51
|
Martínez MA, Jordan-Paiz A, Franco S, Nevot M. Synonymous genome recoding: a tool to explore microbial biology and new therapeutic strategies. Nucleic Acids Res 2020; 47:10506-10519. [PMID: 31584076 PMCID: PMC6846928 DOI: 10.1093/nar/gkz831] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/12/2019] [Accepted: 09/30/2019] [Indexed: 12/18/2022] Open
Abstract
Synthetic genome recoding is a new means of generating designed organisms with altered phenotypes. Synonymous mutations introduced into the protein coding region tolerate modifications in DNA or mRNA without modifying the encoded proteins. Synonymous genome-wide recoding has allowed the synthetic generation of different small-genome viruses with modified phenotypes and biological properties. Recently, a decreased cost of chemically synthesizing DNA and improved methods for assembling DNA fragments (e.g. lambda red recombination and CRISPR-based editing) have enabled the construction of an Escherichia coli variant with a 4-Mb synthetic synonymously recoded genome with a reduced number of sense codons (n = 59) encoding the 20 canonical amino acids. Synonymous genome recoding is increasing our knowledge of microbial interactions with innate immune responses, identifying functional genome structures, and strategically ameliorating cis-inhibitory signaling sequences related to splicing, replication (in eukaryotes), and complex microbe functions, unraveling the relevance of codon usage for the temporal regulation of gene expression and the microbe mutant spectrum and adaptability. New biotechnological and therapeutic applications of this methodology can easily be envisaged. In this review, we discuss how synonymous genome recoding may impact our knowledge of microbial biology and the development of new and better therapeutic methodologies.
Collapse
Affiliation(s)
- Miguel Angel Martínez
- IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona (UAB), Badalona, Spain
| | - Ana Jordan-Paiz
- IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona (UAB), Badalona, Spain
| | - Sandra Franco
- IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona (UAB), Badalona, Spain
| | - Maria Nevot
- IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona (UAB), Badalona, Spain
| |
Collapse
|
52
|
Abstract
Messenger RNAs (mRNAs) consist of a coding region (open reading frame (ORF)) and two untranslated regions (UTRs), 5'UTR and 3'UTR. Ribosomes travel along the coding region, translating nucleotide triplets (called codons) to a chain of amino acids. The coding region was long believed to mainly encode the amino acid content of proteins, whereas regulatory signals reside in the UTRs and in other genomic regions. However, in recent years we have learned that the ORF is expansively populated with various regulatory signals, or codes, which are related to all gene expression steps and additional intracellular aspects. In this paper, we review the current knowledge related to overlapping codes inside the coding regions, such as the influence of synonymous codon usage on translation speed (and, in turn, the effect of translation speed on protein folding), ribosomal frameshifting, mRNA stability, methylation, splicing, transcription and more. All these codes come together and overlap in the ORF sequence, ensuring production of the right protein at the right time.
Collapse
Affiliation(s)
- Shaked Bergman
- Department of Biomedical Engineering, Tel-Aviv University, Tel Aviv, Israel
| | | |
Collapse
|
53
|
Yang JM, Kim GE, Kim KR, Kim CS. Expression and purification of the full-length N-acetylgalactosaminyltransferase and galactosyltransferase from Campylobacter jejuni in Escherichia coli. Enzyme Microb Technol 2020; 135:109489. [PMID: 32146932 DOI: 10.1016/j.enzmictec.2019.109489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/07/2019] [Accepted: 12/09/2019] [Indexed: 02/06/2023]
Abstract
The successful enzymatic synthesis of various ganglioside-related oligosaccharides requires many available glycan-processing enzymes. However, the number of available glycan-processing enzymes remains limited. In this study, the full-length CgtA43456 (β-(1→4)-N-acetylgalactosaminyltransferase) and CgtB11168 (β-(1→3)-galactosyltransferase) were successfully produced from Escherichia coli through the optimization of E. coli-preferable codon usage, selection of E. coli strain, and use of the molecular chaperone GroEL-GroES (GroEL/ES). The CgtA43456 enzyme was produced as a soluble form in E. coli C41(DE3) co-expressed with codon-optimized CgtA43456 and GroEL/ES. However, soluble CgtB11168 was well expressed in E. coli C41(DE3) with only the codon-optimized CgtB11168. Rather, when co-expressed with GroEL/ES, total production of CgtB11168 was reduced. Using immobilized-metal affinity chromatography, the CgtA43456 and CgtB11168 proteins were obtained with approximately 75-78 % purity. The purified CgtA43456 showed a specific activity of 21 mU/mg using UDP-N-acetylgalactosamine and GM3 trisaccharide as donor and acceptor, respectively. The purified CgtB11168 catalyzed the transfer of galactose from UDP-Gal to GM2 tetrasaccharide with a specific activity of 16 mU/mg. We propose that they could be used as catalysts for enzymatic synthesis of GM1 ganglioside-related oligosaccharides.
Collapse
Affiliation(s)
- Jong Min Yang
- Graduate School of Biochemistry, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Gi Eob Kim
- School of Biotechnology, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Kyeong Rok Kim
- Graduate School of Biochemistry, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Chang Sup Kim
- Graduate School of Biochemistry, Yeungnam University, Gyeongsan, 38541, Republic of Korea; School of Biotechnology, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| |
Collapse
|
54
|
Dissimilation of synonymous codon usage bias in virus-host coevolution due to translational selection. Nat Ecol Evol 2020; 4:589-600. [PMID: 32123323 DOI: 10.1038/s41559-020-1124-7] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 01/21/2020] [Indexed: 12/13/2022]
Abstract
Eighteen of the 20 amino acids are each encoded by more than one synonymous codon. Due to differential transfer RNA supply within the cell, synonymous codons are not used with equal frequency, a phenomenon termed codon usage bias (CUB). Previous studies have demonstrated that CUB of endogenous genes trans-regulates the translational efficiency of other genes. We hypothesized similar effects for CUB of exogenous genes on host translation, and tested it in the case of viral infection, a common form of naturally occurring exogenous gene translation. We analysed public Ribo-Seq datasets from virus-infected yeast and human cells and showed that virus CUB trans-regulated tRNA availability, and therefore the relative decoding time of codons. Manipulative experiments in yeast using 37 synonymous fluorescent proteins confirmed that an exogenous gene with CUB more similar to that of the host would apply decreased translational load on the host per unit of expression, whereas expression of the exogenous gene was elevated. The combination of these two effects was that exogenous genes with CUB overly similar to that of the host severely impeded host translation. Finally, using a manually curated list of viruses and natural and symptomatic hosts, we found that virus CUB tended to be more similar to that of symptomatic hosts than that of natural hosts, supporting a general deleterious effect of excessive CUB similarity between virus and host. Our work revealed repulsion between virus and host CUBs when they are overly similar, a previously unrecognized complexity in the coevolution of virus and host.
Collapse
|
55
|
Zhu M, Dai X. Bacterial stress defense: the crucial role of ribosome speed. Cell Mol Life Sci 2020; 77:853-858. [PMID: 31552449 PMCID: PMC11105067 DOI: 10.1007/s00018-019-03304-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/10/2019] [Accepted: 09/16/2019] [Indexed: 10/26/2022]
Abstract
In nature, bacteria are constantly adapting to various stressful conditions. Timely activation of stress response programs is crucial for bacteria to smoothly survive under stressful conditions. Stress response, demanding the de novo synthesis of many defense proteins, is generally activated at the transcriptional level by specific regulators. However, the effect of the global protein translational status on stress response has been largely overlooked. The translational capacity is limited by the number of translating ribosomes and the translational elongation rate. Recent work has shown that certain environmental stressors (e.g. oxidative stress) could severely compromise the stress response progress of bacteria by causing either slow-down or even complete stalling of the translational elongation process. The maintenance of ribosome elongation rate, being crucial for timely synthesis of stress defense proteins, becomes the physiological bottleneck that limits the survival of bacteria in some stressful conditions. Here, we briefly summarize some recent progress on the translational status of bacteria under two distinct stress conditions, nutrient deprivation and oxidative stress. We further discuss several important open questions on the translational regulation of bacteria during stress. The ribosome translation should be investigated in parallel with traditional transcriptional regulation in order to gain a better understanding on bacterial stress defense.
Collapse
Affiliation(s)
- Manlu Zhu
- School of Life Sciences, Central China Normal University, Wuhan, Hubei, China.
| | - Xiongfeng Dai
- School of Life Sciences, Central China Normal University, Wuhan, Hubei, China.
| |
Collapse
|
56
|
L S, Vasu P. Cloning and expression of in silico modeled protein enriched with branched chain amino acids in Pichia pastoris. Int J Biol Macromol 2020; 146:739-745. [PMID: 31743710 DOI: 10.1016/j.ijbiomac.2019.10.133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/14/2019] [Accepted: 10/14/2019] [Indexed: 12/01/2022]
Abstract
We have earlier in silico designed the 3-dimensional structure of a protein enriched with branched chain amino acids (BCAA, 56.4%), having only α-helical coiled-coil structure. Here, homology modeling was used to improve the in silico designed protein model. The secondary and tertiary structures of improved protein model were predicted, and validated using various online bioinformatics tools. The amino acid sequence of the final predicted Protein Model-51 was EQLTKLEIVIRVLKLLKLIGGLVSLVEWVLTALVTLLGDKVLDDILTDVIMLVKKIL DKVIGIVYVLAILALILSEVLDILWLLEKLVEILEGHHHHHH. The amino acid sequence of the protein model was reverse translated to DNA sequence and codons were optimized using codon optimization tool. The chemically synthesized BCAA51 gene was cloned to pPICZαC vector, and transformed into DH5α E. coli strain. After successful transformation, the protein was expressed in P. pastoris system by inducing with 0.5% methanol, every 24 h for up to 144 h. The expressed protein was purified by His Select Nickel affinity chromatography with an yield of 1.412 mg/L. The recombinant protein was confirmed by SDS-PAGE and western blot analysis, which showed a clear band at the expected molecular weight of ~11 kDa. Thus, here we have shown that the in silico designed protein is successfully cloned and expressed in P. pastoris.
Collapse
Affiliation(s)
- Sunil L
- Department of Food Safety and Analytical Quality Control Laboratory, CSIR-Central Food Technological Research Institute, Mysuru 570020, Karnataka, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Prasanna Vasu
- Department of Food Safety and Analytical Quality Control Laboratory, CSIR-Central Food Technological Research Institute, Mysuru 570020, Karnataka, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India.
| |
Collapse
|
57
|
Guimaraes JC, Mittal N, Gnann A, Jedlinski D, Riba A, Buczak K, Schmidt A, Zavolan M. A rare codon-based translational program of cell proliferation. Genome Biol 2020; 21:44. [PMID: 32102681 PMCID: PMC7045563 DOI: 10.1186/s13059-020-1943-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 01/22/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The speed of translation elongation is primarily determined by the abundance of tRNAs. Thus, the codon usage influences the rate with which individual mRNAs are translated. As the nature of tRNA pools and modifications can vary across biological conditions, codon elongation rates may also vary, leading to fluctuations in the protein production from individual mRNAs. Although it has been observed that functionally related mRNAs exhibit similar codon usage, presumably to provide an effective way to coordinate expression of multiple proteins, experimental evidence for codon-mediated translation efficiency modulation of functionally related mRNAs in specific conditions is scarce and the associated mechanisms are still debated. RESULTS Here, we reveal that mRNAs whose expression increases during cell proliferation are enriched in rare codons, poorly adapted to tRNA pools. Ribosome occupancy profiling and proteomics measurements show that upon increased cell proliferation, transcripts enriched in rare codons undergo a higher translation boost than transcripts with common codons. Re-coding of a fluorescent reporter with rare codons increased protein output by ~ 30% relative to a reporter re-coded with common codons. Although the translation capacity of proliferating cells was higher compared to resting cells, we did not find evidence for the regulation of individual tRNAs. Among the models that were proposed so far to account for codon-mediated translational regulation upon changing conditions, the one that seems most consistent with our data involves a global upregulation of ready-to-translate tRNAs, which we show can lead to a higher increase in the elongation velocity at rare codons compared to common codons. CONCLUSIONS We propose that the alleviation of translation bottlenecks in rapidly dividing cells enables preferential upregulation of pro-proliferation proteins, encoded by mRNAs that are enriched in rare codons.
Collapse
Affiliation(s)
- Joao C Guimaraes
- Computational and Systems Biology, Biozentrum University of Basel, Klingelbergstrasse 50-70, 4056, Basel, Switzerland.
| | - Nitish Mittal
- Computational and Systems Biology, Biozentrum University of Basel, Klingelbergstrasse 50-70, 4056, Basel, Switzerland
| | - Alexandra Gnann
- Computational and Systems Biology, Biozentrum University of Basel, Klingelbergstrasse 50-70, 4056, Basel, Switzerland
- Department of Biomedicine, University of Basel/University Hospital Basel, Hebelstrasse 20, 4031, Basel, Switzerland
| | - Dominik Jedlinski
- Computational and Systems Biology, Biozentrum University of Basel, Klingelbergstrasse 50-70, 4056, Basel, Switzerland
| | - Andrea Riba
- Computational and Systems Biology, Biozentrum University of Basel, Klingelbergstrasse 50-70, 4056, Basel, Switzerland
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg, 1 rue Laurent Fries, 67404, Illkirch CEDEX, France
| | - Katarzyna Buczak
- Proteomics Core Facility, Biozentrum University of Basel, Klingelbergstrasse 50-70, 4056, Basel, Switzerland
| | - Alexander Schmidt
- Proteomics Core Facility, Biozentrum University of Basel, Klingelbergstrasse 50-70, 4056, Basel, Switzerland
| | - Mihaela Zavolan
- Computational and Systems Biology, Biozentrum University of Basel, Klingelbergstrasse 50-70, 4056, Basel, Switzerland.
| |
Collapse
|
58
|
Fessler M, Gummesson B, Charbon G, Svenningsen SL, Sørensen MA. Short‐term kinetics of rRNA degradation inEscherichia coliupon starvation for carbon, amino acid or phosphate. Mol Microbiol 2020; 113:951-963. [DOI: 10.1111/mmi.14462] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 11/27/2022]
Affiliation(s)
- Mathias Fessler
- Department of Biology University of Copenhagen Copenhagen N Denmark
- DTU Environment Technical University of Denmark Kongens Lyngby Denmark
| | - Bertil Gummesson
- Department of Biology University of Copenhagen Copenhagen N Denmark
| | | | | | | |
Collapse
|
59
|
Grad-cryo-EM: Tool to Isolate Translation Initiation Complexes from Rabbit Reticulocyte Lysate Suitable for Structural Studies. Methods Mol Biol 2020. [PMID: 32006323 DOI: 10.1007/978-1-0716-0278-2_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Since its development, single-particle cryogenic electron microscopy (cryo-EM) has played a central role in the study at medium resolution of both bacterial and eukaryotic ribosomal complexes. With the advent of the direct electron detectors and new processing software which allow obtaining structures at atomic resolution, formerly obtained only by X-ray crystallography, cryo-EM has become the method of choice for the structural analysis of the translation machinery. In most of the cases, the ribosomal complexes at different stages of the translation process are assembled in vitro from purified components, which limit the analysis to previously well-characterized complexes with known factors composition. The initiation phase of the protein synthesis is a very dynamic process during which several proteins interact with the translation apparatus leading to the formation of a chronological series of initiation complexes (ICs). Here we describe a method to isolate ICs assembled on natural in vitro transcribed mRNA directly from rabbit reticulocyte lysate (RRL) by sucrose density gradient centrifugation . The Grad-cryo-EM approach allows investigating structures and composition of intermediate ribosomal complexes prepared in near-native condition by cryo-EM and mass spectrometry analyses. This is a powerful approach, which could be used to study translation initiation of any mRNAs, including IRES containing ones, and which could be adapted to different cell extracts.
Collapse
|
60
|
Czech A. Deep sequencing of tRNA's 3'-termini sheds light on CCA-tail integrity and maturation. RNA (NEW YORK, N.Y.) 2020; 26:199-208. [PMID: 31719125 PMCID: PMC6961547 DOI: 10.1261/rna.072330.119] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 11/07/2019] [Indexed: 06/10/2023]
Abstract
The 3'-termini of tRNA are the point of amino acid linkage and thus crucial for their function in delivering amino acids to the ribosome and other enzymes. Therefore, to provide tRNA functionality, cells have to ensure the integrity of the 3'-terminal CCA-tail, which is generated during maturation by the 3'-trailer processing machinery and maintained by the CCA-adding enzyme. We developed a new tRNA sequencing method that is specifically tailored to assess the 3'-termini of E. coli tRNA. Intriguingly, we found a significant fraction of tRNAs with damaged CCA-tails under exponential growth conditions and, surprisingly, this fraction decreased upon transition into stationary phase. Interestingly, tRNAs bearing guanine as a discriminator base are generally unaffected by CCA-tail damage. In addition, we showed tRNA species-specific 3'-trailer processing patterns and reproduced in vitro findings on preferences of the maturation enzyme RNase T in vivo.
Collapse
Affiliation(s)
- Andreas Czech
- Institute of Biochemistry and Molecular Biology, Chemistry Department, University of Hamburg, 20146 Hamburg, Germany
| |
Collapse
|
61
|
Novoa EM, Jungreis I, Jaillon O, Kellis M. Elucidation of Codon Usage Signatures across the Domains of Life. Mol Biol Evol 2020; 36:2328-2339. [PMID: 31220870 PMCID: PMC6759073 DOI: 10.1093/molbev/msz124] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Because of the degeneracy of the genetic code, multiple codons are translated into the same amino acid. Despite being “synonymous,” these codons are not equally used. Selective pressures are thought to drive the choice among synonymous codons within a genome, while GC content, which is typically attributed to mutational drift, is the major determinant of variation across species. Here, we find that in addition to GC content, interspecies codon usage signatures can also be detected. More specifically, we show that a single amino acid, arginine, is the major contributor to codon usage bias differences across domains of life. We then exploit this finding and show that domain-specific codon bias signatures can be used to classify a given sequence into its corresponding domain of life with high accuracy. We then wondered whether the inclusion of codon usage codon autocorrelation patterns, which reflects the nonrandom distribution of codon occurrences throughout a transcript, might improve the classification performance of our algorithm. However, we find that autocorrelation patterns are not domain-specific, and surprisingly, are unrelated to tRNA reusage, in contrast to previous reports. Instead, our results suggest that codon autocorrelation patterns are a by-product of codon optimality throughout a sequence, where highly expressed genes display autocorrelated “optimal” codons, whereas lowly expressed genes display autocorrelated “nonoptimal” codons.
Collapse
Affiliation(s)
- Eva Maria Novoa
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,University of New South Wales Sydney, NSW, Australia
| | - Irwin Jungreis
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Olivier Jaillon
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Manolis Kellis
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
62
|
Mortazavi M, Nezafat N, Negahdaripour M, Raee MJ, Torkzadeh-Mahani M, Riahi-Madvar A, Ghasemi Y. In silicoEvaluation of Substrate Binding Site and Rare Codons in the Structure of CYP152A1. CURR PROTEOMICS 2020. [DOI: 10.2174/1570164616666190220143131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:The Cytochromes P450 (CYPs) have an essential role in the oxidation of endogenous and exogenous molecules. The CYPs are identified in all domains of life, but the CYP152A1 from Bacillus subtilis is specially considered for clinical and industrial applications. The molecular cloning of a new type of CYP from Bacillus subtilis was reported, previously. Here, we describe the hidden layer of biological information of the CYP152A1 enzyme, which can help researchers for better understanding of enzyme application. In this study, four rare codons of enzyme, including Arg63, Arg187, Arg276, and Arg338 were identified and evaluated using the bioinformatics web servers.Methods:Through in silico modeling of CYP152A1 via the I-TASSER server, the above-mentioned rare codons were studied in the structure of enzyme that may have an important role in the proper folding of CYP152A1. In the following, the substrate binding site of CYP152A1 was studied by AutoDock Vina, and the heme and palmitic acid were considered as the substrates.Results:The results of docking study elucidated the Arg242 in the active site is closely related to the substrate binding site of CYP152A1, which help us to further clarify the mechanism of the enzyme reaction.Conclusion:Studies of these hidden information’s can enhance our understanding of CYP152A1 folding and protein expression challenges. Moreover, identification of rare codons can help in the rational design of new and effective drugs.
Collapse
Affiliation(s)
- Mojtaba Mortazavi
- Department of Biotechnology, Institute of Science and High Technology and Environmental Science, Graduate University of Advanced Technology, Kerman, Iran
| | - Navid Nezafat
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, P.O. Box 71345-1583, Shiraz, Iran
| | - Manica Negahdaripour
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, P.O. Box 71345-1583, Shiraz, Iran
| | - Mohammad J. Raee
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, P.O. Box 71345-1583, Shiraz, Iran
| | - Masoud Torkzadeh-Mahani
- Department of Biotechnology, Institute of Science and High Technology and Environmental Science, Graduate University of Advanced Technology, Kerman, Iran
| | - Ali Riahi-Madvar
- Department of Biotechnology, Institute of Science and High Technology and Environmental Science, Graduate University of Advanced Technology, Kerman, Iran
| | - Younes Ghasemi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, P.O. Box 71345-1583, Shiraz, Iran
| |
Collapse
|
63
|
T Magalhães B, Lourenço A, Azevedo NF. Computational resources and strategies to assess single-molecule dynamics of the translation process in S. cerevisiae. Brief Bioinform 2019; 22:219-231. [PMID: 31879749 DOI: 10.1093/bib/bbz149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/16/2019] [Accepted: 10/30/2019] [Indexed: 11/13/2022] Open
Abstract
This work provides a systematic and comprehensive overview of available resources for the molecular-scale modelling of the translation process through agent-based modelling. The case study is the translation in Saccharomyces cerevisiae, one of the most studied yeasts. The data curation workflow encompassed structural information about the yeast (i.e. the simulation environment), and the proteins, ribonucleic acids and other types of molecules involved in the process (i.e. the agents). Moreover, it covers the main process events, such as diffusion (i.e. motion of molecules in the environment) and collision efficiency (i.e. interaction between molecules). Data previously determined by wet-lab techniques were preferred, resorting to computational predictions/extrapolations only when strictly necessary. The computational modelling of the translation processes is of added industrial interest, since it may bring forward knowledge on how to control such phenomena and enhance the production of proteins of interest in a faster and more efficient manner.
Collapse
Affiliation(s)
| | - Anália Lourenço
- Department of Computer Science, University of Vigo, Spain, Centre of Biological Engineering, University of Minho, Portugal
| | - Nuno F Azevedo
- Department of Chemical Engineering, Faculty of Engineering of the University of Porto, Portugal
| |
Collapse
|
64
|
Scott S, Szavits-Nossan J. Power series method for solving TASEP-based models of mRNA translation. Phys Biol 2019; 17:015004. [PMID: 31726446 DOI: 10.1088/1478-3975/ab57a0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We develop a method for solving mathematical models of messenger RNA (mRNA) translation based on the totally asymmetric simple exclusion process (TASEP). Our main goal is to demonstrate that the method is versatile and applicable to realistic models of translation. To this end we consider the TASEP with codon-dependent elongation rates, premature termination due to ribosome drop-off and translation reinitiation due to circularisation of the mRNA. We apply the method to the model organism Saccharomyces cerevisiae under physiological conditions and find an excellent agreement with the results of stochastic simulations. Our findings suggest that the common view on translation as being rate-limited by initiation is oversimplistic. Instead we find theoretical evidence for ribosome interference and also theoretical support for the ramp hypothesis which argues that codons at the beginning of genes have slower elongation rates in order to reduce ribosome density and jamming.
Collapse
Affiliation(s)
- S Scott
- SUPA, School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom
| | | |
Collapse
|
65
|
Chiaruttini C, Guillier M. On the role of mRNA secondary structure in bacterial translation. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 11:e1579. [PMID: 31760691 DOI: 10.1002/wrna.1579] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 11/07/2022]
Abstract
Messenger RNA (mRNA) is no longer considered as a mere informational molecule whose sole function is to convey the genetic information specified by DNA to the ribosome. Beyond this primary function, mRNA also contains additional instructions that influence the way and the extent to which this message is translated by the ribosome into protein(s). Indeed, owing to its intrinsic propensity to quickly and dynamically fold and form higher order structures, mRNA exhibits a second layer of structural information specified by the sequence itself. Besides influencing transcription and mRNA stability, this additional information also affects translation, and more precisely the frequency of translation initiation, the choice of open reading frame by recoding, the elongation speed, and the folding of the nascent protein. Many studies in bacteria have shown that mRNA secondary structure participates to the rapid adaptation of these versatile organisms to changing environmental conditions by efficiently tuning translation in response to diverse signals, such as the presence of ligands, regulatory proteins, or small RNAs. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems Translation > Translation Regulation.
Collapse
|
66
|
Hunt R, Hettiarachchi G, Katneni U, Hernandez N, Holcomb D, Kames J, Alnifaidy R, Lin B, Hamasaki-Katagiri N, Wesley A, Kafri T, Morris C, Bouché L, Panico M, Schiller T, Ibla J, Bar H, Ismail A, Morris H, Komar A, Kimchi-Sarfaty C. A Single Synonymous Variant (c.354G>A [p.P118P]) in ADAMTS13 Confers Enhanced Specific Activity. Int J Mol Sci 2019; 20:ijms20225734. [PMID: 31731663 PMCID: PMC6888508 DOI: 10.3390/ijms20225734] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/09/2019] [Accepted: 11/13/2019] [Indexed: 12/18/2022] Open
Abstract
Synonymous variants within coding regions may influence protein expression and function. We have previously reported increased protein expression levels ex vivo (~120% in comparison to wild-type) from a synonymous polymorphism variant, c.354G>A [p.P118P], of the ADAMTS13 gene, encoding a plasma protease responsible for von Willebrand Factor (VWF) degradation. In the current study, we investigated the potential mechanism(s) behind the increased protein expression levels from this variant and its effect on ADAMTS13 physico-chemical properties. Cell-free assays showed enhanced translation of the c.354G>A variant and the analysis of codon usage characteristics suggested that introduction of the frequently used codon/codon pair(s) may have been potentially responsible for this effect. Limited proteolysis, however, showed no substantial influence of altered translation on protein conformation. Analysis of post-translational modifications also showed no notable differences but identified three previously unreported glycosylation markers. Despite these similarities, p.P118P variant unexpectedly showed higher specific activity. Structural analysis using modeled interactions indicated that subtle conformational changes arising from altered translation kinetics could affect interactions between an exosite of ADAMTS13 and VWF resulting in altered specific activity. This report highlights how a single synonymous nucleotide variation can impact cellular expression and specific activity in the absence of measurable impact on protein structure.
Collapse
Affiliation(s)
- Ryan Hunt
- Hemostasis Branch, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation & Research, US FDA, Silver Spring, MD 20993, USA
| | - Gaya Hettiarachchi
- Hemostasis Branch, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation & Research, US FDA, Silver Spring, MD 20993, USA
| | - Upendra Katneni
- Hemostasis Branch, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation & Research, US FDA, Silver Spring, MD 20993, USA
| | - Nancy Hernandez
- Hemostasis Branch, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation & Research, US FDA, Silver Spring, MD 20993, USA
| | - David Holcomb
- Hemostasis Branch, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation & Research, US FDA, Silver Spring, MD 20993, USA
| | - Jacob Kames
- Hemostasis Branch, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation & Research, US FDA, Silver Spring, MD 20993, USA
| | - Redab Alnifaidy
- Hemostasis Branch, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation & Research, US FDA, Silver Spring, MD 20993, USA
| | - Brian Lin
- Hemostasis Branch, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation & Research, US FDA, Silver Spring, MD 20993, USA
| | - Nobuko Hamasaki-Katagiri
- Hemostasis Branch, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation & Research, US FDA, Silver Spring, MD 20993, USA
| | - Aaron Wesley
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Present Address: Department of Emergency Medicine, Banner University Medical Center, The University of Arizona, Tucson, AZ 85724, USA
| | - Tal Kafri
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | - Laura Bouché
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
- Present Address: Antikor Biopharma Ltd., Stevenage Bioscience Catalyst, Gunnels Wood Road, Stevenage SG1 2FX, UK
| | - Maria Panico
- BioPharmaSpec Ltd., St. Saviour JE2 7LA, UK or or
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Tal Schiller
- Hemostasis Branch, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation & Research, US FDA, Silver Spring, MD 20993, USA
| | - Juan Ibla
- Departments of Cardiac Surgery and Anesthesiology, Perioperative and Pain Medicine, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Haim Bar
- Department of Statistics, University of Connecticut, Storrs, CT 06269, USA
| | - Amra Ismail
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological & Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA
| | - Howard Morris
- BioPharmaSpec Ltd., St. Saviour JE2 7LA, UK or or
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Anton Komar
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological & Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA
| | - Chava Kimchi-Sarfaty
- Hemostasis Branch, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation & Research, US FDA, Silver Spring, MD 20993, USA
- Correspondence: ; Tel.: +1-(240)-402-8203
| |
Collapse
|
67
|
Patel U, Gautam S, Chatterji D. Unraveling the Role of Silent Mutation in the ω-Subunit of Escherichia coli RNA Polymerase: Structure Transition Inhibits Transcription. ACS OMEGA 2019; 4:17714-17725. [PMID: 31681877 PMCID: PMC6822122 DOI: 10.1021/acsomega.9b02103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 09/05/2019] [Indexed: 05/07/2023]
Abstract
The bacterial RNA polymerase is a multi-subunit enzyme complex composed of six subunits, α2ββ'σω. The function of this enzyme is to transcribe the DNA base sequence to the RNA intermediate, which is ultimately translated to protein. Though the contribution of each subunit in RNA synthesis has been clearly elucidated, the role of the smallest ω-subunit is still unclear despite several studies. Recently, a study on a dominant negative mutant of rpoZ has been reported in which the mutant was shown to render the RNA polymerase defective in transcription initiation (ω6, N60D) and gave an insight on the function of ω in RNA polymerase. Serendipitously, we also obtained a silent mutant, and the mutant was found to be lethal during the isolation of toxic mutants. The primary focus of this study is to understand the mechanistic details of this lethality. Isolated ω shows a predominantly unstructured circular dichroism profile and becomes α-helical in the enzyme complex. This structural transition is perhaps the reason for this lack of function. Subsequently, we generated several silent mutants of ω to investigate the role of codon bias and the effect of rare codons with respect to their position in rpoZ. Not all silent mutations affect the structure. RNA polymerase when reconstituted with structurally altered silent mutants of ω is transcriptionally inactive. The CodonPlus strain, which has surplus tRNA, was used to assess for the rescue of the phenotype in lethal silent mutants.
Collapse
Affiliation(s)
| | - Sudhanshu Gautam
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | - Dipankar Chatterji
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
68
|
Chu D, Wei L. Parsing the synonymous mutations in the maize genome: isoaccepting mutations are more advantageous in regions with codon co-occurrence bias. BMC PLANT BIOLOGY 2019; 19:422. [PMID: 31610786 PMCID: PMC6791113 DOI: 10.1186/s12870-019-2050-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 09/20/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Synonymous mutations do not change amino acids but do sometimes change the tRNAs (anticodons) that decode a particular codon. An isoaccepting codon is a synonymous codon that shares the same tRNA. If a mutated codon could base pair with the same anticodon as the original, the mutation is termed an isoaccepting mutation. An interesting but less-studied type of codon bias is codon co-occurrence bias. There is a trend to cluster the isoaccepting codons in the genome. The proposed advantage of codon co-occurrence bias is that the tRNA released from the ribosome E site could be quickly recharged and subsequently decode the following isoaccepting codons. This advantage would enhance translation efficiency. In plant species, whether there are signals of positive selection on isoaccepting mutations in the codon co-occurred regions has not been studied. RESULTS We termed polymorphic mutations in coding regions using publicly available RNA-seq data in maize (Zea mays). Next, we classified all synonymous mutations into three categories according to the context, i.e., the relationship between the focal codon and the previous codon, as follows: isoaccepting, nonisoaccepting and nonsynonymous. We observed higher fractions of isoaccepting mutations in the isoaccepting context. If we looked at the minor allele frequency (MAF) spectrum, the isoaccepting mutations have a higher MAF in the isoaccepting context than that in other regions, and accordingly, the nonisoaccepting mutations have a higher MAF in the nonisoaccepting context. CONCLUSION Our results indicate that in regions with codon co-occurrence bias, natural selection maintains this pattern by suppressing the nonisoaccepting mutations. However, if the consecutive codons are nonisoaccepting, mutations tend to switch these codons to become isoaccepting. Our study demonstrates that the codon co-occurrence bias in the maize genome is selectively maintained by natural selection and that the advantage of this trend could potentially be the rapid recharging and reuse of tRNAs to increase translation efficiency.
Collapse
Affiliation(s)
- Duan Chu
- College of Life Sciences, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing, China
| | - Lai Wei
- College of Life Sciences, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing, China.
| |
Collapse
|
69
|
Zeng Z, Bromberg Y. Predicting Functional Effects of Synonymous Variants: A Systematic Review and Perspectives. Front Genet 2019; 10:914. [PMID: 31649718 PMCID: PMC6791167 DOI: 10.3389/fgene.2019.00914] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 08/29/2019] [Indexed: 12/13/2022] Open
Abstract
Recent advances in high-throughput experimentation have put the exploration of genome sequences at the forefront of precision medicine. In an effort to interpret the sequencing data, numerous computational methods have been developed for evaluating the effects of genome variants. Interestingly, despite the fact that every person has as many synonymous (sSNV) as non-synonymous single nucleotide variants, our ability to predict their effects is limited. The paucity of experimentally tested sSNV effects appears to be the limiting factor in development of such methods. Here, we summarize the details and evaluate the performance of nine existing computational methods capable of predicting sSNV effects. We used a set of observed and artificially generated variants to approximate large scale performance expectations of these tools. We note that the distribution of these variants across amino acid and codon types suggests purifying evolutionary selection retaining generated variants out of the observed set; i.e., we expect the generated set to be enriched for deleterious variants. Closer inspection of the relationship between the observed variant frequencies and the associated prediction scores identifies predictor-specific scoring thresholds of reliable effect predictions. Notably, across all predictors, the variants scoring above these thresholds were significantly more often generated than observed. which confirms our assumption that the generated set is enriched for deleterious variants. Finally, we find that while the methods differ in their ability to identify severe sSNV effects, no predictor appears capable of definitively recognizing subtle effects of such variants on a large scale.
Collapse
Affiliation(s)
- Zishuo Zeng
- Institute for Quantitative Biomedicine, Rutgers University, Piscataway, NJ, United States
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, United States
| | - Yana Bromberg
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, United States
- Department of Genetics, Rutgers University, Human Genetics Institute, Piscataway, NJ, United States
| |
Collapse
|
70
|
Chu D, Wei L. Characterizing the heat response of Arabidopsis thaliana from the perspective of codon usage bias and translational regulation. JOURNAL OF PLANT PHYSIOLOGY 2019; 240:153012. [PMID: 31362206 DOI: 10.1016/j.jplph.2019.153012] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 07/15/2019] [Accepted: 07/18/2019] [Indexed: 06/10/2023]
Abstract
mRNA translation is carefully regulated at both the initiation and the elongation step. Under heat stress, it is known that particular genes change their expression and translation levels to respond to the environment. Attention has been paid to the detailed mechanisms of how a few proteins work, and little is done to analyze whether the global evolutionary patterns affect the translational changes. Determinants like codon usage bias and its related evolutionary features are less studied in heat stress experiments, especially for plants. Utilizing the RNA-seq and Ribo-seq data of normal and heat-stressed Arabidopsis thaliana generated from a previous study, we conducted gene-level (global) and codon-resolution (local) translation analyses. We studied how codon usage bias and other evolutionary features could impact the translation patterns in the heat response of the plant. We found that the evolutionary features including codon usage bias, tAI, nitrogen cost, and conservation (identity) could affect the global and local translation efficiency. Under heat stress, the optimal and conserved codons are more likely to alter their local translation elongation speed to modulate the global translation of host genes. Meanwhile, we also verified the widely accepted notions that the secondary structures and proline codons could largely slow down the translation rate. Our results revealed the effect of codon usage bias and other evolutionary patterns on the translation regulation under heat stress. Unveiling the effect of these features on translational regulation of plants might be helpful in understanding the relationship and interaction between plants and the environment.
Collapse
Affiliation(s)
- Duan Chu
- College of Life Sciences, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing, China
| | - Lai Wei
- College of Life Sciences, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing, China.
| |
Collapse
|
71
|
Waudby CA, Dobson CM, Christodoulou J. Nature and Regulation of Protein Folding on the Ribosome. Trends Biochem Sci 2019; 44:914-926. [PMID: 31301980 PMCID: PMC7471843 DOI: 10.1016/j.tibs.2019.06.008] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 06/10/2019] [Accepted: 06/14/2019] [Indexed: 12/23/2022]
Abstract
Co-translational protein folding is an essential process by which cells ensure the safe and efficient production and assembly of new proteins in their functional native states following biosynthesis on the ribosome. In this review, we describe recent progress in probing the changes during protein synthesis of the free energy landscapes that underlie co-translational folding and discuss the critical coupling between these landscapes and the rate of translation that ultimately determines the success or otherwise of the folding process. Recent developments have revealed a variety of mechanisms by which both folding and translation can be modulated or regulated, and we discuss how these effects are utilised by the cell to optimise the outcome of protein biosynthesis.
Collapse
Affiliation(s)
- Christopher A Waudby
- Institute of Structural and Molecular Biology, University College London and Birkbeck College, London, UK
| | - Christopher M Dobson
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, UK
| | - John Christodoulou
- Institute of Structural and Molecular Biology, University College London and Birkbeck College, London, UK.
| |
Collapse
|
72
|
Bedhomme S, Amorós-Moya D, Valero LM, Bonifaci N, Pujana MÀ, Bravo IG. Evolutionary Changes after Translational Challenges Imposed by Horizontal Gene Transfer. Genome Biol Evol 2019; 11:814-831. [PMID: 30753446 PMCID: PMC6427688 DOI: 10.1093/gbe/evz031] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2019] [Indexed: 01/24/2023] Open
Abstract
Genes acquired by horizontal gene transfer (HGT) may provide the recipient organism with potentially new functions, but proper expression level and integration of the transferred genes in the novel environment are not granted. Notably, transferred genes can differ from the receiving genome in codon usage preferences, leading to impaired translation and reduced functionality. Here, we characterize the genomic and proteomic changes undergone during experimental evolution of Escherichia coli after HGT of three synonymous versions, presenting very different codon usage preference, of an antibiotic resistance gene. The experimental evolution was conducted with and without the corresponding antibiotic and the mutational patterns and proteomic profiles after 1,000 generations largely depend on the experimental growth conditions (e.g., mutations in antibiotic off-target genes), and on the synonymous gene version transferred (e.g., mutations in genes responsive to translational stress). The transfer of an exogenous gene extensively modifies the whole proteome, and these proteomic changes are different for the different version of the transferred gene. Additionally, we identified conspicuous changes in global regulators and in intermediate metabolism, confirmed the evolutionary ratchet generated by mutations in DNA repair genes and highlighted the plasticity of bacterial genomes accumulating large and occasionally transient duplications. Our results support a central role of HGT in fuelling evolution as a powerful mechanism promoting rapid, often dramatic genotypic and phenotypic changes. The profound reshaping of the pre-existing geno/phenotype allows the recipient bacteria to explore new ways of functioning, far beyond the mere acquisition of a novel function.
Collapse
Affiliation(s)
- Stéphanie Bedhomme
- CEFE, CNRS, Univ Montpellier, Univ Paul Valéry Montpellier 3, EPHE, IRD, France
| | - Dolors Amorós-Moya
- Experimental Molecular Evolution, Institute for Evolution and Biodiversity, Westfälische-Wilhelms Universität Münster, Germany
| | - Luz M Valero
- Secció de Proteomica, SCSIE Universitat de Valencia, Spain
| | - Nùria Bonifaci
- ProCURE, Catalan Institute of Oncology (ICO), Bellvitge Institute of Biomedical Research (IDIBELL), Barcelona, Spain
| | - Miquel-Àngel Pujana
- ProCURE, Catalan Institute of Oncology (ICO), Bellvitge Institute of Biomedical Research (IDIBELL), Barcelona, Spain
| | - Ignacio G Bravo
- Centre National de la Recherche Scientifique (CNRS), Laboratory MIVEGEC (UMR CNRS, IRD, UM), Montpellier, France
| |
Collapse
|
73
|
Konczal J, Bower J, Gray CH. Re-introducing non-optimal synonymous codons into codon-optimized constructs enhances soluble recovery of recombinant proteins from Escherichia coli. PLoS One 2019; 14:e0215892. [PMID: 31013332 PMCID: PMC6478350 DOI: 10.1371/journal.pone.0215892] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 04/10/2019] [Indexed: 12/14/2022] Open
Abstract
Gene synthesis services have largely superseded traditional PCR methods for the generation of cDNAs destined for bacterial expression vectors. This, in turn, has increased the application of codon-optimized cDNAs where codons rarely used by Escherchia coli are replaced with common synonymous codons to accelerate translation of the target. A markedly accelerated rate of expression often results in a significant uplift in the levels of target protein but a substantial proportion of the enhanced yield can partition to the insoluble fraction rendering a significant portion of the gains unavailable for native purification. We have assessed several expression attenuation strategies for their utility in the manipulation of the soluble fraction towards higher levels of soluble target recovery from codon optimized systems. Using a set of human small GTPases as a case study, we compare the degeneration of the T7 promoter sequence, the use of alternative translational start codons and the manipulation of synonymous codon usage. Degeneration of both the T7 promoter and the translational start codon merely depressed overall expression and did not increase the percentage of product recovered in native purification of the soluble fraction. However, the selective introduction of rare non-optimal codons back into the codon-optimized sequence resulted in significantly elevated recovery of soluble targets. We propose that slowing the rate of extension during translation using a small number of rare codons allows more time for the co-translational folding of the nascent polypeptide. This increases the proportion of the target recovered in the soluble fraction by immobilized metal affinity chromatography (IMAC). Thus, a "de-optimization" of codon-optimized cDNAs, to attenuate or pause the translation process, may prove a useful strategy for improved recombinant protein production.
Collapse
Affiliation(s)
- Jennifer Konczal
- Drug Discovery Program, CRUK Beatson Institute, Glasgow, United Kingdom
| | - Justin Bower
- Drug Discovery Program, CRUK Beatson Institute, Glasgow, United Kingdom
| | | |
Collapse
|
74
|
Chu D, Wei L. Nonsynonymous, synonymous and nonsense mutations in human cancer-related genes undergo stronger purifying selections than expectation. BMC Cancer 2019; 19:359. [PMID: 30991970 PMCID: PMC6469204 DOI: 10.1186/s12885-019-5572-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 04/03/2019] [Indexed: 12/20/2022] Open
Abstract
Background Nonsynonymous mutations change the protein sequences and are frequently subjected to natural selection. The same goes for nonsense mutations that introduce pre-mature stop codons into CDSs (coding sequences). Synonymous mutations, however, are intuitively thought to be functionally silent and evolutionarily neutral. Now researchers know that the optimized synonymous codon usage is advantageous in the speedy mRNA translation process. With the advent of NGS technique, the explosion of NGS data generated from the tumor tissues help researchers identify driver mutations in cancer-related genes, but relatively less attention is paid to the SNP data in healthy human populations when studying cancer. Methods Here, we analyzed the publically available human SNPs. We classified these SNPs according to their functional and evolutionary categories. By simply dividing the human genes into cancer-related genes and other genes, we compared the features of nonsynonymous, synonymous and nonsense mutations in these two gene sets from multiple aspects. Results We provided lines of evidence that the nonsynonymous, synonymous and nonsense mutations in cancer-related genes undergo stronger purifying selection when compared to the expected pattern in other genes. The lower nonsynonymous to synonymous ratio observed in cancer-related genes suggests the suppression of amino acid substitutions in these genes. The synonymous SNPs, after excluding those in splicing regions, exhibit preferred changes in codon usage and higher codon frequencies in cancer-related genes compared to other genes, indicating the constraint exerted on these mutations. Nonsense mutations are less frequent and located closer to stop codons in cancer-related genes than in other genes, which putatively minimize their deleterious effects. Conclusion Our study demonstrated the evolutionary constraint on mutations in CDS of cancer-related genes without the requirement of data from cancer tissues or patients. Our work provides novel perspectives on interpreting the constraint on mutations in cancer-related genes. We reveal extra constraint on synonymous mutations in cancer-related genes which is related to codon usage bias and is in addition to the splicing effect. Electronic supplementary material The online version of this article (10.1186/s12885-019-5572-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Duan Chu
- College of Life Sciences, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing, China
| | - Lai Wei
- College of Life Sciences, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing, China.
| |
Collapse
|
75
|
Sabi R, Tuller T. Novel insights into gene expression regulation during meiosis revealed by translation elongation dynamics. NPJ Syst Biol Appl 2019; 5:12. [PMID: 30962948 PMCID: PMC6449359 DOI: 10.1038/s41540-019-0089-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 03/20/2019] [Indexed: 01/14/2023] Open
Abstract
The ability to dynamically control mRNA translation has a great impact on many intracellular processes. Whereas it is believed that translational control in eukaryotes occurs mainly at initiation, the condition-specific changes at the elongation level and their potential regulatory role remain unclear. Using computational approaches applied to ribosome profiling data, we show that elongation rate is dynamic and can change considerably during the yeast meiosis to facilitate the selective translation of stage-specific transcripts. We observed unique elongation changes during meiosis II, including a global inhibition of translation elongation at the onset of anaphase II accompanied by a sharp shift toward increased elongation for genes required at this meiotic stage. We also show that ribosomal proteins counteract the global decreased elongation by maintaining high initiation rates. Our findings provide new insights into gene expression regulation during meiosis and demonstrate that codon usage evolved, among others, to optimize timely translation.
Collapse
Affiliation(s)
- Renana Sabi
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Tamir Tuller
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
- The Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
76
|
Pedersen S, Terkelsen TB, Eriksen M, Hauge MK, Lund CC, Sneppen K, Mitarai N. Fast Translation within the First 45 Codons Decreases mRNA Stability and Increases Premature Transcription Termination in E. coli. J Mol Biol 2019; 431:1088-1097. [DOI: 10.1016/j.jmb.2019.01.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/11/2019] [Accepted: 01/16/2019] [Indexed: 10/27/2022]
|
77
|
An improved estimation of tRNA expression to better elucidate the coevolution between tRNA abundance and codon usage in bacteria. Sci Rep 2019; 9:3184. [PMID: 30816249 PMCID: PMC6395768 DOI: 10.1038/s41598-019-39369-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/23/2019] [Indexed: 12/16/2022] Open
Abstract
The degree to which codon usage can be explained by tRNA abundance in bacterial species is often inadequate, partly because differential tRNA abundance is often approximated by tRNA copy numbers. To better understand the coevolution between tRNA abundance and codon usage, we provide a better estimate of tRNA abundance by profiling tRNA mapped reads (tRNA tpm) using publicly available RNA Sequencing data. To emphasize the feasibility of our approach, we demonstrate that tRNA tpm is consistent with tRNA abundances derived from RNA fingerprinting experiments in Escherichia coli, Bacillus subtilis, and Salmonella enterica. Furthermore, we do not observe an appreciable reduction in tRNA sequencing efficiency due to post-transcriptional methylations in the seven bacteria studied. To determine optimal codons, we calculate codon usage in highly and lowly expressed genes determined by protein per transcript. We found that tRNA tpm is sensitive to identify more translationally optimal codons than gene copy number and early tRNA fingerprinting abundances. Additionally, tRNA tpm improves the predictive power of tRNA adaptation index over codon preference. Our results suggest that dependence of codon usage on tRNA availability is not always associated with species growth-rate. Conversely, tRNA availability is better optimized to codon usage in fast-growing than slow-growing species.
Collapse
|
78
|
Eraslan B, Wang D, Gusic M, Prokisch H, Hallström BM, Uhlén M, Asplund A, Pontén F, Wieland T, Hopf T, Hahne H, Kuster B, Gagneur J. Quantification and discovery of sequence determinants of protein-per-mRNA amount in 29 human tissues. Mol Syst Biol 2019; 15:e8513. [PMID: 30777893 PMCID: PMC6379048 DOI: 10.15252/msb.20188513] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 01/22/2019] [Accepted: 01/23/2019] [Indexed: 12/15/2022] Open
Abstract
Despite their importance in determining protein abundance, a comprehensive catalogue of sequence features controlling protein-to-mRNA (PTR) ratios and a quantification of their effects are still lacking. Here, we quantified PTR ratios for 11,575 proteins across 29 human tissues using matched transcriptomes and proteomes. We estimated by regression the contribution of known sequence determinants of protein synthesis and degradation in addition to 45 mRNA and 3 protein sequence motifs that we found by association testing. While PTR ratios span more than 2 orders of magnitude, our integrative model predicts PTR ratios at a median precision of 3.2-fold. A reporter assay provided functional support for two novel UTR motifs, and an immobilized mRNA affinity competition-binding assay identified motif-specific bound proteins for one motif. Moreover, our integrative model led to a new metric of codon optimality that captures the effects of codon frequency on protein synthesis and degradation. Altogether, this study shows that a large fraction of PTR ratio variation in human tissues can be predicted from sequence, and it identifies many new candidate post-transcriptional regulatory elements.
Collapse
Affiliation(s)
- Basak Eraslan
- Computational Biology, Department of Informatics, Technical University of Munich, Garching Munich, Germany
- Graduate School of Quantitative Biosciences (QBM), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Dongxue Wang
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Mirjana Gusic
- Institute of Human Genetics, Technical University of Munich, Munich, Germany
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Holger Prokisch
- Institute of Human Genetics, Technical University of Munich, Munich, Germany
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Björn M Hallström
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Mathias Uhlén
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Anna Asplund
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Frederik Pontén
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Thomas Wieland
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Thomas Hopf
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | | | - Bernhard Kuster
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
- Center For Integrated Protein Science Munich (CIPSM), Munich, Germany
| | - Julien Gagneur
- Computational Biology, Department of Informatics, Technical University of Munich, Garching Munich, Germany
| |
Collapse
|
79
|
Ballard A, Bieniek S, Carlini DB. The fitness consequences of synonymous mutations in Escherichia coli: Experimental evidence for a pleiotropic effect of translational selection. Gene 2019; 694:111-120. [PMID: 30738968 DOI: 10.1016/j.gene.2019.01.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 12/21/2018] [Accepted: 01/22/2019] [Indexed: 01/06/2023]
Abstract
Codon usage bias (CUB) is a universal feature of genomes, and in most species CUB of protein coding genes is positively correlated with expression level and degree of evolutionary conservation. There is mounting experimental evidence that CUB is due in part to selection for translational efficiency and/or accuracy, i.e., translational selection. However, there is a paucity of experimental data on whether and how CUB acts in trans - does the usage of preferred codons in a highly expressed gene affect the translation of other genes by freeing up more ribosomes, thereby increasing their availability to translate all mRNA transcripts in the cell? We investigated this question by creating two extreme versions of the highly expressed Escherichia coli β-lactamase (bla) gene, one comprised almost entirely of unpreferred codons, and a second comprised almost entirely of preferred codons. We monitored the fitness effects of these synonymous mutations over hundreds of generations in two selective environments that allowed us to disentangle translational effects acting in cis from those acting in trans. In a selective environment for maximizing translational efficiency in trans of a gene (tetA) encoding a tetracycline resistance protein, unpreferred synonymous mutations had a negative impact on long-term fitness, whereas preferred mutations had a positive impact on long-term fitness, providing strong experimental evidence for a pleiotropic effect of translational selection.
Collapse
Affiliation(s)
- Anne Ballard
- Department of Biology, American University, 4400 Massachusetts Avenue, NW, Washington, DC, 20016, United States of America
| | - Sarah Bieniek
- Department of Biology, American University, 4400 Massachusetts Avenue, NW, Washington, DC, 20016, United States of America
| | - David B Carlini
- Department of Biology, American University, 4400 Massachusetts Avenue, NW, Washington, DC, 20016, United States of America.
| |
Collapse
|
80
|
Mandad S, Rahman RU, Centeno TP, Vidal RO, Wildhagen H, Rammner B, Keihani S, Opazo F, Urban I, Ischebeck T, Kirli K, Benito E, Fischer A, Yousefi RY, Dennerlein S, Rehling P, Feussner I, Urlaub H, Bonn S, Rizzoli SO, Fornasiero EF. The codon sequences predict protein lifetimes and other parameters of the protein life cycle in the mouse brain. Sci Rep 2018; 8:16913. [PMID: 30443017 PMCID: PMC6237891 DOI: 10.1038/s41598-018-35277-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 11/02/2018] [Indexed: 12/14/2022] Open
Abstract
The homeostasis of the proteome depends on the tight regulation of the mRNA and protein abundances, of the translation rates, and of the protein lifetimes. Results from several studies on prokaryotes or eukaryotic cell cultures have suggested that protein homeostasis is connected to, and perhaps regulated by, the protein and the codon sequences. However, this has been little investigated for mammals in vivo. Moreover, the link between the coding sequences and one critical parameter, the protein lifetime, has remained largely unexplored, both in vivo and in vitro. We tested this in the mouse brain, and found that the percentages of amino acids and codons in the sequences could predict all of the homeostasis parameters with a precision approaching experimental measurements. A key predictive element was the wobble nucleotide. G-/C-ending codons correlated with higher protein lifetimes, protein abundances, mRNA abundances and translation rates than A-/U-ending codons. Modifying the proportions of G-/C-ending codons could tune these parameters in cell cultures, in a proof-of-principle experiment. We suggest that the coding sequences are strongly linked to protein homeostasis in vivo, albeit it still remains to be determined whether this relation is causal in nature.
Collapse
Affiliation(s)
- Sunit Mandad
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain, 37073, Göttingen, Germany
- Bioanalytical Mass Spectrometry Group, Max Planck Institute of Biophysical Chemistry, 37077, Göttingen, Germany
| | - Raza-Ur Rahman
- Laboratory of Computational Systems Biology, German Center for Neurodegenerative Diseases (DZNE), 37075, Göttingen, Germany
- Institute of Medical Systems Biology, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), 20246, Hamburg, Germany
| | - Tonatiuh Pena Centeno
- Laboratory of Computational Systems Biology, German Center for Neurodegenerative Diseases (DZNE), 37075, Göttingen, Germany
| | - Ramon O Vidal
- Laboratory of Computational Systems Biology, German Center for Neurodegenerative Diseases (DZNE), 37075, Göttingen, Germany
| | - Hanna Wildhagen
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain, 37073, Göttingen, Germany
| | - Burkhard Rammner
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain, 37073, Göttingen, Germany
| | - Sarva Keihani
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain, 37073, Göttingen, Germany
| | - Felipe Opazo
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain, 37073, Göttingen, Germany
| | - Inga Urban
- Genes and Behavior Department, Max Planck Institute of Biophysical Chemistry, 37073, Göttingen, Germany
| | - Till Ischebeck
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute, Georg-August-University, 37073, Göttingen, Germany
| | - Koray Kirli
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, 37073, Göttingen, Germany
| | - Eva Benito
- Laboratory of Epigenetics in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE), 37075, Göttingen, Germany
| | - André Fischer
- Laboratory of Epigenetics in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE), 37075, Göttingen, Germany
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Roya Y Yousefi
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, 37073, Germany
| | - Sven Dennerlein
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, 37073, Germany
| | - Peter Rehling
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, 37073, Germany
- Max Planck Institute for Biophysical Chemistry, 37073, Göttingen, Germany
| | - Ivo Feussner
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute, Georg-August-University, 37073, Göttingen, Germany
| | - Henning Urlaub
- Department of Clinical Chemistry, University Medical Center Göttingen, 37077, Göttingen, Germany
- Bioanalytical Mass Spectrometry Group, Max Planck Institute of Biophysical Chemistry, 37077, Göttingen, Germany
| | - Stefan Bonn
- Laboratory of Computational Systems Biology, German Center for Neurodegenerative Diseases (DZNE), 37075, Göttingen, Germany.
- Institute of Medical Systems Biology, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), 20246, Hamburg, Germany.
- German Center for Neurodegenerative Diseases (DZNE), 72076, Tübingen, Germany.
| | - Silvio O Rizzoli
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain, 37073, Göttingen, Germany.
- Center for Biostructural Imaging of Neurodegeneration (BIN), 37075, Göttingen, Germany.
| | - Eugenio F Fornasiero
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain, 37073, Göttingen, Germany.
| |
Collapse
|
81
|
Chemla Y, Ozer E, Algov I, Alfonta L. Context effects of genetic code expansion by stop codon suppression. Curr Opin Chem Biol 2018; 46:146-155. [DOI: 10.1016/j.cbpa.2018.07.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 05/01/2018] [Accepted: 07/13/2018] [Indexed: 10/28/2022]
|
82
|
Pintó RM, Pérez-Rodríguez FJ, D'Andrea L, de Castellarnau M, Guix S, Bosch A. Hepatitis A Virus Codon Usage: Implications for Translation Kinetics and Capsid Folding. Cold Spring Harb Perspect Med 2018. [PMID: 29530949 DOI: 10.1101/cshperspect.a031781] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Codon usage bias is universal to all genomes. Hepatitis A virus (HAV) codon usage is highly biased and deoptimized with respect to its host. Accordingly, HAV is unable to induce cellular translational shutoff and its internal ribosome entry site (IRES) is inefficient. Codon usage deoptimization may be seen as a hawk (host cell) versus dove (HAV) game strategy for accessing transfer RNA (tRNA). HAV avoids use of abundant host cell codons and thereby eludes competition for the corresponding tRNAs. Instead, codons that are abundant or rare in cellular messenger RNAs (mRNAs) are used relatively rarely in its genome, although intermediately abundant host cell codons are abundant in the viral genome. Rare codons in the capsid coding region slow down the translation elongation rate, and in doing so intrinsically modulate capsid folding, which is critical to the stability of a virus transmitted through the fecal-oral route. HAV is a paradigmatic example of what has been proposed as a codon usage "code" for protein structure.
Collapse
Affiliation(s)
- Rosa M Pintó
- Enteric Virus Laboratory, Department of Genetics, Microbiology and Statistics, School of Biology, University of Barcelona, 08028 Barcelona, Spain.,Enteric Virus Laboratory, Institute of Nutrition and Food Safety, Campus Torribera, University of Barcelona, 08921 Santa Coloma de Gramanet, Spain
| | - Francisco-Javier Pérez-Rodríguez
- Enteric Virus Laboratory, Department of Genetics, Microbiology and Statistics, School of Biology, University of Barcelona, 08028 Barcelona, Spain.,Enteric Virus Laboratory, Institute of Nutrition and Food Safety, Campus Torribera, University of Barcelona, 08921 Santa Coloma de Gramanet, Spain
| | - Lucia D'Andrea
- Enteric Virus Laboratory, Department of Genetics, Microbiology and Statistics, School of Biology, University of Barcelona, 08028 Barcelona, Spain.,Enteric Virus Laboratory, Institute of Nutrition and Food Safety, Campus Torribera, University of Barcelona, 08921 Santa Coloma de Gramanet, Spain
| | - Montserrat de Castellarnau
- Enteric Virus Laboratory, Department of Genetics, Microbiology and Statistics, School of Biology, University of Barcelona, 08028 Barcelona, Spain.,Enteric Virus Laboratory, Institute of Nutrition and Food Safety, Campus Torribera, University of Barcelona, 08921 Santa Coloma de Gramanet, Spain
| | - Susana Guix
- Enteric Virus Laboratory, Department of Genetics, Microbiology and Statistics, School of Biology, University of Barcelona, 08028 Barcelona, Spain.,Enteric Virus Laboratory, Institute of Nutrition and Food Safety, Campus Torribera, University of Barcelona, 08921 Santa Coloma de Gramanet, Spain
| | - Albert Bosch
- Enteric Virus Laboratory, Department of Genetics, Microbiology and Statistics, School of Biology, University of Barcelona, 08028 Barcelona, Spain.,Enteric Virus Laboratory, Institute of Nutrition and Food Safety, Campus Torribera, University of Barcelona, 08921 Santa Coloma de Gramanet, Spain
| |
Collapse
|
83
|
Wons E, Koscielniak D, Szadkowska M, Sektas M. Evaluation of GFP reporter utility for analysis of transcriptional slippage during gene expression. Microb Cell Fact 2018; 17:150. [PMID: 30241530 PMCID: PMC6149199 DOI: 10.1186/s12934-018-0999-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 09/17/2018] [Indexed: 11/20/2022] Open
Abstract
Background Epimutations arising from transcriptional slippage seem to have more important role in regulating gene expression than earlier though. Since the level and the fidelity of transcription primarily determine the overall efficiency of gene expression, all factors contributing to their decrease should be identified and optimized. Results To examine the influence of A/T homopolymeric sequences on introduction of erroneous nucleotides by slippage mechanism green fluorescence protein (GFP) reporter was chosen. The in- or out-of-frame gfp gene was fused to upstream fragment with variable number of adenine or thymine stretches resulting in several hybrid GFP proteins with diverse amino acids at N-terminus. Here, by using T7 phage expression system we showed that the intensity of GFP fluorescence mainly depends on the number of the retained natural amino acids. While the lack of serine (S2) residue results in negligible effects, the lack of serine and lysine (S2K3) contributed to a significant reduction in fluorescence by 2.7-fold for polyA-based in-frame controls and twofold for polyTs. What is more, N-terminal tails amino acid composition was rather of secondary importance, since the whole-cell fluorescence differed in a range of 9–18% between corresponding polyA- and polyT-based constructs. Conclusions Here we present experimental evidence for utility of GFP reporter for accurate estimation of A/T homopolymeric sequence contribution in transcriptional slippage induction. We showed that the intensity of GFP hybrid fluorescence mainly depends on the number of retained natural amino acids, thus fluorescence raw data need to be referred to appropriate positive control. Moreover, only in case of GFP hybrids with relatively short N-terminal tags the fluorescence level solely reflects production yield, what further indicates the impact of an individual slippage sequence. Our results demonstrate that in contrast to the E. coli enzyme, T7 RNA polymerase exhibits extremely high propensity to slippage even on runs as short as 3 adenine or 4 thymine residues. Electronic supplementary material The online version of this article (10.1186/s12934-018-0999-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ewa Wons
- Department of Microbiology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland
| | - Dawid Koscielniak
- Department of Microbiology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland
| | - Monika Szadkowska
- Department of Microbiology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland
| | - Marian Sektas
- Department of Microbiology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland.
| |
Collapse
|
84
|
Mittal P, Brindle J, Stephen J, Plotkin JB, Kudla G. Codon usage influences fitness through RNA toxicity. Proc Natl Acad Sci U S A 2018; 115:8639-8644. [PMID: 30082392 PMCID: PMC6112741 DOI: 10.1073/pnas.1810022115] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Many organisms are subject to selective pressure that gives rise to unequal usage of synonymous codons, known as codon bias. To experimentally dissect the mechanisms of selection on synonymous sites, we expressed several hundred synonymous variants of the GFP gene in Escherichia coli, and used quantitative growth and viability assays to estimate bacterial fitness. Unexpectedly, we found many synonymous variants whose expression was toxic to E. coli Unlike previously studied effects of synonymous mutations, the effect that we discovered is independent of translation, but it depends on the production of toxic mRNA molecules. We identified RNA sequence determinants of toxicity and evolved suppressor strains that can tolerate the expression of toxic GFP variants. Genome sequencing of these suppressor strains revealed a cluster of promoter mutations that prevented toxicity by reducing mRNA levels. We conclude that translation-independent RNA toxicity is a previously unrecognized obstacle in bacterial gene expression.
Collapse
Affiliation(s)
- Pragya Mittal
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, EH4 2XU Edinburgh, United Kingdom
| | - James Brindle
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, EH4 2XU Edinburgh, United Kingdom
| | - Julie Stephen
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, EH4 2XU Edinburgh, United Kingdom
| | - Joshua B Plotkin
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104
| | - Grzegorz Kudla
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, EH4 2XU Edinburgh, United Kingdom;
| |
Collapse
|
85
|
Abstract
The pool of transfer RNA (tRNA) molecules in cells allows the ribosome to decode genetic information. This repertoire of molecular decoders is positioned in the crossroad of the genome, the transcriptome, and the proteome. Omics and systems biology now allow scientists to explore the entire repertoire of tRNAs of many organisms, revealing basic exciting biology. The tRNA gene set of hundreds of species is now characterized, in addition to the tRNA genes of organelles and viruses. Genes encoding tRNAs for certain anticodon types appear in dozens of copies in a genome, while others are universally absent from any genome. Transcriptome measurement of tRNAs is challenging, but in recent years new technologies have allowed researchers to determine the dynamic expression patterns of tRNAs. These advances reveal that availability of ready-to-translate tRNA molecules is highly controlled by several transcriptional and posttranscriptional regulatory processes. This regulation shapes the proteome according to the cellular state. The tRNA pool profoundly impacts many aspects of cellular and organismal life, including protein expression level, translation accuracy, adequacy of folding, and even mRNA stability. As a result, the shape of the tRNA pool affects organismal health and may participate in causing conditions such as cancer and neurological conditions.
Collapse
Affiliation(s)
- Roni Rak
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 76100 Israel;
| | - Orna Dahan
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 76100 Israel;
| | - Yitzhak Pilpel
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 76100 Israel;
| |
Collapse
|
86
|
Seward EA, Kelly S. Selection-driven cost-efficiency optimization of transcripts modulates gene evolutionary rate in bacteria. Genome Biol 2018; 19:102. [PMID: 30064467 PMCID: PMC6066932 DOI: 10.1186/s13059-018-1480-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 07/11/2018] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Most amino acids are encoded by multiple synonymous codons. However, synonymous codons are not used equally, and this biased codon use varies between different organisms. It has previously been shown that both selection acting to increase codon translational efficiency and selection acting to decrease codon biosynthetic cost contribute to differences in codon bias. However, it is unknown how these two factors interact or how they affect molecular sequence evolution. RESULTS Through analysis of 1320 bacterial genomes, we show that bacterial genes are subject to multi-objective selection-driven optimization of codon use. Here, selection acts to simultaneously decrease transcript biosynthetic cost and increase transcript translational efficiency, with highly expressed genes under the greatest selection. This optimization is not simply a consequence of the more translationally efficient codons being less expensive to synthesize. Instead, we show that transfer RNA gene copy number alters the cost-efficiency trade-off of synonymous codons such that, for many species, selection acting on transcript biosynthetic cost and translational efficiency act in opposition. Finally, we show that genes highly optimized to reduce cost and increase efficiency show reduced rates of synonymous and non-synonymous mutation. CONCLUSIONS This analysis provides a simple mechanistic explanation for variation in evolutionary rate between genes that depends on selection-driven cost-efficiency optimization of the transcript. These findings reveal how optimization of resource allocation to messenger RNA synthesis is a critical factor that determines both the evolution and composition of genes.
Collapse
Affiliation(s)
- Emily A Seward
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Steven Kelly
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK.
| |
Collapse
|
87
|
Abstract
Codon usage depends on mutation bias, tRNA-mediated selection, and the need for high efficiency and accuracy in translation. One codon in a synonymous codon family is often strongly over-used, especially in highly expressed genes, which often leads to a high dN/dS ratio because dS is very small. Many different codon usage indices have been proposed to measure codon usage and codon adaptation. Sense codon could be misread by release factors and stop codons misread by tRNAs, which also contribute to codon usage in rare cases. This chapter outlines the conceptual framework on codon evolution, illustrates codon-specific and gene-specific codon usage indices, and presents their applications. A new index for codon adaptation that accounts for background mutation bias (Index of Translation Elongation) is presented and contrasted with codon adaptation index (CAI) which does not consider background mutation bias. They are used to re-analyze data from a recent paper claiming that translation elongation efficiency matters little in protein production. The reanalysis disproves the claim.
Collapse
|
88
|
Abstract
Genome and transcript sequences are composed of long strings of nucleotide monomers (A, C, G, and T/U) that require different quantities of nitrogen atoms for biosynthesis. Here, it is shown that the strength of selection acting on transcript nitrogen content is influenced by the amount of nitrogen plants require to conduct photosynthesis. Specifically, plants that require more nitrogen to conduct photosynthesis experience stronger selection on transcript sequences to use synonymous codons that cost less nitrogen to biosynthesize. It is further shown that the strength of selection acting on transcript nitrogen cost constrains molecular sequence evolution such that genes experiencing stronger selection evolve at a slower rate. Together these findings reveal that the plant molecular clock is set by photosynthetic efficiency, and provide a mechanistic explanation for changes in plant speciation rates that occur concomitant with improvements in photosynthetic efficiency and changes in the environment such as light, temperature, and atmospheric CO2 concentration.
Collapse
Affiliation(s)
- Steven Kelly
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
89
|
Boshtam M, Khanahmad Shahreza H, Feizollahzadeh S, Rahimmanesh I, Asgary S. Expression and purification of biologically active recombinant rabbit monocyte chemoattractant protein1 in Escherichia coli. FEMS Microbiol Lett 2018; 365:4955552. [PMID: 29596634 DOI: 10.1093/femsle/fny070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 03/26/2018] [Indexed: 12/22/2022] Open
Abstract
Monocyte chemoattractant protein 1 (MCP1) with recruiting monocytes is an important factor at the beginning of inflammatory disorders such as atherosclerosis which seems its blocking preclude this process and help improvement of related diseases. To perform clinical research in this field, MCP1 protein is required but firstly, animal studies should be done. As the rabbit is a suitable model for many inflammatory disorders, and Escherichia coli BL21(DE3) (BL21) cell is a high-efficiency host for protein expression, we decided to produce recombinant rabbit MCP1 (rRMCP1) in BL21/pET28a system. After codon usage, a construct containing RMCP1 sequence was synthesized, cloned into the pET28a plasmid, and overexpressed in BL21 cells. Followed that, with changing expression condition such as cell concentration before the induction, time period, temperature, shaking rate and inducer concentration (IPTG), rRMCP1 expression was optimized, and purified by Ni-NTA. The biological activity of the expressed protein was verified using monocyte migration assay. Using this expression system, nearly 28 mg/mL rRMCP1 was produced at 26°C/180 rpm for 24 h in LB broth medium with 1 mM IPTG. Therefore, we were succeeded to express the intermediate level of rRMCP1 with this method. This amount of protein is sufficient for biological researches in the laboratory.
Collapse
Affiliation(s)
- Maryam Boshtam
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 8174643446, Iran
| | - Hossein Khanahmad Shahreza
- Genetic and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan 8174643446, Iran
| | - Sadegh Feizollahzadeh
- Faculty of Paramedical, Urmia University of Medical Sciences, Urmia 5756115198, Iran
| | - Ilnaz Rahimmanesh
- Genetic and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan 8174643446, Iran
| | - Sedigheh Asgary
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 8174643446, Iran
| |
Collapse
|
90
|
Szavits-Nossan J, Ciandrini L, Romano MC. Deciphering mRNA Sequence Determinants of Protein Production Rate. PHYSICAL REVIEW LETTERS 2018; 120:128101. [PMID: 29694095 DOI: 10.1103/physrevlett.120.128101] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 01/18/2018] [Indexed: 06/08/2023]
Abstract
One of the greatest challenges in biophysical models of translation is to identify coding sequence features that affect the rate of translation and therefore the overall protein production in the cell. We propose an analytic method to solve a translation model based on the inhomogeneous totally asymmetric simple exclusion process, which allows us to unveil simple design principles of nucleotide sequences determining protein production rates. Our solution shows an excellent agreement when compared to numerical genome-wide simulations of S. cerevisiae transcript sequences and predicts that the first 10 codons, which is the ribosome footprint length on the mRNA, together with the value of the initiation rate, are the main determinants of protein production rate under physiological conditions. Finally, we interpret the obtained analytic results based on the evolutionary role of the codons' choice for regulating translation rates and ribosome densities.
Collapse
Affiliation(s)
- Juraj Szavits-Nossan
- SUPA, School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom
| | - Luca Ciandrini
- L2C, Université de Montpellier, CNRS, Montpellier, France and DIMNP, Université de Montpellier, CNRS, Montpellier, France
| | - M Carmen Romano
- SUPA, Institute for Complex Systems and Mathematical Biology, Department of Physics, Aberdeen AB24 3UE, United Kingdom and Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB24 3FX, United Kingdom
| |
Collapse
|
91
|
Chen S, Li K, Cao W, Wang J, Zhao T, Huan Q, Yang YF, Wu S, Qian W. Codon-Resolution Analysis Reveals a Direct and Context-Dependent Impact of Individual Synonymous Mutations on mRNA Level. Mol Biol Evol 2018; 34:2944-2958. [PMID: 28961875 PMCID: PMC5850819 DOI: 10.1093/molbev/msx229] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Codon usage bias (CUB) refers to the observation that synonymous codons are not used equally frequently in a genome. CUB is stronger in more highly expressed genes, a phenomenon commonly explained by stronger natural selection on translational accuracy and/or efficiency among these genes. Nevertheless, this phenomenon could also occur if CUB regulates gene expression at the mRNA level, a hypothesis that has not been tested until recently. Here, we attempt to quantify the impact of synonymous mutations on mRNA level in yeast using 3,556 synonymous variants of a heterologous gene encoding green fluorescent protein (GFP) and 523 synonymous variants of an endogenous gene TDH3. We found that mRNA level was positively correlated with CUB among these synonymous variants, demonstrating a direct role of CUB in regulating transcript concentration, likely via regulating mRNA degradation rate, as our additional experiments suggested. More importantly, we quantified the effects of individual synonymous mutations on mRNA level and found them dependent on 1) CUB and 2) mRNA secondary structure, both in proximal sequence contexts. Our study reveals the pleiotropic effects of synonymous codon usage and provides an additional explanation for the well-known correlation between CUB and gene expression level.
Collapse
Affiliation(s)
- Siyu Chen
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ke Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Wenqing Cao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jia Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Sino-Danish Center for Education and Research, Beijing, China
| | - Tong Zhao
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Qing Huan
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yu-Fei Yang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Shaohuan Wu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Wenfeng Qian
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Sino-Danish Center for Education and Research, Beijing, China
| |
Collapse
|
92
|
Datta S, Seed B. Influence of multiplicative stochastic variation on translational elongation rates. PLoS One 2018; 13:e0191152. [PMID: 29351322 PMCID: PMC5774726 DOI: 10.1371/journal.pone.0191152] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 12/30/2017] [Indexed: 11/18/2022] Open
Abstract
Experimental data indicate that stochastic effects exerted at the level of translation contribute substantially to the variation in abundance of proteins expressed at moderate to high levels. This study analyzes the theoretical consequences of fluctuations in residue-specific elongation rates during translation. A simple analytical framework shows that rate variation during elongation gives rise to protein production rates that consist of sums of products of random variables. Simulations show that because the contribution to total variation of products of random variables greatly exceeds that of sums of random variables, the overall distribution exhibits approximately log-normal behavior. Empirical fits of the data can be satisfied by either sums of log-normal distributions, or sums of log-normal and log-logistic distributions. Elongation rate stochastic variation offers an accounting for a major component of biological variation. The analysis provided here highlights a probability distribution that is a natural extension of the Poisson and has broad applicability to many types of multiplicative noise processes.
Collapse
Affiliation(s)
- Sandip Datta
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, United States of America
| | - Brian Seed
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, United States of America
- * E-mail:
| |
Collapse
|
93
|
Quandt EM, Traverse CC, Ochman H. Local genic base composition impacts protein production and cellular fitness. PeerJ 2018; 6:e4286. [PMID: 29362699 PMCID: PMC5774297 DOI: 10.7717/peerj.4286] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 01/01/2018] [Indexed: 01/25/2023] Open
Abstract
The maintenance of a G + C content that is higher than the mutational input to a genome provides support for the view that selection serves to increase G + C contents in bacteria. Recent experimental evidence from Escherichia coli demonstrated that selection for increasing G + C content operates at the level of translation, but the precise mechanism by which this occurs is unknown. To determine the substrate of selection, we asked whether selection on G + C content acts across all sites within a gene or is confined to particular genic regions or nucleotide positions. We systematically altered the G + C contents of the GFP gene and assayed its effects on the fitness of strains harboring each variant. Fitness differences were attributable to the base compositional variation in the terminal portion of the gene, suggesting a connection to the folding of a specific protein feature. Variants containing sequence features that are thought to result in rapid translation, such as low G + C content and high levels of codon adaptation, displayed highly reduced growth rates. Taken together, our results show that purifying selection acting against A and T mutations most likely results from their tendency to increase the rate of translation, which can perturb the dynamics of protein folding.
Collapse
Affiliation(s)
- Erik M Quandt
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, United States of America
| | - Charles C Traverse
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, United States of America
| | - Howard Ochman
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, United States of America
| |
Collapse
|
94
|
|
95
|
Wang YN, Ji WH, Li XR, Liu YS, Zhou JH. Unique features of nucleotide and codon usage patterns in mycoplasmas revealed by information entropy. Biosystems 2017; 165:1-7. [PMID: 29274363 DOI: 10.1016/j.biosystems.2017.12.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/11/2017] [Accepted: 12/15/2017] [Indexed: 11/25/2022]
Abstract
Currently, the comparison between GC usage pattern at the 3rd codon position and codon usage index is commonly used to estimate the roles of evolutionary forces in shaping synonymous codon usages, however, this kind of analysis often losses the information about the role of A/T usage bias in shaping synonymous codon usage bias. To overcome this limitation and better understand the interplay between nucleotide and codon usages for the evolution of bacteria at gene levels, in this study, we employed the information entropy method with some modification to estimate roles of nucleotide compositions in the overall codon usage bias for 18 mycoplasma species in combination with Davies-Bouldin index. At gene levels, the overall nucleotide usage bias represents A content as the highest, followed by T, G and C for mycoplasmas, resulting in a low GC content. This feature is universal across these species derived from different hosts, suggesting that the hosts have the limited impact on nucleotide usage bias of mycoplasmas. Information entropy and Davies-Bouldin index can better reveal that the nucleotide usage bias at the 3rd codon position is essential in shaping the overall nucleotide bias for all given mycoplasmas except M. pneumoniae M129. Davies-Bouldin index revealed that the 1st and 2nd codon position play more important role in synonymous codon usage bias than that of the 3rd position at gene levels. To our knowledge, this is the first comprehensive investigation into cooperation between nucleotide and codon usages for mycoplasma and extends our knowledge of the mechanisms that contribute to codon usage and evolution of this microorganism.
Collapse
Affiliation(s)
- Yi-Ning Wang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, PR China
| | - Wen-Heng Ji
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, PR China
| | - Xue-Rui Li
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, PR China
| | - Yong-Sheng Liu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, PR China
| | - Jian-Hua Zhou
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, PR China.
| |
Collapse
|
96
|
Morgan GJ, Burkhardt DH, Kelly JW, Powers ET. Translation efficiency is maintained at elevated temperature in Escherichia coli. J Biol Chem 2017; 293:777-793. [PMID: 29183994 DOI: 10.1074/jbc.ra117.000284] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 11/22/2017] [Indexed: 01/30/2023] Open
Abstract
Cellular protein levels are dictated by the balance between gene transcription, mRNA translation, and protein degradation, among other factors. Translation requires the interplay of several RNA hybridization processes, which are expected to be temperature-sensitive. We used ribosome profiling to monitor translation in Escherichia coli at 30 °C and to investigate how this changes after 10-20 min of heat shock at 42 °C. Translation efficiencies are robustly maintained after thermal heat shock and after mimicking the heat-shock response transcriptional program at 30 °C by overexpressing the heat shock σ factor encoded by the rpoH gene. We compared translation efficiency, the ratio of ribosome footprint reads to mRNA reads for each gene, to parameters derived from gene sequences. Genes with stable mRNA structures, non-optimal codon use, and those whose gene product is cotranslationally translocated into the inner membrane are generally less highly translated than other genes. Comparison with other published datasets suggests a role for translational elongation in coupling mRNA structures to translation initiation. Genome-wide calculations of the temperature dependence of mRNA structure predict that relatively few mRNAs show a melting transition between 30 and 42 °C, consistent with the observed lack of changes in translation efficiency. We developed a linear model with six parameters that can predict 38% of the variation in translation efficiency between genes, which may be useful in interpreting transcriptome data.
Collapse
Affiliation(s)
- Gareth J Morgan
- From the Departments of Chemistry and Molecular Medicine and
| | - David H Burkhardt
- California Institute of Quantitative Biosciences and Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California 94158
| | - Jeffery W Kelly
- From the Departments of Chemistry and Molecular Medicine and.,Skaggs Institute for Chemical Biology, The Scripps Research Institute, La, Jolla, California 92037, and
| | - Evan T Powers
- From the Departments of Chemistry and Molecular Medicine and
| |
Collapse
|
97
|
From genetic variability to phenotypic expression of blood group systems. Transfus Clin Biol 2017; 24:472-475. [DOI: 10.1016/j.tracli.2017.06.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 06/07/2017] [Indexed: 01/06/2023]
|
98
|
Wong HE, Huang CJ, Zhang Z. Amino acid misincorporation in recombinant proteins. Biotechnol Adv 2017; 36:168-181. [PMID: 29107148 DOI: 10.1016/j.biotechadv.2017.10.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 09/12/2017] [Accepted: 10/24/2017] [Indexed: 11/26/2022]
Abstract
Proteins provide the molecular basis for cellular structure, catalytic activity, signal transduction, and molecular transport in biological systems. Recombinant protein expression is widely used to prepare and manufacture novel proteins that serve as the foundation of many biopharmaceutical products. However, protein translation bioprocesses are inherently prone to low-level errors. These sequence variants caused by amino acid misincorporation have been observed in both native and recombinant proteins. Protein sequence variants impact product quality, and their presence can be exacerbated through cellular stress, overexpression, and nutrient starvation. Therefore, the cell line selection process, which is used in the biopharmaceutical industry, is not only directed towards maximizing productivity, but also focuses on selecting clones which yield low sequence variant levels, thereby proactively avoiding potentially inauspicious patient safety and efficacy outcomes. Here, we summarize a number of hallmark studies aimed at understanding the mechanisms of amino acid misincorporation, as well as exacerbating factors, and mitigation strategies. We also describe key advances in analytical technologies in the identification and quantification of sequence variants, and some practical considerations when using LC-MS/MS for detecting sequence variants.
Collapse
Affiliation(s)
- H Edward Wong
- Process Development, Amgen Inc., 1 Amgen Center Drive, Thousand Oaks, CA 91320, United States
| | - Chung-Jr Huang
- Process Development, Amgen Inc., 1 Amgen Center Drive, Thousand Oaks, CA 91320, United States
| | - Zhongqi Zhang
- Process Development, Amgen Inc., 1 Amgen Center Drive, Thousand Oaks, CA 91320, United States.
| |
Collapse
|
99
|
Zhao F, Yu CH, Liu Y. Codon usage regulates protein structure and function by affecting translation elongation speed in Drosophila cells. Nucleic Acids Res 2017; 45:8484-8492. [PMID: 28582582 PMCID: PMC5737824 DOI: 10.1093/nar/gkx501] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 05/26/2017] [Indexed: 11/14/2022] Open
Abstract
Codon usage biases are found in all eukaryotic and prokaryotic genomes and have been proposed to regulate different aspects of translation process. Codon optimality has been shown to regulate translation elongation speed in fungal systems, but its effect on translation elongation speed in animal systems is not clear. In this study, we used a Drosophila cell-free translation system to directly compare the velocity of mRNA translation elongation. Our results demonstrate that optimal synonymous codons speed up translation elongation while non-optimal codons slow down translation. In addition, codon usage regulates ribosome movement and stalling on mRNA during translation. Finally, we show that codon usage affects protein structure and function in vitro and in Drosophila cells. Together, these results suggest that the effect of codon usage on translation elongation speed is a conserved mechanism from fungi to animals that can affect protein folding in eukaryotic organisms.
Collapse
Affiliation(s)
- Fangzhou Zhao
- Department of Physiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Chien-Hung Yu
- Department of Physiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Yi Liu
- Department of Physiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| |
Collapse
|
100
|
Schlesinger O, Chemla Y, Heltberg M, Ozer E, Marshall R, Noireaux V, Jensen MH, Alfonta L. Tuning of Recombinant Protein Expression in Escherichia coli by Manipulating Transcription, Translation Initiation Rates, and Incorporation of Noncanonical Amino Acids. ACS Synth Biol 2017; 6:1076-1085. [PMID: 28230975 DOI: 10.1021/acssynbio.7b00019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Protein synthesis in cells has been thoroughly investigated and characterized over the past 60 years. However, some fundamental issues remain unresolved, including the reasons for genetic code redundancy and codon bias. In this study, we changed the kinetics of the Eschrichia coli transcription and translation processes by mutating the promoter and ribosome binding domains and by using genetic code expansion. The results expose a counterintuitive phenomenon, whereby an increase in the initiation rates of transcription and translation lead to a decrease in protein expression. This effect can be rescued by introducing slow translating codons into the beginning of the gene, by shortening gene length or by reducing initiation rates. On the basis of the results, we developed a biophysical model, which suggests that the density of co-transcriptional-translation plays a role in bacterial protein synthesis. These findings indicate how cells use codon bias to tune translation speed and protein synthesis.
Collapse
Affiliation(s)
- Orr Schlesinger
- Department
of Life Sciences and Ilse Katz Institute for Nanoscale Science and
Technology, Ben-Gurion University of the Negev, PO Box 653, Beer-Sheva 8410501, Israel
| | - Yonatan Chemla
- Department
of Life Sciences and Ilse Katz Institute for Nanoscale Science and
Technology, Ben-Gurion University of the Negev, PO Box 653, Beer-Sheva 8410501, Israel
| | - Mathias Heltberg
- Niels
Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen, Denmark
| | - Eden Ozer
- Department
of Life Sciences and Ilse Katz Institute for Nanoscale Science and
Technology, Ben-Gurion University of the Negev, PO Box 653, Beer-Sheva 8410501, Israel
| | - Ryan Marshall
- School
of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Vincent Noireaux
- School
of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Mogens Høgh Jensen
- Niels
Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen, Denmark
| | - Lital Alfonta
- Department
of Life Sciences and Ilse Katz Institute for Nanoscale Science and
Technology, Ben-Gurion University of the Negev, PO Box 653, Beer-Sheva 8410501, Israel
| |
Collapse
|