51
|
Leask A. A centralized communication network: Recent insights into the role of the cancer associated fibroblast in the development of drug resistance in tumors. Semin Cell Dev Biol 2020; 101:111-114. [DOI: 10.1016/j.semcdb.2019.10.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 10/30/2019] [Indexed: 12/17/2022]
|
52
|
Kim KH, Lee SJ, Kim J, Moon Y. Dynamic Malignant Wave of Ribosome-Insulted Gut Niche via the Wnt-CTGF/CCN2 Circuit. iScience 2020; 23:101076. [PMID: 32361596 PMCID: PMC7200318 DOI: 10.1016/j.isci.2020.101076] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/13/2019] [Accepted: 04/14/2020] [Indexed: 12/21/2022] Open
Abstract
Stress-driven ribosome dysfunction triggers an eIF2α-mediated integrated stress response to maintain cellular homeostasis. Among four key eIF2α kinases, protein kinase R (PKR) expression positively associates with poor prognoses for colorectal cancer (CRC) patients. We identified PKR-linked Wnt signaling networks that facilitate early inflammatory niche and epithelial-mesenchymal transitions of tumor tissues in response to ribosomal insults. However, the downstream Wnt signaling target fibrogenic connective tissue growth factor (CTGF/CCN2) regulates the nuclear translocation of β-catenin in a negative feedback manner. Moreover, dwindling expression of the Wnt/β-catenin pathway-regulator CTGF triggers noncanonical Wnt pathway-mediated exacerbation of intestinal cancer progression such as an increase in cancer stemness and acquisition of chemoresistance in the presence of ribosomal insults. The Wnt-CTGF-circuit-associated landscape of oncogenic signaling events was verified with clinical genomic profiling. This ribosome-associated wave of crosstalk between stress and oncogenes provides valuable insight into potential molecular interventions against intestinal malignancies. PKR expression positively associates with poor prognoses for CRC patients CTGF/CCN2 mediates tumor niche remodeling under PKR-activating ribosomal stress CTGF/CCN2 antagonism of Wnt regulates cancer stemness and chemoresistance
Collapse
Affiliation(s)
- Ki Hyung Kim
- Laboratory of Mucosal Exposome and Biomodulation, Department of Biomedical Sciences, Pusan National University, Yangsan 50612, Korea; Department of Obstetrics and Gynecology, Pusan National University College of Medicine, Busan 49241, Korea; Biomedical Research Institute, Pusan National University Hospital, Busan, 49241, Korea
| | - Seung Joon Lee
- Laboratory of Mucosal Exposome and Biomodulation, Department of Biomedical Sciences, Pusan National University, Yangsan 50612, Korea
| | - Juil Kim
- Laboratory of Mucosal Exposome and Biomodulation, Department of Biomedical Sciences, Pusan National University, Yangsan 50612, Korea
| | - Yuseok Moon
- Laboratory of Mucosal Exposome and Biomodulation, Department of Biomedical Sciences, Pusan National University, Yangsan 50612, Korea; Biomedical Research Institute, Pusan National University Hospital, Busan, 49241, Korea.
| |
Collapse
|
53
|
Roles of Interaction between CCN2 and Rab14 in Aggrecan Production by Chondrocytes. Int J Mol Sci 2020; 21:ijms21082769. [PMID: 32316324 PMCID: PMC7215643 DOI: 10.3390/ijms21082769] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/30/2020] [Accepted: 04/14/2020] [Indexed: 12/21/2022] Open
Abstract
To identify proteins that cooperate with cellular communication network factor 2 (CCN2), we carried out GAL4-based yeast two-hybrid screening using a cDNA library derived from the chondrocytic cell line HCS-2/8. Rab14 GTPase (Rab14) polypeptide was selected as a CCN2-interactive protein. The interaction between CCN2 and Rab14 in HCS-2/8 cells was confirmed using the in situ proximity ligation assay. We also found that CCN2 interacted with Rab14 through its IGFBP-like domain among the four domains in CCN2 protein. To detect the colocalization between CCN2 and Rab14 in the cells in detail, CCN2, wild-type Rab14 (Rab14WT), a constitutive active form (Rab14CA), and a dominant negative form (Rab14DN) of Rab14 were overexpressed in monkey kidney-tissue derived COS7 cells. Ectopically overexpressed Rab14 showed a diffuse cytosolic distribution in COS7 cells; however, when Rab14WT was overexpressed with CCN2, the Rab14WT distribution changed to dots that were evenly distributed within the cytosol, and both Rab14 and CCN2 showed clear colocalization. When Rab14CA was overexpressed with CCN2, Rab14CA and CCN2 also showed good localization as dots, but their distribution was more widespread within cytosol. The coexpression of Rab14DN and CCN2 also showed a dotted codistribution but was more concentrated in the perinuclear area. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) analysis revealed that the reduction in RAB14 or CCN2 mRNA by their respective siRNA significantly enhanced the expression of ER stress markers, BIP and CHOP mRNA in HCS-2/8 chondrocytic cells, suggesting that ER and Golgi stress were induced by the inhibition of membrane vesicle transfer via the suppression of CCN2 or Rab14. Moreover, to study the effect of the interaction between CCN2 and its interactive protein Rab14 on proteoglycan synthesis, we overexpressed Rab14WT or Rab14CA or Rab14DN in HCS-2/8 cells and found that the overexpression of Rab14DN decreased the extracellular proteoglycan accumulation more than the overexpression of Rab14WT/CA did in the chondrocytic cells. These results suggest that intracellular CCN2 is associated with Rab14 on proteoglycan-containing vesicles during their transport from the Golgi apparatus to endosomes in chondrocytes and that this association may play a role in proteoglycan secretion by chondrocytes.
Collapse
|
54
|
Barbe MF, Hilliard BA, Amin M, Harris MY, Hobson LJ, Cruz GE, Popoff SN. Blocking CTGF/CCN2 reduces established skeletal muscle fibrosis in a rat model of overuse injury. FASEB J 2020; 34:6554-6569. [PMID: 32227398 PMCID: PMC7200299 DOI: 10.1096/fj.202000240rr] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/04/2020] [Accepted: 03/06/2020] [Indexed: 12/12/2022]
Abstract
Tissue fibrosis is a hallmark of overuse musculoskeletal injuries and contributes to functional declines. We tested whether inhibition of CCN2 (cellular communication network factor 2, previously known as connective tissue growth factor, CTGF) using a specific antibody (termed FG‐3019 or pamrevlumab) reduces established overuse‐induced muscle fibrosis in a clinically relevant rodent model of upper extremity overuse injury. Young adult rats performed a high repetition high force (HRHF) reaching and lever‐pulling task for 18 weeks, after first being shaped for 6 weeks to learn this operant task. Rats were then euthanized (HRHF‐Untreated), or rested and treated for 6 weeks with FG‐3019 (HRHF‐Rest/FG‐3019) or a human IgG as a vehicle control (HRHF‐Rest/IgG). HRHF‐Untreated and HRHF‐Rest/IgG rats had higher muscle levels of several fibrosis‐related proteins (TGFβ1, CCN2, collagen types I and III, and FGF2), and higher muscle numbers of alpha SMA and pERK immunopositive cells, compared to control rats. Each of these fibrogenic changes was restored to control levels by the blocking of CCN2 signaling in HRHF‐Rest/FG‐3019 rats, as were HRHF task‐induced increases in serum CCN2 and pro‐collagen I intact N‐terminal protein. Levels of cleaved CCN3, an antifibrotic protein, were lowered in HRHF‐Untreated and HRHF‐Rest/IgG rats, compared to control rats, yet elevated back to control levels in HRHF‐Rest/FG‐3019 rats. Significant grip strength declines observed in HRHF‐Untreated and HRHF‐Rest/IgG rats, were restored to control levels in HRHF‐Rest/FG‐3019 rats. These results are highly encouraging for use of FG‐3019 for therapeutic treatment of persistent skeletal muscle fibrosis, such as those induced with chronic overuse.
Collapse
Affiliation(s)
- Mary F Barbe
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Brendan A Hilliard
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Mamta Amin
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Michele Y Harris
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Lucas J Hobson
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Geneva E Cruz
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Steven N Popoff
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| |
Collapse
|
55
|
Chung MP, Chung L. Drugs in phase I and phase II clinical trials for systemic sclerosis. Expert Opin Investig Drugs 2020; 29:349-362. [PMID: 32178544 DOI: 10.1080/13543784.2020.1743973] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: Systemic sclerosis (SSc) is an autoimmune connective tissue disease that is characterized by excessive collagen deposition, vascular dysfunction, and fibrosis of cutaneous and visceral organs. Current therapeutic options are limited and provide only modest benefit.Areas covered: This review summarizes investigational agents in recent Phase I and II clinical trials evaluated for the treatment of SSc with a focus on skin in patients with early diffuse disease and interstitial lung disease. We performed a search on Pubmed and https://clinicaltrials.gov with keywords systemic sclerosis, Phase I clinical trial, and Phase II clinical trial to identify relevant studies from 2015 to 2019.Expert opinion: Therapeutic interventions in SSc should be guided by the level of disease activity and the degree of organ involvement. While most novel agents have failed to meet the primary endpoints of reducing skin thickening as measured by the modified Rodnan skin score, some have shown promise in improving the Composite Response Index for Clinical Trials in Early Diffuse Cutaneous Systemic Sclerosis (CRISS), reducing lung function decline, or improving patient-reported outcomes. However, most of the current evidence is based on small or open-label clinical trials. Well-designed, large, randomized, Phase III clinical trials are necessary to define the roles of investigational agents in treating SSc.
Collapse
Affiliation(s)
- Melody P Chung
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Lorinda Chung
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Palo Alto, CA, USA.,Division of Rheumatology, VA Palo Alto Health Care System, Palo Alto, CA, USA
| |
Collapse
|
56
|
|
57
|
Wu J, Tian WJ, Liu Y, Wang HJ, Zheng J, Wang X, Pan H, Li J, Luo J, Yang X, Lau LF, Ghashghaei HT, Shen Q. Ependyma-expressed CCN1 restricts the size of the neural stem cell pool in the adult ventricular-subventricular zone. EMBO J 2020; 39:e101679. [PMID: 32009252 DOI: 10.15252/embj.2019101679] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 11/19/2019] [Accepted: 12/12/2019] [Indexed: 12/17/2022] Open
Abstract
Adult neural stem cells (NSCs) reside in specialized niches, which hold a balanced number of NSCs, their progeny, and other cells. How niche capacity is regulated to contain a specific number of NSCs remains unclear. Here, we show that ependyma-derived matricellular protein CCN1 (cellular communication network factor 1) negatively regulates niche capacity and NSC number in the adult ventricular-subventricular zone (V-SVZ). Adult ependyma-specific deletion of Ccn1 transiently enhanced NSC proliferation and reduced neuronal differentiation in mice, increasing the numbers of NSCs and NSC units. Although proliferation of NSCs and neurogenesis seen in Ccn1 knockout mice eventually returned to normal, the expanded NSC pool was maintained in the V-SVZ until old age. Inhibition of EGFR signaling prevented expansion of the NSC population observed in CCN1 deficient mice. Thus, ependyma-derived CCN1 restricts NSC expansion in the adult brain to maintain the proper niche capacity of the V-SVZ.
Collapse
Affiliation(s)
- Jun Wu
- School of Medicine, Tsinghua University, Beijing, China.,IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China.,Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China.,Frontier Science Center for Stem Cell Research, Ministry of Education, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Wen-Jia Tian
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China.,Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China.,Frontier Science Center for Stem Cell Research, Ministry of Education, School of Life Sciences and Technology, Tongji University, Shanghai, China.,Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yang Liu
- Peking University-Tsinghua University-National Institute of Biological Sciences (PTN) Joint Graduate Program, School of Life Sciences, Tsinghua University, Beijing, China.,MOE Key Laboratory of Bioinformatics, Center for Synthetic & Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Huanhuan J Wang
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China.,Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China.,Frontier Science Center for Stem Cell Research, Ministry of Education, School of Life Sciences and Technology, Tongji University, Shanghai, China.,Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jiangli Zheng
- School of Medicine, Tsinghua University, Beijing, China.,IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China.,Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China.,Frontier Science Center for Stem Cell Research, Ministry of Education, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xin Wang
- MOE Key Laboratory of Bioinformatics, Center for Synthetic & Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China.,School of Life Sciences, Tsinghua University, Beijing, China
| | - Han Pan
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Ji Li
- School of Medicine, Tsinghua University, Beijing, China
| | - Junyu Luo
- Peking University-Tsinghua University-National Institute of Biological Sciences (PTN) Joint Graduate Program, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xuerui Yang
- MOE Key Laboratory of Bioinformatics, Center for Synthetic & Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China.,School of Life Sciences, Tsinghua University, Beijing, China
| | - Lester F Lau
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA
| | - H Troy Ghashghaei
- WM Keck Center for Behavioral Biology, Program in Genetics, Program in Comparative Biomedical Sciences, Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Qin Shen
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China.,Frontier Science Center for Stem Cell Research, Ministry of Education, School of Life Sciences and Technology, Tongji University, Shanghai, China.,Tongji University Brain and Spinal Cord Clinical Research Center, Shanghai, China
| |
Collapse
|
58
|
Li X, Chen R, Kemper S, Brigstock DR. Extracellular Vesicles From Hepatocytes Are Therapeutic for Toxin-Mediated Fibrosis and Gene Expression in the Liver. Front Cell Dev Biol 2020; 7:368. [PMID: 31998720 PMCID: PMC6966099 DOI: 10.3389/fcell.2019.00368] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 12/16/2019] [Indexed: 12/15/2022] Open
Abstract
Extracellular vesicles (EVs) are nano-sized membrane-limited organelles that are liberated from their producer cells, traverse the intercellular space, and may interact with other cells resulting in the uptake of the EV molecular payload by the recipient cells which may become functionally reprogramed as a result. Previous in vitro studies showed that EVs purified from normal mouse AML12 hepatocytes ("EVNorm") attenuate the pro-fibrogenic activities of activated hepatic stellate cells (HSCs), a principal fibrosis-producing cell type in the liver. In a 10-day CCl4 injury model, liver fibrogenesis, expression of hepatic cellular communication network factor 2 [CCN2, also known as connective tissue growth factor (CTGF)] or alpha smooth muscle actin (αSMA) was dose-dependently blocked during concurrent administration of EVNorm. Hepatic inflammation and expression of inflammatory cytokines were also reduced by EVNorm. In a 5-week CCl4 fibrosis model in mice, interstitial collagen deposition and mRNA and/or protein for collagen 1a1, αSMA or CCN2 were suppressed following administration of EVNorm over the last 2 weeks. RNA sequencing (RNA-seq) revealed that EVNorm therapy of mice receiving CCl4 for 5 weeks resulted in significant differences [false discovery rate (FDR) <0.05] in expression of 233 CCl4-regulated hepatic genes and these were principally associated with fibrosis, cell cycle, cell division, signal transduction, extracellular matrix (ECM), heat shock, cytochromes, drug detoxification, adaptive immunity, and membrane trafficking. Selected gene candidates from these groups were verified by qRT-PCR as targets of EVNorm in CCl4-injured livers. Additionally, EVNorm administration resulted in reduced activation of p53, a predicted upstream regulator of 40% of the genes for which expression was altered by EVNorm following CCl4 liver injury. In vitro, EVs from human HepG2 hepatocytes suppressed fibrogenic gene expression in activated mouse HSC and reversed the reduced viability or proliferation of HepG2 cells or AML12 cells exposed to CCl4. Similarly, EVs produced by primary human hepatocytes (PHH) protected PHH or human LX2 HSC from CCl4-mediated changes in cell number or gene expression in vitro. These findings show that EVs from human or mouse hepatocytes regulate toxin-associated gene expression leading to therapeutic outcomes including suppression of fibrogenesis, hepatocyte damage, and/or inflammation.
Collapse
Affiliation(s)
- Xinlei Li
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Ruju Chen
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Sherri Kemper
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - David R. Brigstock
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Surgery, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
59
|
Perbal B. CCN proteins are part of a multilayer complex system: a working model. J Cell Commun Signal 2019; 13:437-439. [PMID: 31848849 DOI: 10.1007/s12079-019-00543-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
60
|
Leask A. Breathe, breathe in the air: the anti-CCN2 antibody pamrevlumab (FG-3019) completes a successful phase II clinical trial for idiopathic pulmonary fibrosis. J Cell Commun Signal 2019; 13:441-442. [PMID: 31811619 DOI: 10.1007/s12079-019-00542-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Pirfenidone and nintedanib have been approved for idiopathic pulmonary fibrosis (IPF) due to their ability to statistically slow, over a year, the rate of decline in lung forced vital capacity (FVC), neither drug has been reported to have o positive effects on high-resolution computed tomography (HRCT) of the chest, symptoms, or quality of life. Moreover, pirfenidone and nintedanib have substantial gastrointestinal tolerability issues. Overall, these data highly suggest that novel therapeutic approached are needed. CCN2 has been shown to be a mediator of fibrosis in many preclinical models. Anti-CCN2 strategies are in clinical development for IPF, A recent study by Richeldi and colleagues described the recent Phase II clinical trial for FG-3019 in IPF, and the results were highly encouraging. This commentary contextualizes and summarizes these exciting findings.
Collapse
Affiliation(s)
- Andrew Leask
- College of Dentistry, University of Saskatchewan, 105 Wiggins Road, Saskatoon, SK, S7N 5E4, Canada.
| |
Collapse
|
61
|
Shoji M, Ueda M, Nishioka M, Minato H, Seki M, Harada K, Kubo M, Fukuyama Y, Suzuki Y, Aoyama E, Takigawa M, Kuzuhara T. Jiadifenolide induces the expression of cellular communication network factor (CCN) genes, and CCN2 exhibits neurotrophic activity in neuronal precursor cells derived from human induced pluripotent stem cells. Biochem Biophys Res Commun 2019; 519:309-315. [PMID: 31506177 DOI: 10.1016/j.bbrc.2019.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 09/02/2019] [Indexed: 01/27/2023]
Abstract
Jiadifenolide has been reported to have neurotrophin-like activity in primary rat cortical neurons, and also possesses neurotrophic effects in neuronal precursor cells derived from human induced pluripotent stem cells (hiPSCs), as we have previously reported. However, the molecular mechanisms by which jiadifenolide exerts its neurotrophic effects in rat and human neurons are unknown. Thus, we aimed to investigate the molecular mechanisms and pathways by which jiadifenolide promotes neurotrophic effects. Here, we found that jiadifenolide activated cellular communication network factor (CCN) signaling pathways by up-regulating mRNA level expression of CCN genes in human neuronal cells. We also found that CCN2 (also known as connective tissue growth factor, CTGF) protein promotes neurotrophic effects through activation of the p44/42 mitogen-activated protein kinase signaling pathway. This is the first discovery which links neurotrophic activity with CCN signaling.
Collapse
Affiliation(s)
- Masaki Shoji
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan.
| | - Masako Ueda
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Megumi Nishioka
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Hiroki Minato
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Masahide Seki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Chiba, Japan
| | - Kenichi Harada
- Laboratory of Biophysical Chemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Miwa Kubo
- Laboratory of Biophysical Chemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Yoshiyasu Fukuyama
- Laboratory of Biophysical Chemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Chiba, Japan
| | - Eriko Aoyama
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School/Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Masaharu Takigawa
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School/Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Takashi Kuzuhara
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan.
| |
Collapse
|
62
|
Role of hypoxia in skeletal muscle fibrosis: Synergism between hypoxia and TGF-β signaling upregulates CCN2/CTGF expression specifically in muscle fibers. Matrix Biol 2019; 87:48-65. [PMID: 31669521 DOI: 10.1016/j.matbio.2019.09.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 09/23/2019] [Accepted: 09/25/2019] [Indexed: 02/06/2023]
Abstract
Several skeletal muscle diseases are characterized by fibrosis, the excessive accumulation of extracellular matrix. Transforming growth factor-β (TGF-β) and connective tissue growth factor (CCN2/CTGF) are two profibrotic factors augmented in fibrotic skeletal muscle, together with signs of reduced vasculature that implies a decrease in oxygen supply. We observed that fibrotic muscles are characterized by the presence of positive nuclei for hypoxia-inducible factor-1α (HIF-1α), a key mediator of the hypoxia response. However, it is not clear how a hypoxic environment could contribute to the fibrotic phenotype in skeletal muscle. We evaluated the role of hypoxia and TGF-β on CCN2 expression in vitro. Fibroblasts, myoblasts and differentiated myotubes were incubated with TGF-β1 under hypoxic conditions. Hypoxia and TGF-β1 induced CCN2 expression synergistically in myotubes but not in fibroblasts or undifferentiated muscle progenitors. This induction requires HIF-1α and the Smad-independent TGF-β signaling pathway. We performed in vivo experiments using pharmacological stabilization of HIF-1α or hypoxia-induced via hindlimb ischemia together with intramuscular injections of TGF-β1, and we found increased CCN2 expression. These observations suggest that hypoxic signaling together with TGF-β signaling, which are both characteristics of a fibrotic skeletal muscle environment, induce the expression of CCN2 in skeletal muscle fibers and myotubes.
Collapse
|
63
|
Tsang M, Quesnel K, Vincent K, Hutchenreuther J, Postovit LM, Leask A. Insights into Fibroblast Plasticity: Cellular Communication Network 2 Is Required for Activation of Cancer-Associated Fibroblasts in a Murine Model of Melanoma. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 190:206-221. [PMID: 31610176 DOI: 10.1016/j.ajpath.2019.09.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 08/26/2019] [Accepted: 09/03/2019] [Indexed: 02/07/2023]
Abstract
Tumor stroma resembles a fibrotic microenvironment, being characterized by the presence of myofibroblast-like cancer-associated fibroblasts (CAFs). In wild-type mice injected with melanoma cells, we show that the stem cell transcription factor Sox2 is expressed by tumor cells and induced in CAFs derived from synthetic fibroblasts. These fibroblasts were labeled postnatally with green fluorescent protein using mice expressing a tamoxifen-dependent Cre recombinase under the control of a fibroblast-specific promoter/enhancer. Conversely, fibroblast activation was impaired in mice with a fibroblast-specific deletion of cellular communication network 2 (Ccn2), associated with reduced expression of α-smooth muscle actin and Sox2. Multipotent Sox2-expressing skin-derived precursor (SKP) spheroids were cultured from murine back skin. Using lineage tracing and flow cytometry, approximately 40% of SKPs were found to be derived from type I collagen-lineage cells and acquired multipotency in culture. Inhibition of mechanotransduction pathways prevented myofibroblast differentiation of SKPs and expression of Ccn2. In SKPs deleted for Ccn2, differentiation into a myofibroblast, but not an adipocyte or neuronal phenotype, was also impaired. In human melanoma, CCN2 expression was associated with a profibrotic integrin alpha (ITGA) 11-expressing subset of CAFs that negatively associated with survival. These results suggest that synthetic dermal fibroblasts are plastic, and that CCN2 is required for the differentiation of dermal progenitor cells into a myofibroblast/CAF phenotype and is, therefore, a therapeutic target in melanoma.
Collapse
Affiliation(s)
- Matthew Tsang
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Katherine Quesnel
- Department of Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Krista Vincent
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada; Department of Genetics, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - James Hutchenreuther
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | | | - Andrew Leask
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada; Department of Dentistry, University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
64
|
Chaqour B. Caught between a "Rho" and a hard place: are CCN1/CYR61 and CCN2/CTGF the arbiters of microvascular stiffness? J Cell Commun Signal 2019; 14:21-29. [PMID: 31376071 DOI: 10.1007/s12079-019-00529-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 07/26/2019] [Indexed: 12/18/2022] Open
Abstract
The extracellular matrix (ECM) is a deformable dynamic structure that dictates the behavior, function and integrity of blood vessels. The composition, density, chemistry and architecture of major globular and fibrillar proteins of the matrisome regulate the mechanical properties of the vasculature (i.e., stiffness/compliance). ECM proteins are linked via integrins to a protein adhesome directly connected to the actin cytoskeleton and various downstream signaling pathways that enable the cells to respond to external stimuli in a coordinated manner and maintain optimal tissue stiffness. However, cardiovascular risk factors such as diabetes, dyslipidemia, hypertension, ischemia and aging compromise the mechanical balance of the vascular wall. Stiffening of large blood vessels is associated with well-known qualitative and quantitative changes of fibrillar and fibrous macromolecules of the vascular matrisome. However, the mechanical properties of the thin-walled microvasculature are essentially defined by components of the subendothelial matrix. Cellular communication network (CCN) 1 and 2 proteins (aka Cyr61 and CTGF, respectively) of the CCN protein family localize in and act on the pericellular matrix of microvessels and constitute primary candidate markers and regulators of microvascular compliance. CCN1 and CCN2 bind various integrin and non-integrin receptors and initiate signaling pathways that regulate connective tissue remodeling and response to injury, the associated mechanoresponse of vascular cells, and the subsequent inflammatory response. The CCN1 and CCN2 genes are themselves responsive to mechanical stimuli in vascular cells, wherein mechanotransduction signaling converges into the common Rho GTPase pathway, which promotes actomyosin-based contractility and cellular stiffening. However, CCN1 and CCN2 each exhibit unique functional attributes in these processes. A better understanding of their synergistic or antagonistic effects on the maintenance (or loss) of microvascular compliance in physiological and pathological situations will assist more broadly based studies of their functional properties and translational value.
Collapse
Affiliation(s)
- Brahim Chaqour
- Department of Cell Biology and Department of Ophthalmology, State University of New York - SUNY Downstate Medical Center, 450 Clarkson Avenue, MSC 5, Brooklyn, NY, 11203, USA.
| |
Collapse
|
65
|
Ishizawa Y, Niwa Y, Suzuki T, Kawahara R, Dohmae N, Simizu S. Identification and characterization of collagen-like glycosylation and hydroxylation of CCN1. Glycobiology 2019; 29:696-704. [DOI: 10.1093/glycob/cwz052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 12/14/2022] Open
Abstract
AbstractCCN1 is a secreted protein and belongs to the CCN family of matricellular proteins. CCN1 binds to various cell surface receptors; thus, CCN1 has important functions in cell proliferation, migration and angiogenesis through a variety of signaling pathways. We have reported that CCN1 is O-fucosylated and that this O-fucosylation regulates the secretion of CCN1 into the extracellular region. In this study, we detected collagen-like glycosylation and hydroxylation at Lys203 of recombinant CCN1 by mass spectrometry. We then examined the role of collagen-like glycosylation in the functions of CCN1. As a result, we found that a deficiency in collagen-like glycosylation decreased the secretion of CCN1 using wild-type CCN1- and collagen-like glycosylation-defective mutant CCN1-overexpressing cell lines. Further, knockout of lysyl hydroxylase3, a multifunctional protein with hydroxylase and glucosyltransferase activities, impaired the secretion and glycosylation level of recombinant CCN1. Previous studies reported that collagen glycosylation of Lys residues mediated by lysyl hydroxylase3 is glucosyl-galactosyl-hydroxylation, presuming that this collagen-like glycosylation detected at Lys203 of recombinant CCN1 in this study might be glucosyl-galactosyl-hydroxylation. Taken together, our results demonstrate the novel function of the collagen-like glycosylation of CCN1 and suggest that lysyl hydroxylase3-mediated glycosylation is important for CCN1 secretion.
Collapse
Affiliation(s)
- Yudai Ishizawa
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan
| | - Yuki Niwa
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan
| | - Takehiro Suzuki
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Wako 351-0198, Japan
| | - Ryota Kawahara
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan
| | - Naoshi Dohmae
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Wako 351-0198, Japan
| | - Siro Simizu
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan
| |
Collapse
|
66
|
Peidl A, Perbal B, Leask A. Yin/Yang expression of CCN family members: Transforming growth factor beta 1, via ALK5/FAK/MEK, induces CCN1 and CCN2, yet suppresses CCN3, expression in human dermal fibroblasts. PLoS One 2019; 14:e0218178. [PMID: 31170244 PMCID: PMC6553774 DOI: 10.1371/journal.pone.0218178] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 05/28/2019] [Indexed: 12/16/2022] Open
Abstract
The role of the microenvironment in driving connective tissue disease is being increasingly appreciated. Matricellular proteins of the CCN family are signaling modifiers that are secreted by cells into the extracellular matrix microenvironment where they have profound, context-dependent effects on organ development, homeostasis and disease. Indeed, CCN proteins are emergent targets for therapeutic intervention. Recent evidence suggests that, in vivo, CCN3 has effects opposing CCN2. Moreover, when CCN3 expression is high, CCN2 expression is low. That is, they appear to be regulated in a yin/yang fashion, leading to the hypothesis that the CCN2:CCN3 ratio is important to control tissue homeostasis. To begin to test the hypothesis that alterations in CCN2:CCN3 expression might be important in skin biology in vivo, we evaluated the relative ex vivo effects of the profibrotic protein TGFbeta1 on dermal fibroblasts on protein and RNA expression of CCN3 and CCN2, as well as the related protein CCN1. We also used signal transduction inhibitors to begin to identify the signal transduction pathways controlling the ability of fibroblasts to respond to TGFbeta1. As anticipated, CCN1 and CCN2 protein and mRNA were induced by TGFbeta1 in human dermal fibroblasts. This induction was blocked by TAK1, FAK, YAP1 and MEK inhibition. Conversely, TGFbeta1 suppressed CCN3 mRNA expression in a fashion insensitive to FAK, MEK, TAK1 or YAP1 inhibition. Unexpectedly, CCN3 protein was not detected in human dermal fibroblasts basally. These data suggest that, in dermal fibroblasts, the profibrotic protein TGFbeta1 has a divergent effect on CCN3 relative to CCN2 and CCN1, both at the mRNA and protein level. Given that the major source in skin in vivo of CCN proteins are fibroblasts, our data are consistent that alterations in CCN2/CCN1: CCN3 ratios in response to profibrotic agents such as TGFbeta1 may play a role in connective tissue pathologies including fibrosis.
Collapse
Affiliation(s)
- Alexander Peidl
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON, Canada
| | | | - Andrew Leask
- Department of Dentistry, University of Western Ontario, London, ON, Canada
- * E-mail:
| |
Collapse
|
67
|
Deng W, Fernandez A, McLaughlin SL, Klinke DJ. WNT1-inducible signaling pathway protein 1 (WISP1/CCN4) stimulates melanoma invasion and metastasis by promoting the epithelial-mesenchymal transition. J Biol Chem 2019; 294:5261-5280. [PMID: 30723155 DOI: 10.1074/jbc.ra118.006122] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 01/26/2019] [Indexed: 01/03/2023] Open
Abstract
Besides intrinsic changes, malignant cells also release soluble signals that reshape their microenvironment. Among these signals is WNT1-inducible signaling pathway protein 1 (WISP1), a secreted matricellular protein whose expression is elevated in several cancers, including melanoma, and is associated with reduced survival of patients diagnosed with primary melanoma. Here, we found that WISP1 knockout increases cell proliferation and represses wound healing, migration, and invasion of mouse and human melanoma cells in multiple in vitro assays. Metastasis assays revealed that WISP1 knockout represses tumor metastasis of B16F10 and YUMM1.7 melanoma cells in both C57BL/6Ncrl and NOD-scid IL2Rγnull (NSG) mice. WT B16F10 cells having an invasion phenotype in a transwell assay possessed a gene expression signature similar to that observed in the epithelial-mesenchymal transition (EMT), including E-cadherin repression and fibronectin and N-cadherin induction. Upon WISP1 knockout, expression of these EMT signature genes went in the opposite direction in both mouse and human cell lines, and EMT-associated gene expression was restored upon exposure to media containing WISP1 or to recombinant WISP1 protein. In vivo, Wisp1 knockout-associated metastasis repression was reversed by the reintroduction of either WISP1 or snail family transcriptional repressor 1 (SNAI1). Experiments testing EMT gene activation and inhibition with recombinant WISP1 or kinase inhibitors in B16F10 and YUMM1.7 cells suggested that WISP1 activates AKT Ser/Thr kinase and that MEK/ERK signaling pathways shift melanoma cells from proliferation to invasion. Our results indicate that WISP1 present within the tumor microenvironment stimulates melanoma invasion and metastasis by promoting an EMT-like process.
Collapse
Affiliation(s)
- Wentao Deng
- From the Department of Microbiology, Immunology, and Cell Biology.,the West Virginia University Cancer Institute
| | - Audry Fernandez
- From the Department of Microbiology, Immunology, and Cell Biology.,the West Virginia University Cancer Institute
| | - Sarah L McLaughlin
- the West Virginia University Cancer Institute.,the Animal Models and Imaging Facility, and
| | - David J Klinke
- From the Department of Microbiology, Immunology, and Cell Biology, .,the West Virginia University Cancer Institute.,the Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, West Virginia 26505
| |
Collapse
|
68
|
|
69
|
Gonzalez D, Brandan E. CTGF/CCN2 from Skeletal Muscle to Nervous System: Impact on Neurodegenerative Diseases. Mol Neurobiol 2019; 56:5911-5916. [PMID: 30689195 DOI: 10.1007/s12035-019-1490-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 01/10/2019] [Indexed: 12/20/2022]
Abstract
Connective tissue growth factor (CTGF/CCN2) is a matricellular protein that belongs to the CCN family of proteins. Since its discovery, it has been linked to cellular processes such as cell proliferation, differentiation, adhesion, migration, and synthesis of extracellular matrix (ECM) components, among others. The pro-fibrotic role of CTGF/CCN2 has been well-studied in several pathologies characterized by the development of fibrosis. Reduction of CTGF/CCN2 levels in mdx mice, a murine model for Duchenne muscular dystrophy (DMD), decreases fibrosis and improves skeletal muscle phenotype and function. Recently, it has been shown that skeletal muscle of symptomatic hSOD1G93A mice, a model for Amyotrophic lateral sclerosis (ALS), shows up-regulation of CTGF/CCN2 accompanied by excessive deposition ECM molecules. Elevated levels of CTGF/CCN2 in spinal cord from ALS patients have been previously reported. However, there is no evidence regarding the role of CTGF/CCN2 in neurodegenerative diseases such as ALS, in which alterations in skeletal muscle seem to be the consequence of early pathological denervation. In this regard, the emerging evidence shows that CTGF/CCN2 also exerts non-fibrotic roles in the central nervous system (CNS), specifically impairing oligodendrocyte maturation and regeneration, and inhibiting axon myelination. Despite these striking observations, there is no evidence showing the role of CTGF/CCN2 in peripheral nerves. Therefore, even though more studies are needed to elucidate its precise role, CTGF/CCN2 is starting to emerge as a novel therapeutic target for the treatment of neurodegenerative diseases where demyelination and axonal degeneration occurs.
Collapse
Affiliation(s)
- David Gonzalez
- Centro de Envejecimiento y Regeneración, CARE Chile UC, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Libertador Bernardo O'Higgins 340, 8331150, Santiago, Chile
| | - Enrique Brandan
- Centro de Envejecimiento y Regeneración, CARE Chile UC, Pontificia Universidad Católica de Chile, Santiago, Chile. .,Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Libertador Bernardo O'Higgins 340, 8331150, Santiago, Chile.
| |
Collapse
|