51
|
Smale ST. Dimer-specific regulatory mechanisms within the NF-κB family of transcription factors. Immunol Rev 2012; 246:193-204. [PMID: 22435556 DOI: 10.1111/j.1600-065x.2011.01091.x] [Citation(s) in RCA: 147] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A fundamental feature of the transcriptional response to an nuclear factor-κB (NF-κB)-inducing stimulus is that the response is highly selective and limited to the activation of only a subset of potential NF-κB target genes. One major contributor to selectivity of the response is likely to be the capacity of different NF-κB dimers to regulate different sets of target genes. The NF-κB family of transcription factors consists of five proteins, RelA, c-Rel, RelB, p50, and p52, which assemble into several homodimeric and heterodimeric species. Studies of mutant mouse strains have revealed that each family member, and perhaps each dimer, carries out unique functions in regulating transcription in cells of the immune system and in many other cell types. Dimer-specific functions can be conferred by selective protein-protein interactions with other transcription factors, coregulatory proteins, and chromatin proteins. Unique DNA-binding specificities and affinities make additional contributions to selectivity of the response, with growing evidence that some NF-κB dimers can adopt different conformations and thereby function differently when bound to different DNA sequences. Despite significant advances, our knowledge remains limited and many years of additional work will be needed to fully understand how the dimer-specific functions of NF-κB contribute to transcriptional selectivity.
Collapse
Affiliation(s)
- Stephen T Smale
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
52
|
Liszewski W, Ritner C, Aurigui J, Wong SSY, Hussain N, Krueger W, Oncken C, Bernstein HS. Developmental effects of tobacco smoke exposure during human embryonic stem cell differentiation are mediated through the transforming growth factor-β superfamily member, Nodal. Differentiation 2012; 83:169-78. [PMID: 22381624 PMCID: PMC3314096 DOI: 10.1016/j.diff.2011.12.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 12/01/2011] [Accepted: 12/23/2011] [Indexed: 01/19/2023]
Abstract
While the pathologies associated with in utero smoke exposure are well established, their underlying molecular mechanisms are incompletely understood. We differentiated human embryonic stem cells in the presence of physiological concentrations of tobacco smoke and nicotine. Using post hoc microarray analysis, quantitative PCR, and immunoblot analysis, we demonstrated that tobacco smoke has lineage- and stage-specific effects on human embryonic stem cell differentiation, through both nicotine-dependent and -independent pathways. We show that three major stem cell pluripotency/differentiation pathways, Notch, canonical Wnt, and transforming growth factor-β, are affected by smoke exposure, and that Nodal signaling through SMAD2 is specifically impacted by effects on Lefty1, Nodal, and FoxH1. These events are associated with upregulation of microRNA-302a, a post-transcriptional silencer of Lefty1. The described studies provide insight into the mechanisms by which tobacco smoke influences fetal development at the cellular level, and identify specific transcriptional, post-transcriptional, and signaling pathways by which this likely occurs.
Collapse
Affiliation(s)
- Walter Liszewski
- Cardiovascular Research Institute, University of California, San Francisco
| | - Carissa Ritner
- Cardiovascular Research Institute, University of California, San Francisco
| | - Julian Aurigui
- Cardiovascular Research Institute, University of California, San Francisco
| | - Sharon S. Y. Wong
- Cardiovascular Research Institute, University of California, San Francisco
| | | | - Winfried Krueger
- Department of Genetics and Developmental Biology, University of Connecticut
| | - Cheryl Oncken
- Departments of Medicine and Obstetrics and Gynecology, University of Connecticut
| | - Harold S. Bernstein
- Cardiovascular Research Institute, University of California, San Francisco
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, San Francisco
- Department of Pediatrics, University of California, San Francisco
| |
Collapse
|
53
|
Abstract
The signaling module that specifies nuclear factor-κΒ (NF-κB) activation is a three-component system: NF-κB, inhibitor of NF-κΒ (IκΒ), and IκΒ kinase complex (IKK). IKK receives upstream signals from the surface or inside the cell and converts itself into a catalytically active form, leading to the destruction of IκB in the inhibited IκB:NF-κB complex, leaving active NF-κB free to regulate target genes. Hidden within this simple module are family members that all can undergo various modifications resulting in expansion of functional spectrum. Three-dimensional structures representing all three components are now available. These structures have allowed us to interpret cellular observations in molecular terms and at the same time helped us to bring forward new concepts focused towards understanding the specificity in the NF-κB activation pathway.
Collapse
Affiliation(s)
- Gourisankar Ghosh
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, CA 92903, USA.
| | | | | | | |
Collapse
|
54
|
Wang Y, Lu L. Activation of oxidative stress-regulated Bcl-3 suppresses CTCF in corneal epithelial cells. PLoS One 2011; 6:e23984. [PMID: 21912613 PMCID: PMC3166060 DOI: 10.1371/journal.pone.0023984] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 07/28/2011] [Indexed: 01/01/2023] Open
Abstract
Epigenetic factor CTCF (CCCTC binding factor) plays important roles in genetic controls of the cell fate. Previous studies found in corneal epithelial cells that CTCF is regulated by epidermal growth factor (EGF) through activation of NF-κB p65/p50. It also found that CTCF is suppressed in ultraviolet (UV) stress-induced corneal epithelial cells. However, it is still unknown how UV stress down-regulates CTCF affecting the cell fate. In the present study, we report that regulation of CTCF by extracellular stress signals is dependent upon activations of an oxidative stress-regulated protein Bcl-3. We found that activated Bcl-3 was able to bind to the κB sites identified in the CTCF promoter region. Bcl-3 was activated by UV irradiation to interact with NF-κB p50 by forming a Bcl-3/p50 heterodimer complex. The Bcl-3/p50 complex suppressed CTCF promoter activity to down-regulate CTCF transcription. Unlike the effect of EGF, UV stress-induced Bcl-3 activation suppressed CTCF activity without involving the IκBα and p65 pathway. Thus, results of the study reveal a novel mechanism for regulatory control of CTCF in UV stress-induced human corneal epithelial cells, which requires activation and formation of Bcl-3/p50 complex through a noncanonical NF-κB pathway.
Collapse
Affiliation(s)
- Yumei Wang
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Torrance, California, United States of America
| | - Luo Lu
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Torrance, California, United States of America
- * E-mail:
| |
Collapse
|
55
|
Sutherland C. What Are the bona fide GSK3 Substrates? Int J Alzheimers Dis 2011; 2011:505607. [PMID: 21629754 PMCID: PMC3100594 DOI: 10.4061/2011/505607] [Citation(s) in RCA: 210] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Accepted: 03/09/2011] [Indexed: 01/07/2023] Open
Abstract
Nearly 100 proteins are proposed to be substrates for GSK3, suggesting that this enzyme is a fundamental regulator of almost every process in the cell, in every tissue in the body. However, it is not certain how many of these proposed substrates are regulated by GSK3 in vivo. Clearly, the identification of the physiological functions of GSK3 will be greatly aided by the identification of its bona fide substrates, and the development of GSK3 as a therapeutic target will be highly influenced by this range of actions, hence the need to accurately establish true GSK3 substrates in cells. In this paper the evidence that proposed GSK3 substrates are likely to be physiological targets is assessed, highlighting the key cellular processes that could be modulated by GSK3 activity and inhibition.
Collapse
Affiliation(s)
- Calum Sutherland
- Biomedical Research Institute, University of Dundee, Dundee DD1 9SY, UK
| |
Collapse
|
56
|
Pène F, Paun A, Sønder SU, Rikhi N, Wang H, Claudio E, Siebenlist U. The IκB family member Bcl-3 coordinates the pulmonary defense against Klebsiella pneumoniae infection. THE JOURNAL OF IMMUNOLOGY 2011; 186:2412-21. [PMID: 21228348 DOI: 10.4049/jimmunol.1001331] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Bcl-3 is an atypical member of the IκB family that has the potential to positively or negatively modulate nuclear NF-κB activity in a context-dependent manner. Bcl-3's biologic impact is complex and includes roles in tumorigenesis and diverse immune responses, including innate immunity. Bcl-3 may mediate LPS tolerance, suppressing cytokine production, but it also seems to contribute to defense against select systemic bacterial challenges. However, the potential role of Bcl-3 in organ-specific host defense against bacteria has not been addressed. In this study, we investigated the relevance of Bcl-3 in a lung challenge with the Gram-negative pathogen Klebsiella pneumoniae. In contrast to wild-type mice, Bcl-3-deficient mice exhibited significantly increased susceptibility toward K. pneumoniae pneumonia. The mutant mice showed increased lung damage marked by neutrophilic alveolar consolidation, and they failed to clear bacteria in lungs, which correlated with increased bacteremic dissemination. Loss of Bcl-3 incurred a dramatic cytokine imbalance in the lungs, which was characterized by higher levels of IL-10 and a near total absence of IFN-γ. Moreover, Bcl-3-deficient mice displayed increased lung production of the neutrophil-attracting chemokines CXCL-1 and CXCL-2. Alveolar macrophages and neutrophils are important to antibacterial lung defense. In vitro stimulation of Bcl-3-deficient alveolar macrophages with LPS or heat-killed K. pneumoniae recapitulated the increase in IL-10 production, and Bcl-3-deficient neutrophils were impaired in intracellular bacterial killing. These findings suggest that Bcl-3 is critically involved in lung defense against Gram-negative bacteria, modulating functions of several cells to facilitate efficient clearance of bacteria.
Collapse
Affiliation(s)
- Frédéric Pène
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
57
|
Fan Q, Du S, Yang G, Wang L, Jiang Y. Protein expression profile of human renal mesangial cells under high glucose. Am J Nephrol 2011; 34:18-25. [PMID: 21659735 DOI: 10.1159/000328733] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Accepted: 04/23/2011] [Indexed: 12/24/2022]
Abstract
BACKGROUND To understand the spectrum of proteins affected by diabetic nephropathy and to characterize the molecular functions and biological processes they control, the protein expression profile of human renal mesangial cells (HMCs) under high glucose was analyzed. METHODS HMCs were divided into a high glucose-cultured group (30 mmol/l) and a normal glucose-cultured group (5 mmol/l). The total proteins of the two groups were separated and analyzed by two-dimensional difference gel electrophoresis (DIGE). Spots that were differentially expressed were picked and digested with trypsin and subjected to MALDI-TOF MS for protein identification. RESULTS 147 protein spots whose expression levels were significantly increased or decreased more than 1.5-fold in HMCs under high glucose culture were identified. 32 proteins were identified by peptide mass fingerprinting. The protein spots of phosphatidylethanolamine-binding protein 1, granulysin, ATP synthase, H(+) transporter, mitochondrial F0 complex and subunit F2 were observed only in the high glucose group. The expression of 24 proteins was upregulated by high glucose, including eosinophil cationic protein and others. The expression of 5 proteins was downregulated by high glucose, including proteasome β6 subunit precursor, among others. CONCLUSION 32 protein expressions of human glomerular mesangial cells were regulated by high glucose. In-depth analysis of these differentially expressed proteins' function and crosstalk is expected to provide an experimental basis for clarifying the pathogenesis of diabetic nephropathy.
Collapse
Affiliation(s)
- QiuLing Fan
- Central Laboratory, The First Hospital, China Medical University, Shenyang, China
| | | | | | | | | |
Collapse
|
58
|
Schattenberg JM, Schuchmann M, Galle PR. Cell death and hepatocarcinogenesis: Dysregulation of apoptosis signaling pathways. J Gastroenterol Hepatol 2011; 26 Suppl 1:213-9. [PMID: 21199533 DOI: 10.1111/j.1440-1746.2010.06582.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Hepatocellular carcinoma (HCC) remains a disease with a poor prognosis despite recent advances in the pathophysiology and treatment. Although the disease is biologically heterogeneous, dysregulation of cellular proliferation and apoptosis both occur frequently and contribute to the malignant phenotype. Chronic liver disease is associated with intrahepatic inflammation which promotes dysregulation of cellular signaling pathways; this triggers proliferation and thus lays the ground for expansion of premalignant cells. Cancer emerges when immunological control fails and transformed cells develop resistance against cell death signaling pathways. The same mechanisms underlie the poor responsiveness of HCC towards chemotherapy. Only recently advances in understanding the signaling pathways involved has led to the development of an effective pharmacological therapy for advanced disease. The current review will discuss apoptosis signaling pathways and focus on apoptosis resistance of HCC involving derangements in cell death receptors (e.g. tumor necrosis factor-alpha [TNF], CD95/Apo-1, TNF-related apoptosis-inducing ligand [TRAIL]) and associated adapter molecules (e.g. FADD and FLIP) of apoptotic signaling pathways. In addition, the role of the transcription factor nuclear factor-kappaB (NFκB) and members of the B cell leukemia-2 (Bcl-2) family that contribute to the regulation of apoptosis in hepatocytes are discussed. Eventually, the delineation of cell death signaling pathways could contribute to the implementation of new therapeutic strategies to treat HCC.
Collapse
Affiliation(s)
- Jorn Markus Schattenberg
- Department of Medicine, University Medical Center, Johannes Gutenberg University Mainz, Germany.
| | | | | |
Collapse
|
59
|
Characterization of the core elements of the NF-κB signaling pathway of the sea anemone Nematostella vectensis. Mol Cell Biol 2010; 31:1076-87. [PMID: 21189285 DOI: 10.1128/mcb.00927-10] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The sea anemone Nematostella vectensis is the leading developmental and genomic model for the phylum Cnidaria, which includes anemones, hydras, jellyfish, and corals. In insects and vertebrates, the NF-κB pathway is required for cellular and organismal responses to various stresses, including pathogens and chemicals, as well as for several developmental processes. Herein, we have characterized proteins that comprise the core NF-κB pathway in Nematostella, including homologs of NF-κB, IκB, Bcl-3, and IκB kinase (IKK). We show that N. vectensis NF-κB (Nv-NF-κB) can bind to κB sites and activate transcription of reporter genes containing multimeric κB sites or the Nv-IκB promoter. Both Nv-IκB and Nv-Bcl-3 interact with Nv-NF-κB and block its ability to activate reporter gene expression. Nv-IKK is most similar to human IKKε/TBK kinases and, in vitro, can phosphorylate Ser47 of Nv-IκB. Nv-NF-κB is expressed in a subset of ectodermal cells in juvenile and adult Nematostella anemones. A bioinformatic analysis suggests that homologs of many mammalian NF-κB target genes are targets for Nv-NF-κB, including genes involved in apoptosis and responses to organic compounds and endogenous stimuli. These results indicate that NF-κB pathway proteins in Nematostella are similar to their vertebrate homologs, and these results also provide a framework for understanding the evolutionary origins of NF-κB signaling.
Collapse
|
60
|
Kreisel D, Sugimoto S, Tietjens J, Zhu J, Yamamoto S, Krupnick AS, Carmody RJ, Gelman AE. Bcl3 prevents acute inflammatory lung injury in mice by restraining emergency granulopoiesis. J Clin Invest 2010; 121:265-76. [PMID: 21157041 DOI: 10.1172/jci42596] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Accepted: 10/27/2010] [Indexed: 12/18/2022] Open
Abstract
Granulocytes are pivotal regulators of tissue injury. However, the transcriptional mechanisms that regulate granulopoiesis under inflammatory conditions are poorly understood. Here we show that the transcriptional coregulator B cell leukemia/lymphoma 3 (Bcl3) limits granulopoiesis under emergency (i.e., inflammatory) conditions, but not homeostatic conditions. Treatment of mouse myeloid progenitors with G-CSF--serum concentrations of which rise under inflammatory conditions--rapidly increased Bcl3 transcript accumulation in a STAT3-dependent manner. Bcl3-deficient myeloid progenitors demonstrated an enhanced capacity to proliferate and differentiate into granulocytes following G-CSF stimulation, whereas the accumulation of Bcl3 protein attenuated granulopoiesis in an NF-κB p50-dependent manner. In a clinically relevant model of transplant-mediated lung ischemia reperfusion injury, expression of Bcl3 in recipients inhibited emergency granulopoiesis and limited acute graft damage. These data demonstrate a critical role for Bcl3 in regulating emergency granulopoiesis and suggest that targeting the differentiation of myeloid progenitors may be a therapeutic strategy for preventing inflammatory lung injury.
Collapse
Affiliation(s)
- Daniel Kreisel
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | | | | | | | | | | | | |
Collapse
|
61
|
Saito K, Saito M, Taniura N, Okuwa T, Ohara Y. Activation of the PI3K–Akt pathway by human T cell leukemia virus type 1 (HTLV-1) oncoprotein Tax increases Bcl3 expression, which is associated with enhanced growth of HTLV-1-infected T cells. Virology 2010; 403:173-80. [DOI: 10.1016/j.virol.2010.04.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Revised: 01/15/2010] [Accepted: 04/19/2010] [Indexed: 12/22/2022]
|
62
|
Keutgens A, Zhang X, Shostak K, Robert I, Olivier S, Vanderplasschen A, Chapelle JP, Viatour P, Merville MP, Bex F, Gothot A, Chariot A. BCL-3 degradation involves its polyubiquitination through a FBW7-independent pathway and its binding to the proteasome subunit PSMB1. J Biol Chem 2010; 285:25831-40. [PMID: 20558726 DOI: 10.1074/jbc.m110.112128] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The oncogenic protein BCL-3 activates or represses gene transcription through binding with the NF-kappaB proteins p50 and p52 and is degraded through a phospho- and GSK3-dependent pathway. However, the mechanisms underlying its degradation remain poorly understood. Yeast two-hybrid analysis led to the identification of the proteasome subunit PSMB1 as a BCL-3-associated protein. The binding of BCL-3 to PSMB1 is required for its degradation through the proteasome. Indeed, PSMB1-depleted cells are defective in degrading polyubiquitinated BCL-3. The N-terminal part of BCL-3 includes lysines 13 and 26 required for the Lys(48)-linked polyubiquitination of BCL-3. Moreover, the E3 ligase FBW7, known to polyubiquitinate a variety of substrates phosphorylated by GSK3, is dispensable for BCL-3 degradation. Thus, our data defined a unique motif of BCL-3 that is needed for its recruitment to the proteasome and identified PSMB1 as a key protein required for the proteasome-mediated degradation of a nuclear and oncogenic IkappaB protein.
Collapse
Affiliation(s)
- Aurore Keutgens
- Interdisciplinary Cluster for Applied Genoproteomics, GIGA-Research, Unit of Medical Chemistry, Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, University of Liège, Sart-Tilman, 4000 Liège, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
The discovery of novel experimental therapies for inflammatory arthritis. Mediators Inflamm 2010; 2009:698769. [PMID: 20339519 PMCID: PMC2842969 DOI: 10.1155/2009/698769] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Accepted: 12/21/2009] [Indexed: 12/16/2022] Open
Abstract
Conventional and biologic disease-modifying antirheumatic drugs have revolutionized the medical therapy of inflammatory arthritis. However, it remains unclear as to what can be done to treat immune-mediated chronic inflammation after patients become refractory to these therapies or develop serious side-effects and/or infections forcing drug withdrawal. Because of these concerns it is imperative that novel targets be continuously identified and experimental strategies designed to test potential arthritis interventions in vitro, but more importantly, in well-validated animal models of inflammatory arthritis. Over the past few years, sphingosine-1-phosphate, interleukin-7 receptor, spleen tyrosine kinase, extracellular signal-regulated kinase, mitogen-activated protein kinase 5/p38 kinase regulated/activated protein kinase, micro-RNAs, tumor necrosis factor-related apoptosis inducing ligand and the polyubiquitin-proteasome pathway were identified as promising novel targets for potential antiarthritis drug development. Indeed several experimental compounds alter the biological activity of these targets and have shown clinical efficacy in animal models of arthritis. A few of them have even entered the first phase of human clinical trials.
Collapse
|
64
|
Huxford T, Hoffmann A, Ghosh G. Understanding the logic of IκB:NF-κB regulation in structural terms. Curr Top Microbiol Immunol 2010; 349:1-24. [PMID: 20845107 DOI: 10.1007/82_2010_99] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
NF-κB is an inducible transcription factor that controls expression of diverse stress response genes. The entire mammalian NF-κB family is generated from a small cadre of five gene products that assemble with one another in various combinations to form active homo- and heterodimers. The ability of NF-κB to alter target gene expression is regulated at many levels. Chief among these regulatory mechanisms is the noncovalent association in the cell cytoplasm of NF-κB dimers with IκB inhibitor proteins. Removal of IκB leads to accumulation of active NF-κB within the cell nucleus where it binds to specific DNA sequences contained within the promoter regions of target genes and initiates recruitment of general transcription factors and assembly of the basal transcription machinery. Here we provide a detailed description of these fundamental NF-κB regulatory events using as a basis macromolecular structures and experimental data derived from structure-based biochemistry.
Collapse
Affiliation(s)
- Tom Huxford
- Department of Chemistry & Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-1030, USA
| | | | | |
Collapse
|
65
|
Abstract
This article focuses on the functions of NF-kappaB that vitally impact lymphocytes and thus adaptive immunity. NF-kappaB has long been known to be essential for many of the responses of mature lymphocytes to invading pathogens. In addition, NF-kappaB has important functions in shaping the immune system so it is able to generate adaptive responses to pathogens. In both contexts, NF-kappaB executes critical cell-autonomous functions within lymphocytes as well as within supportive cells, such as antigen-presenting cells or epithelial cells. It is these aspects of NF-kappaB's physiologic impact that we address in this article.
Collapse
|
66
|
Graham JR, Tullai JW, Cooper GM. GSK-3 represses growth factor-inducible genes by inhibiting NF-kappaB in quiescent cells. J Biol Chem 2009; 285:4472-80. [PMID: 20018891 DOI: 10.1074/jbc.m109.053785] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
GSK-3 is active in the absence of growth factor stimulation and generally acts to induce apoptosis or inhibit cell proliferation. We previously identified a subset of growth factor-inducible genes that can also be induced in quiescent T98G cells solely by inhibition of GSK-3 in the absence of growth factor stimulation. Computational predictions verified by chromatin immunoprecipitation assays identified NF-kappaB binding sites in the upstream regions of 75% of the genes regulated by GSK-3. p50 bound to most of these sites in quiescent cells, and for one-third of the genes, binding of p65 to the predicted sites increased upon inhibition of GSK-3. The functional role of p65 in gene induction following inhibition of GSK-3 was demonstrated by RNA interference experiments. Furthermore, inhibition of GSK-3 in quiescent cells resulted in activation of IkappaB kinase, leading to phosphorylation and degradation of IkappaB alpha and nuclear translocation of p65 and p50. Taken together, these results indicate that the high levels of GSK-3 activity in quiescent cells repress gene expression by negatively regulating NF-kappaB through inhibition of IkappaB kinase. This inhibition of NF-kappaB is consistent with the role of GSK-3 in the induction of apoptosis or cell cycle arrest in cells deprived of growth factors.
Collapse
Affiliation(s)
- Julie R Graham
- Program in Molecular Biology, Cell Biology and Biochemistry, Boston University, Boston, Massachusetts 02215, USA
| | | | | |
Collapse
|