51
|
Chen R, Xu X, Qian Z, Zhang C, Niu Y, Wang Z, Sun J, Zhang X, Yu Y. The biological functions and clinical applications of exosomes in lung cancer. Cell Mol Life Sci 2019; 76:4613-4633. [PMID: 31352532 PMCID: PMC11105651 DOI: 10.1007/s00018-019-03233-y] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 06/24/2019] [Accepted: 07/15/2019] [Indexed: 12/24/2022]
Abstract
Lung cancer remains the leading cause of cancer-related death worldwide, and the high incidence rates are worrisome. Exosomes are a class of extracellular vesicles secreted by most cells, including RNAs, proteins and lipids. Exosomes can mediate cell-to-cell communication in both physiologic and pathologic processes. Accumulated evidences show that cancer-derived exosomes aid in the recruitment and reprogramming of constituents correlated with tumor microenvironment. Furthermore, exosome-based clinical trials have been completed in advanced lung cancer patients. In this review, we discuss the roles of exosomes in a lung cancer microenvironment, such as its participation in lung cancer initiation, progression and metastasis as well as being involved in angiogenesis, epithelial-mesenchymal transition (EMT), immune escape, and drug resistance. In addition, we focus on the potential of exosomes as diagnostic and prognostic biomarkers in lung cancer, as well as the challenges faced by and advantages of exosomes as drug delivery vehicles and in exosome-based immunotherapy.
Collapse
Affiliation(s)
- Rui Chen
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Xin Xu
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Zijun Qian
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Congcong Zhang
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Yongjie Niu
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Zhixian Wang
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Jianli Sun
- Department of Oncology, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Xiao Zhang
- Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China.
| | - Yongchun Yu
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China.
- Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China.
| |
Collapse
|
52
|
Pedersen JL, Bokil NJ, Saunders BM. Developing new TB biomarkers, are miRNA the answer? Tuberculosis (Edinb) 2019; 118:101860. [PMID: 31472444 DOI: 10.1016/j.tube.2019.101860] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/19/2019] [Accepted: 08/20/2019] [Indexed: 12/14/2022]
Abstract
Efforts to reduce the global TB burden are hindered by the lack of simple, reliable non-sputum based diagnostics. To date studies investigating the biomarker potential of circulating host proteins and mRNA have not shown sufficient diagnostic utility. Recently, there has been increasing interest in circulating miRNA as a biomarker of TB disease. This review examined all published miRNA-TB biomarker studies to determine if a reproducible miRNA signature of TB disease could be elucidated. From 15 miRNA profiling studies, 894 miRNA differentially expressed between TB patients and healthy controls were identified in at least one study. Of these, 143 miRNA were validated by qPCR with 53 differentially expressed between TB patients and controls. Interestingly, only 8 of these miRNA were identified in 2 or more studies, and no consensus on a reproducible miRNA signature for identification of TB disease could be identified. TB disease is clearly associated with a wide breadth of differentially expressed miRNA. This review highlights our recent progress and the multiple factors, including environment, source of tissue, ethnicity and extent of TB disease that may influence miRNA expression. Coordinated efforts are required to validate identified targets in multiple populations to progress miRNA biomarker development.
Collapse
Affiliation(s)
- Jessica L Pedersen
- School of Life Sciences, Faculty of Science, University of Technology Sydney, 15 Broadway, Ultimo, Sydney, 2007, Australia.
| | - Nilesh J Bokil
- School of Life Sciences, Faculty of Science, University of Technology Sydney, 15 Broadway, Ultimo, Sydney, 2007, Australia.
| | - Bernadette M Saunders
- School of Life Sciences, Faculty of Science, University of Technology Sydney, 15 Broadway, Ultimo, Sydney, 2007, Australia.
| |
Collapse
|
53
|
Nicolè L, Cappello F, Cappellesso R, VandenBussche CJ, Fassina A. MicroRNA profiling in serous cavity specimens: Diagnostic challenges and new opportunities. Cancer Cytopathol 2019; 127:493-500. [DOI: 10.1002/cncy.22143] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 04/12/2019] [Accepted: 04/15/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Lorenzo Nicolè
- Surgical Pathology and Cytopathology Unit, Department of Medicine University of Padua Padua Italy
| | | | - Rocco Cappellesso
- Surgical Pathology and Cytopathology Unit, Department of Medicine University of Padua Padua Italy
| | - Christopher J. VandenBussche
- Department of Pathology Johns Hopkins University School of Medicine Baltimore Maryland
- Department of Oncology Johns Hopkins University School of Medicine Baltimore Maryland
| | - Ambrogio Fassina
- Surgical Pathology and Cytopathology Unit, Department of Medicine University of Padua Padua Italy
| |
Collapse
|
54
|
McVey MJ, Maishan M, Blokland KEC, Bartlett N, Kuebler WM. Extracellular vesicles in lung health, disease, and therapy. Am J Physiol Lung Cell Mol Physiol 2019; 316:L977-L989. [PMID: 30892076 DOI: 10.1152/ajplung.00546.2018] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Both physiological homeostasis and pathological disease processes in the lung typically result from complex, yet coordinated multicellular responses that are synchronized via paracrine and endocrine intercellular communication pathways. Of late, extracellular vesicles have emerged as important information shuttles that can coordinate and disseminate homeostatic and disease signals. In parallel, extracellular vesicles in biological fluids such as sputum, mucus, epithelial lining fluid, edema fluid, the pulmonary circulation, pleural fluid, and lymphatics have emerged as promising candidate biomarkers for diagnosis and prognosis in lung disease. Extracellular vesicles are small, subcellular, membrane-bound vesicles containing cargos from parent cells such as lipids, proteins, genetic information, or entire organelles. These cargos endow extracellular vesicles with biologically active information or functions by which they can reprogram their respective target cells. Recent studies show that extracellular vesicles found in lung-associated biological fluids play key roles as biomarkers and effectors of disease. Conversely, administration of naïve or engineered extracellular vesicles with homeostatic or reparative effects may provide a promising novel protective and regenerative strategy to treat lung disease. To highlight this rapidly developing field, the American Journal of Physiology-Lung Cellular and Molecular Physiology is now launching a special Call for Papers on extracellular vesicles in lung health, disease, and therapy. This review aims to set the stage for this call by introducing extracellular vesicles and their emerging roles in lung physiology and pathobiology.
Collapse
Affiliation(s)
- Mark J McVey
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital , Toronto, Ontario , Canada.,Department of Physiology, University of Toronto , Toronto, Ontario , Canada.,Department of Anesthesia, University of Toronto , Toronto, Ontario , Canada.,SickKids Department of Anesthesia and Pain Medicine , Toronto, Ontario , Canada
| | - Mazharul Maishan
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital , Toronto, Ontario , Canada
| | - Kaj E C Blokland
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales , Australia.,National Health and Medical Research Council Centre of Research Excellence in Pulmonary Fibrosis , Sydney, New South Wales , Australia.,Department of Pathology and Medical Biology, Groningen Research Institute for Asthma and COPD, University of Groningen, University Medical Center Groningen , Groningen , The Netherlands
| | - Nathan Bartlett
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales , Australia
| | - Wolfgang M Kuebler
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital , Toronto, Ontario , Canada.,Department of Physiology, University of Toronto , Toronto, Ontario , Canada.,Department of Surgery, University of Toronto , Toronto, Ontario , Canada.,Institute of Physiology, Charité-Universitätsmedizin Berlin, Berlin , Germany
| |
Collapse
|
55
|
Jabalee J, Towle R, Garnis C. The Role of Extracellular Vesicles in Cancer: Cargo, Function, and Therapeutic Implications. Cells 2018; 7:cells7080093. [PMID: 30071693 PMCID: PMC6115997 DOI: 10.3390/cells7080093] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 07/27/2018] [Accepted: 07/29/2018] [Indexed: 12/21/2022] Open
Abstract
Extracellular vesicles (EVs) are a heterogeneous collection of membrane-bound structures that play key roles in intercellular communication. EVs are potent regulators of tumorigenesis and function largely via the shuttling of cargo molecules (RNA, DNA, protein, etc.) among cancer cells and the cells of the tumor stroma. EV-based crosstalk can promote proliferation, shape the tumor microenvironment, enhance metastasis, and allow tumor cells to evade immune destruction. In many cases these functions have been linked to the presence of specific cargo molecules. Herein we will review various types of EV cargo molecule and their functional impacts in the context of oncology.
Collapse
Affiliation(s)
- James Jabalee
- Department of Integrative Oncology, British Columbia Cancer Research Center, Vancouver V5Z 1L3, BC, Canada.
| | - Rebecca Towle
- Department of Integrative Oncology, British Columbia Cancer Research Center, Vancouver V5Z 1L3, BC, Canada.
| | - Cathie Garnis
- Department of Integrative Oncology, British Columbia Cancer Research Center, Vancouver V5Z 1L3, BC, Canada.
- Division of Otolaryngology, Department of Surgery, University of British Columbia, Vancouver V6T 1Z4, BC, Canada.
| |
Collapse
|
56
|
Masaoutis C, Mihailidou C, Tsourouflis G, Theocharis S. Exosomes in lung cancer diagnosis and treatment. From the translating research into future clinical practice. Biochimie 2018; 151:27-36. [PMID: 29857182 DOI: 10.1016/j.biochi.2018.05.014] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 05/25/2018] [Indexed: 12/21/2022]
Abstract
Lung cancer is one of the main causes of cancer-related death worldwide. Despite advances in lung cancer pathophysiology, diagnosis and prognosis, a better understanding of the disease is strongly needed in order to establish novel diagnostic and therapeutic approaches that should improve treatment outcomes. Exosomes are a type of cell-secreted extracellular vesicles, which transfer a wide variety of biomolecules, such as proteins, mRNAs, microRNAs, and lipids, are implicated in intercellular communication and modulate tumor-host interactions. The potential value of exosomes and their contents in lung cancer diagnosis, prognosis and prediction of treatment outcome is supported by ample literature. Growing attention has been drawn specifically to the critical role of exosomal miRNAs in lung cancer pathogenesis and their potential clinical utility, especially due to their ability to modulate gene expression post-transcriptionally. Owing to their universal presence in the blood and other bodily fluids, exosomes are considered candidate biomarkers. Furthermore, their ability to deliver biomolecules and drugs to recipient cells renders them possible drug delivery vehicles in lung cancer. Here we review the pathological functions of exosomes in cancer and discuss their possible clinical utility as biomarkers and therapeutic agents in the management of lung cancer.
Collapse
Affiliation(s)
- Christos Masaoutis
- First Department of Pathology, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Gerasimos Tsourouflis
- Second Department of Propedeutic Surgery, National and Kapodistrian University of Athens, Athens, Greece
| | - Stamatios Theocharis
- First Department of Pathology, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
57
|
Yang T, Ge B. miRNAs in immune responses to Mycobacterium tuberculosis infection. Cancer Lett 2018; 431:22-30. [PMID: 29803788 DOI: 10.1016/j.canlet.2018.05.028] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/16/2018] [Accepted: 05/17/2018] [Indexed: 12/21/2022]
Abstract
Tuberculosis (TB) is one of the most fatal infectious diseases, affecting one third of the world's population. The causative agent, Mycobacterium tuberculosis (Mtb), has a well-established ability to circumvent the host's immune system for its long-term intracellular survival. MicroRNAs (miRNAs) are crucial post-transcriptional regulators of immune response. They act by negatively regulating the expression levels of important genes in both innate and adaptive immunity. It has been established in recent studies that the host immune response against Mtb is regulated by many miRNAs, most of which are induced by Mtb infection. Moreover, differential expression of miRNA in tuberculosis (TB) patients may help distinguish between TB patients and healthy individuals or latent TB. In this review, we present the recent advancements on the miRNA regulation of the host responses against Mtb infection, as well as the potential of miRNAs to as biomarkers for TB diagnosis.
Collapse
Affiliation(s)
- Tianshu Yang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China; Department of Microbiology and Immunology, Tongji University Medicine, Shanghai, China
| | - Baoxue Ge
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China; Department of Microbiology and Immunology, Tongji University Medicine, Shanghai, China.
| |
Collapse
|
58
|
Val S, Krueger A, Poley M, Cohen A, Brown K, Panigrahi A, Preciado D. Nontypeable Haemophilus influenzae lysates increase heterogeneous nuclear ribonucleoprotein secretion and exosome release in human middle-ear epithelial cells. FASEB J 2018; 32:1855-1867. [PMID: 29191962 DOI: 10.1096/fj.201700248rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nontypeable Haemophilus influenzae (NTHi), one of the most common acute otitis media (OM) pathogens, is postulated to promote middle-ear epithelial remodeling in the progression of OM from acute to chronic. The goal of this study was to examine early quantitative proteomic secretome effects of NTHi lysate exposure in a human middle-ear epithelial cell (HMEEC) line. NTHi lysates were used to stimulate HMEEC, and conditional quantitative stable isotope labeling with amino acids in cell culture of cell secretions was performed. Mass spectrometry analysis identified 766 proteins across samples. Of interest, several heterogeneous nuclear ribonucleoproteins (hnRNPs) were regulated by NTHi lysate treatment, especially hnRNP A2B1 and hnRNP Q, known to be implicated in microRNA (miRNA) packaging in exosomes. After purification, the presence of exosomes in HMEEC secretions was characterized by dynamic light scattering (<100 nm), transmission electron microscopy, and CD63/heat shock protein 70 positivity. hnRNP A2B1 and hnRNP Q were confirmed to be found in exosomes by Western blot and proteomic analysis. Finally, exosomal miRNA content comprised 110 unique miRNAs, with 5 found to be statistically induced by NTHi lysate (miR-378a-3p + miR-378i, miR-200a-3p, miR-378g, miR30d-5p, and miR-222-3p), all known to target innate immunity genes. This study demonstrates that NTHi lysates promote release of miRNA-laden exosomes from middle-ear epithelium in vitro. -Val, S., Krueger, A., Poley, M., Cohen, A., Brown, K., Panigrahi, A., Preciado, D. Nontypeable Haemophilus influenzae lysates increase heterogeneous nuclear ribonucleoprotein secretion and exosome release in human middle-ear epithelial cells.
Collapse
Affiliation(s)
- Stéphanie Val
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Health System, Washington, DC, USA
| | - Anna Krueger
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Health System, Washington, DC, USA
| | - Marian Poley
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Health System, Washington, DC, USA
| | - Ariella Cohen
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Health System, Washington, DC, USA
| | - Kristy Brown
- Center for Genetic Medicine Research, Children's National Health System, Washington, DC, USA
| | - Aswini Panigrahi
- Center for Genetic Medicine Research, Children's National Health System, Washington, DC, USA
| | - Diego Preciado
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Health System, Washington, DC, USA.,Division of Pediatric Otolaryngology, Children's National Health System, Washington, DC, USA
| |
Collapse
|
59
|
Etna MP, Sinigaglia A, Grassi A, Giacomini E, Romagnoli A, Pardini M, Severa M, Cruciani M, Rizzo F, Anastasiadou E, Di Camillo B, Barzon L, Fimia GM, Manganelli R, Coccia EM. Mycobacterium tuberculosis-induced miR-155 subverts autophagy by targeting ATG3 in human dendritic cells. PLoS Pathog 2018; 14:e1006790. [PMID: 29300789 PMCID: PMC5771628 DOI: 10.1371/journal.ppat.1006790] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 01/17/2018] [Accepted: 12/05/2017] [Indexed: 12/30/2022] Open
Abstract
Autophagy is a primordial eukaryotic pathway, which provides the immune system with multiple mechanisms for the elimination of invading pathogens including Mycobacterium tuberculosis (Mtb). As a consequence, Mtb has evolved different strategies to hijack the autophagy process. Given the crucial role of human primary dendritic cells (DC) in host immunity control, we characterized Mtb-DC interplay by studying the contribution of cellular microRNAs (miRNAs) in the post-transcriptional regulation of autophagy related genes. From the expression profile of de-regulated miRNAs obtained in Mtb-infected human DC, we identified 7 miRNAs whose expression was previously found to be altered in specimens of TB patients. Among them, gene ontology analysis showed that miR-155, miR-155* and miR-146a target mRNAs with a significant enrichment in biological processes linked to autophagy. Interestingly, miR-155 was significantly stimulated by live and virulent Mtb and enriched in polysome-associated RNA fraction, where actively translated mRNAs reside. The putative pair interaction among the E2 conjugating enzyme involved in LC3-lipidation and autophagosome formation-ATG3-and miR-155 arose by target prediction analysis, was confirmed by both luciferase reporter assay and Atg3 immunoblotting analysis of miR-155-transfected DC, which showed also a consistent Atg3 protein and LC3 lipidated form reduction. Late in infection, when miR-155 expression peaked, both the level of Atg3 and the number of LC3 puncta per cell (autophagosomes) decreased dramatically. In accordance, miR-155 silencing rescued autophagosome number in Mtb infected DC and enhanced autolysosome fusion, thereby supporting a previously unidentified role of the miR-155 as inhibitor of ATG3 expression. Taken together, our findings suggest how Mtb can manipulate cellular miRNA expression to regulate Atg3 for its own survival, and highlight the importance to develop novel therapeutic strategies against tuberculosis that would boost autophagy. Mycobacterium tuberculosis (Mtb) is one of the most successful pathogens in human history and remains the second leading cause of death from an infectious agent worldwide. The major reason of Mtb success relies on its ability to evade host immunity. Autophagy, a cellular mechanism involved in intracellular pathogen elimination, is one of the pathways hijacked by Mtb to elude the control of dendritic cells (DC), major cellular effectors of immune response. Recently, it has become clear that Mtb infection not only alters cellular gene expression, but also controls the level of small RNA molecules, namely microRNAs (miRNAs), which function as negative regulators of mRNA translation into protein. In the present study, we observed that the infection of human DC with Mtb leads to a strong induction of host miR-155, a critical regulator of host immune response. By mean of miR-155 induction, Mtb reduces Atg3 protein content, a crucial enzyme needed for the initial phase of the autophagic process. Interestingly, miR-155 silencing during Mtb infection restores Atg3 level and rescues autophagy. These findings contribute to better elucidate Mtb-triggered escape mechanisms and highlight the importance to develop host-directed therapies to combat tuberculosis based on autophagy boosting.
Collapse
Affiliation(s)
- Marilena P. Etna
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | | | - Angela Grassi
- Department of Information Engineering, University of Padova, Padua, Italy
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padua, Italy
| | - Elena Giacomini
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | | | - Manuela Pardini
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Martina Severa
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Melania Cruciani
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Fabiana Rizzo
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Eleni Anastasiadou
- Department of Pathology, Institute for RNA Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States of America
| | - Barbara Di Camillo
- Department of Information Engineering, University of Padova, Padua, Italy
| | - Luisa Barzon
- Department of Molecular Medicine, University of Padova, Padua, Italy
| | - Gian Maria Fimia
- National Institute for Infectious Diseases "L. Spallanzani”, Rome, Italy
- Department of Biological and Environmental Science and Technology, University of Salento, Lecce, Italy
| | | | - Eliana M. Coccia
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
- * E-mail:
| |
Collapse
|
60
|
Srivastava A, Amreddy N, Razaq M, Towner R, Zhao YD, Ahmed RA, Munshi A, Ramesh R. Exosomes as Theranostics for Lung Cancer. Adv Cancer Res 2018; 139:1-33. [PMID: 29941101 PMCID: PMC6548197 DOI: 10.1016/bs.acr.2018.04.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Extensive research in genetics and genomics has revealed that lung cancer is a physiologically complex and genetically heterogeneous disease. Although molecular targets that can yield favorable response have been identified, those targets cannot be exploited due to the lack of suitable drug carriers. Furthermore, lung cancer often is diagnosed at an advanced stage when the disease has metastasized. Conventional treatments are not effective for treating metastatic lung cancer. Targeted therapeutics while beneficial has challenges that include poor tumor-targeting, off-target effects, and development of resistance to therapy. Therefore, improved drug delivery systems that can deliver drugs specifically to tumor will produce improved treatment outcomes. Exosomes have a natural ability to carry functional biomolecules, such as small RNAs, DNAs, and proteins, in their lumen. This property makes exosomes attractive for use in drug delivery and molecular diagnosis. Moreover, exosomes can be attached to nanoparticles and used for high precision imaging. Exosomes are now considered an important component in liquid biopsy assessments, which are useful for detecting cancers, including lung cancer. Several studies are currently underway to develop methods of exploiting exosomes for use as efficient drug delivery vehicles and to develop novel diagnostic modalities. This chapter summarizes the current status of exosome studies with regard to their use as theranostics in lung cancer. Examples from other cancers have also been cited to illustrate the extensive applicability of exosomes to therapy and diagnosis.
Collapse
Affiliation(s)
- Akhil Srivastava
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Narsireddy Amreddy
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Mohammad Razaq
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States; Department of Medicine and Hematology Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Rheal Towner
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States; Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Yan Daniel Zhao
- Department of Medicine and Hematology Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States; Department of Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Rebaz A Ahmed
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States; Graduate Program in Biomedical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Anupama Munshi
- Department of Medicine and Hematology Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States; Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Rajagopal Ramesh
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States; Department of Medicine and Hematology Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States; Graduate Program in Biomedical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.
| |
Collapse
|
61
|
Cui S, Cheng Z, Qin W, Jiang L. Exosomes as a liquid biopsy for lung cancer. Lung Cancer 2017; 116:46-54. [PMID: 29413050 DOI: 10.1016/j.lungcan.2017.12.012] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 12/04/2017] [Accepted: 12/17/2017] [Indexed: 12/16/2022]
Abstract
In lung cancer and other malignancies, the so-called "liquid biopsy" is quickly moving into clinical practice. Its full potential has not yet been fully identified, but the "liquid biopsy" is no longer a promise but has become a reality that allows for better treatment selection and monitoring of lung cancer. This emerging field has significant potential to make up for the limitations of the traditional tissue-derived biomaterials. Exosomes are spherical nano-sized vesicles with a diameter of 40-100 nm and a density of 1.13-1.19 g/ml. In both physiological and pathological conditions, exosomes can be released by different cell types, including immune cells, stem cells and tumor cells. These small molecules may serve as promising biomarkers in lung cancer "liquid biopsy" as they can be easily obtained from most body fluids. In addition, the lipid bilayer of exosomes allows for stable cargoes which are relatively hard to degrade. Furthermore, the composition of exosomes reflects that of their parental cells, suggesting that exosomes are potential surrogates of the original cells and, therefore, are useful for understanding cell biology. Previous studies have demonstrated that exosomes play important roles in cell-to-cell communication. Moreover, tumor-derived exosomes are evolved in tumor-specific biological process, including tumor proliferation and progression. Recently, a growing number of studies has focused on exosomal cargo and their use in lung cancer genesis and progression. In addition, their utility as lung cancer diagnostic, prognostic and predictive biomarkers have also been studied. The current review primarily summaries lung cancer-related exosomal biomarkers that have recently been identified and discusses their potential in clinical practice.
Collapse
Affiliation(s)
- Shaohua Cui
- Department of Respiratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, China; State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, China
| | - Zhuoan Cheng
- School of Biomedical Engineering, Shanghai Jiao Tong University, China
| | - Wenxin Qin
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, China.
| | - Liyan Jiang
- Department of Respiratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, China.
| |
Collapse
|
62
|
安 泰, 郑 磊. [Progress and analysis methods of clinical application of extracellular vesicles]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2017; 37:1559-1562, 封三. [PMID: 29180342 PMCID: PMC6779649 DOI: 10.3969/j.issn.1673-4254.2017.11.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Indexed: 06/07/2023]
Abstract
Extracellular vesicles (EVs) are small vesicles released by cells, which contain proteins and miRNA. It is a new research field in recent years. EVs change accordingly in a variety of diseases. These vesicles can sensitively reflect the pathological changes of the body. Compared with tissue biopsy, EVs detection have the advantages of non-invasive, simple sampling and real-time monitoring. EVs are becoming new diagnostic marker. This article reviews the current status and progress of EVs in clinical application.
Collapse
Affiliation(s)
- 泰学 安
- />南方医科大学南方医院检验医学科,广东 广州 510515Department of Laboratory Medicine, Nanfang Hospital of Southern
Medical University, Guangzhou 510515, China
| | - 磊 郑
- />南方医科大学南方医院检验医学科,广东 广州 510515Department of Laboratory Medicine, Nanfang Hospital of Southern
Medical University, Guangzhou 510515, China
| |
Collapse
|
63
|
Wang Y, Xu YM, Zou YQ, Lin J, Huang B, Liu J, Li J, Zhang J, Yang WM, Min QH, Li SQ, Gao QF, Sun F, Chen QG, Zhang L, Jiang YH, Deng LB, Wang XZ. Identification of differential expressed PE exosomal miRNA in lung adenocarcinoma, tuberculosis, and other benign lesions. Medicine (Baltimore) 2017; 96:e8361. [PMID: 29095265 PMCID: PMC5682784 DOI: 10.1097/md.0000000000008361] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Pleural effusion (PE) is a common clinical complication of many pulmonary and systemic diseases, including lung cancer and tuberculosis. Nevertheless, there is no clinical effective biomarker to identify the cause of PE. We attempted to investigate differential expressed exosomal miRNAs in PEs of lung adenocarcinoma (APE), tuberculous (TPE), and other benign lesions (NPE) by using deep sequencing and quantitative polymerase chain reaction (qRT-PCR). As a result, 171 differentiated miRNAs were observed in 3 groups of PEs, and 11 significantly differentiated exosomal miRNAs were validated by qRT-PCR. We identified 9 miRNAs, including miR-205-5p, miR-483-5p, miR-375, miR-200c-3p, miR-429, miR-200b-3p, miR-200a-3p, miR-203a-3p, and miR-141-3p which were preferentially represented in exosomes derived from APE when compared with TPE or NPE, while 3 miRNAs, including miR-148a-3p, miR-451a, and miR-150-5p, were differentially expressed between TPE and NPE. These different miRNAs profiles may hold promise as biomarkers for differential diagnosis of PEs with more validation based on larger cohorts.
Collapse
Affiliation(s)
- Yan Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Jiangxi
- Department of Hematology, The Affiliated Hospital of Guizhou Medical University, Guizhou
| | - Yan-Mei Xu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Jiangxi
| | - Ye-Qing Zou
- The Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University
| | - Jin Lin
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Jiangxi
| | - Bo Huang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Jiangxi
| | - Jing Liu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Jiangxi
| | - Jing Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Nanchang University
| | - Jing Zhang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Jiangxi
| | - Wei-Ming Yang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Jiangxi
| | - Qing-Hua Min
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Jiangxi
| | - Shu-Qi Li
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Jiangxi
| | - Qiu-Fang Gao
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Jiangxi
| | - Fan Sun
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Jiangxi
| | - Qing-Gen Chen
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Jiangxi
| | - Lei Zhang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Jiangxi
| | - Yu-Huan Jiang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Jiangxi
| | - Li-Bin Deng
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Jiangxi
- Institute of Translational Medicine, Nanchang University, Jiangxi, China
| | - Xiao-Zhong Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Jiangxi
| |
Collapse
|
64
|
Zhang R, Xu J, Zhao J, Bai J. Mir-30d suppresses cell proliferation of colon cancer cells by inhibiting cell autophagy and promoting cell apoptosis. Tumour Biol 2017. [PMID: 28651493 DOI: 10.1177/1010428317703984] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Rui Zhang
- Department of Colorectal Surgery, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, Shenyang, P.R. China
| | - Jian Xu
- Department of Colorectal Surgery, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, Shenyang, P.R. China
| | - Jian Zhao
- Department of Colorectal Surgery, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, Shenyang, P.R. China
| | - Jinghui Bai
- Department of Internal Medicine, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, Shenyang, P.R. China
| |
Collapse
|
65
|
Ansari J, Yun JW, Kompelli AR, Moufarrej YE, Alexander JS, Herrera GA, Shackelford RE. The liquid biopsy in lung cancer. Genes Cancer 2017; 7:355-367. [PMID: 28191282 PMCID: PMC5302037 DOI: 10.18632/genesandcancer.127] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The incidence of lung cancer has significantly increased over the last century, largely due to smoking, and remains the most common cause of cancer deaths worldwide. This is often due to lung cancer first presenting at late stages and a lack of curative therapeutic options at these later stages. Delayed diagnoses, inadequate tumor sampling, and lung cancer misdiagnoses are also not uncommon due to the limitations of the tissue biopsy. Our better understanding of the tumor microenvironment and the systemic actions of tumors, combined with the recent advent of the liquid biopsy, may allow molecular diagnostics to be done on circulating tumor markers, particularly circulating tumor DNA. Multiple liquid biopsy molecular methods are presently being examined to determine their efficacy as surrogates to the tumor tissue biopsy. This review will focus on new liquid biopsy technologies and how they may assist in lung cancer detection, diagnosis, and treatment.
Collapse
Affiliation(s)
- Junaid Ansari
- Feist Weiller Cancer Center, LSU Health Shreveport, LA, USA; Department of Molecular and Cellular Physiology, LSU Health Sciences Center, Shreveport, LA, USA
| | - Jungmi W Yun
- Department of Molecular and Cellular Physiology, LSU Health Sciences Center, Shreveport, LA, USA
| | | | | | - Jonathan S Alexander
- Department of Molecular and Cellular Physiology, LSU Health Sciences Center, Shreveport, LA, USA
| | | | | |
Collapse
|