51
|
Sergeeva EM, Shcherban AB, Adonina IG, Nesterov MA, Beletsky AV, Rakitin AL, Mardanov AV, Ravin NV, Salina EA. Fine organization of genomic regions tagged to the 5S rDNA locus of the bread wheat 5B chromosome. BMC PLANT BIOLOGY 2017; 17:183. [PMID: 29143604 PMCID: PMC5688495 DOI: 10.1186/s12870-017-1120-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
BACKGROUND The multigene family encoding the 5S rRNA, one of the most important structurally-functional part of the large ribosomal subunit, is an obligate component of all eukaryotic genomes. 5S rDNA has long been a favored target for cytological and phylogenetic studies due to the inherent peculiarities of its structural organization, such as the tandem arrays of repetitive units and their high interspecific divergence. The complex polyploid nature of the genome of bread wheat, Triticum aestivum, and the technically difficult task of sequencing clusters of tandem repeats mean that the detailed organization of extended genomic regions containing 5S rRNA genes remains unclear. This is despite the recent progress made in wheat genomic sequencing. Using pyrosequencing of BAC clones, in this work we studied the organization of two distinct 5S rDNA-tagged regions of the 5BS chromosome of bread wheat. RESULTS Three BAC-clones containing 5S rDNA were identified in the 5BS chromosome-specific BAC-library of Triticum aestivum. Using the results of pyrosequencing and assembling, we obtained six 5S rDNA- containing contigs with a total length of 140,417 bp, and two sets (pools) of individual 5S rDNA sequences belonging to separate, but closely located genomic regions on the 5BS chromosome. Both regions are characterized by the presence of approximately 70-80 copies of 5S rDNA, however, they are completely different in their structural organization. The first region contained highly diverged short-type 5S rDNA units that were disrupted by multiple insertions of transposable elements. The second region contained the more conserved long-type 5S rDNA, organized as a single tandem array. FISH using probes specific to both 5S rDNA unit types showed differences in the distribution and intensity of signals on the chromosomes of polyploid wheat species and their diploid progenitors. CONCLUSION A detailed structural organization of two closely located 5S rDNA-tagged genomic regions on the 5BS chromosome of bread wheat has been established. These two regions differ in the organization of both 5S rDNA and the neighboring sequences comprised of transposable elements, implying different modes of evolution for these regions.
Collapse
Affiliation(s)
- Ekaterina M Sergeeva
- The Federal Research Center "Institute of Cytology and Genetics SB RAS", Novosibirsk, Russia
| | - Andrey B Shcherban
- The Federal Research Center "Institute of Cytology and Genetics SB RAS", Novosibirsk, Russia.
| | - Irina G Adonina
- The Federal Research Center "Institute of Cytology and Genetics SB RAS", Novosibirsk, Russia
| | - Michail A Nesterov
- The Federal Research Center "Institute of Cytology and Genetics SB RAS", Novosibirsk, Russia
| | - Alexey V Beletsky
- The Federal Research Center "Fundamentals of Biotechnology RAS", Moscow, Russia
| | - Andrey L Rakitin
- The Federal Research Center "Fundamentals of Biotechnology RAS", Moscow, Russia
| | - Andrey V Mardanov
- The Federal Research Center "Fundamentals of Biotechnology RAS", Moscow, Russia
| | - Nikolai V Ravin
- The Federal Research Center "Fundamentals of Biotechnology RAS", Moscow, Russia
- Faculty of Biology, Moscow State University, Moscow, Russia
| | - Elena A Salina
- The Federal Research Center "Institute of Cytology and Genetics SB RAS", Novosibirsk, Russia
| |
Collapse
|
52
|
Danilova TV, Akhunova AR, Akhunov ED, Friebe B, Gill BS. Major structural genomic alterations can be associated with hybrid speciation in Aegilops markgrafii (Triticeae). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 92:317-330. [PMID: 28776783 DOI: 10.1111/tpj.13657] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/21/2017] [Accepted: 07/31/2017] [Indexed: 05/19/2023]
Abstract
During evolutionary history many grasses from the tribe Triticeae have undergone interspecific hybridization, resulting in allopolyploidy; whereas homoploid hybrid speciation was found only in rye. Homoeologous chromosomes within the Triticeae preserved cross-species macrocolinearity, except for a few species with rearranged genomes. Aegilops markgrafii, a diploid wild relative of wheat (2n = 2x = 14), has a highly asymmetrical karyotype that is indicative of chromosome rearrangements. Molecular cytogenetics and next-generation sequencing were used to explore the genome organization. Fluorescence in situ hybridization with a set of wheat cDNAs allowed the macrostructure and cross-genome homoeology of the Ae. markgrafii chromosomes to be established. Two chromosomes maintained colinearity, whereas the remaining were highly rearranged as a result of inversions and inter- and intrachromosomal translocations. We used sets of barley and wheat orthologous gene sequences to compare discrete parts of the Ae. markgrafii genome involved in the rearrangements. Analysis of sequence identity profiles and phylogenic relationships grouped chromosome blocks into two distinct clusters. Chromosome painting revealed the distribution of transposable elements and differentiated chromosome blocks into two groups consistent with the sequence analyses. These data suggest that introgressive hybridization accompanied by gross chromosome rearrangements might have had an impact on karyotype evolution and homoploid speciation in Ae. markgrafii.
Collapse
Affiliation(s)
- Tatiana V Danilova
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
| | - Alina R Akhunova
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
| | - Eduard D Akhunov
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
| | - Bernd Friebe
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
| | - Bikram S Gill
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
53
|
Zhao Y, Xie J, Dou Q, Wang J, Zhang Z. Diversification of the P genome among Agropyron Gaertn. (Poaceae) species detected by FISH. COMPARATIVE CYTOGENETICS 2017; 11:495-509. [PMID: 29093800 PMCID: PMC5646661 DOI: 10.3897/compcytogen.v11i3.13124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 06/21/2017] [Indexed: 06/07/2023]
Abstract
The genomes of five Agropyron Gaertner, 1770 species were characterized using all potential di- or trinucleotide simple sequence repeat (SSR) motifs and four satellite DNA repeats as fluorescence in situ hybridization (FISH) probes. The sites of 5S and 45S rDNA were relatively conserved among the diploid and tetraploid species. A number of sites for the dinucleotide SSRs AC, AG, and pSc119.2 was detected in all investigated species except A. mongolicum Keng, 1938. Several different trinucleotide SSRs were identified in different tetraploid species. All Agropyron species were suggested to include the basic P genome, although genome differentiation was still observed. The P genome of A. mongolicum was distinct from that of the diploid A. cristatum (Linnaeus, 1753) Gaertner, 1770. and other tetraploid species, with no hybridizations for AC, AG, or pSc119.2 observed. This finding supports designation of the P genomes of A. cristatum and A. mongolicum as Pc and Pm, respectively. An exceptional 5S rDNA site revealed in one set of homoeologous chromosomes strongly supports the allopolyploid origin of A. desertorum (Fischer ex Link, 1821) Schultes, 1824. However, the diploid donors to A. desertorum need further investigation. Similarly, the unique FISH pattern of a pair of 5S rDNA-carrying chromosomes was indicative of a potential allopolyploid origin for A. fragile (Roth, 1800) Candargy, 1984. The conserved distribution of 5S and 45S rDNA suggests A. cristatum (4x) and A. michnoi Roshevitz, 1929 are closely related. Two forms of B chromosomes were identified among individuals A. mongolicum and A. desertorum plants.
Collapse
Affiliation(s)
- Yan Zhao
- College of Grassland, Resource and Environmental Science, Inner Mongolia Agricultural University, Hohhot, 010011, China
- Key Laboratory of Grassland Resources (IMAU), Ministry of Education, Hohhot, 010011, China
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of Ministry of Agriculture, Hohhot, 010011, China
| | - Jihong Xie
- Grassland Research Institute, Chinese Academy of Agricultural Sciences, Hohhot, 010010, China
| | - Quanwen Dou
- Key Laboratory of Crop Molecular Breeding, Qinghai Province, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China
| | - Junjie Wang
- College of Grassland, Resource and Environmental Science, Inner Mongolia Agricultural University, Hohhot, 010011, China
- Key Laboratory of Grassland Resources (IMAU), Ministry of Education, Hohhot, 010011, China
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of Ministry of Agriculture, Hohhot, 010011, China
| | - Zhong Zhang
- College of Grassland, Resource and Environmental Science, Inner Mongolia Agricultural University, Hohhot, 010011, China
- Key Laboratory of Grassland Resources (IMAU), Ministry of Education, Hohhot, 010011, China
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of Ministry of Agriculture, Hohhot, 010011, China
| |
Collapse
|
54
|
Wang J, Liu Y, Su H, Guo X, Han F. Centromere structure and function analysis in wheat-rye translocation lines. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 91:199-207. [PMID: 28370580 DOI: 10.1111/tpj.13554] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 03/19/2017] [Accepted: 03/23/2017] [Indexed: 05/12/2023]
Abstract
1RS.1BL translocations are centric translocations formed by misdivision and have been used extensively in wheat breeding. However, the role that the centromere plays in the formation of 1RS.1BL translocations is still unclear. Fluorescence in situ hybridization (FISH) was applied to detect the fine structures of the centromeres in 130 1RS.1BL translocation cultivars. Immuno-FISH, chromatin immunoprecipitation (ChIP)-qPCR and RT-PCR were used to investigate the functions of the hybrid centromeres in 1RS.1BL translocations. New 1R translocations with different centromere structures were created by misdivision and pollen irradiation to elucidate the role that the centromere plays in the formation of 1RS.1BL translocations. We found that all of the 1RS.1BL translocations detected contained hybrid centromeres and that wheat-derived CENH3 bound to both the wheat and rye centromeres in the 1RS.1BL translocation chromosomes. Moreover, a rye centromere-specific retrotransposon was actively transcribed in 1RS.1BL translocations. The frequencies of new 1RS hybrid centromere translocations and group-1 chromosome translocations were higher during 1R misdivision. Our study demonstrates the hybrid nature of the centromere in 1RS.1BL translocations. New 1R translocations with different centromere structures were created to help understand the fusion centromere used for wheat breeding and for use as breeding material for the improvement of wheat.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yalin Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Handong Su
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xianrui Guo
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fangpu Han
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
55
|
Majka M, Kwiatek MT, Majka J, Wiśniewska H. Aegilops tauschii Accessions with Geographically Diverse Origin Show Differences in Chromosome Organization and Polymorphism of Molecular Markers Linked to Leaf Rust and Powdery Mildew Resistance Genes. FRONTIERS IN PLANT SCIENCE 2017; 8:1149. [PMID: 28702048 PMCID: PMC5487464 DOI: 10.3389/fpls.2017.01149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 06/15/2017] [Indexed: 06/02/2023]
Abstract
Aegilops tauschii (2n = 2x = 14) is a diploid wild species which is reported as a donor of the D-genome of cultivated bread wheat. The main goal of this study was to examine the differences and similarities in chromosomes organization among accessions of Ae. tauschii with geographically diversed origin, which is believed as a potential source of genes, especially determining resistance to fungal diseases (i.e., leaf rust and powdery mildew) for breeding of cereals. We established and compared the fluorescence in situ hybridization patterns of 21 accessions of Ae. tauschii using various repetitive sequences mainly from the BAC library of wheat cultivar Chinese Spring. Results obtained for Ae. tauschii chromosomes revealed many similarities between analyzed accessions, however, some hybridization patterns were specific for accessions, which become from cognate regions of the World. The most noticeable differences were observed for accessions from China which were characterized by presence of distinct signals of pTa-535 in the interstitial region of chromosome 3D, less intensity of pTa-86 signals in chromosome 2D, as well as lack of additional signals of pTa-86 in chromosomes 1D, 5D, or 6D. Ae. tauschii of Chinese origin appeared homogeneous and separate from landraces that originated in western Asia. Ae. tauschii chromosomes showed similar hybridization patterns to wheat D-genome chromosomes, but some differences were also observed among both species. What is more, we identified reciprocal translocation between short arm of chromosome 1D and long arm of chromosome 7D in accession with Iranian origin. High polymorphism between analyzed accessions and extensive allelic variation were revealed using molecular markers associated with resistance genes. Majority of the markers localized in chromosomes 1D and 2D showed the diversity of banding patterns between accessions. Obtained results imply, that there is a moderate or high level of polymorphism in the genome of Ae. tauschii determined by a geographical origin, which we proved by cytogenetic and molecular markers analysis. Therefore, selected accessions might constitute an accessible source of variation for improvement of Triticeae species like wheat and triticale.
Collapse
Affiliation(s)
- Maciej Majka
- Cereal Genomics Team, Department of Genomics, Institute of Plant Genetics, Polish Academy of SciencesPoznań, Poland
| | - Michał T. Kwiatek
- Cereal Genomics Team, Department of Genomics, Institute of Plant Genetics, Polish Academy of SciencesPoznań, Poland
| | - Joanna Majka
- Plant Molecular Physiology and Cytogenetics Team, Department of Environmental Stress Biology, Institute of Plant Genetics, Polish Academy of SciencesPoznań, Poland
| | - Halina Wiśniewska
- Cereal Genomics Team, Department of Genomics, Institute of Plant Genetics, Polish Academy of SciencesPoznań, Poland
| |
Collapse
|
56
|
Linc G, Gaál E, Molnár I, Icsó D, Badaeva E, Molnár-Láng M. Molecular cytogenetic (FISH) and genome analysis of diploid wheatgrasses and their phylogenetic relationship. PLoS One 2017; 12:e0173623. [PMID: 28278169 PMCID: PMC5344461 DOI: 10.1371/journal.pone.0173623] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 02/23/2017] [Indexed: 11/22/2022] Open
Abstract
This paper reports detailed FISH-based karyotypes for three diploid wheatgrass species Agropyron cristatum (L.) Beauv., Thinopyrum bessarabicum (Savul.&Rayss) A. Löve, Pseudoroegneria spicata (Pursh) A. Löve, the supposed ancestors of hexaploid Thinopyrum intermedium (Host) Barkworth & D.R.Dewey, compiled using DNA repeats and comparative genome analysis based on COS markers. Fluorescence in situ hybridization (FISH) with repetitive DNA probes proved suitable for the identification of individual chromosomes in the diploid JJ, StSt and PP genomes. Of the seven microsatellite markers tested only the (GAA)n trinucleotide sequence was appropriate for use as a single chromosome marker for the P. spicata AS chromosome. Based on COS marker analysis, the phylogenetic relationship between diploid wheatgrasses and the hexaploid bread wheat genomes was established. These findings confirmed that the J and E genomes are in neighbouring clusters.
Collapse
Affiliation(s)
- Gabriella Linc
- Department of Plant Genetic Resources, Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
- * E-mail:
| | - Eszter Gaál
- Department of Plant Genetic Resources, Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
| | - István Molnár
- Department of Plant Genetic Resources, Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
| | - Diana Icsó
- Department of Plant Genetic Resources, Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
| | - Ekaterina Badaeva
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Márta Molnár-Láng
- Department of Plant Genetic Resources, Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
| |
Collapse
|
57
|
Adonina IG, Leonova IN, Badaeva ED, Salina EA. Genotyping of hexaploid wheat varieties from different Russian regions. ACTA ACUST UNITED AC 2017. [DOI: 10.1134/s2079059717010014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
58
|
Flavell RB. Innovations continuously enhance crop breeding and demand new strategic planning. GLOBAL FOOD SECURITY 2017. [DOI: 10.1016/j.gfs.2016.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
59
|
Rey MD, Prieto P. Detection of alien genetic introgressions in bread wheat using dot-blot genomic hybridisation. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2017; 37:32. [PMID: 28337069 PMCID: PMC5344947 DOI: 10.1007/s11032-017-0629-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 02/01/2017] [Indexed: 05/16/2023]
Abstract
Simple, reliable methods for the identification of alien genetic introgressions are required in plant breeding programmes. The use of genomic dot-blot hybridisation allows the detection of small Hordeum chilense genomic introgressions in the descendants of genetic crosses between wheat and H. chilense addition or substitution lines in wheat when molecular markers are difficult to use. Based on genomic in situ hybridisation, DNA samples from wheat lines carrying putatively H. chilense introgressions were immobilised on a membrane, blocked with wheat genomic DNA and hybridised with biotin-labelled H. chilense genomic DNA as a probe. This dot-blot screening reduced the number of plants necessary to be analysed by molecular markers or in situ hybridisation, saving time and money. The technique was sensitive enough to detect a minimum of 5 ng of total genomic DNA immobilised on the membrane or about 1/420 dilution of H. chilense genomic DNA in the wheat background. The robustness of the technique was verified by in situ hybridisation. In addition, the detection of other wheat relative species such as Hordeum vulgare, Secale cereale and Agropyron cristatum in the wheat background was also reported.
Collapse
Affiliation(s)
- María -Dolores Rey
- Plant Breeding Department, Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Alameda del Obispo s/n, 14080 Córdoba, Spain
| | - Pilar Prieto
- Plant Breeding Department, Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Alameda del Obispo s/n, 14080 Córdoba, Spain
| |
Collapse
|
60
|
Petrash NV, Leonova IN, Adonina IG, Salina EA. Effect of translocations from Aegilops speltoides Tausch on resistance to fungal diseases and productivity in common wheat. RUSS J GENET+ 2016. [DOI: 10.1134/s1022795416120097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
61
|
Dou Q, Liu R, Yu F. Chromosomal organization of repetitive DNAs in Hordeum bogdanii and H. brevisubulatum (Poaceae). COMPARATIVE CYTOGENETICS 2016; 10:465-481. [PMID: 28123672 PMCID: PMC5240503 DOI: 10.3897/compcytogen.v10i4.9666] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 08/12/2016] [Indexed: 05/29/2023]
Abstract
Molecular karyotypes of Hordeum bogdanii Wilensky, 1918 (2n = 14), and Hordeum brevisubulatum Link, 1844 ssp. brevisubulatum (2n = 28), were characterized by physical mapping of several repetitive sequences. A total of 18 repeats, including all possible di- or trinucleotide SSR (simple sequence repeat) motifs and satellite DNAs, such as pAs1, 5S rDNA, 45S rDNA, and pSc119.2, were used as probes for fluorescence in situ hybridization on root-tip metaphase chromosomes. Except for the SSR motifs AG, AT and GC, all the repeats we examined produced detectable hybridization signals on chromosomes of both species. A detailed molecular karyotype of the I genome of Hordeum bogdanii is described for the first time, and each repetitive sequence is physically mapped. A high degree of chromosome variation, including aneuploidy and structural changes, was observed in Hordeum brevisubulatum. Although the distribution of repeats in the chromosomes of Hordeum brevisubulatum is different from that of Hordeum bogdanii, similar patterns between the two species imply that the autopolyploid origin of Hordeum brevisubulatum is from a Hordeum species with an I genome. A comparison of the I genome and the other Hordeum genomes, H, Xa and Xu, shows that colocalization of motifs AAC, ACT and CAT and colocalization of motifs AAG and AGG are characteristic of the I genome. In addition, we discuss the evolutionary significance of repeats in the genome during genome differentiation.
Collapse
Affiliation(s)
- Quanwen Dou
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Plateau Institute of Biology, Chinese Academy of Sciences, Xining 810001, China
| | - Ruijuan Liu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Plateau Institute of Biology, Chinese Academy of Sciences, Xining 810001, China
| | - Feng Yu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Plateau Institute of Biology, Chinese Academy of Sciences, Xining 810001, China
| |
Collapse
|
62
|
Addition of chromosome 4R from Hungarian rye cultivar Lovászpatonai confers resistance to stripe rust and outstanding end-use quality in wheat. J Cereal Sci 2016. [DOI: 10.1016/j.jcs.2016.08.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
63
|
Rahmatov M, Rouse MN, Nirmala J, Danilova T, Friebe B, Steffenson BJ, Johansson E. A new 2DS·2RL Robertsonian translocation transfers stem rust resistance gene Sr59 into wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:1383-1392. [PMID: 27025509 DOI: 10.1007/s00122-016-2710-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 03/17/2016] [Indexed: 05/28/2023]
Abstract
A new stem rust resistance gene Sr59 from Secale cereale was introgressed into wheat as a 2DS·2RL Robertsonian translocation. Emerging new races of the wheat stem rust pathogen (Puccinia graminis f. sp. tritici), from Africa threaten global wheat (Triticum aestivum L.) production. To broaden the resistance spectrum of wheat to these widely virulent African races, additional resistance genes must be identified from all possible gene pools. From the screening of a collection of wheat-rye (Secale cereale L.) chromosome substitution lines developed at the Swedish University of Agricultural Sciences, we described the line 'SLU238' 2R (2D) as possessing resistance to many races of P. graminis f. sp. tritici, including the widely virulent race TTKSK (isolate synonym Ug99) from Africa. The breakage-fusion mechanism of univalent chromosomes was used to produce a new Robertsonian translocation: T2DS·2RL. Molecular marker analysis and stem rust seedling assays at multiple generations confirmed that the stem rust resistance from 'SLU238' is present on the rye chromosome arm 2RL. Line TA5094 (#101) was derived from 'SLU238' and was found to be homozygous for the T2DS·2RL translocation. The stem rust resistance gene on chromosome 2RL arm was designated as Sr59. Although introgressions of rye chromosome arms into wheat have most often been facilitated by irradiation, this study highlights the utility of the breakage-fusion mechanism for rye chromatin introgression. Sr59 provides an additional asset for wheat improvement to mitigate yield losses caused by stem rust.
Collapse
Affiliation(s)
- Mahbubjon Rahmatov
- Department of Plant Breeding, Swedish University of Agricultural Sciences, PO Box 101, 23053, Alnarp, Sweden.
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, 55108, USA.
- Tajik Agrarian University, 146, Rudaki Ave., Dushanbe, 734017, Tajikistan.
| | - Matthew N Rouse
- United States Department of Agriculture, Agricultural Research Service, Cereal Disease Laboratory, St. Paul, MN, 55108, USA
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, 55108, USA
| | - Jayaveeramuthu Nirmala
- United States Department of Agriculture, Agricultural Research Service, Cereal Disease Laboratory, St. Paul, MN, 55108, USA
| | - Tatiana Danilova
- Department of Plant Pathology, Wheat Genetic Resources Center, Throckmorton Plant Sciences Center, Kansas State University, Manhattan, KS, 66506-5502, USA
| | - Bernd Friebe
- Department of Plant Pathology, Wheat Genetic Resources Center, Throckmorton Plant Sciences Center, Kansas State University, Manhattan, KS, 66506-5502, USA
| | - Brian J Steffenson
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, 55108, USA
| | - Eva Johansson
- Department of Plant Breeding, Swedish University of Agricultural Sciences, PO Box 101, 23053, Alnarp, Sweden
| |
Collapse
|
64
|
Türkösi E, Cseh A, Darkó É, Molnár-Láng M. Addition of Manas barley chromosome arms to the hexaploid wheat genome. BMC Genet 2016; 17:87. [PMID: 27328706 PMCID: PMC4915093 DOI: 10.1186/s12863-016-0393-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 06/07/2016] [Indexed: 01/04/2023] Open
Abstract
Background Cultivated barley belongs to the tertiary genepool of hexaploid wheat. Genes of interest can be transferred from barley into wheat through wide hybridization. The application of wheat-barley introgression lines could provide an excellent tool for the transfer of earliness, favourable amino acid composition, biotic stress resistance, abiotic stress tolerance, or good tillering ability into wheat. Results A set of 10 wheat-barley ditelosomic addition lines (2HS, 2HL, 3HS, 3HL, 4HS, 4HL, 6HS, 6HL, 7HS and 7HL) was developed from the progenies of an Asakaze/Manas wheat-barley hybrid produced in Martonvásár, Hungary. The addition lines were selected from self-fertilized plants of the BC2F2-BC2F4 generations using genomic in situ hybridization (GISH) and were identified by fluorescence in situ hybridization (FISH) with repetitive DNA probes [HvT01, (GAA)7 and centromere-specific (AGGGAG)4 probes]. The cytogenetic identification was confirmed using barley arm-specific SSR and STS markers. The ditelosomic additions were propagated in the phytotron and in the field, and morphological parameters (plant height, tillering, length of the main spike, number of seeds/spike and seeds/plant, and spike characteristics) were described. In addition, the salt stress response of the ditelosomic additions was determined. Conclusions The six-rowed winter barley cultivar Manas is much better adapted to Central European environmental conditions than the two-rowed spring barley Betzes previously used in wheat-barley crosses. The production of wheat-barley ditelosomic addition lines has a wide range of applications both for breeding (transfer of useful genes to the recipient species) and for basic research (mapping of barley genes, genetic and evolutionary studies and heterologous expression of barley genes in the wheat background). Electronic supplementary material The online version of this article (doi:10.1186/s12863-016-0393-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Edina Türkösi
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, H-2462, Martonvásár, P.O. Box 19, Hungary
| | - András Cseh
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, H-2462, Martonvásár, P.O. Box 19, Hungary
| | - Éva Darkó
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, H-2462, Martonvásár, P.O. Box 19, Hungary
| | - Márta Molnár-Láng
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, H-2462, Martonvásár, P.O. Box 19, Hungary.
| |
Collapse
|
65
|
Li M, Tang Z, Qiu L, Wang Y, Tang S, Fu S. Identification and Physical Mapping of New PCR-Based Markers Specific for the Long Arm of Rye (Secale cereale L.) Chromosome 6. J Genet Genomics 2016; 43:209-16. [PMID: 27090607 DOI: 10.1016/j.jgg.2015.11.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 11/14/2015] [Accepted: 11/21/2015] [Indexed: 01/15/2023]
Abstract
To effectively use elite genes on the long arm of rye chromosome 6 (the 6RL arm) in wheat breeding programs, precise and fast identification of 6RL chromatin in wheat backgrounds is necessary. PCR-based 6RL-specific markers can facilitate the detection of elite genes on 6RL in wheat breeding. However, only a limited number of 6RL-specific markers have been developed. In the present study, 300 new PCR-based 6RL-specific markers were identified using specific length amplified fragment sequencing (SLAF-seq) technology, and were further physically mapped to four regions on the 6RL arm using 6R and 6RL deletion lines. Interestingly, 127 of the 300 markers were physically localized to a region from the site between 2.3 and 2.5 to the telomere, the same region where the powdery mildew resistance gene was mapped. In addition, 95 of the 300 markers exhibit polymorphisms, which can be used to investigate the diversity of rye 6RL arms. The markers developed in this study can be used to identify given segments of 6RL in wheat backgrounds and accelerate the utilization of elite genes on 6RL in wheat breeding.
Collapse
Affiliation(s)
- Meng Li
- Province Key Laboratory of Plant Breeding and Genetics, Sichuan Agricultural University, Chengdu 611130, China; Agronomy College, Sichuan Agricultural University, Chengdu 611130, China
| | - Zongxiang Tang
- Province Key Laboratory of Plant Breeding and Genetics, Sichuan Agricultural University, Chengdu 611130, China; Agronomy College, Sichuan Agricultural University, Chengdu 611130, China
| | - Ling Qiu
- Province Key Laboratory of Plant Breeding and Genetics, Sichuan Agricultural University, Chengdu 611130, China; Agronomy College, Sichuan Agricultural University, Chengdu 611130, China
| | - Yangyang Wang
- Province Key Laboratory of Plant Breeding and Genetics, Sichuan Agricultural University, Chengdu 611130, China; Agronomy College, Sichuan Agricultural University, Chengdu 611130, China
| | - Shuyao Tang
- Province Key Laboratory of Plant Breeding and Genetics, Sichuan Agricultural University, Chengdu 611130, China; Agronomy College, Sichuan Agricultural University, Chengdu 611130, China
| | - Shulan Fu
- Province Key Laboratory of Plant Breeding and Genetics, Sichuan Agricultural University, Chengdu 611130, China; Agronomy College, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
66
|
Collinearity of homoeologous group 3 chromosomes in the genus Hordeum and Secale cereale as revealed by 3H-derived FISH analysis. Chromosome Res 2016; 24:231-42. [DOI: 10.1007/s10577-016-9518-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 01/31/2016] [Accepted: 02/01/2016] [Indexed: 01/05/2023]
|
67
|
Dracatos PM, Zhang P, Park RF, McIntosh RA, Wellings CR. Complementary resistance genes in wheat selection 'Avocet R' confer resistance to stripe rust. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:65-76. [PMID: 26433828 DOI: 10.1007/s00122-015-2609-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 09/18/2015] [Indexed: 05/05/2023]
Abstract
Complementary genes for resistance to wheat stripe rust in an Avocet selection mapped to chromosome arms 3DL and 5BL. Susceptible Avocet selections lacked the 5BL gene due to a chromosomal deletion. This study reports the inheritance and genetic mapping of the YrA (temporary name of convenience to describe the specificity) seedling resistance to wheat stripe rust (caused by Puccinia striiformis f. sp. tritici; Pst) in a resistant selection of the Australian cv. Avocet [Avocet R (AvR)-AUS 90660]. Genetic analysis was performed on F2 populations and F3 generation families from crosses between wheats that carried and lacked the YrA resistance. Greenhouse seedling tests with two avirulent Pst pathotypes (104 E137 A- and 108 E141 A-) confirmed that the YrA resistance was inherited as two complementary dominant genes. Ninety-two doubled haploid (DH) lines from a cross between the Australian cv. Teal (Pst susceptible) and AvR were used for DArT-Seq genotypic analysis to map the seedling resistance. Marker-trait association analysis using 9035 DArT-Seq loci mapped the genes to the long arms of chromosomes 3D (3DL) and 5B (5BL), respectively. F2 populations from crosses between susceptible DH lines that carried either the 3DL or 5BL marker genotypes confirmed the complementary gene model. Fluorescence in situ hybridization (FISH) analysis determined that Teal carries a reciprocal T5B-7B translocation. FISH analysis also identified a 5BL chromosomal deletion in Avocet S relative to AvR that further validated the complementary gene model and possibly explained the heterogeneity of closely related wheats carrying the YrA resistance. The individual loci of the complementary YrA resistance were designated Yr73 (3DL) and Yr74 (5BL). Candidate single gene reference stocks will be permanently accessioned following cytological analysis to avoid the T5B-7B translocation.
Collapse
Affiliation(s)
- Peter M Dracatos
- Plant Breeding Institute Cobbitty, University of Sydney, Private Bag 4011, Narellan, NSW, 2567, Australia.
| | - Peng Zhang
- Plant Breeding Institute Cobbitty, University of Sydney, Private Bag 4011, Narellan, NSW, 2567, Australia
| | - Robert F Park
- Plant Breeding Institute Cobbitty, University of Sydney, Private Bag 4011, Narellan, NSW, 2567, Australia
| | - Robert A McIntosh
- Plant Breeding Institute Cobbitty, University of Sydney, Private Bag 4011, Narellan, NSW, 2567, Australia
| | - Colin R Wellings
- Plant Breeding Institute Cobbitty, University of Sydney, Private Bag 4011, Narellan, NSW, 2567, Australia
| |
Collapse
|
68
|
Affiliation(s)
- R. A. McIntosh
- University of Sydney; Plant Breeding Institute; Castle Hill, N.S.W. Australia
| | - Jane E. Cusick
- University of Sydney; Plant Breeding Institute; Castle Hill, N.S.W. Australia
| |
Collapse
|
69
|
The distribution of cotransformed transgenes in particle bombardment-mediated transformed wheat. Transgenic Res 2015; 24:1055-63. [PMID: 26405007 DOI: 10.1007/s11248-015-9906-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 09/19/2015] [Indexed: 10/23/2022]
Abstract
Although particle bombardment is the predominant method of foreign DNA direct transfer, whether transgene is integrated randomly into the genome has not been determined. In this study, we identified the distribution of transgene loci in 45 transgenic wheat (Triticum aestivum L.) lines containing co-transformed high molecular weight glutenin subunit genes and the selectable marker bar using fluorescence in situ hybridization. Transgene loci were shown to distribute unevenly throughout the genome and incorporate into different locations along individual chromosomes. There was only a slight tendency towards the localization of transgenes in distal chromosome regions. High proportions of transgenes in separate plasmids integrated at the same site and only 7 lines had 2 or 3 loci. Such loci may not segregate frequently in subsequent generations so it is difficult to remove selectable markers from transgenic lines after regeneration. We also found that three transgene lines were associated with rearranged chromosomes, suggesting a the close relationship between particle bombardment-mediated transgene integration and chromosomal rearrangements.
Collapse
|
70
|
Amosova AV, Bolsheva NL, Samatadze TE, Twardovska MO, Zoshchuk SA, Andreev IO, Badaeva ED, Kunakh VA, Muravenko OV. Molecular Cytogenetic Analysis of Deschampsia antarctica Desv. (Poaceae), Maritime Antarctic. PLoS One 2015; 10:e0138878. [PMID: 26394331 PMCID: PMC4578767 DOI: 10.1371/journal.pone.0138878] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 09/04/2015] [Indexed: 12/23/2022] Open
Abstract
Deschampsia antarctica Desv. (Poaceae) (2n = 26) is one of the two vascular plants adapted to the harshest environment of the Antarctic. Although the species is a valuable model for study of environmental stress tolerance in plants, its karyotype is still poorly investigated. We firstly conducted a comprehensive molecular cytogenetic analysis of D. antarctica collected on four islands of the Maritime Antarctic. D. antarctica karyotypes were studied by Giemsa C- and DAPI/C-banding, Ag-NOR staining, multicolour fluorescence in situ hybridization with repeated DNA probes (pTa71, pTa794, telomere repeats, pSc119.2, pAs1) and the GAA simple sequence repeat probe. We also performed sequential rapid in situ hybridization with genomic DNA of D. caespitosa. Two chromosome pairs bearing transcriptionally active 45S rDNA loci and five pairs with 5S rDNA sites were detected. A weak intercalary site of telomere repeats was revealed on the largest chromosome in addition to telomere hybridization signals at terminal positions. This fact confirms indirectly the hypothesis that chromosome fusion might have been the cause of the unusual for cereals chromosome number in this species. Based on patterns of distribution of the examined molecular cytogenetic markers, all chromosomes in karyotypes were identified, and chromosome idiograms of D. antarctica were constructed. B chromosomes were found in most karyotypes of plants from Darboux Island. A mixoploid plant with mainly triploid cells bearing a Robertsonian rearrangement was detected among typical diploid specimens from Great Jalour Island. The karyotype variability found in D. antarctica is probably an expression of genome instability induced by environmental stress factors. The differences in C-banding patterns and in chromosome distribution of rDNA loci as well as homologous highly repeated DNA sequences detected between genomes of D. antarctica and its related species D. caespitosa indicate that genome reorganization involving coding and noncoding repeated DNA sequences had occurred during the divergence of these species.
Collapse
Affiliation(s)
- Alexandra V. Amosova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- * E-mail:
| | - Nadezhda L. Bolsheva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Tatiana E. Samatadze
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Maryana O. Twardovska
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | | | - Igor O. Andreev
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Ekaterina D. Badaeva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Viktor A. Kunakh
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Olga V. Muravenko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
71
|
Molecular cytogenetic characterization of novel wheat-Thinopyrum bessarabicum recombinant lines carrying intercalary translocations. Chromosoma 2015; 125:163-72. [DOI: 10.1007/s00412-015-0537-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 07/20/2015] [Accepted: 07/21/2015] [Indexed: 10/23/2022]
|
72
|
Molnár I, Vrána J, Farkas A, Kubaláková M, Cseh A, Molnár-Láng M, Doležel J. Flow sorting of C-genome chromosomes from wild relatives of wheat Aegilops markgrafii, Ae. triuncialis and Ae. cylindrica, and their molecular organization. ANNALS OF BOTANY 2015; 116:189-200. [PMID: 26043745 PMCID: PMC4512188 DOI: 10.1093/aob/mcv073] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 03/27/2015] [Accepted: 04/15/2015] [Indexed: 05/18/2023]
Abstract
BACKGROUND AND AIMS Aegilops markgrafii (CC) and its natural hybrids Ae. triuncialis (U(t)U(t)C(t)C(t)) and Ae. cylindrica (D(c)D(c)C(c)C(c)) represent a rich reservoir of useful genes for improvement of bread wheat (Triticum aestivum), but the limited information available on their genome structure and the shortage of molecular (cyto-) genetic tools hamper the utilization of the extant genetic diversity. This study provides the complete karyotypes in the three species obtained after fluorescent in situ hybridization (FISH) with repetitive DNA probes, and evaluates the potential of flow cytometric chromosome sorting. METHODS The flow karyotypes obtained after the analysis of 4',6-diamidino-2-phenylindole (DAPI)-stained chromosomes were characterized and the chromosome content of the peaks on the flow karyotypes was determined by FISH. Twenty-nine conserved orthologous set (COS) markers covering all seven wheat homoeologous chromosome groups were used for PCR with DNA amplified from flow-sorted chromosomes and genomic DNA. KEY RESULTS FISH with repetitive DNA probes revealed that chromosomes 4C, 5C, 7C(t), T6U(t)S.6U(t)L-5C(t)L, 1C(c) and 5D(c) could be sorted with purities ranging from 66 to 91 %, while the remaining chromosomes could be sorted in groups of 2-5. This identified a partial wheat-C-genome homology for group 4 and 5 chromosomes. In addition, 1C chromosomes were homologous with group 1 of wheat; a small segment from group 2 indicated 1C-2C rearrangement. An extensively rearranged structure of chromosome 7C relative to wheat was also detected. CONCLUSIONS The possibility of purifying Aegilops chromosomes provides an attractive opportunity to investigate the structure and evolution of the Aegilops C genome and to develop molecular tools to facilitate the identification of alien chromatin and support alien introgression breeding in bread wheat.
Collapse
Affiliation(s)
- István Molnár
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Brunszvik u. 2, H-2462 Martonvásár, Hungary and
| | - Jan Vrána
- Centre of the Region Hana for Biotechnological and Agricultural Research, Institute of Experimental Botany, Šlechtitelů 31, CZ-78371 Olomouc, Czech Republic
| | - András Farkas
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Brunszvik u. 2, H-2462 Martonvásár, Hungary and
| | - Marie Kubaláková
- Centre of the Region Hana for Biotechnological and Agricultural Research, Institute of Experimental Botany, Šlechtitelů 31, CZ-78371 Olomouc, Czech Republic
| | - András Cseh
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Brunszvik u. 2, H-2462 Martonvásár, Hungary and
| | - Márta Molnár-Láng
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Brunszvik u. 2, H-2462 Martonvásár, Hungary and
| | - Jaroslav Doležel
- Centre of the Region Hana for Biotechnological and Agricultural Research, Institute of Experimental Botany, Šlechtitelů 31, CZ-78371 Olomouc, Czech Republic
| |
Collapse
|
73
|
Garrido-Ramos MA. Satellite DNA in Plants: More than Just Rubbish. Cytogenet Genome Res 2015; 146:153-170. [PMID: 26202574 DOI: 10.1159/000437008] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2015] [Indexed: 11/19/2022] Open
Abstract
For decades, satellite DNAs have been the hidden part of genomes. Initially considered as junk DNA, there is currently an increasing appreciation of the functional significance of satellite DNA repeats and of their sequences. Satellite DNA families accumulate in the heterochromatin in different parts of the eukaryotic chromosomes, mainly in pericentromeric and subtelomeric regions, but they also span the functional centromere. Tandem repeat sequences may spread from subtelomeric to interstitial loci, leading to the formation of chromosome-specific loci or to the accumulation in equilocal sites in different chromosomes. They also appear as the main components of the heterochromatin in the sex-specific region of sex chromosomes. Satellite DNA, required for chromosome organization, also plays a role in pairing and segregation. Some satellite repeats are transcribed and can participate in the formation and maintenance of heterochromatin structure and in the modulation of gene expression. In addition to the identification of the different satellite DNA families, their characteristics and location, we are interested in determining their impact on the genomes, by identifying the mechanisms leading to their appearance and amplification as well as in understanding how they change over time, the factors affecting these changes, and the influence exerted by the evolutionary history of the organisms. On the other hand, satellite DNA sequences are rapidly evolving sequences that may cause reproductive barriers between organisms and promote speciation. The accumulation of experimental data collected in recent years and the emergence of new approaches based on next-generation sequencing and high-throughput genome analysis are opening new perspectives that are changing our understanding of satellite DNA. This review examines recent data to provide a timely update on the overall information gathered about this part of the genome, focusing on the advances in the knowledge of its origin, its evolution, and its potential functional roles.
Collapse
|
74
|
Badaeva ED, Amosova AV, Goncharov NP, Macas J, Ruban AS, Grechishnikova IV, Zoshchuk SA, Houben A. A Set of Cytogenetic Markers Allows the Precise Identification of All A-Genome Chromosomes in Diploid and Polyploid Wheat. Cytogenet Genome Res 2015; 146:71-9. [PMID: 26160023 DOI: 10.1159/000433458] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2015] [Indexed: 11/19/2022] Open
Abstract
Karyotypes of 3 diploid wheat species containing different variants of the A-genome, Triticum boeoticum (A(b)), T. monococcum (A(b)), and T. urartu (A(u)), were examined using C-banding and FISH with DNA probes representing 5S and 45S rDNA families, the microsatellite sequences GAAn and GTTn, the already known satellite sequences pSc119.2, Spelt52, Fat, pAs1, and pTa535, and a newly identified repeat called Aesp_SAT86. The C-banding patterns of the 3 species in general were similar; differences were observed in chromosomes 4A and 6A. Besides 2 major 45S rDNA loci on chromosomes 1A and 5A, 2 minor polymorphic NORs were observed in the terminal part of 5AL and in the distal part of 6AS in all species. An additional minor locus was found in the distal part of 7A(b)L of T. boeoticum and T. monococcum, but not in T. urartu. Two 5S rDNA loci were observed in 1AS and 5AS. The pTa535 probe displayed species- and chromosome-specific hybridization patterns, allowing complete chromosome identification and species discrimination. The distribution of pTa535 on the A(u)-genome chromosomes was more similar to that on the A-genome chromosomes of T. dicoccoides and T. araraticum, thus confirming the origin of these genomes from T. urartu. The probe pAs1 allowed the identification of 4 chromosomes of T. urartu and 2 of T. boeoticum or T. monococcum. The Aesp_SAT86-derived patterns were polymorphic; main clusters were observed on chromosomes 1A(u )and 3A(u) of T. urartu and chromosomes 3A(b) and 6A(b) of T. boeoticum. Thus, a set of probes, pTa535, pAs1, GAAn and GTTn, pTa71, pTa794, and Aesp_SAT86, proved to be most informative for the analysis of A-genomes in diploid and polyploid wheat species.
Collapse
Affiliation(s)
- Ekaterina D Badaeva
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | | | | | | | | | | | | | | |
Collapse
|
75
|
|
76
|
Barghini E, Natali L, Cossu RM, Giordani T, Pindo M, Cattonaro F, Scalabrin S, Velasco R, Morgante M, Cavallini A. The peculiar landscape of repetitive sequences in the olive (Olea europaea L.) genome. Genome Biol Evol 2015; 6:776-91. [PMID: 24671744 PMCID: PMC4007544 DOI: 10.1093/gbe/evu058] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Analyzing genome structure in different species allows to gain an insight into the evolution of plant genome size. Olive (Olea europaea L.) has a medium-sized haploid genome of 1.4 Gb, whose structure is largely uncharacterized, despite the growing importance of this tree as oil crop. Next-generation sequencing technologies and different computational procedures have been used to study the composition of the olive genome and its repetitive fraction. A total of 2.03 and 2.3 genome equivalents of Illumina and 454 reads from genomic DNA, respectively, were assembled following different procedures, which produced more than 200,000 differently redundant contigs, with mean length higher than 1,000 nt. Mapping Illumina reads onto the assembled sequences was used to estimate their redundancy. The genome data set was subdivided into highly and medium redundant and nonredundant contigs. By combining identification and mapping of repeated sequences, it was established that tandem repeats represent a very large portion of the olive genome (∼31% of the whole genome), consisting of six main families of different length, two of which were first discovered in these experiments. The other large redundant class in the olive genome is represented by transposable elements (especially long terminal repeat-retrotransposons). On the whole, the results of our analyses show the peculiar landscape of the olive genome, related to the massive amplification of tandem repeats, more than that reported for any other sequenced plant genome.
Collapse
Affiliation(s)
- Elena Barghini
- Department of Agricultural, Food, and Environmental Sciences, University of Pisa, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Adonina IG, Goncharov NP, Badaeva ED, Sergeeva EM, Petrash NV, Salina EA. (GAA)n microsatellite as an indicator of the A genome reorganization during wheat evolution and domestication. COMPARATIVE CYTOGENETICS 2015; 9:533-47. [PMID: 26753073 PMCID: PMC4698569 DOI: 10.3897/compcytogen.v9i4.5120] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 07/15/2014] [Indexed: 05/02/2023]
Abstract
Although the wheat A genomes have been intensively studied over past decades, many questions concerning the mechanisms of their divergence and evolution still remain unsolved. In the present study we performed comparative analysis of the A genome chromosomes in diploid (Triticum urartu Tumanian ex Gandilyan, 1972, Triticum boeoticum Boissier, 1874 and Triticum monococcum Linnaeus, 1753) and polyploid wheat species representing two evolutionary lineages, Timopheevi (Triticum timopheevii (Zhukovsky) Zhukovsky, 1934 and Triticum zhukovskyi Menabde & Ericzjan, 1960) and Emmer (Triticum dicoccoides (Körnicke ex Ascherson & Graebner) Schweinfurth, 1908, Triticum durum Desfontaines, 1798, and Triticum aestivum Linnaeus, 1753) using a new cytogenetic marker - the pTm30 probe cloned from Triticum monococcum genome and containing (GAA)56 microsatellite sequence. Up to four pTm30 sites located on 1AS, 5AS, 2AS, and 4AL chromosomes have been revealed in the wild diploid species, although most accessions contained one-two (GAA)n sites. The domesticated diploid species Triticum monococcum differs from the wild diploid species by almost complete lack of polymorphism in the distribution of (GAA)n site. Only one (GAA)n site in the 4AL chromosome has been found in Triticum monococcum. Among three wild emmer (Triticum dicoccoides) accessions we detected 4 conserved and 9 polymorphic (GAA)n sites in the A genome. The (GAA)n loci on chromosomes 2AS, 4AL, and 5AL found in of Triticum dicoccoides were retained in Triticum durum and Triticum aestivum. In species of the Timopheevi lineage, the only one, large (GAA)n site has been detected in the short arm of 6A(t) chromosome. (GAA)n site observed in Triticum monococcum are undetectable in the A(b) genome of Triticum zhukovskyi, this site could be eliminated over the course of amphiploidization, while the species was established. We also demonstrated that changes in the distribution of (GAA)n sequence on the A-genome chromosomes of diploid and polyploid wheats are associated with chromosomal rearrangements/ modifications, involving mainly the NOR (nucleolus organizer region)-bearing chromosomes, that took place during the evolution of wild and domesticated species.
Collapse
Affiliation(s)
- Irina G. Adonina
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, pr. Lavrentieva 10, Novosibirsk, 630090 Russia
| | - Nikolay P. Goncharov
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, pr. Lavrentieva 10, Novosibirsk, 630090 Russia
| | - Ekaterina D. Badaeva
- N.I.Vavilov Institute of General Genetics, Russian Academy of Sciences, Gubkina street 3, Moscow 119991, Russia
| | - Ekaterina M. Sergeeva
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, pr. Lavrentieva 10, Novosibirsk, 630090 Russia
| | - Nadezhda V. Petrash
- Siberian Research Institute of Plant Growing and Selection – Branch of ICG SB RAS, Krasnoobsk, Novosibirsk Region, Russia
| | - Elena A. Salina
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, pr. Lavrentieva 10, Novosibirsk, 630090 Russia
| |
Collapse
|
78
|
Cuacos M, H. Franklin FC, Heckmann S. Atypical centromeres in plants-what they can tell us. FRONTIERS IN PLANT SCIENCE 2015; 6:913. [PMID: 26579160 PMCID: PMC4620154 DOI: 10.3389/fpls.2015.00913] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 10/12/2015] [Indexed: 05/20/2023]
Abstract
The centromere, visible as the primary constriction of condensed metaphase chromosomes, is a defined chromosomal locus essential for genome stability. It mediates transient assembly of a multi-protein complex, the kinetochore, which enables interaction with spindle fibers and thus faithful segregation of the genetic information during nuclear divisions. Centromeric DNA varies in extent and sequence composition among organisms, but a common feature of almost all active eukaryotic centromeres is the presence of the centromeric histone H3 variant cenH3 (a.k.a. CENP-A). These typical centromere features apply to most studied species. However, a number of species display "atypical" centromeres, such as holocentromeres (centromere extension along almost the entire chromatid length) or neocentromeres (ectopic centromere activity). In this review, we provide an overview of different atypical centromere types found in plants including holocentromeres, de novo formed centromeres and terminal neocentromeres as well as di-, tri- and metapolycentromeres (more than one centromere per chromosomes). We discuss their specific and common features and compare them to centromere types found in other eukaryotic species. We also highlight new insights into centromere biology gained in plants with atypical centromeres such as distinct mechanisms to define a holocentromere, specific adaptations in species with holocentromeres during meiosis or various scenarios leading to neocentromere formation.
Collapse
|
79
|
Dobrovolskaya OB, Badaeva ED, Adonina IG, Popova OM, Krasnikov AA, Laikova LI. Investigation of morphogenesis of inflorescence and determination of the nature of inheritance of “supernumerary spikelets” trait of bread wheat (Triticum aestivum L.) mutant line. Russ J Dev Biol 2014. [DOI: 10.1134/s1062360414060034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
80
|
Constructing an alternative wheat karyotype using barley genomic DNA. J Appl Genet 2014; 56:45-8. [PMID: 25027628 DOI: 10.1007/s13353-014-0230-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 06/30/2014] [Accepted: 07/01/2014] [Indexed: 11/27/2022]
Abstract
The established karyotype was generated by genomic in situ hybridization (GISH) using total barley genomic DNA as labelled probe on mitotic metaphase bread wheat chromosomes. GISH produced specific banding signals on 16 of the 21 chromosome pairs. The following chromosomes showed distinctive banding patterns: 2A, 3A, 4A, 5A, 6A, 7A, 1D, 2D, 7D and all of the B chromosomes. The remaining chromosomes showed either faint bands or no hybridization signals at all. The in situ hybridization patterns corresponded to the GAA-satellite sequence, which is similar to the N-banding pattern in wheat. In situ hybridization by labelling total barley genomic DNA made it possible to identify most of the bread wheat chromosomes. The present paper describes a GISH-banding method for hexaploid wheat chromosomes. It is a valuable alternative method for fast chromosome selection without using FISH repetitive DNA clones.
Collapse
|
81
|
Development of T. aestivum L.-H. californicum alien chromosome lines and assignment of homoeologous groups of Hordeum californicum chromosomes. J Genet Genomics 2014; 41:439-47. [PMID: 25160976 DOI: 10.1016/j.jgg.2014.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 06/04/2014] [Accepted: 06/16/2014] [Indexed: 11/22/2022]
Abstract
Hordeum californicum (2n = 2x = 14, HH) is resistant to several wheat diseases and tolerant to lower nitrogen. In this study, a molecular karyotype of H. californicum chromosomes in the Triticum aestivum L. cv. Chinese Spring (CS)-H. californicum amphidiploid (2n = 6x = 56, AABBDDHH) was established. By genomic in situ hybridization (GISH) and multicolor fluorescent in situ hybridization (FISH) using repetitive DNA clones (pTa71, pTa794 and pSc119.2) as probes, the H. californicum chromosomes could be differentiated from each other and from the wheat chromosomes unequivocally. Based on molecular karyotype and marker analyses, 12 wheat-alien chromosome lines, including four disomic addition lines (DAH1, DAH3, DAH5 and DAH6), five telosomic addition lines (MtH7L, MtH1S, MtH1L, DtH6S and DtH6L), one multiple addition line involving H. californicum chromosome H2, one disomic substitution line (DSH4) and one translocation line (TH7S/1BL), were identified from the progenies derived from the crosses of CS-H. californicum amphidiploid with common wheat varieties. A total of 482 EST (expressed sequence tag) or SSR (simple sequence repeat) markers specific for individual H. californicum chromosomes were identified, and 47, 50, 45, 49, 21, 51 and 40 markers were assigned to chromosomes H1, H2, H3, H4, H5, H6 and H7, respectively. According to the chromosome allocation of these markers, chromosomes H2, H3, H4, H5, and H7 of H. californicum have relationship with wheat homoeologous groups 5, 2, 6, 3, and 1, and hence could be designated as 5H(c), 2H(c), 6H(c), 3H(c) and 1H(c), respectively. The chromosomes H1 and H6 were designated as 7H(c) and 4H(c), respectively, by referring to SSR markers located on rye chromosomes.
Collapse
|
82
|
Naranjo T. Dynamics of rye telomeres in a wheat background during early meiosis. Cytogenet Genome Res 2014; 143:60-8. [PMID: 24969495 DOI: 10.1159/000363524] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Migration of the telomere of the short arm of rye chromosome 5R (5RS) during bouquet organization is dependent on the conformation that this chromosome adopts in its intact, submetacentric, or truncated, metacentric, form. In order to establish whether the telomere migration dependence on chromosome conformation is a common feature of all rye chromosomes, the behavior of the telomeres of 2 other rye chromosomes, 1R and 6R, with apparent differences in the arm ratio, has been studied at the bouquet stage and compared with that of 5R. The presence of subtelomeric heterochromatic chromomeres in both arms of 1R and 6R, which were visualized by FISH, revealed the position of the adjacent telomeres in the bouquet. While the end of the long arms of both chromosomes was, with some exceptions, always included in the telomere cluster, the end of the short arms failed to migrate to the telomere pole. Disturbed telomere migration was more often observed in the short arm of the submetacentric chromosome 6R than in the short arm of the almost metacentric chromosome 1R. Thus, the chromosomal conformation effect on telomere mobility is a common feature of all rye chromosomes. Incomplete telomere clustering is followed by failure of synapsis and chiasma formation in chromosomes 5R and 6R. Chromosome arm 1RS, which carries the NOR, completes synapsis earlier than 5RS or 6RS, facilitated by the nucleolar fusion that occurs during early zygotene.
Collapse
Affiliation(s)
- Tomás Naranjo
- Departamento de Genética, Facultad de Biología, Universidad Complutense, Madrid, Spain
| |
Collapse
|
83
|
Mikó P, Megyeri M, Farkas A, Molnár I, Molnár-Láng M. Molecular cytogenetic identification and phenotypic description of a new synthetic amphiploid, Triticum timococcum (A tA tGGA mA m). GENETIC RESOURCES AND CROP EVOLUTION 2014; 62:55-66. [PMID: 26412939 PMCID: PMC4579857 DOI: 10.1007/s10722-014-0135-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 05/26/2014] [Indexed: 05/24/2023]
Abstract
A recently developed synthetic amphiploid, Triticum timococcum Kost., nom. nud. (2n = 6x = 42, AtAtGGAmAm) is described in the present study. This hexaploid taxon was developed by colchicine treatment in Martonvásár from the hybrid of a selected accession of Triticum timopheevii Zhuk. (2n = 4x = 28, AtAtGG) and a prebred semi-dwarf line of Triticum monococcum L. (2n = 2x = 14, AmAm). A detailed cytomolecular examination was carried out using the sequential multicolour fluorescence and genomic in situ hybridization techniques (FISH and mcGISH). It was proved that T. timococcum has 42 chromosomes originating from its parents. The chromosomes of the A genomes of T. monococcum and T. timopheevii could be distinguished in the amphiploid using FISH. The successful discrimination of the chromosomes was supported by the karyotypes of the three genomes and the successful optimization of the mcGISH technique for the A and G chromosomes achieved in the present study. A phenotypic evaluation was also carried out under natural and artificial growing conditions in 2012 and 2013. Based on the results, T. timococcum has intermediate characteristics in terms of spike (spikelet) shape and plant height, while it is similar to the female parent, T. timopheevii regarding pubescence. Like its parents, T. timococcum showed outstanding resistance to the main fungal diseases of wheat. T. timococcum headed later and developed longer and looser spikes, fewer tillers and only a third as many seeds than its parents. The third generation of T. timococcum was able to develop an acceptable number of seeds, even taking into account the reduced germination ability in the field.
Collapse
Affiliation(s)
- Péter Mikó
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, PO Box 19, 2462 Martonvásár, Hungary
| | - Mária Megyeri
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, PO Box 19, 2462 Martonvásár, Hungary
| | - András Farkas
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, PO Box 19, 2462 Martonvásár, Hungary
| | - István Molnár
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, PO Box 19, 2462 Martonvásár, Hungary
| | - Márta Molnár-Láng
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, PO Box 19, 2462 Martonvásár, Hungary
| |
Collapse
|
84
|
Genomic localization of AtRE1 and AtRE2, copia-type retrotransposons, in natural variants of Arabidopsis thaliana. Mol Genet Genomics 2014; 289:821-35. [PMID: 24770782 DOI: 10.1007/s00438-014-0855-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 04/10/2014] [Indexed: 12/24/2022]
Abstract
Retrotransposons are ubiquitous components of plant genomes. They affect genome organization, and can also affect the expression patterns of neighboring genes. Retrotransposons are therefore important elements for changing genomic information. To understand the evolution of the Arabidopsis genome, we examined the distribution of certain retrotransposons, AtRE1s and AtRE2s, in the genomes of 12 natural variants (accessions) of Arabidopsis thaliana. AtRE1 and AtRE2 are copia-type retrotransposons that are potentially active. Their copy numbers are low, and they are absent from the genomes of some accessions. We detected four loci with AtRE1s inserted in six accessions, and one locus with an insertion of a solo-LTR-like sequence derived from AtRE1 in two accessions. Seven loci with AtRE2s inserted were detected on eight accessions. These loci were distributed in euchromatic regions of chromosomes 1, 2, 3, and 4. The AtRE1 and AtRE2 sequences at some loci identified in this study have not been recorded in the database of the 1001 Genome project. The sequences of AtRE1s and those of AtRE2s in different accessions and at different loci were highly conserved. There was a complete or almost complete conservation of sequences of both long terminal repeats in each AtRE1 and in each AtRE2. These results suggest that AtRE1 and AtRE2 appeared quite recently in the Arabidopsis genome. Furthermore, sequence comparisons of AtRE1 and AtRE2 loci among accessions revealed the possibility that large deletions containing entire sequences of AtRE1 and AtRE2 have occurred in some accessions.
Collapse
|
85
|
Li H, Wang C, Fu S, Guo X, Yang B, Chen C, Zhang H, Wang Y, Liu X, Han F, Ji W. Development and discrimination of 12 double ditelosomics in tetraploid wheat cultivar DR147. Genome 2014; 57:89-95. [DOI: 10.1139/gen-2013-0153] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
As an important group in Triticum, tetraploid wheat plays a significant role in the research of wheat evolution. Several complete aneuploid sets of common wheat have provided valuable tools for genetic and breeding studies, while similar aneuploids of tetraploid wheat are still not well developed. Here, 12 double ditelosomics developed in Triticum turgidum L. var. durum cultivar DR147 (excluding dDT2B and dDT3A) were reported. Hybrids between DR147 and the original double-ditelosomic dDT2B of Langdon lost vigor and died prematurely after the three-leaf stage; therefore, the dDT2B line was not obtained. The cytogenetic behaviors and phenotypic characteristics of each line were detailedly described. To distinguish the entire chromosome complement of tetraploid wheat, the DR147 karyotype was established by fluorescence in situ hybridization (FISH), using the Aegilops tauschii clone pAsl and the barley clone pHvG38 as probes. FISH using a cereal-specific centromere repeat (6C6) probe suggested that all the lines possessed four telosomes, except for 4AS of double-ditelosomic dDT4A, which carried a small segment of the long arm. On the basis of the idiogram of DR147, these lines were successfully discriminated by FISH using the probes pAsl and pHvG38 and were then accurately designated.
Collapse
Affiliation(s)
- Hao Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Changyou Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Shulan Fu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiang Guo
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Baoju Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chunhuan Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hong Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yajuan Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xinlun Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Fangpu Han
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wanquan Ji
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
86
|
Abstract
This chapter describes the various methods derived from the protocol of standard fluorescent in situ hybridization (FISH) that are used in human, animal, plant, and microbial studies. These powerful techniques allow us to detect and physically map on interphase nuclei, chromatin fibers, or metaphase chromosomes probes derived from single-copy genes to repetitive DNA sequences. Other variants of the technique enable the co-localization of genes and the overall comparison of the genome among individuals of the same species or of different taxa. A further variant detects and localizes bacteria on tissues and cells. Overall, this offers a remarkable multiplicity of possible applications ranging from strict physical mapping, to clinical and evolutionary studies, making it a powerful and informative complement to other molecular, functional, or genomic approaches.
Collapse
|
87
|
Fu SL, Yang MY, Ren ZL, Yan BJ, Tang ZX. Abnormal mitosis induced by wheat-rye 1R monosomic addition lines. Genome 2013; 57:21-8. [PMID: 24564212 DOI: 10.1139/gen-2013-0115] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Octoploid triticale were derived from common wheat (Triticum aestivum L. 'Mianyang11') × rye (Secale cereale L. 'Kustro'), and some progeny were obtained by the backcrossing of triticale with 'Mianyang11' followed by self-fertilization. In situ hybridization using rye genomic DNA and repetitive sequences pAs1 and pSc119.2 as probes was used to analyze the mitotic chromosomes of these progeny. Three wheat-rye 1R monosomic addition lines and a wheat line (12FT-1685) containing a 1R and a 1BL.1RS translocation chromosome were identified. Abnormal mitosis was observed in the two lines. During mitosis of a 1R monosomic addition line (3-8-20-1R-2), lagging chromosomes, micronuclei, chromosomal bridges, and the one pole segregation of 1R chromosome were observed. Abnormal mitotic behaviour of chromosomes was also observed in some of the self-progeny plants of lines 12FT-1685 and 3-8-20-1R-2. These progeny contained 1R chromosome or 1R chromosome arm. In addition, 4B chromosomes were absent from one of the progeny of 3-8-20-1R-2. This abnormal mitotic behaviour of chromosomes was not observed in two other 1R monosomic addition lines. These results indicate that a single 1R chromosome added to wheat might cause abnormal mitotic behaviour of both wheat and rye chromosomes and different genetic variations might occurr among the sibling 1R monosomic addition lines.
Collapse
Affiliation(s)
- Shu-Lan Fu
- State Key Laboratory of Plant Breeding and Genetics, Sichuan Agriculture University, Wenjiang, Chengdu, Sichuan 611130, China
| | | | | | | | | |
Collapse
|
88
|
Identifying crossover-rich regions and their effect on meiotic homologous interactions by partitioning chromosome arms of wheat and rye. Chromosome Res 2013; 21:433-45. [PMID: 23843032 DOI: 10.1007/s10577-013-9372-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 06/21/2013] [Accepted: 06/26/2013] [Indexed: 10/26/2022]
Abstract
Chiasmata are usually formed in the distal half of cereal chromosomes. Previous studies showed that the crossover-rich region displays a more active role in homologous recognition at early meiosis than crossover-poor regions in the long arm of rye chromosome 1R, but not in the long arm of chromosome 5R. In order to determine what happens in other chromosomes of rye and wheat, we have partitioned, by wheat-rye translocations of variable-size, the distal fourth part of chromosome arms 1BS and 2BL of wheat and 1RS and 2RL of rye. Synapsis and chiasma formation in chromosome pairs with homologous (wheat-wheat or rye-rye) and homoeologous (wheat-rye) stretches, positioned distally and proximally, respectively, or vice versa, have been studied by rye chromatin labelling using fluorescence in situ hybridisation. Chromosome arm partitioning showed that the distal 12 % of 1BS form one crossover in 50 % of the cells, while the distal 6.7 % of 2RL and the distal 10.5 % of 2BL account for 94 % and 81 % of chiasmata formed in these arms. Distal homoeologous segments reduce the frequency of chiasmata and the possibility of interaction between the intercalary/proximal homologous segments. Such a reduction is related to the size of the homoeologous (translocated) segment. The effect on synapsis and chiasma formation was much lower in chromosome constructions with distal homology and proximal homoeology. All of these data support that among wheat and rye chromosomes, recombining regions are more often involved in homologous recognition and pairing than crossover-poor regions.
Collapse
|
89
|
Molecular cytogenetic characterisation of Salix viminalis L. using repetitive DNA sequences. J Appl Genet 2013; 54:265-9. [DOI: 10.1007/s13353-013-0153-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 05/14/2013] [Accepted: 05/15/2013] [Indexed: 10/26/2022]
|
90
|
Fradkin M, Ferrari MR, Espert SM, Ferreira V, Grassi E, Greizerstein EJ, Poggio L. Differentiation of triticale cultivars through FISH karyotyping of their rye chromosomes. Genome 2013; 56:267-72. [DOI: 10.1139/gen-2012-0117] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of this work was to cytogenetically characterize triticale cultivars through fluorescence in situ hybridization (FISH) analysis of their rye chromosomes. In the present work, we studied six cultivars of triticale (‘Cayú-UNRC’, ‘Cumé-UNRC’, ‘Genú-UNRC’, ‘Ñinca-UNRC’, ‘Quiñé-UNRC’, and ‘Tizné-UNRC’), released by the Universidad Nacional de Río Cuarto (UNRC), Córdoba, Argentina. The cultivars were obtained from the International Center for the Improvement of Maize and Wheat (CIMMYT) and improved for fresh forage, haymaking, and feed grain at UNRC. The distribution and organization of highly repetitive DNA sequences of Secale cereale (pSc74, pSc200, pSc250, and pSc119.2) using FISH analyses revealed a specific localization of the signals for several rye chromosomes, which allowed us to distinguish the cultivars. Cluster analysis showed a great cytogenetic similarity among the rye cultivars used to originate these hybrids. The knowledge of the variability among triticale cultivars is necessary to propose future crosses in breeding programs. This study will also be valuable to identify commercial seeds and to analyze the possible association between agronomic characters and the presence of certain rye chromosomes or specific regions in these chromosomes.
Collapse
Affiliation(s)
- Maia Fradkin
- Laboratorio de Citogenética y Evolución, Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA) – CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - María Rosa Ferrari
- Física Biológica, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Shirley Mary Espert
- Department of Microbiology & Immunology, University of Miami Miller School of Medicine
| | - Víctor Ferreira
- Genética, Facultad de Agronomía y Veterinaria, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
| | - Ezequiel Grassi
- Genética, Facultad de Agronomía y Veterinaria, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
| | - Eduardo José Greizerstein
- Facultad de Ciencias Agrarias, Universidad Nacional de Lomas de Zamora, Prov. Buenos Aires, Argentina
- Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Lidia Poggio
- Laboratorio de Citogenética y Evolución, Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA) – CONICET, Ciudad Autónoma de Buenos Aires, Argentina
- Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
91
|
Wang J, Zhang W, Zhao H, Li FR, Wang ZG, Ji J, Zhang XQ, Wang DW, Li JM. Molecular cytogenetic characterization of the Aegilops biuncialis karyotype. GENETICS AND MOLECULAR RESEARCH 2013; 12:683-92. [PMID: 23546950 DOI: 10.4238/2013.march.11.16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Aegilops biuncialis can be hybridized with wheat (Triticum spp) and has been used for wheat breeding and genetic studies. The A. biuncialis karyotype (U(b) U(b) M(b) M(b)) was investigated based on three A. biuncialis accessions grown in China. Two pairs of SAT chromosomes were identified as 1U(b) and 5U(b), with a karyotype formula of 2n = 4x = 28 = 14m + 10sm + 4st. Fluorescence in situ hybridization (FISH) and C-banding approaches were used to analyze the A. biuncialis accession chromosomes at the mitotic stage. Based on the C-banding and FISH patterns, all U(b) and M(b) chromosomes could be discriminated simultaneously; the three A. biuncialis accessions exhibited similar patterns, suggesting a common origin. The U(b) genome from A. biuncialis resembled the U genome in the diploid species A. umbellulata, and it may be related to the tetraploid species containing the U genome. The M(b) genome had some differences compared to the M genome in the diploid species A. comosa, and it may be related to the tetraploid species possessing the M genome. A generalized ideogram was proposed for the A. biuncialis genome, which could be useful for standardized and accurate identification of the A. biuncialis karyotype and chromosomes.
Collapse
Affiliation(s)
- J Wang
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
| | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Levitsky VG, Babenko VN, Vershinin AV. The roles of the monomer length and nucleotide context of plant tandem repeats in nucleosome positioning. J Biomol Struct Dyn 2013; 32:115-26. [PMID: 23384242 DOI: 10.1080/07391102.2012.755796] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Similar to regularly spaced nucleosomes in chromatin, long tandem DNA arrays are composed of regularly alternating monomers that have almost identical primary DNA structures. Such a similarity in the structural organization makes these arrays especially interesting for studying the role of intrinsic DNA preferences in nucleosome positioning. We have studied the nucleosome formation potential of DNA tandem repeat families with different monomer lengths (ML). In total, 165 plant tandem repeat families from the PlantSat database (http://w3lamc.umbr.cas.cz/PlantSat/) were divided into two classes based on the number of nucleosome repeats in one DNA monomer. For predicting nucleosome formation potential, we developed the Phase method, which combines the advantages of multiple bioinformatics models. The Phase method was able to distinguish interfamily differences and intrafamily monomer variation and identify the influence of nucleotide context on nucleosome formation potential. Three main types of nucleosome arrangement in DNA tandem repeat arrays--regular, partially regular (partial), and flexible--were distinguished among a great variety of Phase profiles. The regular type, in which all nucleosomes of the monomer array are positioned in a context-dependent manner, is the most representative type of the class 1 families, with ML equal to or a multiple of the nucleosome repeat length (NRL). In the partially regular type, nucleotide context influences the positioning of only a subset of nucleosomes. The influence of the nucleotide context on nucleosome positioning has the least effect in the flexible type, which contains the greatest number of families (65). The majority of these families belong to class 2 and have nonmultiple ML to NRL ratios.
Collapse
Affiliation(s)
- Victor G Levitsky
- a Laboratory of Molecular Genetics Systems , Institute of Cytology and Genetics , Novosibirsk , 630090 , Russia
| | | | | |
Collapse
|
93
|
Megyeri M, Molnár-Láng M, Molnár I. Cytomolecular Identification of Individual Wheat-Wheat Chromosome Arm Associations in Wheat-Rye Hybrids. Cytogenet Genome Res 2013; 139:128-36. [DOI: 10.1159/000346047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2012] [Indexed: 01/13/2023] Open
|
94
|
Grosso V, Farina A, Gennaro A, Giorgi D, Lucretti S. Flow sorting and molecular cytogenetic identification of individual chromosomes of Dasypyrum villosum L. (H. villosa) by a single DNA probe. PLoS One 2012; 7:e50151. [PMID: 23185561 PMCID: PMC3502404 DOI: 10.1371/journal.pone.0050151] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 10/19/2012] [Indexed: 11/19/2022] Open
Abstract
Dasypyrum villosum (L.) Candargy (sin. Haynaldia villosa) is an annual wild diploid grass species (2n = 2x = 14; genome VV) belonging to the Poaceae family, which is considered to be an important source of biotic and abiotic stress resistance genes for wheat breeding. Enhanced characterization of D. villosum chromosomes can facilitate exploitation of its gene pool and its use in wheat breeding programs. Here we present the cytogenetic identification of D. villosum chromosomes on slide by fluorescent in situ hybridization (FISH), with the GAA simple sequence repeat (SSR) as a probe. We also describe the isolation and the flow cytometric analysis of D. villosum chromosomes in suspension, resulting in a distinguished flow karyotype. Chromosomes were flow sorted into three fractions, according their DNA content, one of which was composed of a single type of chromosome, namely 6 V, sorted with over 85% purity. Chromosome 6 V is known to carry genes to code for important resistance and seed storage characteristics, and its isolation represents a new source of genetic traits and specific markers useful for wheat improvement.
Collapse
Affiliation(s)
| | | | - Andrea Gennaro
- Department of Agriculture, Forestry, Nature and Energy - DAFNE, University of Tuscia, Viterbo, Italy
| | | | | |
Collapse
|
95
|
Tomás D, Brazão J, Viegas W, Silva M. Differential Effects of High-Temperature Stress on Nuclear Topology and Transcription of Repetitive Noncoding and Coding Rye Sequences. Cytogenet Genome Res 2012; 139:119-27. [DOI: 10.1159/000343754] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2012] [Indexed: 12/25/2022] Open
|
96
|
Badaeva ED, Friebe B, Gill BS. Genome differentiation in Aegilops. 1. Distribution of highly repetitive DNA sequences on chromosomes of diploid species. Genome 2012; 39:293-306. [PMID: 18469894 DOI: 10.1139/g96-040] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Genome differentiation in 12 diploid Aegilops species was analyzed using in situ hybridization with the highly repetitive DNA sequences pSc119 and pAs1 and C-banding. Chromosomes of all these diploid Aegilops species hybridized with the pSc119 probe; however, the level of hybridization and labeling patterns differed among genomes. Only four species (Ae. squarrosa, Ae. comosa, Ae. heldreichii, and Ae. uniaristata) showed distinct hybridization with pAs1. The labeling patterns were species-specific and chromosome-specific. Differences in in situ hybridization (ISH) patterns, also observed by C-banding, exist between the karyotypes of Ae. comosa and Ae. heldreichii, suggesting that they are separate, although closely related, subspecies. The S genome of Ae. spelioides was most similar to the B and G genomes of polyploid wheats on the basis of both C-banding and ISH patterns, but was different from other species of section Sitopsis. These species had different C-banding patterns but they were similar to each other and to Ae. mutica in the distribution of pSc119 hybridization sites. Two types of labeling were detected in Ae. squarrosa with the pAs1 probe. The first resembled that of the D-genome chromosomes of bread wheat, Triticum aestivum L. em. Thell., while the second was similar to the D genome of some of the polyploid Aegilops species. Relationships among diploid Aegilops species and the possible mechanisms of genome differentiation are discussed. Key words : wheat, Triticum, Aegilops, in situ hybridization, C-banding, evolution.
Collapse
|
97
|
Valenzuela NT, Perera E, Naranjo T. Dynamics of rye chromosome 1R regions with high or low crossover frequency in homology search and synapsis development. PLoS One 2012; 7:e36385. [PMID: 22558456 PMCID: PMC3340359 DOI: 10.1371/journal.pone.0036385] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 04/01/2012] [Indexed: 02/02/2023] Open
Abstract
In many organisms, homologous pairing and synapsis depend on the meiotic recombination machinery that repairs double-strand DNA breaks (DSBs) produced at the onset of meiosis. The culmination of recombination via crossover gives rise to chiasmata, which locate distally in many plant species such as rye, Secale cereale. Although, synapsis initiates close to the chromosome ends, a direct effect of regions with high crossover frequency on partner identification and synapsis initiation has not been demonstrated. Here, we analyze the dynamics of distal and proximal regions of a rye chromosome introgressed into wheat to define their role on meiotic homology search and synapsis. We have used lines with a pair of two-armed chromosome 1R of rye, or a pair of telocentrics of its long arm (1RL), which were homozygous for the standard 1RL structure, homozygous for an inversion of 1RL that changes chiasma location from distal to proximal, or heterozygous for the inversion. Physical mapping of recombination produced in the ditelocentric heterozygote (1RL/1RLinv) showed that 70% of crossovers in the arm were confined to a terminal segment representing 10% of the 1RL length. The dynamics of the arms 1RL and 1RLinv during zygotene demonstrates that crossover-rich regions are more active in recognizing the homologous partner and developing synapsis than crossover-poor regions. When the crossover-rich regions are positioned in the vicinity of chromosome ends, their association is facilitated by telomere clustering; when they are positioned centrally in one of the two-armed chromosomes and distally in the homolog, their association is probably derived from chromosome elongation. On the other hand, chromosome movements that disassemble the bouquet may facilitate chromosome pairing correction by dissolution of improper chromosome associations. Taken together, these data support that repair of DSBs via crossover is essential in both the search of the homologous partner and consolidation of homologous synapsis.
Collapse
Affiliation(s)
- Nohelia T. Valenzuela
- Departamento de Genética, Facultad de Biología, Universidad Complutense, Madrid, Spain
| | - Esther Perera
- Departamento de Biología Vegetal, Facultad de Biología, Universidad Complutense, Madrid, Spain
| | - Tomás Naranjo
- Departamento de Genética, Facultad de Biología, Universidad Complutense, Madrid, Spain
- * E-mail:
| |
Collapse
|
98
|
Adonina IG, Petrash NV, Timonova EM, Khristov YA, Salina EA. Construction and study of leaf rust-resistant common wheat lines with translocations of Aegilops speltoides Tausch. Genetic material. RUSS J GENET+ 2012. [DOI: 10.1134/s1022795412020020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
99
|
Vrána J, Simková H, Kubaláková M, Cíhalíková J, Doležel J. Flow cytometric chromosome sorting in plants: the next generation. Methods 2012; 57:331-7. [PMID: 22440520 DOI: 10.1016/j.ymeth.2012.03.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Revised: 03/01/2012] [Accepted: 03/05/2012] [Indexed: 10/28/2022] Open
Abstract
Genome analysis in many plant species is hampered by large genome size and by sequence redundancy due to the presence of repetitive DNA and polyploidy. One solution is to reduce the sample complexity by dissecting the genomes to single chromosomes. This can be realized by flow cytometric sorting, which enables purification of chromosomes in large numbers. Coupling the chromosome sorting technology with next generation sequencing provides a targeted and cost effective way to tackle complex genomes. The methods outlined in this article describe a procedure for preparation of chromosomal DNA suitable for next-generation sequencing.
Collapse
Affiliation(s)
- Jan Vrána
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Sokolovská 6, CZ-77200 Olomouc, Czech Republic
| | | | | | | | | |
Collapse
|
100
|
Rosato M, Galián JA, Rosselló JA. Amplification, contraction and genomic spread of a satellite DNA family (E180) in Medicago (Fabaceae) and allied genera. ANNALS OF BOTANY 2012; 109:773-82. [PMID: 22186276 PMCID: PMC3286279 DOI: 10.1093/aob/mcr309] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
BACKGROUND AND AIMS Satellite DNA is a genomic component present in virtually all eukaryotic organisms. The turnover of highly repetitive satellite DNA is an important element in genome organization and evolution in plants. Here we assess the presence and physical distribution of the repetitive DNA E180 family in Medicago and allied genera. Our goals were to gain insight into the karyotype evolution of Medicago using satellite DNA markers, and to evaluate the taxonomic and phylogenetic signal of a satellite DNA family in a genus hypothesized to have a complex evolutionary history. METHODS Seventy accessions from Medicago, Trigonella, Melilotus and Trifolium were analysed by PCR to assess the presence of the repetitive E180 family, and fluorescence in situ hybridization (FISH) was used for physical mapping in somatic chromosomes. KEY RESULTS The E180 repeat unit was PCR-amplified in 37 of 40 taxa in Medicago, eight of 12 species of Trigonella, six of seven species of Melilotus and in two of 11 Trifolium species. Examination of the mitotic chromosomes revealed that only 13 Medicago and two Trigonella species showed FISH signals using the E180 probe. Stronger hybridization signals were observed in subtelomeric and interstitial loci than in the pericentromeric loci, suggesting this satellite family has a preferential genomic location. Not all 13 Medicago species that showed FISH localization of the E180 repeat were phylogenetically related. However, nine of these species belong to the phylogenetically derived clade including the M. sativa and M. arborea complexes. CONCLUSIONS The use of the E180 family as a phylogenetic marker in Medicago should be viewed with caution. Its amplification appears to have been produced through recurrent and independent evolutionary episodes in both annual and perennial Medicago species as well as in basal and derived clades.
Collapse
Affiliation(s)
- Marcela Rosato
- Jardín Botánico, Universidad de Valencia, c/Quart 80, E-46008, Valencia, Spain
| | - José A. Galián
- Jardín Botánico, Universidad de Valencia, c/Quart 80, E-46008, Valencia, Spain
| | - Josep A. Rosselló
- Jardín Botánico, Universidad de Valencia, c/Quart 80, E-46008, Valencia, Spain
- Marimurtra Bot. Garden, Carl Faust Fdn., PO Box 112, E-17300 Blanes, Catalonia, Spain
- For correspondence. E-mail
| |
Collapse
|