormalities such as a defect in mitochondrial gene expression, imbalance in fuel and energy homeostasis, impairment in oxidative phosphorylation, enhancement of insulin resistance, and abnormalities in fatty acid metabolism. As a consequence, mitochondrial dysfunction contributes to the pathophysiology of insulin resistance, obesity, diabetes, vascular disease, and chronic heart failure. The increased knowledge on mitochondria and their role in cellular metabolism is providing new evidence that these disorders may benefit from mitochondrial-targeted therapies. We review the current knowledge of the contribution of mitochondrial dysfunction to chronic diseases, the outcomes of experimental studies on mitochondrial-targeted therapies, and explore the potential of metabolic modulators in the treatment of selected chronic conditions. As an example of such modulators, we evaluate the efficacy of the administration of L-carnitine and its analogues acetyl and propionyl L-carnitine in several chronic diseases. L-carnitine is intrinsically involved in mitochondrial metabolism and function as it plays a key role in fatty acid oxidation and energy metabolism. In addition to the transportation of free fatty acids across the inner mitochondrial membrane, L-carnitine modulates their oxidation rate and is involved in the regulation of vital cellular functions such as apoptosis. Thus, L-carnitine and its derivatives show promise in the treatment of chronic conditions and diseases associated with mitochondrial dysfunction but further translational studies are needed to fully explore their potential.
Collapse
|
97
|
Roles for PI3K/AKT/PTEN Pathway in Cell Signaling of Nonalcoholic Fatty Liver Disease. ISRN ENDOCRINOLOGY 2013; 2013:472432. [PMID: 23431468 PMCID: PMC3570922 DOI: 10.1155/2013/472432] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 01/02/2013] [Indexed: 12/15/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common form of liver pathologies and is associated with obesity and the metabolic syndrome, which represents a range of fatty liver diseases associated with an increased risk of type 2 diabetes. Molecular mechanisms underlying how to make transition from simple fatty liver to nonalcoholic steatohepatitis (NASH) are not well understood. However, accumulating evidence indicates that deregulation of the phosphatidylinositol 3-kinase (PI3K)/AKT pathway in hepatocytes is a common molecular event associated with metabolic dysfunctions including obesity, metabolic syndrome, and the NAFLD. A tumor suppressor PTEN negatively regulates the PI3K/AKT pathways through its lipid phosphatase activity. Molecular studies in the NAFLD support a key role for PTEN in hepatic insulin sensitivity and the development of steatosis, steatohepatitis, and fibrosis. We review recent studies on the features of the PTEN and the PI3K/AKT pathway and discuss the protein functions in the signaling pathways involved in the NAFLD. The molecular mechanisms contributing to the diseases are the subject of considerable investigation, as a better understanding of the pathogenesis will lead to novel therapies for a condition.
Collapse
|
98
|
Lo KY, Zhu Y, Tsai HF, Sun YS. Effects of shear stresses and antioxidant concentrations on the production of reactive oxygen species in lung cancer cells. BIOMICROFLUIDICS 2013; 7:64108. [PMID: 24396542 PMCID: PMC3862592 DOI: 10.1063/1.4836675] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 11/16/2013] [Indexed: 05/16/2023]
Abstract
Reactive oxygen species (ROS) are known to be a key factor in the development of cancer, and many exogenous sources are supposed to be related to the formation of ROS. In this paper, a microfluidic chip was developed for studying the production of ROS in lung cancer cells under different chemical and physical stimuli. This chip has two unique features: (1) five relative concentrations of 0, 1/8, 1/2, 7/8, and 1 are achieved in the culture regions; (2) a shear stress gradient is produced inside each of the five culture areas. Lung cancer cells were seeded inside this biocompatible chip for investigating their response to different concentrations of H2O2, a chemical stimulus known to increase the production of ROS. Then the effect of shear stress, a physical stimulus, on lung cancer cells was examined, showing that the production of ROS was increased in response to a larger shear stress. Finally, two antioxidants, α-tocopherol and ferulic acid, were used to study their effects on reducing ROS. It was found that high-dose α-tocopherol was not able to effectively eliminate the ROS produced inside cells. This counter effect was not observed in cells cultured in a traditional chamber slide, where no shear stress was present. This result suggests that the current microfluidic chip provides an in vitro platform best mimicking the physiological condition where cells are under circulating conditions.
Collapse
Affiliation(s)
- Kai-Yin Lo
- Department of Agricultural Chemistry, National Taiwan University, Taipei City 10617, Taiwan
| | - Yun Zhu
- Department of Agricultural Chemistry, National Taiwan University, Taipei City 10617, Taiwan
| | - Hsieh-Fu Tsai
- Research Center for Applied Sciences, Academia Sinica, Taipei City 11529, Taiwan
| | - Yung-Shin Sun
- Department of Physics, Fu-Jen Catholic University, New Taipei City 24205, Taiwan
| |
Collapse
|
99
|
Abstract
Vascular endothelial dysfunction is determined by both genetic and environmental factors that cause decreased bioavailability of the vasodilator nitric oxide. This is a hallmark of atherosclerosis, hypertension, and coronary heart disease, which are major complications of metabolic disorders, including diabetes and obesity. Several therapeutic interventions, including changes in lifestyle as well as pharmacologic treatments, are useful for improving endothelial dysfunction in the face of lipotoxicity. This review discusses the current understanding of molecular and physiologic mechanisms underlying lipotoxicity-mediated endothelial dysfunction as well as relevant therapeutic approaches to ameliorate dyslipidemia and consequent endothelial dysfunction that have the potential to improve cardiovascular and metabolic outcomes.
Collapse
Affiliation(s)
- Jeong-a Kim
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, UAB Comprehensive Diabetes Center, University of Alabama at Birmingham, 1808 7th Avenue South, BDB 777, Birmingham, AL 35294-0012, USA
- Department of Cell Biology, University of Alabama at Birmingham, 1808 7th Avenue South, BDB 777, Birmingham, AL 35294, USA
| | - Monica Montagnani
- Department of Biomedical Sciences and Human Oncology, Pharmacology Section, University “Aldo Moro” at Bari, Policlinico, Piazza G. Cesare, 11, 70124 Bari, Italy
| | - Sruti Chandrasekran
- Department of Medicine, Division of Endocrinology, Diabetes & Nutrition, University of Maryland at Baltimore, 660 West Redwood Street, HH 495, Baltimore, MD 21201, USA
| | - Michael J. Quon
- Department of Medicine, Division of Endocrinology, Diabetes & Nutrition, University of Maryland at Baltimore, 660 West Redwood Street, HH 495, Baltimore, MD 21201, USA
| |
Collapse
|
100
|
Kapitulnik J, Benaim C, Sasson S. Endothelial Cells Derived from the Blood-Brain Barrier and Islets of Langerhans Differ in their Response to the Effects of Bilirubin on Oxidative Stress Under Hyperglycemic Conditions. Front Pharmacol 2012; 3:131. [PMID: 22811666 PMCID: PMC3396126 DOI: 10.3389/fphar.2012.00131] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 06/21/2012] [Indexed: 12/04/2022] Open
Abstract
Unconjugated bilirubin (UCB) is a neurotoxic degradation product of heme. Its toxic effects include induction of apoptosis, and ultimately neuronal cell death. However, at low concentrations, UCB is a potent antioxidant that may protect cells and tissues against oxidative stress by neutralizing toxic metabolites such as reactive oxygen species (ROS). High glucose levels (hyperglycemia) generate reactive metabolites. Endothelial cell dysfunction, an early vascular complication in diabetes, has been associated with hyperglycemia-induced oxidative stress. Both glucose and UCB are substrates for transport proteins in microvascular endothelial cells of the blood-brain barrier (BBB). In the current study we show that UCB (1–40 μM) induces apoptosis and reduces survival of bEnd3 cells, a mouse brain endothelial cell line which serves as an in vitro model of the BBB. These deleterious effects of UCB were enhanced in the presence of high glucose (25 mM) levels. Interestingly, the bEnd3 cells exhibited an increased sensitivity to the apoptotic effects of UCB when compared to the MS1 microcapillary endothelial cell line. MS1 cells originate from murine pancreatic islets of Langerhans, and are devoid of the barrier characteristics of BBB-derived endothelial cells. ROS production was increased in both bEnd3 and MS1 cells exposed to high glucose, as compared with cells exposed to normal (5.5 mM) glucose levels. While UCB (0.1–40 μM) did not alter ROS production in cells exposed to normal glucose, relatively low (“physiological”) UCB concentrations (0.1–5 μM) attenuated ROS generation in both cell lines exposed to high glucose levels. Most strikingly, higher UCB concentrations (20–40 μM) increased ROS generation in bEnd3 cells exposed to high glucose, but not in similarly treated MS1 cells. These results may be of critical importance for understanding the vulnerability of the BBB endothelium upon exposure to increasing UCB levels under hyperglycemic conditions.
Collapse
Affiliation(s)
- Jaime Kapitulnik
- Department of Pharmacology, Institute of Drug Research, School of Pharmacy, The Hebrew University of Jerusalem Jerusalem, Israel
| | | | | |
Collapse
|