51
|
Westman J, Jayaram-Lindström N, Kane K, Franck J, Gissler M. Mortality in adult children of parents with alcohol use disorder: a nationwide register study. Eur J Epidemiol 2022; 37:815-826. [PMID: 35737206 PMCID: PMC9463262 DOI: 10.1007/s10654-022-00883-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/20/2022] [Indexed: 12/15/2022]
Abstract
Research suggests that adult children of parents with harmful alcohol use are at increased risk for premature death. This national cohort study investigated mortality in adult children of parents with alcohol use disorder (AUD), adjusting for sociodemographic variables. The study used 1973 to 2018 data from Swedish national registers to compare mortality risk in children who had ≥ 1 parent with AUD (ICD-10 code F10 and its ICD-8 and ICD-9 equivalents) (n = 122,947) and those who did not (n = 2,298,532). A Cox regression model adjusted for year of birth, sex, parental education, and childhood loss of a parent was used. Before the age of 18 years, about 5% of children born in Sweden lived with ≥ 1 parent who had a clinical diagnosis of AUD. Overall mortality was higher in adult children of parents with AUD: hazard ratio (HR) 1.76, 95% confidence interval (CI) 1.71-1.82. Mortality remained elevated after adjustments for sociodemographic factors (HR 1.45, 95% CI 1.40-1.50). Children of parents with AUD had increased mortality from all investigated causes. The highest excess risk was for death from drug-related causes (excluding accidental poisonings) (HR 3.08, 95% CI 2.74-3.46). For most causes, mortality was higher if the mother had AUD than if the father had AUD. Patterns of mortality were similar in both sexes. This study provides evidence that parental AUD raises the risk of offspring mortality from preventable causes such as drug use, suicide (HR 2.16, 95% CI 1.98-2.36), accident (HR 2.00, 95% CI 1.87-2.13), and assault (HR 1.76, 95% CI 1.38-2.24).
Collapse
Affiliation(s)
- Jeanette Westman
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Huddinge, Sweden ,Department of Health Care Sciences, Marie Cederschiöld University, Stockholm, Sweden ,Academic Primary Health Care Centre, Region Stockholm, Sweden
| | - Nitya Jayaram-Lindström
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden
| | - Kimberly Kane
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Huddinge, Sweden ,Academic Primary Health Care Centre, Region Stockholm, Sweden
| | - Johan Franck
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden
| | - Mika Gissler
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Huddinge, Sweden ,Academic Primary Health Care Centre, Region Stockholm, Sweden ,Department of Child Psychiatry, Turku University Hospital, Turku University, Turku, Finland ,Department of Knowledge Brokers, Finnish Institute for Health and Welfare, Helsinki, Finland
| |
Collapse
|
52
|
Anxiety and Stress in Young Adults. Fam Med 2022. [DOI: 10.1007/978-3-030-54441-6_136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
53
|
Li C, Chen Y, Wen Y, Jia Y, Cheng S, Liu L, Zhang H, Pan C, Zhang J, Zhang Z, Yang X, Meng P, Yao Y, Zhang F. A genetic association study reveals the relationship between the oral microbiome and anxiety and depression symptoms. Front Psychiatry 2022; 13:960756. [PMID: 36440396 PMCID: PMC9685528 DOI: 10.3389/fpsyt.2022.960756] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 09/16/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Growing evidence supports that alterations in the gut microbiota play an essential role in the etiology of anxiety, depression, and other psychiatric disorders. However, the potential effect of oral microbiota on mental health has received little attention. METHODS Using the latest genome-wide association study (GWAS) summary data of the oral microbiome, polygenic risk scores (PRSs) of 285 salivary microbiomes and 309 tongue dorsum microbiomes were conducted. Logistic and linear regression models were applied to evaluate the relationship between salivary-tongue dorsum microbiome interactions with anxiety and depression. Two-sample Mendelian randomization (MR) was utilized to compute the causal effects between the oral microbiome, anxiety, and depression. RESULTS We observed significant salivary-tongue dorsum microbiome interactions related to anxiety and depression traits. Significantly, one common interaction was observed to be associated with both anxiety score and depression score, Centipeda periodontii SGB 224 × Granulicatella uSGB 3289 (P depressionscore = 1.41 × 10-8, P anxietyscore = 5.10 × 10-8). Furthermore, we detected causal effects between the oral microbiome and anxiety and depression. Importantly, we identified one salivary microbiome associated with both anxiety and depression in both the UKB database and the Finngen public database, Eggerthia (P IVW - majordepression - UKB = 2.99 × 10-6, P IVW - Self - reportedanxiety/panicattacks - UKB = 3.06 × 10-59, P IVW - depression - Finngen = 3.16 × 10 , - 16 P IVW - anxiety - Finngen = 1.14 × 10-115). CONCLUSION This study systematically explored the relationship between the oral microbiome and anxiety and depression, which could help improve our understanding of disease pathogenesis and propose new diagnostic targets and early intervention strategies.
Collapse
Affiliation(s)
- Chun'e Li
- Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Yujing Chen
- Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Yan Wen
- Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Yumeng Jia
- Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Shiqiang Cheng
- Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Li Liu
- Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Huijie Zhang
- Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Chuyu Pan
- Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Jingxi Zhang
- Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Zhen Zhang
- Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Xuena Yang
- Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Peilin Meng
- Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Yao Yao
- Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
54
|
Bas‐Hoogendam JM, Groenewold NA, Aghajani M, Freitag GF, Harrewijn A, Hilbert K, Jahanshad N, Thomopoulos SI, Thompson PM, Veltman DJ, Winkler AM, Lueken U, Pine DS, Wee NJA, Stein DJ, Agosta F, Åhs F, An I, Alberton BAV, Andreescu C, Asami T, Assaf M, Avery SN, Nicholas L, Balderston, Barber JP, Battaglia M, Bayram A, Beesdo‐Baum K, Benedetti F, Berta R, Björkstrand J, Blackford JU, Blair JR, Karina S, Blair, Boehme S, Brambilla P, Burkhouse K, Cano M, Canu E, Cardinale EM, Cardoner N, Clauss JA, Cividini C, Critchley HD, Udo, Dannlowski, Deckert J, Demiralp T, Diefenbach GJ, Domschke K, Doruyter A, Dresler T, Erhardt A, Fallgatter AJ, Fañanás L, Brandee, Feola, Filippi CA, Filippi M, Fonzo GA, Forbes EE, Fox NA, Fredrikson M, Furmark T, Ge T, Gerber AJ, Gosnell SN, Grabe HJ, Grotegerd D, Gur RE, Gur RC, Harmer CJ, Harper J, Heeren A, Hettema J, Hofmann D, Hofmann SG, Jackowski AP, Andreas, Jansen, Kaczkurkin AN, Kingsley E, Kircher T, Kosti c M, Kreifelts B, Krug A, Larsen B, Lee S, Leehr EJ, Leibenluft E, Lochner C, Maggioni E, Makovac E, Mancini M, Manfro GG, Månsson KNT, Meeten F, Michałowski J, et alBas‐Hoogendam JM, Groenewold NA, Aghajani M, Freitag GF, Harrewijn A, Hilbert K, Jahanshad N, Thomopoulos SI, Thompson PM, Veltman DJ, Winkler AM, Lueken U, Pine DS, Wee NJA, Stein DJ, Agosta F, Åhs F, An I, Alberton BAV, Andreescu C, Asami T, Assaf M, Avery SN, Nicholas L, Balderston, Barber JP, Battaglia M, Bayram A, Beesdo‐Baum K, Benedetti F, Berta R, Björkstrand J, Blackford JU, Blair JR, Karina S, Blair, Boehme S, Brambilla P, Burkhouse K, Cano M, Canu E, Cardinale EM, Cardoner N, Clauss JA, Cividini C, Critchley HD, Udo, Dannlowski, Deckert J, Demiralp T, Diefenbach GJ, Domschke K, Doruyter A, Dresler T, Erhardt A, Fallgatter AJ, Fañanás L, Brandee, Feola, Filippi CA, Filippi M, Fonzo GA, Forbes EE, Fox NA, Fredrikson M, Furmark T, Ge T, Gerber AJ, Gosnell SN, Grabe HJ, Grotegerd D, Gur RE, Gur RC, Harmer CJ, Harper J, Heeren A, Hettema J, Hofmann D, Hofmann SG, Jackowski AP, Andreas, Jansen, Kaczkurkin AN, Kingsley E, Kircher T, Kosti c M, Kreifelts B, Krug A, Larsen B, Lee S, Leehr EJ, Leibenluft E, Lochner C, Maggioni E, Makovac E, Mancini M, Manfro GG, Månsson KNT, Meeten F, Michałowski J, Milrod BL, Mühlberger A, Lilianne R, Mujica‐Parodi, Munjiza A, Mwangi B, Myers M, Igor Nenadi C, Neufang S, Nielsen JA, Oh H, Ottaviani C, Pan PM, Pantazatos SP, Martin P, Paulus, Perez‐Edgar K, Peñate W, Perino MT, Peterburs J, Pfleiderer B, Phan KL, Poletti S, Porta‐Casteràs D, Price RB, Pujol J, Andrea, Reinecke, Rivero F, Roelofs K, Rosso I, Saemann P, Salas R, Salum GA, Satterthwaite TD, Schneier F, Schruers KRJ, Schulz SM, Schwarzmeier H, Seeger FR, Smoller JW, Soares JC, Stark R, Stein MB, Straube B, Straube T, Strawn JR, Suarez‐Jimenez B, Boris, Suchan, Sylvester CM, Talati A, Tamburo E, Tükel R, Heuvel OA, Van der Auwera S, Nieuwenhuizen H, Tol M, van Velzen LS, Bort CV, Vermeiren RRJM, Visser RM, Volman I, Wannemüller A, Wendt J, Werwath KE, Westenberg PM, Wiemer J, Katharina, Wittfeld, Wu M, Yang Y, Zilverstand A, Zugman A, Zwiebel HL. ENIGMA-anxiety working group: Rationale for and organization of large-scale neuroimaging studies of anxiety disorders. Hum Brain Mapp 2022; 43:83-112. [PMID: 32618421 PMCID: PMC8805695 DOI: 10.1002/hbm.25100] [Show More Authors] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/09/2020] [Accepted: 06/08/2020] [Indexed: 12/11/2022] Open
Abstract
Anxiety disorders are highly prevalent and disabling but seem particularly tractable to investigation with translational neuroscience methodologies. Neuroimaging has informed our understanding of the neurobiology of anxiety disorders, but research has been limited by small sample sizes and low statistical power, as well as heterogenous imaging methodology. The ENIGMA-Anxiety Working Group has brought together researchers from around the world, in a harmonized and coordinated effort to address these challenges and generate more robust and reproducible findings. This paper elaborates on the concepts and methods informing the work of the working group to date, and describes the initial approach of the four subgroups studying generalized anxiety disorder, panic disorder, social anxiety disorder, and specific phobia. At present, the ENIGMA-Anxiety database contains information about more than 100 unique samples, from 16 countries and 59 institutes. Future directions include examining additional imaging modalities, integrating imaging and genetic data, and collaborating with other ENIGMA working groups. The ENIGMA consortium creates synergy at the intersection of global mental health and clinical neuroscience, and the ENIGMA-Anxiety Working Group extends the promise of this approach to neuroimaging research on anxiety disorders.
Collapse
Affiliation(s)
- Janna Marie Bas‐Hoogendam
- Department of Developmental and Educational PsychologyLeiden University, Institute of Psychology Leiden The Netherlands
- Department of PsychiatryLeiden University Medical Center Leiden The Netherlands
- Leiden Institute for Brain and Cognition Leiden The Netherlands
| | - Nynke A. Groenewold
- Department of Psychiatry & Mental HealthUniversity of Cape Town Cape Town South Africa
| | - Moji Aghajani
- Department of PsychiatryAmsterdam UMC / VUMC Amsterdam The Netherlands
- Department of Research & InnovationGGZ inGeest Amsterdam The Netherlands
| | - Gabrielle F. Freitag
- National Institute of Mental Health, Emotion and Development Branch Bethesda Maryland USA
| | - Anita Harrewijn
- National Institute of Mental Health, Emotion and Development Branch Bethesda Maryland USA
| | - Kevin Hilbert
- Department of PsychologyHumboldt‐Universität zu Berlin Berlin Germany
| | - Neda Jahanshad
- University of Southern California Keck School of MedicineImaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute Los Angeles California USA
| | - Sophia I. Thomopoulos
- University of Southern California Keck School of MedicineImaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute Los Angeles California USA
| | - Paul M. Thompson
- University of Southern California Keck School of MedicineImaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute Los Angeles California USA
| | - Dick J. Veltman
- Department of PsychiatryAmsterdam UMC / VUMC Amsterdam The Netherlands
| | - Anderson M. Winkler
- National Institute of Mental Health, Emotion and Development Branch Bethesda Maryland USA
| | - Ulrike Lueken
- Department of PsychologyHumboldt‐Universität zu Berlin Berlin Germany
| | - Daniel S. Pine
- National Institute of Mental Health, Emotion and Development Branch Bethesda Maryland USA
| | - Nic J. A. Wee
- Department of PsychiatryLeiden University Medical Center Leiden The Netherlands
- Leiden Institute for Brain and Cognition Leiden The Netherlands
| | - Dan J. Stein
- Department of Psychiatry & Mental HealthUniversity of Cape Town Cape Town South Africa
- University of Cape TownSouth African MRC Unit on Risk & Resilience in Mental Disorders Cape Town South Africa
- University of Cape TownNeuroscience Institute Cape Town South Africa
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Scherf-Clavel M, Weber H, Deckert J, Erhardt-Lehmann A. The role of pharmacogenetics in the treatment of anxiety disorders and the future potential for targeted therapeutics. Expert Opin Drug Metab Toxicol 2021; 17:1249-1260. [PMID: 34643143 DOI: 10.1080/17425255.2021.1991912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Anxiety disorders (AD) are among the most common mental disorders worldwide. Pharmacotherapy, including benzodiazepines, selective serotonin reuptake inhibitors, serotonin-norepinephrine reuptake inhibitors, and tricyclic antidepressants is currently based on 'trial-and-error,' and is effective in a subset of patients or produces partial response only. Recent research proposes that treatment response and tolerability of the drugs are associated with genetic factors. AREAS COVERED In the present review, we provide information on pharmacogenetics (PGx) in AD, including pharmacokinetic and pharmacodynamic genes. Moreover, we discuss the future potential of PGx for personalized treatment. EXPERT OPINION In psychiatry, PGx testing is still in its infancy, especially in the treatment of AD. As of today, implementation in clinical routine is recommended only for CYP2D6 and CYP2C19, mainly in terms of safety of treatment and potentially of treatment outcome in general. However, the evidence for PGx testing addressing pharmacodynamics for specific AD is limited to date. Nevertheless, PGx may develop into a valuable and promising tool to improve therapy in AD, but there is a need for more research to fully exploit its possibilities. Future perspectives include research into single genes, polygenic risk scores, and pharmacoepigenetics to provide targeted therapy.
Collapse
Affiliation(s)
- Maike Scherf-Clavel
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Würzburg, Germany
| | - Heike Weber
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Würzburg, Germany
| | - Jürgen Deckert
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Würzburg, Germany
| | - Angelika Erhardt-Lehmann
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Würzburg, Germany.,Translational Department, Max Planck Institute for Psychiatry, München, Germany
| |
Collapse
|
56
|
Ask H, Cheesman R, Jami ES, Levey DF, Purves KL, Weber H. Genetic contributions to anxiety disorders: where we are and where we are heading. Psychol Med 2021; 51:2231-2246. [PMID: 33557968 DOI: 10.1017/s0033291720005486] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Anxiety disorders are among the most common psychiatric disorders worldwide. They often onset early in life, with symptoms and consequences that can persist for decades. This makes anxiety disorders some of the most debilitating and costly disorders of our time. Although much is known about the synaptic and circuit mechanisms of fear and anxiety, research on the underlying genetics has lagged behind that of other psychiatric disorders. However, alongside the formation of the Psychiatric Genomic Consortium Anxiety workgroup, progress is rapidly advancing, offering opportunities for future research.Here we review current knowledge about the genetics of anxiety across the lifespan from genetically informative designs (i.e. twin studies and molecular genetics). We include studies of specific anxiety disorders (e.g. panic disorder, generalised anxiety disorder) as well as those using dimensional measures of trait anxiety. We particularly address findings from large-scale genome-wide association studies and show how such discoveries may provide opportunities for translation into improved or new therapeutics for affected individuals. Finally, we describe how discoveries in anxiety genetics open the door to numerous new research possibilities, such as the investigation of specific gene-environment interactions and the disentangling of causal associations with related traits and disorders.We discuss how the field of anxiety genetics is expected to move forward. In addition to the obvious need for larger sample sizes in genome-wide studies, we highlight the need for studies among young people, focusing on specific underlying dimensional traits or components of anxiety.
Collapse
Affiliation(s)
- Helga Ask
- Department of Mental Disorders, Norwegian Institute of Public Health, Oslo, Norway
| | - Rosa Cheesman
- PROMENTA Research Center, Department of Psychology, University of Oslo, Oslo, Norway
- Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Eshim S Jami
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Department of Clinical, Educational and Health Psychology, Division of Psychology and Language Sciences, University College London, London, UK
| | - Daniel F Levey
- Division of Human Genetics, Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
- Department of Psychiatry, Veterans Affairs Connecticut Healthcare Center, West Haven, Connecticut
| | - Kirstin L Purves
- Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Heike Weber
- Department of Psychology, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany
| |
Collapse
|
57
|
Mufford MS, van der Meer D, Andreassen OA, Ramesar R, Stein DJ, Dalvie S. A review of systems biology research of anxiety disorders. ACTA ACUST UNITED AC 2021; 43:414-423. [PMID: 33053074 PMCID: PMC8352731 DOI: 10.1590/1516-4446-2020-1090] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/24/2020] [Indexed: 01/04/2023]
Abstract
The development of "omic" technologies and deep phenotyping may facilitate a systems biology approach to understanding anxiety disorders. Systems biology approaches incorporate data from multiple modalities (e.g., genomic, neuroimaging) with functional analyses (e.g., animal and tissue culture models) and mathematical modeling (e.g., machine learning) to investigate pathological biophysical networks at various scales. Here we review: i) the neurobiology of anxiety disorders; ii) how systems biology approaches have advanced this work; and iii) the clinical implications and future directions of this research. Systems biology approaches have provided an improved functional understanding of candidate biomarkers and have suggested future potential for refining the diagnosis, prognosis, and treatment of anxiety disorders. The systems biology approach for anxiety disorders is, however, in its infancy and in some instances is characterized by insufficient power and replication. The studies reviewed here represent important steps to further untangling the pathophysiology of anxiety disorders.
Collapse
Affiliation(s)
- Mary S Mufford
- South African Medical Research Council Genomic and Precision Medicine Research Unit, Division of Human Genetics, Institute of Infectious Disease and Molecular Medicine, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Dennis van der Meer
- Division of Mental Health and Addiction, Norwegian Centre for Mental Disorders Research (NORMENT), Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands
| | - Ole A Andreassen
- Division of Mental Health and Addiction, Norwegian Centre for Mental Disorders Research (NORMENT), Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Raj Ramesar
- South African Medical Research Council Genomic and Precision Medicine Research Unit, Division of Human Genetics, Institute of Infectious Disease and Molecular Medicine, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Dan J Stein
- South African Medical Research Council (SAMRC), Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Shareefa Dalvie
- South African Medical Research Council (SAMRC), Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
58
|
Booher WC, Hall LA, Thomas AL, Merhroff EA, Reyes Martínez GJ, Scanlon KE, Lowry CA, Ehringer MA. Anxiety-related defensive behavioral responses in mice selectively bred for High and Low Activity. GENES, BRAIN, AND BEHAVIOR 2021; 20:e12730. [PMID: 33786989 PMCID: PMC10846611 DOI: 10.1111/gbb.12730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 12/15/2022]
Abstract
High and Low Activity strains of mice (displaying low and high anxiety-like behavior, respectively) with 7.8-20 fold differences in open-field activity were selected and subsequently inbred to use as a genetic model for studying anxiety-like behavior in mice (DeFries et al., 1978, Behavior Genetics, 8:3-13). These strains exhibited differences in other anxiety-related behaviors as assessed using the light-dark box, elevated plus-maze, mirror chamber, and elevated square-maze tests (Henderson et al., 2004, Behavior Genetics, 34: 267-293). The purpose of these experiments was three-fold. First, we repeated a 6-day behavioral battery using updated equipment and software to confirm the extreme differences in anxiety-like behaviors. Second, we tested novel object exploration, a measure of anxiety-like behavior that does not rely heavily on locomotion. Third, we conducted a home cage wheel running experiment to determine whether these strains differ in locomotor activity in a familiar, home cage environment. Our behavioral test battery confirmed extreme differences in multiple measures of anxiety-like behaviors. Furthermore, the novel object test demonstrated that the High Activity mice exhibited decreased anxiety-like behaviors (increased nose pokes) compared to Low Activity mice. Finally, male Low Activity mice ran nearly twice as far each day on running wheels compared to High Activity mice, while female High and Low Activity mice did not differ in wheel running. These results support the idea that the behavioral differences between High and Low Activity mice are likely to be due to anxiety-related factors and not simply generalized differences in locomotor activity.
Collapse
Affiliation(s)
- Winona C. Booher
- Department of Integrative Physiology, University of
Colorado, Boulder, CO, USA
- Institute for Behavioral Genetics, University of Colorado,
Boulder, CO, USA
| | - Lucy A. Hall
- Department of Integrative Physiology, University of
Colorado, Boulder, CO, USA
| | - Aimee L. Thomas
- Department of Integrative Physiology, University of
Colorado, Boulder, CO, USA
| | - Erika A. Merhroff
- Department of Integrative Physiology, University of
Colorado, Boulder, CO, USA
| | | | | | - Christopher A. Lowry
- Department of Integrative Physiology, Center for
Neuroscience, and Center for Microbial Exploration, University of Colorado Boulder,
Boulder, CO 80309, USA
- Departments of Psychiatry, Neurology, and Physical
Medicine & Rehabilitation, University of Colorado Anschutz Medical Campus,
Aurora, CO 80045, USA
- Rocky Mountain Mental Illness Research Education and
Clinical Center (MIRECC), Rocky Mountain Regional Veterans Affairs Medical Center
(RMRVAMC), Aurora, Colorado, 80045, USA
- Military and Veteran Microbiome: Consortium for Research
and Education (MVM-CoRE), Denver, CO 80220, USA
- Senior Fellow, inVIVO Planetary Health, of the Worldwide
Universities Network (WUN), West New York, NJ 07093, USA
| | - Marissa A. Ehringer
- Department of Integrative Physiology, University of
Colorado, Boulder, CO, USA
- Institute for Behavioral Genetics, University of Colorado,
Boulder, CO, USA
| |
Collapse
|
59
|
Skelton M, Rayner C, Purves KL, Coleman JRI, Gaspar HA, Glanville KP, Hunjan AK, Hübel C, Breen G, Eley TC. Self-reported medication use as an alternate phenotyping method for anxiety and depression in the UK Biobank. Am J Med Genet B Neuropsychiatr Genet 2021; 186:389-398. [PMID: 34658127 DOI: 10.1002/ajmg.b.32878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 06/03/2021] [Accepted: 09/21/2021] [Indexed: 01/22/2023]
Abstract
The requirement for large sample sizes for psychiatric genetic analyses necessitates novel approaches to derive cases. Anxiety and depression show substantial genetic overlap and share pharmacological treatments. Data on prescribed medication could be effective for inferring case status when other indicators of mental health are unavailable. We investigated self-reported current medication use in UK Biobank participants of European ancestry. Medication Status cases reported using antidepressant or anxiolytic medication (n = 22,218), controls did not report psychotropic medication use (n = 168,959). A subset, "Medication Only," additionally did not meet criteria for any other mental health indicator (case n = 2,643, control n = 107,029). We assessed genetic overlap between these phenotypes and two published genetic association studies of anxiety and depression, and an internalizing disorder trait derived from symptom-based questionnaires in UK Biobank. Genetic correlations between Medication Status and the three anxiety and depression phenotypes were significant (rg = 0.60-0.73). In the Medication Only subset, the genetic correlation with depression was significant (rg = 0.51). The three polygenic scores explained 0.33% - 0.80% of the variance in Medication Status and 0.07% - 0.19% of the variance in Medication Only. This study provides evidence that self-reported current medication use offers an alternate or supplementary anxiety or depression phenotype in genetic studies where diagnostic information is sparse or unavailable.
Collapse
Affiliation(s)
- Megan Skelton
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, University of London, London, UK.,National Institute for Health Research (NIHR) Biomedical Research Centre, South London and Maudsley NHS Foundation Trust, London, UK
| | - Christopher Rayner
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, University of London, London, UK
| | - Kirstin L Purves
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, University of London, London, UK
| | - Jonathan R I Coleman
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, University of London, London, UK.,National Institute for Health Research (NIHR) Biomedical Research Centre, South London and Maudsley NHS Foundation Trust, London, UK
| | - Héléna A Gaspar
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, University of London, London, UK
| | - Kylie P Glanville
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, University of London, London, UK
| | - Avina K Hunjan
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, University of London, London, UK.,National Institute for Health Research (NIHR) Biomedical Research Centre, South London and Maudsley NHS Foundation Trust, London, UK
| | - Christopher Hübel
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, University of London, London, UK.,National Centre for Register-based Research, Department of Economics and Business Economics, Aarhus University, Aarhus, Denmark.,Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Gerome Breen
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, University of London, London, UK.,National Institute for Health Research (NIHR) Biomedical Research Centre, South London and Maudsley NHS Foundation Trust, London, UK
| | - Thalia C Eley
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, University of London, London, UK.,National Institute for Health Research (NIHR) Biomedical Research Centre, South London and Maudsley NHS Foundation Trust, London, UK
| |
Collapse
|
60
|
Abstract
Island populations are hallmarks of extreme phenotypic evolution. Radical changes in resource availability and predation risk accompanying island colonization drive changes in behavior, which Darwin likened to tameness in domesticated animals. Although many examples of animal boldness are found on islands, the heritability of observed behaviors, a requirement for evolution, remains largely unknown. To fill this gap, we profiled anxiety and exploration in island and mainland inbred strains of house mice raised in a common laboratory environment. The island strain was descended from mice on Gough Island, the largest wild house mice on record. Experiments utilizing open environments across two ages showed that Gough Island mice are bolder and more exploratory, even when a shelter is provided. Concurrently, Gough Island mice retain an avoidance response to predator urine. F1 offspring from crosses between these two strains behave more similarly to the mainland strain for most traits, suggesting recessive mutations contributed to behavioral evolution on the island. Our results provide a rare example of novel, inherited behaviors in an island population and demonstrate that behavioral evolution can be specific to different forms of perceived danger. Our discoveries pave the way for a genetic understanding of how island populations evolve unusual behaviors.
Collapse
|
61
|
Chen C, Wang Z, Chen C, Xue G, Lu S, Liu H, Dong Q, Zhang M. CPNE3 moderates the association between anxiety and working memory. Sci Rep 2021; 11:6891. [PMID: 33767297 PMCID: PMC7994849 DOI: 10.1038/s41598-021-86263-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 03/08/2021] [Indexed: 11/09/2022] Open
Abstract
Mutual influences between anxiety and working memory (WM) have been extensively studied, and their curvilinear relationship resembles the classic Yerkes-Dodson law of arousal and performance. Given the genetic bases of both anxiety and WM, it is likely that the individual differences in the Yerkes-Dodson law of anxiety and WM may have genetic correlates. The current genome wide association study (GWAS) enrolled 1115 healthy subjects to search for genes that are potential moderators of the association between anxiety and WM. Results showed that CPNE3 rs10102229 had the strongest effect, p = 3.38E−6 at SNP level and p = 2.68E−06 at gene level. Anxiety and WM had a significant negative correlation (i.e., more anxious individuals performed worse on the WM tasks) for the TT genotype of rs10102229 (resulting in lower expression of CPNE3), whereas the correlation was positive (i.e., more anxious individuals performed better on the WM tasks) for the CC carriers. The same pattern of results was found at the gene level using gene score analysis. These effects were replicated in an independent sample (N = 330). The current study is the first to report a gene that moderates the relation between anxiety and WM and potentially provides a genetic explanation for the classic Yerkes-Dodson law.
Collapse
Affiliation(s)
- Chunhui Chen
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China. .,Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China.
| | - Ziyi Wang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.,Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou, China
| | - Chuansheng Chen
- Department of Psychological Science, University of California, Irvine, CA, USA
| | - Gui Xue
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Shuzhen Lu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Hejun Liu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Qi Dong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Mingxia Zhang
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China.
| |
Collapse
|
62
|
Abstract
Anxiety disorders form the most common group of mental disorders and generally start before or in early adulthood. Core features include excessive fear and anxiety or avoidance of perceived threats that are persistent and impairing. Anxiety disorders involve dysfunction in brain circuits that respond to danger. Risk for anxiety disorders is influenced by genetic factors, environmental factors, and their epigenetic relations. Anxiety disorders are often comorbid with one another and with other mental disorders, especially depression, as well as with somatic disorders. Such comorbidity generally signifies more severe symptoms, greater clinical burden, and greater treatment difficulty. Reducing the large burden of disease from anxiety disorders in individuals and worldwide can be best achieved by timely, accurate disease detection and adequate treatment administration, scaling up of treatments when needed. Evidence-based psychotherapy (particularly cognitive behavioural therapy) and psychoactive medications (particularly serotonergic compounds) are both effective, facilitating patients' choices in therapeutic decisions. Although promising, no enduring preventive measures are available, and, along with frequent therapy resistance, clinical needs remain unaddressed. Ongoing research efforts tackle these problems, and future efforts should seek individualised, more effective approaches for treatment with precision medicine.
Collapse
Affiliation(s)
- Brenda Wjh Penninx
- Department of Psychiatry, Amsterdam University Medical Center, Vrije Universiteit, Amsterdam, Netherlands; GGZ inGeest, Amsterdam, Netherlands.
| | - Daniel S Pine
- Emotion and Development Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Emily A Holmes
- Department of Psychology, Uppsala University, Uppsala, Sweden
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt-Goethe University, Frankfurt, Germany
| |
Collapse
|
63
|
Ding X, Wang J, Li N, Su W, Wang H, Song Q, Guo X, Liang M, Qin Q, Sun L, Chen M, Sun Y. Individual, Prenatal, Perinatal, and Family Factors for Anxiety Symptoms Among Preschool Children. Front Psychiatry 2021; 12:778291. [PMID: 34987428 PMCID: PMC8721098 DOI: 10.3389/fpsyt.2021.778291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/19/2021] [Indexed: 01/21/2023] Open
Abstract
Anxiety is one of the most common psychological disorders among children. Few studies have investigated the prevalence and comprehensive factors for anxiety among preschool children in China. This study aimed to assess the prevalence of anxiety and explore influential factors at multiple levels including individual, prenatal and perinatal, and family factors, associated with anxiety symptoms among preschool children. The multisite cross-sectional study was conducted in Anhui Province and included 3,636 preschool children aged 3-6 years. Anxiety symptoms of children were assessed using the Chinese version of the Spence Preschool Anxiety Scale. Logistic regression analyses were performed to explore associations between factors at multiple levels and significant anxiety symptoms, and the model was validated internally using 10-fold cross-validation. Among the participants, 9.1% of children had significant anxiety symptoms. Girls reported more significant anxiety symptoms. Children's poor dietary habits, sleep disturbances, autistic tendencies, and left-behind experience; maternal poor prenatal emotional symptoms; and more caregivers' anxiety symptoms were significantly associated with anxiety symptoms among children. The result of 10-fold cross-validation indicated that the mean area under the curve, sensitivity, specificity, and accuracy were 0.78, 70.45%, 78.18%, and 71.15%, respectively. These factors were slightly different among different subtypes of anxiety symptoms. The results of this study suggested that anxiety symptoms in preschool children were prevalent, particularly in girls. Understanding early-life risk factors for anxiety is crucial, and efficient prevention and intervention strategies should be implemented in early childhood even pregnancy.
Collapse
Affiliation(s)
- Xiuxiu Ding
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Jun Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, China.,Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China
| | - Ning Li
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Wanying Su
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Hao Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Qiuxia Song
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Xianwei Guo
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Mingming Liang
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Qirong Qin
- Ma'anshan Center for Disease Control and Prevention, Ma'anshan, China
| | - Liang Sun
- Fuyang Center for Disease Control and Prevention, Fuyang, China
| | - Mingchun Chen
- Changfeng Center for Disease Control and Prevention, Changfeng, China
| | - Yehuan Sun
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, China
| |
Collapse
|
64
|
Xu JL, Guo Y. Identification of Gene Loci That Overlap Between Mental Disorders and Poor Prognosis of Cancers. Front Psychiatry 2021; 12:678943. [PMID: 34262492 PMCID: PMC8273260 DOI: 10.3389/fpsyt.2021.678943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/31/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Co-morbid psychiatric disorders are common in patients with cancers, which make the treatment more difficult. Studying the connection between mental disease-related genes and the prognosis of cancers may potentially lead to novel therapeutic methods. Method: All mental disorders genes were selected from published articles. The correlations between the expression of these genes and the prognosis of different cancers were analyzed by starBase v2.0 and TIMER. The molecular functions, reactome pathways, and interactions among diverse genes were explored via the STRING tool. Results: 239 genes were identified for further survival analysis, 5 of which were overlapping genes across at least five cancer types, including RHEBL1, PDE4B, ANKRD55, EPHB2, and GIMAP7. 146 high-expression and 157 low-expression genes were found to be correlated with the unfavorable prognosis of diverse cancer types. Tight links existed among various mental disease genes. Besides, risk genes were mostly related to the dismal outcome of low-grade glioma (LGG) and kidney renal clear cell carcinoma (KIRC) patients. Gene Ontology (GO) and reactome pathway analysis revealed that most genes involved in various critical molecular functions and primarily related to metabolism, signal transduction, and hemostasis. Conclusions: To explore co-expression genes between mental illnesses and cancers may aid in finding preventive strategies and therapeutic methods for high-risk populations and patients with one or more diseases.
Collapse
Affiliation(s)
- Ji-Li Xu
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yong Guo
- Department of Medical Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
65
|
Corticotropin-releasing factor infusion in the bed nucleus of the stria terminalis of lactating mice alters maternal care and induces behavioural phenotypes in offspring. Sci Rep 2020; 10:19985. [PMID: 33204022 PMCID: PMC7672063 DOI: 10.1038/s41598-020-77118-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 11/06/2020] [Indexed: 12/25/2022] Open
Abstract
The peripartum period is accompanied by numerous physiological and behavioural adaptations organised by the maternal brain. These changes are essential for adequate expression of maternal behaviour, thereby ensuring proper development of the offspring. The corticotropin-releasing factor (CRF) plays a key role in a variety of behaviours accompanying stress, anxiety, and depression. There is also evidence that CRF contributes to maladaptations during the peripartum period. We investigated the effects of CRF in the bed nucleus of the stria terminalis (BNST) of lactating mice during maternal care and analysed locomotor activity and anxiety-like behaviour in the offspring. The BNST has been implicated in anxiety behaviour and regulation of the stress response. The effects of intra-BNST CRF administration were compared with those induced by the limited bedding (LB) procedure, a model that produces altered maternal behaviour. BALB/cJ dams were exposed to five infusions of CRF or saline into the BNST in the first weeks after birth while the LB dams were exposed to limited nesting material from postnatal days (P) 2–9. Maternal behaviour was recorded in intercalated days, from P1-9. Offspring anxiety-like behaviour was assessed during adulthood using the open-field, elevated plus-maze, and light/dark tests. Both intra-BNST CRF and LB exposure produced altered maternal care, represented by decreased arched-back nursing and increased frequency of exits from the nest. These changes in maternal care resulted in robust sex-based differences in the offspring’s behavioural responses during adulthood. Females raised by CRF-infused dams exhibited increased anxiety-like behaviour, whereas males presented a significant decrease in anxiety. On the other hand, both males and females raised by dams exposed to LB showed higher locomotor activity. Our study demonstrates that maternal care is impaired by intra-BNST CRF administrations, and these maladaptations are similar to exposure to adverse early environments. These procedures, however, produce distinct phenotypes in mice during young adulthood and suggest sex-based differences in the susceptibility to poor maternal care.
Collapse
|
66
|
Thomas AL, Evans LM, Nelsen MD, Chesler EJ, Powers MS, Booher WC, Lowry CA, DeFries JC, Ehringer MA. Whole-Genome Sequencing of Inbred Mouse Strains Selected for High and Low Open-Field Activity. Behav Genet 2020; 51:68-81. [PMID: 32939625 DOI: 10.1007/s10519-020-10014-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 08/21/2020] [Indexed: 02/09/2023]
Abstract
We conducted whole-genome sequencing of four inbred mouse strains initially selected for high (H1, H2) or low (L1, L2) open-field activity (OFA), and then examined strain distribution patterns for all DNA variants that differed between their BALB/cJ and C57BL/6J parental strains. Next, we assessed genome-wide sharing (3,678,826 variants) both between and within the High and Low Activity strains. Results suggested that about 10% of these DNA variants may be associated with OFA, and clearly demonstrated its polygenic nature. Finally, we conducted bioinformatic analyses of functional genomics data from mouse, rat, and human to refine previously identified quantitative trait loci (QTL) for anxiety-related measures. This combination of sequence analysis and genomic-data integration facilitated refinement of previously intractable QTL findings, and identified possible genes for functional follow-up studies.
Collapse
Affiliation(s)
- Aimee L Thomas
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA.,Institute for Behavioral Genetics, University of Colorado Boulder, 447 UCB, Boulder, CO, USA
| | - Luke M Evans
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, USA.,Institute for Behavioral Genetics, University of Colorado Boulder, 447 UCB, Boulder, CO, USA
| | - Michaela D Nelsen
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | | | - Matthew S Powers
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA.,Institute for Behavioral Genetics, University of Colorado Boulder, 447 UCB, Boulder, CO, USA
| | - Winona C Booher
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA.,Institute for Behavioral Genetics, University of Colorado Boulder, 447 UCB, Boulder, CO, USA
| | - Christopher A Lowry
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA.,Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO, USA.,Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA.,Department of Physical Medicine and Rehabilitation and Center for Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - John C DeFries
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA.,Institute for Behavioral Genetics, University of Colorado Boulder, 447 UCB, Boulder, CO, USA
| | - Marissa A Ehringer
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA. .,Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA. .,Institute for Behavioral Genetics, University of Colorado Boulder, 447 UCB, Boulder, CO, USA.
| |
Collapse
|
67
|
Hettema JM, Verhulst B, Chatzinakos C, Bacanu SA, Chen CY, Ursano RJ, Kessler RC, Gelernter J, Smoller JW, He F, Jain S, Stein MB. Genome-wide association study of shared liability to anxiety disorders in Army STARRS. Am J Med Genet B Neuropsychiatr Genet 2020; 183:197-207. [PMID: 31886626 PMCID: PMC7210051 DOI: 10.1002/ajmg.b.32776] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 11/11/2019] [Accepted: 12/09/2019] [Indexed: 01/04/2023]
Abstract
Anxiety disorders (ANX), namely generalized anxiety, panic disorder, and phobias, are common, etiologically complex syndromes that show increasing prevalence and comorbidity throughout adolescence and beyond. Few genome-wide association studies (GWAS) examining ANX risk have been published and almost exclusively in individuals of European ancestry. In this study, we phenotyped participants from the Army Study To Assess Risk and Resilience in Servicemembers (STARRS) to approximate DSM-based ANX diagnoses. We factor-analyzed those to create a single dimensional anxiety score for each subject. GWAS were conducted using that score within each of three ancestral groups (EUR, AFR, LAT) and then meta-analyzed across ancestries (NTotal = 16,510). We sought to (a) replicate prior ANX GWAS findings in ANGST; (b) determine whether results extended to other ancestry groups; and (c) meta-analyze with ANGST for increased power to identify novel susceptibility loci. No reliable genome-wide significant SNP associations were detected in STARRS. However, SNPs within the CAMKMT gene located in region 2p21 associated with shared ANX risk in ANGST were replicated in EUR soldiers but not other ancestry groups. Combining EUR STARRS and ANGST (N = 28,950) yielded a more robust 2p21 association signal (p = 9.08x10-11 ). Gene-based analyses supported three genes within 2p21 and LBX1 on chromosome 10. More powerful ANX genetic studies will be required to identify further loci.
Collapse
Affiliation(s)
- John M. Hettema
- Department of Psychiatry, Texas A&M Health Sciences Center, Bryan, TX
- Virginia Institute for Psychiatric and Behavioral Genetics, Department of Psychiatry, Virginia Commonwealth University, Richmond, VA
| | - Brad Verhulst
- Department of Psychology, Michigan State University, East Lansing, MI
| | - Chris Chatzinakos
- Virginia Institute for Psychiatric and Behavioral Genetics, Department of Psychiatry, Virginia Commonwealth University, Richmond, VA
| | - Silviu-Alin Bacanu
- Virginia Institute for Psychiatric and Behavioral Genetics, Department of Psychiatry, Virginia Commonwealth University, Richmond, VA
| | - Chia-Yen Chen
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
| | - Robert J. Ursano
- Department of Psychiatry, Uniformed Services University, Bethesda, MD
| | | | - Joel Gelernter
- Departments of Psychiatry, Genetics, & Neurobiology, Yale University School of Medicine, New Haven, CT
| | - Jordan W. Smoller
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
| | - Feng He
- Department of Family Medicine & Public Health, University of California San Diego, La Jolla, CA
| | - Sonia Jain
- Department of Family Medicine & Public Health, University of California San Diego, La Jolla, CA
| | - Murray B. Stein
- Department of Family Medicine & Public Health, University of California San Diego, La Jolla, CA
- Department of Psychiatry, University of California San Diego, La Jolla, CA
| |
Collapse
|
68
|
Genetic and epigenetic analyses of panic disorder in the post-GWAS era. J Neural Transm (Vienna) 2020; 127:1517-1526. [PMID: 32388794 PMCID: PMC7578165 DOI: 10.1007/s00702-020-02205-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 05/03/2020] [Indexed: 02/07/2023]
Abstract
Panic disorder (PD) is a common and debilitating neuropsychiatric disorder characterized by panic attacks coupled with excessive anxiety. Both genetic factors and environmental factors play an important role in PD pathogenesis and response to treatment. However, PD is clinically heterogeneous and genetically complex, and the exact genetic or environmental causes of this disorder remain unclear. Various approaches for detecting disease-causing genes have recently been made available. In particular, genome-wide association studies (GWAS) have attracted attention for the identification of disease-associated loci of multifactorial disorders. This review introduces GWAS of PD, followed by a discussion about the limitations of GWAS and the major challenges facing geneticists in the post-GWAS era. Alternative strategies to address these challenges are then proposed, such as epigenome-wide association studies (EWAS) and rare variant association studies (RVAS) using next-generation sequencing. To date, however, few reports have described these analyses, and the evidence remains insufficient to confidently identify or exclude rare variants or epigenetic changes in PD. Further analyses are therefore required, using sample sizes in the tens of thousands, extensive functional annotations, and highly targeted hypothesis testing.
Collapse
|
69
|
McGowan OO. Pharmacogenetics of anxiety disorders. Neurosci Lett 2020; 726:134443. [PMID: 31442515 DOI: 10.1016/j.neulet.2019.134443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 07/25/2019] [Accepted: 08/19/2019] [Indexed: 01/04/2023]
Abstract
Anxiety disorders are common and disabling conditions the treatment of which remains a challenge. While different groups of medication are available for their treatment, a substantial proportion of patients remain refractory to pharmacotherapy. The reason for this variation in the individual response to treatment has yet to be understood; however genetic factors have been shown to play an important role. Up to now there have been limited publications about pharmacogenetics of anxiety disorders, compared to studies in depression. Published studies are focused on pharmacogenetics of antidepressants rather than being disease specific. This review summarizes pharmacogenetic findings related to the anxiolytic treatment response and their possible functional mechanisms. This inevitably focuses on genes involved in the pharmacodynamics of the medications used, along with some genes implicated in the disease process, as well as briefly mentioning genetic factors associated with psychotherapeutic response.
Collapse
Affiliation(s)
- O O McGowan
- Leverndale Hospital, 510 Crookston Road, Glasgow G53 7TU, UK.
| |
Collapse
|
70
|
Singh R, Singh B, Mahato S, Hambour VK. Social support, emotion regulation and mindfulness: A linkage towards social anxiety among adolescents attending secondary schools in Birgunj, Nepal. PLoS One 2020; 15:e0230991. [PMID: 32240242 PMCID: PMC7117668 DOI: 10.1371/journal.pone.0230991] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 03/13/2020] [Indexed: 01/21/2023] Open
Abstract
There has been a growing burden of anxiety among Nepalese adolescents. Social anxiety in particular is one of the commonly reported symptoms indicating mental health problem among adolescents. The purpose of this study was to assess social anxiety, and identify how social support, emotion regulation and mindfulness uniquely contribute to social anxiety among adolescents in Birgunj, Nepal. The study was conducted by using a self-administered questionnaire among 384 adolescents (65.4% boys; M = 16.05 years, SD = 1.39) studying at secondary schools of Birgunj. Results show that there was a positive correlation between social anxiety symptoms and age, and girls reported more symptoms. Traits such as non-acceptance of emotions, lack of clarity and lack of awareness of emotions were related to increased social anxiety; while acting with awareness, non-reactivity, and better ability to describe emotions was related to decreased social anxiety. Finally, more social support from close friends was related to lower social anxiety. These results suggest that improving emotion regulation, dispositional mindfulness, and social support may be helpful for adolescents who are at risk of, or are suffering from, social anxiety.
Collapse
Affiliation(s)
- Rakesh Singh
- School of Public Health, Patan Academy of Health Sciences, Lalitpur, Nepal
| | - Babita Singh
- National Medical College and Teaching Hospital, Tribhuvan University, Birgunj, Nepal
| | - Sharika Mahato
- The Hebrew University-Hadassah Braun School of Public Health and Community Medicine, Jerusalem, Israel
| | | |
Collapse
|
71
|
Anxiety and Stress in Young Adults. Fam Med 2020. [DOI: 10.1007/978-1-4939-0779-3_136-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
72
|
He X, Jin C, Ma M, Zhou R, Wu S, Huang H, Li Y, Chen Q, Zhang M, Zhang H, Tian M. PET imaging on neurofunctional changes after optogenetic stimulation in a rat model of panic disorder. Front Med 2019; 13:602-609. [PMID: 31321611 DOI: 10.1007/s11684-019-0704-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 06/12/2019] [Indexed: 12/24/2022]
Abstract
Panic disorder (PD) is an acute paroxysmal anxiety disorder with poorly understood pathophysiology. The dorsal periaqueductal gray (dPAG) is involved in the genesis of PD. However, the downstream neurofunctional changes of the dPAG during panic attacks have yet to be evaluated in vivo. In this study, optogenetic stimulation to the dPAG was performed to induce panic-like behaviors, and in vivo positron emission tomography (PET) imaging with 18F-flurodeoxyglucose (18F-FDG) was conducted to evaluate neurofunctional changes before and after the optogenetic stimulation. Compared with the baseline, post-optogenetic stimulation PET imaging demonstrated that the glucose metabolism significantly increased (P < 0.001) in dPAG, the cuneiform nucleus, the cerebellar lobule, the cingulate cortex, the alveus of the hippocampus, the primary visual cortex, the septohypothalamic nucleus, and the retrosplenial granular cortex but significantly decreased (P < 0.001) in the basal ganglia, the frontal cortex, the forceps minor corpus callosum, the primary somatosensory cortex, the primary motor cortex, the secondary visual cortex, and the dorsal lateral geniculate nucleus. Taken together, these data indicated that in vivo PET imaging can successfully detect downstream neurofunctional changes involved in the panic attacks after optogenetic stimulation to the dPAG.
Collapse
Affiliation(s)
- Xiao He
- Department of Nuclear Medicine and Medical PET Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China.,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China.,Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, 310009, China
| | - Chentao Jin
- Department of Nuclear Medicine and Medical PET Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China.,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China.,Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, 310009, China
| | - Mindi Ma
- Department of Nuclear Medicine and Medical PET Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China.,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China.,Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, 310009, China
| | - Rui Zhou
- Department of Nuclear Medicine and Medical PET Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China.,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China.,Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, 310009, China
| | - Shuang Wu
- Department of Nuclear Medicine and Medical PET Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China.,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China.,Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, 310009, China
| | - Haoying Huang
- Department of Nuclear Medicine and Medical PET Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China.,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China.,Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, 310009, China
| | - Yuting Li
- Department of Nuclear Medicine and Medical PET Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China.,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China.,Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, 310009, China
| | - Qiaozhen Chen
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China.,Department of Psychiatry, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Mingrong Zhang
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Anagawa 4-9-1, Inage-ku, Chiba, 263-8555, Japan.
| | - Hong Zhang
- Department of Nuclear Medicine and Medical PET Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China. .,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China. .,Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, 310009, China.
| | - Mei Tian
- Department of Nuclear Medicine and Medical PET Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China. .,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China. .,Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, 310009, China.
| |
Collapse
|
73
|
Ferrari L, Pavanello S, Bollati V. Molecular and epigenetic markers as promising tools to quantify the effect of occupational exposures and the risk of developing non-communicable diseases. LA MEDICINA DEL LAVORO 2019; 110:168-190. [PMID: 31268425 PMCID: PMC7812541 DOI: 10.23749/mdl.v110i3.8538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 06/06/2019] [Indexed: 12/18/2022]
Abstract
Non-communicable diseases (NCDs) are chronic diseases that are by far the leading cause of death in the world. Many occupational hazards, together with social, economic and demographic factors, have been associated to NCDs development. Genetic susceptibility or environmental exposures alone are not usually sufficient to explain the pathogenesis of NCDs, but can be integrated in a more complex scenario that can result in pathological phenotypes. Epigenetics is a crucial component of this scenario, as its changes are related to specific exposures, therefore potentially able to display the effects of environment on the genome, filling the gap between genetic asset and environment in explaining disease development. To date, the most promising biomarkers have been assessed in occupational cohorts as well as in case/control studies and include DNA methylation, histone modifications, microRNA expression, extracellular vesicles, telomere length, and mitochondrial alterations.
Collapse
Affiliation(s)
- Luca Ferrari
- EPIGET - Epidemiology, Epigenetics and Toxicology Lab, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, via San Barnaba 8, 20122 Milan, Italy..
| | | | | |
Collapse
|