51
|
3D bioprinted hyaluronic acid-based cell-laden scaffold for brain microenvironment simulation. Biodes Manuf 2020. [DOI: 10.1007/s42242-020-00076-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
52
|
|
53
|
Wang Y, Wang Y, Mei D, Yu Z, Xue D. Standing surface acoustic wave-assisted fabrication of patterned microstructures for enhancing cell migration. Biodes Manuf 2020. [DOI: 10.1007/s42242-020-00071-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
54
|
Hoehne JL, Carlstron R, Dernorwsek J, Cristovam PC, Bachiega HL, Abensur SI, Schor P. Piezoelectric 3D bioprinting for ophthalmological applications: process development and viability analysis of the technology. Biomed Phys Eng Express 2020; 6:035021. [PMID: 33438666 DOI: 10.1088/2057-1976/ab7bf9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Piezoelectric inkjet 3D bioprinting technology is a viable technique for ophthalmological applications. It provides versatility, high sensibility and accuracy, required in ophthalmological procedures. A process flow for biofabrication was described in detail and validated, using piezoelectric inkjet technology, for ophthalmological applications, in vitro and in situ, based on complex images. Ophthalmological problems were documented by diagnostic examinations and were fed to the flow as complex images. The Concept Mapping methodology and the Conceptual Design approach were utilized to elaborate the 3D bioprinting process flow. It was developed a bioink with corneal epithelial cells. To simulate an in situ bioprinting process, eyes of pigs were selected as the substrate to print the cells. Print scripts used the digitally treated images. In order to print on predefined locations, alignment devices and sample holders were built. The proposed process flow has shown to be a potential tool for the biofabrication of ophthalmological solutions.
Collapse
Affiliation(s)
- Juliana Lopes Hoehne
- Department of Ophthalmology and Visual Science, Escola Paulista de Medicina (Sao Paulo School of Medicine), Federal University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Regina Carlstron
- Department of Ophthalmology and Visual Science, Escola Paulista de Medicina (Sao Paulo School of Medicine), Federal University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Janaína Dernorwsek
- Department of Ophthalmology and Visual Science, Escola Paulista de Medicina (Sao Paulo School of Medicine), Federal University of Sao Paulo, Sao Paulo, SP, Brazil.,Renato Archer Information Technology Centre (CTI), Campinas, SP, Brazil
| | - Priscila Cardoso Cristovam
- Department of Ophthalmology and Visual Science, Escola Paulista de Medicina (Sao Paulo School of Medicine), Federal University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Helder Luiz Bachiega
- Department of Ophthalmology and Visual Science, Escola Paulista de Medicina (Sao Paulo School of Medicine), Federal University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Silvia Itzcovici Abensur
- Department of Ophthalmology and Visual Science, Escola Paulista de Medicina (Sao Paulo School of Medicine), Federal University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Paulo Schor
- Department of Ophthalmology and Visual Science, Escola Paulista de Medicina (Sao Paulo School of Medicine), Federal University of Sao Paulo, Sao Paulo, SP, Brazil
| |
Collapse
|
55
|
Mao Q, Wang Y, Li Y, Juengpanich S, Li W, Chen M, Yin J, Fu J, Cai X. Fabrication of liver microtissue with liver decellularized extracellular matrix (dECM) bioink by digital light processing (DLP) bioprinting. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 109:110625. [DOI: 10.1016/j.msec.2020.110625] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 12/16/2019] [Accepted: 01/01/2020] [Indexed: 02/07/2023]
|
56
|
3D Printing of Gelled and Cross-Linked Cellulose Solutions, an Exploration of Printing Parameters and Gel Behaviour. Bioengineering (Basel) 2020; 7:bioengineering7020030. [PMID: 32230746 PMCID: PMC7356911 DOI: 10.3390/bioengineering7020030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 11/16/2022] Open
Abstract
In recent years, 3D printing has enabled the fabrication of complex designs, with low-cost customization and an ever-increasing range of materials. Yet, these abilities have also created an enormous challenge in optimizing a large number of process parameters, especially in the 3D printing of swellable, non-toxic, biocompatible and biodegradable materials, so-called bio-ink materials. In this work, a cellulose gel, made out of aqueous solutions of cellulose, sodium hydroxide and urea, was used to demonstrate the formation of a shear thinning bio-ink material necessary for an extrusion-based 3D printing. After analysing the shear thinning behaviour of the cellulose gel by rheometry a Design of Experiments (DoE) was applied to optimize the 3D bioprinter settings for printing the cellulose gel. The optimum print settings were then used to print a human ear shape, without a need for support material. The results clearly indicate that the found settings allow the printing of more complex parts with high-fidelity. This confirms the capability of the applied method to 3D print a newly developed bio-ink material.
Collapse
|
57
|
Yi T, Zhou C, Ma L, Wu L, Xu X, Gu L, Fan Y, Xian G, Fan H, Zhang X. Direct 3‐D printing of Ti‐6Al‐4V/HA composite porous scaffolds for customized mechanical properties and biological functions. J Tissue Eng Regen Med 2020; 14:486-496. [DOI: 10.1002/term.3013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/12/2019] [Accepted: 01/25/2020] [Indexed: 01/06/2023]
Affiliation(s)
- Tao Yi
- School of Mechanical EngineeringSichuan University Chengdu China
| | - Changchun Zhou
- National Engineering Research Center for BiomaterialsSichuan University Chengdu China
| | - Liang Ma
- State Key Laboratory of Fluid Power & Mechatronic Systems, School of Mechanical EngineeringZhejiang University Hangzhou China
| | - Lina Wu
- National Engineering Research Center for BiomaterialsSichuan University Chengdu China
| | - Xiujuan Xu
- National Engineering Research Center for BiomaterialsSichuan University Chengdu China
| | - Linxia Gu
- Department of Mechanical and Materials EngineeringUniversity of Nebraska‐Lincoln Lincoln Nebraska
| | - Yujiang Fan
- National Engineering Research Center for BiomaterialsSichuan University Chengdu China
| | - Guang Xian
- School of Mechanical EngineeringSichuan University Chengdu China
| | - Hongyuan Fan
- School of Mechanical EngineeringSichuan University Chengdu China
| | - Xingdong Zhang
- National Engineering Research Center for BiomaterialsSichuan University Chengdu China
| |
Collapse
|
58
|
Zhang B, Gao L, Xue Q, Cui Z, Ma L, Yang H. Strengths, weaknesses, and applications of computational axial lithography in tissue engineering. Biodes Manuf 2020. [DOI: 10.1007/s42242-020-00057-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
59
|
Hamidi A, Almubarak Y, Tadesse Y. Multidirectional 3D-printed functionally graded modular joint actuated by TCPFL muscles for soft robots. Biodes Manuf 2019. [DOI: 10.1007/s42242-019-00055-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
60
|
Frost BA, Sutliff BP, Thayer P, Bortner MJ, Foster EJ. Gradient Poly(ethylene glycol) Diacrylate and Cellulose Nanocrystals Tissue Engineering Composite Scaffolds via Extrusion Bioprinting. Front Bioeng Biotechnol 2019; 7:280. [PMID: 31681754 PMCID: PMC6813186 DOI: 10.3389/fbioe.2019.00280] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 10/03/2019] [Indexed: 11/25/2022] Open
Abstract
Bioprinting has advanced drastically in the last decade, leading to many new biomedical applications for tissue engineering and regenerative medicine. However, there are still a myriad of challenges to overcome, with vast amounts of research going into bioprinter technology, biomaterials, cell sources, vascularization, innervation, maturation, and complex 4D functionalization. Currently, stereolithographic bioprinting is the primary technique for polymer resin bioinks. However, it lacks the ability to print multiple cell types and multiple materials, control directionality of materials, and place fillers, cells, and other biological components in specific locations among the scaffolds. This study sought to create bioinks from a typical polymer resin, poly(ethylene glycol) diacrylate (PEGDA), for use in extrusion bioprinting to fabricate gradient scaffolds for complex tissue engineering applications. Bioinks were created by adding cellulose nanocrystals (CNCs) into the PEGDA resin at ratios from 95/5 to 60/40 w/w PEGDA/CNCs, in order to reach the viscosities needed for extrusion printing. The bioinks were cast, as well as printed into single-material and multiple-material (gradient) scaffolds using a CELLINK BIOX printer, and crosslinked using lithium phenyl-2,4,6-trimethylbenzoylphosphinate as the photoinitiator. Thermal and mechanical characterizations were performed on the bioinks and scaffolds using thermogravimetric analysis, rheology, and dynamic mechanical analysis. The 95/5 w/w composition lacked the required viscosity to print, while the 60/40 w/w composition displayed extreme brittleness after crosslinking, making both CNC compositions non-ideal. Therefore, only the bioink compositions of 90/10, 80/20, and 70/30 w/w were used to produce gradient scaffolds. The gradient scaffolds were printed successfully and embodied unique mechanical properties, utilizing the benefits of each composition to increase mechanical properties of the scaffold as a whole. The bioinks and gradient scaffolds successfully demonstrated tunability of their mechanical properties by varying CNC content within the bioink composition and the compositions used in the gradient scaffolds. Although stereolithographic bioprinting currently dominates the printing of PEGDA resins, extrusion bioprinting will allow for controlled directionality, cell placement, and increased complexity of materials and cell types, improving the reliability and functionality of the scaffolds for tissue engineering applications.
Collapse
Affiliation(s)
- Brody A. Frost
- Department of Materials Science and Engineering, Macromolecules Innovation Institute, Blacksburg, VA, United States
| | - Bradley P. Sutliff
- Department of Chemical Engineering, Macromolecules Innovation Institute, Blacksburg, VA, United States
| | - Patrick Thayer
- CELLINK® LLC., Virginia Tech, Blacksburg, VA, United States
| | - Michael J. Bortner
- Department of Chemical Engineering, Macromolecules Innovation Institute, Blacksburg, VA, United States
| | - E. Johan Foster
- Department of Materials Science and Engineering, Macromolecules Innovation Institute, Blacksburg, VA, United States
| |
Collapse
|
61
|
Bociaga D, Bartniak M, Grabarczyk J, Przybyszewska K. Sodium Alginate/Gelatine Hydrogels for Direct Bioprinting-The Effect of Composition Selection and Applied Solvents on the Bioink Properties. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E2669. [PMID: 31443354 PMCID: PMC6747833 DOI: 10.3390/ma12172669] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/03/2019] [Accepted: 08/19/2019] [Indexed: 12/11/2022]
Abstract
Hydrogels tested and evaluated in this study were developed for the possibility of their use as the bioinks for 3D direct bioprinting. Procedures for preparation and sterilization of hydrogels and the speed of the bioprinting were developed. Sodium alginate gelatine hydrogels were characterized in terms of printability, mechanical, and biological properties (viability, proliferation ability, biocompatibility). A hydrogel with the best properties was selected to carry out direct bioprinting tests in order to determine the parameters of the bioink, adapted to print with use of the designed and constructed bioprinter and provide the best conditions for cell growth. The obtained results showed the ability to control mechanical properties, biological response, and degradation rate of hydrogels through the use of various solvents. The use of a dedicated culture medium as a solvent for the preparation of a bioink, containing the predicted cell line, increases the proliferation of these cells. Modification of the percentage of individual components of the hydrogel gives the possibility of a controlled degradation process, which, in the case of printing of temporary medical devices, is a very important parameter for the hydrogels' usage possibility-both in terms of tissue engineering and printing of tissue elements replacement, implants, and organs.
Collapse
Affiliation(s)
- Dorota Bociaga
- Faculty of Mechanical Engineering, Institute of Materials Science and Engineering, Lodz University of Technology, 1/15 Stefanowskiego St., 90-924 Lodz, Poland.
| | - Mateusz Bartniak
- Faculty of Mechanical Engineering, Institute of Materials Science and Engineering, Lodz University of Technology, 1/15 Stefanowskiego St., 90-924 Lodz, Poland
| | - Jacek Grabarczyk
- Faculty of Mechanical Engineering, Institute of Materials Science and Engineering, Lodz University of Technology, 1/15 Stefanowskiego St., 90-924 Lodz, Poland
| | - Karolina Przybyszewska
- Faculty of Mechanical Engineering, Institute of Materials Science and Engineering, Lodz University of Technology, 1/15 Stefanowskiego St., 90-924 Lodz, Poland
| |
Collapse
|
62
|
Suo H, Li L, Zhang C, Yin J, Xu K, Liu J, Fu J. Glucosamine‐grafted methacrylated gelatin hydrogels as potential biomaterials for cartilage repair. J Biomed Mater Res B Appl Biomater 2019; 108:990-999. [DOI: 10.1002/jbm.b.34451] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 06/09/2019] [Accepted: 07/11/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Hairui Suo
- The State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical EngineeringZhejiang University Hangzhou China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical EngineeringZhejiang University Hangzhou China
- School of AutomationHangzhou Dianzi University Hangzhou China
| | - Liang Li
- Department of OrthopedicsNo. 906 Hospital of People's Liberation Army Ningbo China
| | - Chuanxin Zhang
- Adult Joint Reconstruction and Sports Medicine Center, Department of Orthopaedics, Changzheng HospitalSecond Military Medical University Shanghai China
| | - Jun Yin
- The State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical EngineeringZhejiang University Hangzhou China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical EngineeringZhejiang University Hangzhou China
| | - Kedi Xu
- Qiushi Academy for Advanced Studies (QAAS)Zhejiang University Hangzhou China
- Department of Biomedical Engineering, Key Laboratory of Biomedical Engineering of Education MinistryZhejiang University Hangzhou China
| | - Jingyi Liu
- The State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical EngineeringZhejiang University Hangzhou China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical EngineeringZhejiang University Hangzhou China
| | - Jianzhong Fu
- The State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical EngineeringZhejiang University Hangzhou China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical EngineeringZhejiang University Hangzhou China
| |
Collapse
|
63
|
‘Living’ Inks for 3D Bioprinting. Trends Biotechnol 2019; 37:795-796. [DOI: 10.1016/j.tibtech.2019.04.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 04/27/2019] [Accepted: 04/29/2019] [Indexed: 11/17/2022]
|
64
|
Zhang B, Xue Q, Li J, Ma L, Yao Y, Ye H, Cui Z, Yang H. 3D bioprinting for artificial cornea: Challenges and perspectives. Med Eng Phys 2019; 71:68-78. [PMID: 31201014 DOI: 10.1016/j.medengphy.2019.05.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/26/2019] [Accepted: 05/13/2019] [Indexed: 12/13/2022]
Abstract
Corneal disease is one of the most important causes of blindness worldwide. Currently, the dominating treatment of corneal blindness is corneal transplantation. However, the main source of cornea for transplantation is based on donations which is far from enough to meet the requirement (less than 1:70 of cases). The severe shortage of donor cornea promotes the studies of effective corneal alternatives. However, many problems remain and can't be solved in current researches, such as original geometry reconstruction and ocular optical function restoring. 3D bioprinting can be a promising approach for corneal substitution. The advantages of this technology in corneal regeneration enable personalized corneal implant and single or multi-layer corneal equivalents with controllable structure and designed refractive ability. In this review, the progress, applications and limitations of most influential works among current keratoprosthesis and tissue-engineering cornea researches are discussed. Then the applications of 3D bioprinting in manufacturing multi-layered structures and surface are mentioned. Further, the potential, advantages in current research of 3D bioprinting single or multi-layer corneal equivalents and alternatives are discussed. Finally, an insight into the technical challenges and prospective facing the future research of 3D bioprinting corneal alternatives in vivo and in vitro is provided.
Collapse
Affiliation(s)
- Bin Zhang
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou (310058), People's Republic of China; School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Qian Xue
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou (310058), People's Republic of China; School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Jintao Li
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou (310058), People's Republic of China; School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Liang Ma
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou (310058), People's Republic of China; School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, People's Republic of China.
| | - Yufeng Yao
- Department of Ophthalmology, Sir Run Shaw Hospital, Zhejiang University School of Medicine, 3 Qingchun Road East Hangzhou 310016, Zhejiang Province, People's Republic of China
| | - Hua Ye
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, OX1 3PJ, UK
| | - Zhanfeng Cui
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, OX1 3PJ, UK
| | - Huayong Yang
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou (310058), People's Republic of China; School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, People's Republic of China
| |
Collapse
|
65
|
Abstract
Biomaterials as we know them today had their origins in the late 1940s with off-the-shelf commercial polymers and metals. The evolution of materials for medical applications from these simple origins has been rapid and impactful. This review relates some of the early history; addresses concerns after two decades of development in the twenty-first century; and discusses how advanced technologies in both materials science and biology will address concerns, advance materials used at the biointerface, and improve outcomes for patients.
Collapse
Affiliation(s)
- Buddy D. Ratner
- Departments of Bioengineering and Chemical Engineering, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
66
|
Wragg NM, Burke L, Wilson SL. A critical review of current progress in 3D kidney biomanufacturing: advances, challenges, and recommendations. RENAL REPLACEMENT THERAPY 2019. [DOI: 10.1186/s41100-019-0218-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
67
|
|
68
|
|
69
|
Bioprinting Technologies in Tissue Engineering. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2019; 171:279-319. [DOI: 10.1007/10_2019_108] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
70
|
Yang G, Pang G, Pang Z, Gu Y, Mantysalo M, Yang H. Non-Invasive Flexible and Stretchable Wearable Sensors With Nano-Based Enhancement for Chronic Disease Care. IEEE Rev Biomed Eng 2018; 12:34-71. [PMID: 30571646 DOI: 10.1109/rbme.2018.2887301] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Advances in flexible and stretchable electronics, functional nanomaterials, and micro/nano manufacturing have been made in recent years. These advances have accelerated the development of wearable sensors. Wearable sensors, with excellent flexibility, stretchability, durability, and sensitivity, have attractive application prospects in the next generation of personal devices for chronic disease care. Flexible and stretchable wearable sensors play an important role in endowing chronic disease care systems with the capability of long-term and real-time tracking of biomedical signals. These signals are closely associated with human body chronic conditions, such as heart rate, wrist/neck pulse, blood pressure, body temperature, and biofluids information. Monitoring these signals with wearable sensors provides a convenient and non-invasive way for chronic disease diagnoses and health monitoring. In this review, the applications of wearable sensors in chronic disease care are introduced. In addition, this review exploits a comprehensive investigation of requirements for flexibility and stretchability, and methods of nano-based enhancement. Furthermore, recent progress in wearable sensors-including pressure, strain, electrophysiological, electrochemical, temperature, and multifunctional sensors-is presented. Finally, opening research challenges and future directions of flexible and stretchable sensors are discussed.
Collapse
|
71
|
Development of Flexible Robot Skin for Safe and Natural Human⁻Robot Collaboration. MICROMACHINES 2018; 9:mi9110576. [PMID: 30400665 PMCID: PMC6266199 DOI: 10.3390/mi9110576] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 10/31/2018] [Accepted: 11/03/2018] [Indexed: 12/27/2022]
Abstract
For industrial manufacturing, industrial robots are required to work together with human counterparts on certain special occasions, where human workers share their skills with robots. Intuitive human–robot interaction brings increasing safety challenges, which can be properly addressed by using sensor-based active control technology. In this article, we designed and fabricated a three-dimensional flexible robot skin made by the piezoresistive nanocomposite based on the need for enhancement of the security performance of the collaborative robot. The robot skin endowed the YuMi robot with a tactile perception like human skin. The developed sensing unit in the robot skin showed the one-to-one correspondence between force input and resistance output (percentage change in impedance) in the range of 0–6.5 N. Furthermore, the calibration result indicated that the developed sensing unit is capable of offering a maximum force sensitivity (percentage change in impedance per Newton force) of 18.83% N−1 when loaded with an external force of 6.5 N. The fabricated sensing unit showed good reproducibility after loading with cyclic force (0–5.5 N) under a frequency of 0.65 Hz for 3500 cycles. In addition, to suppress the bypass crosstalk in robot skin, we designed a readout circuit for sampling tactile data. Moreover, experiments were conducted to estimate the contact/collision force between the object and the robot in a real-time manner. The experiment results showed that the implemented robot skin can provide an efficient approach for natural and secure human–robot interaction.
Collapse
|
72
|
Nie J, Gao Q, Wang Y, Zeng J, Zhao H, Sun Y, Shen J, Ramezani H, Fu Z, Liu Z, Xiang M, Fu J, Zhao P, Chen W, He Y. Vessel-on-a-chip with Hydrogel-based Microfluidics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1802368. [PMID: 30307698 DOI: 10.1002/smll.201802368] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 09/18/2018] [Indexed: 05/20/2023]
Abstract
Hydrogel structures equipped with internal microchannels offer more in vivo-relevant models for construction of tissues and organs in vitro. However, currently used microfabrication methods of constructing microfluidic devices are not suitable for the handling of hydrogel. This study presents a novel method of fabricating hydrogel-based microfluidic chips by combining the casting and bonding processes. A twice cross-linking strategy is designed to obtain a bonding interface that has the same strength with the hydrogel bulk, which can be applied to arbitrary combinations of hydrogels. It is convenient to achieve the construction of hydrogel structures with channels in branched, spiral, serpentine, and multilayer forms. The experimental results show that the combination of gelatin and gelatin methacrylate (GelMA) owns the best biocompatibility and can promote cell functionalization. Based on these, a vessel-on-a-chip system with vascular function in both physiological and pathological situations is established, providing a promising model for further investigations such as vascularization, vascular inflammation, tissue engineering, and drug development. Taken together, a facile and cytocompatible approach is developed for engineering a user-defined hydrogel-based chip that can be potentially useful in developing vascularized tissue or organ models.
Collapse
Affiliation(s)
- Jing Nie
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Qing Gao
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yidong Wang
- Department of Cardiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Jiahui Zeng
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Haiming Zhao
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yuan Sun
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jian Shen
- Department of Cardiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Hamed Ramezani
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhenliang Fu
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhenjie Liu
- Department of Vascular Surgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Meixiang Xiang
- Department of Cardiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Jianzhong Fu
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Peng Zhao
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Wei Chen
- Children's Hospital Affiliated and Institute of Translational Medicine, Medical School, Zhejiang University, Hangzhou, 310029, China
| | - Yong He
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
73
|
O’Neill AM, Gallo RL. Host-microbiome interactions and recent progress into understanding the biology of acne vulgaris. MICROBIOME 2018; 6:177. [PMID: 30285861 PMCID: PMC6169095 DOI: 10.1186/s40168-018-0558-5] [Citation(s) in RCA: 162] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 09/11/2018] [Indexed: 05/07/2023]
Abstract
Acne is one of the most common skin diseases worldwide and results in major health care costs and significant morbidity to severely affected individuals. However, the pathophysiology of this disorder is not well understood. Host-microbiome interactions that affect both innate and adaptive immune homeostasis appear to be a central factor in this disease, with recent observations suggesting that the composition and activities of the microbiota in acne is perturbed. Staphylococcus epidermidis and Cutibacterium acnes (C. acnes; formerly Propionibacterium acnes) are two major inhabitants of the skin that are thought to contribute to the disease but are also known to promote health by inhibiting the growth and invasion of pathogens. Because C. acnes is ubiquitous in sebaceous-rich skin, it is typically labeled as the etiological agent of acne yet it fails to fulfill all of Koch's postulates. The outdated model of acne progression proposes that increased sebum production promotes over-proliferation of C. acnes in a plugged hair follicle, thereby driving inflammation. In contrast, growing evidence indicates that C. acnes is equally abundant in both unaffected and acne-affected follicles. Moreover, recent advances in metagenomic sequencing of the acne microbiome have revealed a diverse population structure distinct from healthy individuals, uncovering new lineage-specific virulence determinants. In this article, we review recent developments in the interactions of skin microbes with host immunity, discussing the contribution of dysbiosis to the immunobiology of acne and newly emerging skin microbiome-based therapeutics to treat acne.
Collapse
Affiliation(s)
- Alan M. O’Neill
- Department of Dermatology, University of California San Diego, La Jolla, CA 92037 USA
| | - Richard L. Gallo
- Department of Dermatology, University of California San Diego, La Jolla, CA 92037 USA
- Department of Dermatology, University of California San Diego, 9500 Gillman Dr., #0869, La Jolla, CA 92093 USA
| |
Collapse
|
74
|
Ma L, Zhang B, Zhou C, Li Y, Li B, Yu M, Luo Y, Gao L, Zhang D, Xue Q, Qiu Q, Lin B, Zou J, Yang H. The comparison genomics analysis with glioblastoma multiforme (GBM) cells under 3D and 2D cell culture conditions. Colloids Surf B Biointerfaces 2018; 172:665-673. [PMID: 30243220 DOI: 10.1016/j.colsurfb.2018.09.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 07/27/2018] [Accepted: 09/14/2018] [Indexed: 12/16/2022]
Abstract
GBM, the most common and aggressive malignant primary brain tumors which needs new research approach to reveal the underline molecular mechanism of tumor progression. The 3D in vitro tumor model can be a simple and effective way to study tumor characteristics with ability to replicate of the tumor milieu. In the current study, we adopted the DNA microarray to analyze the gene expression of GBM tumor cells cultured under 2D cell culture flasks and 3D PLA porous scaffolds for 4,7 and 14 days. For 14 day old cultures, 8117 and 3060 genes expression were upregulated and downregulated respectively. Further KEGG pathway analysis revealed, the upregulated genes were mainly enriched/involved in PPAR and PI3K-Akt signaling pathways whereas the downregulated genes were mainly contributed in metabolism, ECM related and TGF-beta pathways. Thus, our approach of establishing 3D in vitro tumor model provides realistic results and proves itself a powerful tool for understanding the inner nature of GBM and can be considered as potential platform for drug screening.
Collapse
Affiliation(s)
- Liang Ma
- State Key Lab of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310058, People's Republic of China; School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, People's Republic of China.
| | - Bin Zhang
- State Key Lab of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310058, People's Republic of China; School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, People's Republic of China.
| | - Changchun Zhou
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, People's Republic of China
| | - Yuting Li
- State Key Lab of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310058, People's Republic of China; School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Binjie Li
- State Key Lab of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310058, People's Republic of China; School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Mengfei Yu
- The Affiliated Stomatologic Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, People's Republic of China
| | - Yichen Luo
- State Key Lab of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310058, People's Republic of China; School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Lei Gao
- State Key Lab of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310058, People's Republic of China; School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Duo Zhang
- Department of Engineering, University of Cambridge, Trumpington Street, Cambridge, CB2 1PZ, United Kingdom
| | - Qian Xue
- State Key Lab of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310058, People's Republic of China; School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Qingchong Qiu
- Zhejiang California International NanoSystems Institute, Zhejiang University, Hangzhou, 310029, People's Republic of China
| | - Biaoyang Lin
- Zhejiang California International NanoSystems Institute, Zhejiang University, Hangzhou, 310029, People's Republic of China
| | - Jun Zou
- State Key Lab of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310058, People's Republic of China; School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Huayong Yang
- State Key Lab of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310058, People's Republic of China; School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, People's Republic of China
| |
Collapse
|
75
|
|
76
|
Abstract
The therapeutic replacement of diseased tubular tissue is hindered by the availability and suitability of current donor, autologous and synthetically derived protheses. Artificially created, tissue engineered, constructs have the potential to alleviate these concerns with reduced autoimmune response, high anatomical accuracy, long-term patency and growth potential. The advent of 3D bioprinting technology has further supplemented the technological toolbox, opening up new biofabrication research opportunities and expanding the therapeutic potential of the field. In this review, we highlight the challenges facing those seeking to create artificial tubular tissue with its associated complex macro- and microscopic architecture. Current biofabrication approaches, including 3D printing techniques, are reviewed and future directions suggested.
Collapse
|