51
|
Fujisawa Y, Kosakamoto H, Chihara T, Miura M. Non-apoptotic function of Drosophila caspase activation in epithelial thorax closure and wound healing. Development 2019; 146:146/4/dev169037. [DOI: 10.1242/dev.169037] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 01/21/2019] [Indexed: 12/28/2022]
Abstract
ABSTRACT
Non-apoptotic caspase activation involves multiple cellular events. However, the link between visible non-apoptotic caspase activation and its function in living organisms has not yet been revealed. Here, we visualized sub-lethal activation of apoptotic signaling with the combination of a sensitive indicator for caspase 3 activation and in vivo live-imaging analysis of Drosophila. During thorax closure in pupal development, caspase 3 activation was specifically observed at the leading edge cells, with no signs of apoptosis. Inhibition of caspase activation led to an increase in thorax closing speed, which suggests a role of non-apoptotic caspase activity in cell motility. Importantly, sub-lethal activation of caspase 3 was also observed during wound closure at the fusion sites at which thorax closure had previously taken place. Further genetic analysis revealed that the activation of the initiator caspase Dronc is coupled with the generation of reactive oxygen species. The activation of Dronc also regulates myosin levels and delays wound healing. Our findings suggest a possible function for non-apoptotic caspase activation in the fine-tuning of cell migratory behavior during epithelial closure.
Collapse
Affiliation(s)
- Yuya Fujisawa
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hina Kosakamoto
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takahiro Chihara
- Department of Biological Science, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Masayuki Miura
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
52
|
Tanaka R, Miyata S, Yamaguchi M, Yoshida H. Role of the smallish gene during Drosophila eye development. Gene 2019; 684:10-19. [DOI: 10.1016/j.gene.2018.10.056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/15/2018] [Accepted: 10/19/2018] [Indexed: 02/06/2023]
|
53
|
Caspases orchestrate microglia instrumental functions. Prog Neurobiol 2018; 171:50-71. [DOI: 10.1016/j.pneurobio.2018.09.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 09/21/2018] [Accepted: 09/29/2018] [Indexed: 12/16/2022]
|
54
|
The Role of Apoptotic Signaling in Axon Guidance. J Dev Biol 2018; 6:jdb6040024. [PMID: 30340315 PMCID: PMC6316149 DOI: 10.3390/jdb6040024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 10/16/2018] [Accepted: 10/16/2018] [Indexed: 12/28/2022] Open
Abstract
Navigating growth cones are exposed to multiple signals simultaneously and have to integrate competing cues into a coherent navigational response. Integration of guidance cues is traditionally thought to occur at the level of cytoskeletal dynamics. Drosophila studies indicate that cells exhibit a low level of continuous caspase protease activation, and that axon guidance cues can activate or suppress caspase activity. We base a model for axon guidance on these observations. By analogy with other systems in which caspase signaling has non-apoptotic functions, we propose that caspase signaling can either reinforce repulsion or negate attraction in response to external guidance cues by cleaving cytoskeletal proteins. Over the course of an entire trajectory, incorrectly navigating axons may pass the threshold for apoptosis and be eliminated, whereas axons making correct decisions will survive. These observations would also explain why neurotrophic factors can act as axon guidance cues and why axon guidance systems such as Slit/Robo signaling may act as tumor suppressors in cancer.
Collapse
|
55
|
Zhang J, Sun T, Sun Z, Li H, Qi X, Zhong G, Yi X. Azadirachtin acting as a hazardous compound to induce multiple detrimental effects in Drosophila melanogaster. JOURNAL OF HAZARDOUS MATERIALS 2018; 359:338-347. [PMID: 30048948 DOI: 10.1016/j.jhazmat.2018.07.057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 06/21/2018] [Accepted: 07/12/2018] [Indexed: 05/21/2023]
Abstract
Azadirachtin, a tetranortriterpenoid botanical insecticide, has varied sub-lethal effects against many insect pests, including antifeedant, repellent, and growth regulatory. Despite extensive studies of the mechanisms that underline these physiological effects, little attention has been given to multiple toxic effects of azadirachtin under a coherent concentration, and there is no definitive overarching consensus on its toxicity. Here, we investigated multiple sub-lethal effects induced by 4 mg L-1 of azadirachtin, which did not elicit antifeedant behavior in Drosophila melanogaster, on metrics of longevity, development, compound eyes and reproduction. Exposure to <20 mg L-1 azadirachtin did not induce mortality, and 4 mg L-1 of azadirachtin could shorten lifespan, expression of detoxification genes and activities of related detoxification enzymes were higher. The lower activity of chitinase and higher content of chitin in fruit fly exposed to 4 mg L-1 azadirachtin could be important in developmental inhibition effects, and ovarian abnormalities and lower fecundity could have resulted from azadirachtin-mediated influences on juvenile hormone and ecdysone that disrupted the endocrine system. Caspase-3, head involution defective and reaper-dependent apoptosis genes may have been responsible for compound eye abnormalities in flies exposed to azadirachtin. Our findings provide important insights to the potential mechanisms of sub-lethal effects of azadirachtin.
Collapse
Affiliation(s)
- Jing Zhang
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Tao Sun
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Zhipeng Sun
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Haiyi Li
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Xiaoxian Qi
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Guohua Zhong
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China.
| | - Xin Yi
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
56
|
Volin M, Zohar-Fux M, Gonen O, Porat-Kuperstein L, Toledano H. microRNAs selectively protect hub cells of the germline stem cell niche from apoptosis. J Cell Biol 2018; 217:3829-3838. [PMID: 30093492 PMCID: PMC6219711 DOI: 10.1083/jcb.201711098] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/10/2017] [Accepted: 07/25/2018] [Indexed: 12/19/2022] Open
Abstract
Genotoxic stress such as irradiation causes a temporary halt in tissue regeneration. The ability to regain regeneration depends on the type of cells that survived the assault. Previous studies showed that this propensity is usually held by the tissue-specific stem cells. However, stem cells cannot maintain their unique properties without the support of their surrounding niche cells. In this study, we show that exposure of Drosophila melanogaster to extremely high levels of irradiation temporarily arrests spermatogenesis and kills half of the stem cells. In marked contrast, the hub cells that constitute a major component of the niche remain completely intact. We further show that this atypical resistance to cell death relies on the expression of certain antiapoptotic microRNAs (miRNAs) that are selectively expressed in the hub and keep the cells inert to apoptotic stress signals. We propose that at the tissue level, protection of a specific group of niche cells from apoptosis underlies ongoing stem cell turnover and tissue regeneration.
Collapse
Affiliation(s)
- Marina Volin
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Maayan Zohar-Fux
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Oren Gonen
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Lilach Porat-Kuperstein
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Hila Toledano
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| |
Collapse
|
57
|
Xu J, Vanderzalm PJ, Ludwig M, Su T, Tokamov SA, Fehon RG. Yorkie Functions at the Cell Cortex to Promote Myosin Activation in a Non-transcriptional Manner. Dev Cell 2018; 46:271-284.e5. [PMID: 30032991 PMCID: PMC6086586 DOI: 10.1016/j.devcel.2018.06.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 05/09/2018] [Accepted: 06/19/2018] [Indexed: 02/06/2023]
Abstract
The Hippo signaling pathway is an evolutionarily conserved mechanism that controls organ size in animals. Yorkie is well known as a transcriptional co-activator that functions downstream of the Hippo pathway to positively regulate transcription of genes that promote tissue growth. Recent studies have shown that increased myosin activity activates both Yorkie and its vertebrate orthologue YAP, resulting in increased nuclear localization and tissue growth. Here we show that Yorkie also can accumulate at the cell cortex in the apical junctional region. Moreover, Yorkie functions at the cortex to promote activation of myosin through a myosin regulatory light chain kinase, Stretchin-Mlck. This Yorkie function is not dependent on its transcriptional activity and is required for larval and adult tissues to achieve appropriate size. Based on these results, we suggest that Yorkie functions in a feedforward "amplifier" loop that promotes myosin activation, and thereby greater Yorkie activity, in response to tension.
Collapse
Affiliation(s)
- Jiajie Xu
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA; Committee on Development, Regeneration and Stem Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Pamela J Vanderzalm
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA; Department of Biology, John Carroll University, University Heights, OH 44118, USA
| | - Michael Ludwig
- Department of Ecology and Evolutionary Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Ting Su
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Sherzod A Tokamov
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA; Committee on Development, Regeneration and Stem Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Richard G Fehon
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA; Committee on Development, Regeneration and Stem Cell Biology, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
58
|
Azuma Y, Tokuda T, Kushimura Y, Yamamoto I, Mizuta I, Mizuno T, Nakagawa M, Ueyama M, Nagai Y, Iwasaki Y, Yoshida M, Pan D, Yoshida H, Yamaguchi M. Hippo, Drosophila MST, is a novel modifier of motor neuron degeneration induced by knockdown of Caz, Drosophila FUS. Exp Cell Res 2018; 371:311-321. [PMID: 30092221 DOI: 10.1016/j.yexcr.2018.08.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/30/2018] [Accepted: 08/01/2018] [Indexed: 12/20/2022]
Abstract
Mutations in the Fused in Sarcoma (FUS) gene have been identified in familial ALS in human. Drosophila contains a single ortholog of human FUS called Cabeza (Caz). We previously established Drosophila models of ALS targeted to Caz, which developed the locomotive dysfunction and caused anatomical defects in presynaptic terminals of motoneurons. Accumulating evidence suggests that ALS and cancer share defects in many cellular processes. The Hippo pathway was originally discovered in Drosophila and plays a role as a tumor suppressor in mammals. We aimed to determine whether Hippo pathway genes modify the ALS phenotype using Caz knockdown flies. We found a genetic link between Caz and Hippo (hpo), the Drosophila ortholog of human Mammalian sterile 20-like kinase (MST) 1 and 2. Loss-of-function mutations of hpo rescued Caz knockdown-induced eye- and neuron-specific defects. The decreased Caz levels in nuclei induced by Caz knockdown were also rescued by loss of function mutations of hpo. Moreover, hpo mRNA level was dramatically increased in Caz knockdown larvae, indicating that Caz negatively regulated hpo. Our results demonstrate that hpo, Drosophila MST, is a novel modifier of Drosophila FUS. Therapeutic targets that inhibit the function of MST could modify the pathogenic processes of ALS.
Collapse
Affiliation(s)
- Yumiko Azuma
- Departments of Neurology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan.
| | - Takahiko Tokuda
- Departments of Neurology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan; Departments of Molecular Pathobiology of Brain Diseases, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan.
| | - Yukie Kushimura
- Departments of Neurology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Itaru Yamamoto
- Department of Applied Biology, Kyoto Institute of Technology, Hashikami-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan; The Center for Advanced Insect Research Promotion, Kyoto Institute of Technology, Hashikami-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Ikuko Mizuta
- Departments of Neurology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Toshiki Mizuno
- Departments of Neurology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Masanori Nakagawa
- Departments of Neurology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan; North Medical Center, Kyoto Prefectural University of Medicine, 481 Otokoyama, Yosano-cho, Yosa-gun, Kyoto 629-2291, Japan
| | - Morio Ueyama
- Department of Neurotherapeutics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yoshitaka Nagai
- Department of Neurotherapeutics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yasushi Iwasaki
- Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Aichi 480-1195, Japan
| | - Mari Yoshida
- Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Aichi 480-1195, Japan
| | - Duojia Pan
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, 725 N, Wolfe Street/714 A PCTB, Baltimore, MD 21205-2185, USA
| | - Hideki Yoshida
- Department of Applied Biology, Kyoto Institute of Technology, Hashikami-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan; The Center for Advanced Insect Research Promotion, Kyoto Institute of Technology, Hashikami-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Masamitsu Yamaguchi
- Department of Applied Biology, Kyoto Institute of Technology, Hashikami-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan; The Center for Advanced Insect Research Promotion, Kyoto Institute of Technology, Hashikami-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.
| |
Collapse
|
59
|
Baker LR, Weasner BM, Nagel A, Neuman SD, Bashirullah A, Kumar JP. Eyeless/Pax6 initiates eye formation non-autonomously from the peripodial epithelium. Development 2018; 145:dev.163329. [PMID: 29980566 DOI: 10.1242/dev.163329] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 06/27/2018] [Indexed: 01/08/2023]
Abstract
The transcription factor Pax6 is considered the master control gene for eye formation because (1) it is present within the genomes and retina/lens of all animals with a visual system; (2) severe retinal defects accompany its loss; (3) Pax6 genes have the ability to substitute for one another across the animal kingdom; and (4) Pax6 genes are capable of inducing ectopic eye/lens in flies and mammals. Many roles of Pax6 were first elucidated in Drosophila through studies of the gene eyeless (ey), which controls both growth of the entire eye-antennal imaginal disc and fate specification of the eye. We show that Ey also plays a surprising role within cells of the peripodial epithelium to control pattern formation. It regulates the expression of decapentaplegic (dpp), which is required for initiation of the morphogenetic furrow in the eye itself. Loss of Ey within the peripodial epithelium leads to the loss of dpp expression within the eye, failure of the furrow to initiate, and abrogation of retinal development. These findings reveal an unexpected mechanism for how Pax6 controls eye development in Drosophila.
Collapse
Affiliation(s)
- Luke R Baker
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Bonnie M Weasner
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Athena Nagel
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Sarah D Neuman
- Department of Pharmaceutical Sciences, University of Wisconsin, Madison, WI 53705, USA
| | - Arash Bashirullah
- Department of Pharmaceutical Sciences, University of Wisconsin, Madison, WI 53705, USA
| | - Justin P Kumar
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
60
|
Double-stranded RNA binding protein, Staufen, is required for the initiation of RNAi in coleopteran insects. Proc Natl Acad Sci U S A 2018; 115:8334-8339. [PMID: 30061410 PMCID: PMC6099913 DOI: 10.1073/pnas.1809381115] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
RNA interference (RNAi) is being used to develop methods to control pests and disease vectors. RNAi is robust and systemic in coleopteran insects but is quite variable in other insects. The determinants of efficient RNAi in coleopterans, as well as its potential mechanisms of resistance, are not known. RNAi screen identified a double-stranded RNA binding protein (StaufenC) as a major player in RNAi. StaufenC homologs have been identified in only coleopteran insects. Experiments in two coleopteran insects, Leptinotarsa decemlineata and Tribolium castaneum, showed the requirement of StaufenC for RNAi, especially for processing of double-stranded RNA (dsRNA) to small interfering RNA. RNAi-resistant cells were selected by exposing L. decemlineata, Lepd-SL1 cells to the inhibitor of apoptosis 1 dsRNA for multiple generations. The resistant cells showed lower levels of StaufenC expression compared with its expression in susceptible cells. These studies showed that coleopteran-specific StaufenC is required for RNAi and is a potential target for RNAi resistance. The data included in this article will help improve RNAi in noncoleopteran insects and manage RNAi resistance in coleopteran insects.
Collapse
|
61
|
Tissue-Specific Upregulation of Drosophila Insulin Receptor (InR) Mitigates Poly(Q)-Mediated Neurotoxicity by Restoration of Cellular Transcription Machinery. Mol Neurobiol 2018; 56:1310-1329. [DOI: 10.1007/s12035-018-1160-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 05/29/2018] [Indexed: 12/11/2022]
|
62
|
Serpin Facilitates Tumor-Suppressive Cell Competition by Blocking Toll-Mediated Yki Activation in Drosophila. Curr Biol 2018; 28:1756-1767.e6. [DOI: 10.1016/j.cub.2018.04.022] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 03/06/2018] [Accepted: 04/05/2018] [Indexed: 11/23/2022]
|
63
|
Kubo A, Matsuka M, Minami R, Kimura F, Sakata-Niitsu R, Kokuryo A, Taniguchi K, Adachi-Yamada T, Nakagoshi H. Nutrient conditions sensed by the reproductive organ during development optimize male fecundity in Drosophila. Genes Cells 2018; 23:557-567. [DOI: 10.1111/gtc.12600] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 04/30/2018] [Accepted: 05/06/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Ayuko Kubo
- Graduate School of Natural Science and Technology; Okayama University; Okayama Japan
| | - Mirai Matsuka
- Graduate School of Natural Science and Technology; Okayama University; Okayama Japan
| | - Ryunosuke Minami
- Graduate School of Natural Science and Technology; Okayama University; Okayama Japan
| | - Fumika Kimura
- Graduate School of Natural Science and Technology; Okayama University; Okayama Japan
| | - Rumi Sakata-Niitsu
- Department of Life Science; Faculty of Science; Gakushuin University; Tokyo Japan
| | - Akihiko Kokuryo
- Department of Life Science; Faculty of Science; Gakushuin University; Tokyo Japan
| | - Kiichiro Taniguchi
- Department of Life Science; Faculty of Science; Gakushuin University; Tokyo Japan
| | | | - Hideki Nakagoshi
- Graduate School of Natural Science and Technology; Okayama University; Okayama Japan
| |
Collapse
|
64
|
Drosophila Pax6 promotes development of the entire eye-antennal disc, thereby ensuring proper adult head formation. Proc Natl Acad Sci U S A 2018; 114:5846-5853. [PMID: 28584125 DOI: 10.1073/pnas.1610614114] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Paired box 6 (Pax6) is considered to be the master control gene for eye development in all seeing animals studied so far. In vertebrates, it is required not only for lens/retina formation but also for the development of the CNS, olfactory system, and pancreas. Although Pax6 plays important roles in cell differentiation, proliferation, and patterning during the development of these systems, the underlying mechanism remains poorly understood. In the fruit fly, Drosophila melanogaster, Pax6 also functions in a range of tissues, including the eye and brain. In this report, we describe the function of Pax6 in Drosophila eye-antennal disc development. Previous studies have suggested that the two fly Pax6 genes, eyeless (ey) and twin of eyeless (toy), initiate eye specification, whereas eyegone (eyg) and the Notch (N) pathway independently regulate cell proliferation. Here, we show that Pax6 controls eye progenitor cell survival and proliferation through the activation of teashirt (tsh) and eyg, thereby indicating that Pax6 initiates both eye specification and proliferation. Although simultaneous loss of ey and toy during early eye-antennal disc development disrupts the development of all head structures derived from the eye-antennal disc, overexpression of N or tsh in the absence of Pax6 rescues only antennal and head epidermis development. Furthermore, overexpression of tsh induces a homeotic transformation of the fly head into thoracic structures. Taking these data together, we demonstrate that Pax6 promotes development of the entire eye-antennal disc and that the retinal determination network works to repress alternative tissue fates, which ensures proper development of adult head structures.
Collapse
|
65
|
Nowak K, Gupta A, Stocker H. FoxO restricts growth and differentiation of cells with elevated TORC1 activity under nutrient restriction. PLoS Genet 2018; 14:e1007347. [PMID: 29677182 PMCID: PMC5931687 DOI: 10.1371/journal.pgen.1007347] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 05/02/2018] [Accepted: 03/30/2018] [Indexed: 11/19/2022] Open
Abstract
TORC1, a central regulator of cell survival, growth, and metabolism, is activated in a variety of cancers. Loss of the tumor suppressors PTEN and Tsc1/2 results in hyperactivation of TORC1. Tumors caused by the loss of PTEN, but not Tsc1/2, are often malignant and have been shown to be insensitive to nutrient restriction (NR). In Drosophila, loss of PTEN or Tsc1 results in hypertrophic overgrowth of epithelial tissues under normal nutritional conditions, and an enhanced TORC1-dependent hyperplastic overgrowth of PTEN mutant tissue under NR. Here we demonstrate that epithelial cells lacking Tsc1 or Tsc2 also acquire a growth advantage under NR. The overgrowth correlates with high TORC1 activity, and activating TORC1 downstream of Tsc1 by overexpression of Rheb is sufficient to enhance tissue growth. In contrast to cells lacking PTEN, Tsc1 mutant cells show decreased PKB activity, and the extent of Tsc1 mutant overgrowth is dependent on the loss of PKB-mediated inhibition of the transcription factor FoxO. Removal of FoxO function from Tsc1 mutant tissue induces massive hyperplasia, precocious differentiation, and morphological defects specifically under NR, demonstrating that FoxO activation is responsible for restricting overgrowth of Tsc1 mutant tissue. The activation status of FoxO may thus explain why tumors caused by the loss of Tsc1-in contrast to PTEN-rarely become malignant.
Collapse
Affiliation(s)
- Katarzyna Nowak
- Institute of Molecular Systems Biology, ETH Zürich, Auguste-Piccard-Hof 1, Zürich, Switzerland
| | - Avantika Gupta
- Institute of Molecular Systems Biology, ETH Zürich, Auguste-Piccard-Hof 1, Zürich, Switzerland
| | - Hugo Stocker
- Institute of Molecular Systems Biology, ETH Zürich, Auguste-Piccard-Hof 1, Zürich, Switzerland
- * E-mail:
| |
Collapse
|
66
|
Mondal T, Bag I, SNCVL P, Garikapati KR, Bhadra U, Pal Bhadra M. Two way controls of apoptotic regulators consign DmArgonaute-1 a better clasp on it. PLoS One 2018; 13:e0190548. [PMID: 29385168 PMCID: PMC5791970 DOI: 10.1371/journal.pone.0190548] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 12/16/2017] [Indexed: 02/02/2023] Open
Abstract
Argonaute family proteins are well conserved among all organisms. Its role in mitotic cell cycle progression and apoptotic cell elimination is poorly understood. Earlier we have established the contribution of Ago-1 in cell cycle control related to G2/M cyclin in Drosophila. Here we have extended our study in understanding the relationship of Ago-1 in regulating apoptosis during Drosophila development. Apoptosis play a critical role in controlling organ shape and size during development of multi cellular organism. Multifarious regulatory pathways control apoptosis during development among which highly conserved JNK (c-Jun N-terminal kinase) pathway play a crucial role. Here we have over expressed Ago-1 in Drosophila eye and brain by employing UAS (upstream activation sequence)-GAL4 system under the expression of eye and brain specific driver. Over expression of Ago-1 resulted in reduced number of ommatidia in the eye and produced smaller size brain in adult and larval Drosophila. A drastic reversal of the phenotype towards normal was observed upon introduction of a single copy of the dominant negative mutation of basket (bsk, Drosophila homolog of JNK) indicating an active and physical involvement of the bsk with Ago-1 in inducing developmental apoptotic process. Further study showed that Ago-1 stimulates phosphorylation of JNK through transforming growth factor-β activated kinase 1- hemipterous (Tak1-hep) axis of JNK pathway. JNK phosphorylation results in up regulation of pro-apoptotic genes head involution defective (hid), grim & reaper (rpr) and induces activation of Drosophila caspases (cysteinyl aspartate proteinases);DRONC (Death regulator Nedd2-like caspase), ICE (alternatively Drice, Death related ICE-like caspase) and DCP1 (Death caspase-1) by inhibiting apoptotic inhibitor protein DIAP1 (Death-associated inhibitor of apoptosis 1). Further, Ago-1 also inhibits miR-14 expression to trigger apoptosis. Our findings propose that Ago-1 acts as a key regulator in controlling cell death, tumor regression and stress response in metazoan providing a constructive bridge between RNAi machinery and cell death.
Collapse
Affiliation(s)
- Tanmoy Mondal
- Department of Chemical Biology, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, Telangana State, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-IICT Campus, Hyderabad, India
| | - Indira Bag
- Department of Chemical Biology, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, Telangana State, India
| | - Pushpavalli SNCVL
- Department of Chemical Biology, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, Telangana State, India
| | - Koteswara Rao Garikapati
- Department of Chemical Biology, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, Telangana State, India
| | - Utpal Bhadra
- Gene Silencing and Functional Genomics Group, CSIR-Centre For Cellular and Molecular Biology, Uppal Road, Hyderabad, Telangana State, India
| | - Manika Pal Bhadra
- Department of Chemical Biology, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, Telangana State, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-IICT Campus, Hyderabad, India
- * E-mail: ,
| |
Collapse
|
67
|
Allocation of distinct organ fates from a precursor field requires a shift in expression and function of gene regulatory networks. PLoS Genet 2018; 14:e1007185. [PMID: 29351292 PMCID: PMC5792024 DOI: 10.1371/journal.pgen.1007185] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 01/31/2018] [Accepted: 01/03/2018] [Indexed: 11/30/2022] Open
Abstract
A common occurrence in metazoan development is the rise of multiple tissues/organs from a single uniform precursor field. One example is the anterior forebrain of vertebrates, which produces the eyes, hypothalamus, diencephalon, and telencephalon. Another instance is the Drosophila wing disc, which generates the adult wing blade, the hinge, and the thorax. Gene regulatory networks (GRNs) that are comprised of signaling pathways and batteries of transcription factors parcel the undifferentiated field into discrete territories. This simple model is challenged by two observations. First, many GRN members that are thought to control the fate of one organ are actually expressed throughout the entire precursor field at earlier points in development. Second, each GRN can simultaneously promote one of the possible fates choices while repressing the other alternatives. It is therefore unclear how GRNs function to allocate tissue fates if their members are uniformly expressed and competing with each other within the same populations of cells. We address this paradigm by studying fate specification in the Drosophila eye-antennal disc. The disc, which begins its development as a homogeneous precursor field, produces a number of adult structures including the compound eyes, the ocelli, the antennae, the maxillary palps, and the surrounding head epidermis. Several selector genes that control the fates of the eye and antenna, respectively, are first expressed throughout the entire eye-antennal disc. We show that during early stages, these genes are tasked with promoting the growth of the entire field. Upon segregation to distinct territories within the disc, each GRN continues to promote growth while taking on the additional roles of promoting distinct primary fates and repressing alternate fates. The timing of both expression pattern restriction and expansion of functional duties is an elemental requirement for allocating fates within a single field. A battery of transcription factors collectively called the retinal determination (RD) network controls the earliest steps in the specification of the fruit fly compound eye. Loss-of-function mutations lead to the loss of the compound eyes while over-expression of RD network members in non-retinal tissues induces the formation of ectopic eyes. These observations suggest that the network governs the growth, specification, and patterning of the eye field. Recent studies have also shown that the RD network represses the fates of the non-ocular tissues that are also derived from the disc such as the antenna, maxillary palp, and head epidermis. One inconsistency in the model for how this network controls eye specification is that many of its members are expressed throughout the entire eye-antennal disc. In this study, we show that early in development, the RD network is expressed throughout and promotes the growth of the entire eye-antennal disc. After the initial growth phase, the expression of these genes is restricted to just the eye field. This temporal and spatial limiting of the RD network to the developing eye is essential so that its role can expand to include promoting eye specification and repressing non-ocular fates.
Collapse
|
68
|
Zhou J, Lu X, Tan TZ, Chng W. X-linked inhibitor of apoptosis inhibition sensitizes acute myeloid leukemia cell response to TRAIL and chemotherapy through potentiated induction of proapoptotic machinery. Mol Oncol 2018; 12:33-47. [PMID: 29063676 PMCID: PMC5748481 DOI: 10.1002/1878-0261.12146] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 08/24/2017] [Accepted: 10/07/2017] [Indexed: 12/12/2022] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive disease with an increasing incidence and relatively low 5-year survival rate. Unfortunately, the underlying mechanism of leukemogenesis is poorly known, and there has been little progress in the treatment for AML. Studies have shown that X-linked inhibitor of apoptosis (XIAP), one of the inhibitors of apoptosis proteins (IAPs), is highly expressed and contributes to chemoresistance in AML. Hence, a novel drug, RO6867520 (RO-BIR2), developed by Roche targeting the BIR2 domain in XIAP to reactivate blocked apoptosis, is a promising therapy for AML. The monotherapy of RO-BIR2 had minimal effect on most of the AML cell lines tested except U-937. In contrast to AML cell lines, in general, RO-BIR2 alone has been shown to inhibit the proliferation of primary AML patient samples effectively and induced apoptosis in a dose-dependent manner. A combination of RO-BIR2 with TNF-related apoptosis-inducing ligand (TRAIL) led to highly synergistic effect on AML cell lines and AML patient samples. This combination therapy is capable of inducing apoptosis, thereby leading to an increase in specific apoptotic cell population, along with the activation of caspase 3/7. A number of apoptotic-related proteins such as XIAP, cleavage of caspase 3, cleavage of caspase 7, and cleaved PARP were changed upon combination therapy. Combination of RO-BIR2 with Ara-C had similar effect as the TRAIL combination. Ara-C combination also led to synergistic effect on AML cell lines and AML patient samples with low combination indexes (CIs). We conclude that the combination of RO-BIR2 with either TRAIL or Ara-C represents a potent therapeutic strategy for AML and is warranted for further clinical trials to validate the synergistic benefits in patients with AML, especially for the elderly who are abstaining from intensive chemotherapy.
Collapse
Affiliation(s)
- Jianbiao Zhou
- Cancer Science Institute of SingaporeNational University of Singapore, Centre for Translational MedicineSingapore
- Department of MedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore
| | - Xiao Lu
- Cancer Science Institute of SingaporeNational University of Singapore, Centre for Translational MedicineSingapore
| | - Tuan Zea Tan
- Cancer Science Institute of SingaporeNational University of Singapore, Centre for Translational MedicineSingapore
- Translational Centre for Development and ResearchNational University Health SystemSingaporeSingapore
| | - Wee‐Joo Chng
- Cancer Science Institute of SingaporeNational University of Singapore, Centre for Translational MedicineSingapore
- Department of MedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore
- Department of Hematology‐OncologyNational University Cancer Institute, NUHSSingaporeSingapore
| |
Collapse
|
69
|
Bushnell HL, Feiler CE, Ketosugbo KF, Hellerman MB, Nazzaro VL, Johnson RI. JNK is antagonized to ensure the correct number of interommatidial cells pattern the Drosophila retina. Dev Biol 2018; 433:94-107. [PMID: 29133184 PMCID: PMC6010229 DOI: 10.1016/j.ydbio.2017.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 10/29/2017] [Accepted: 11/04/2017] [Indexed: 11/25/2022]
Abstract
Apoptosis is crucial during the morphogenesis of most organs and tissues, and is utilized for tissues to achieve their proper size, shape and patterning. Many signaling pathways contribute to the precise regulation of apoptosis. Here we show that Jun N-terminal Kinase (JNK) activity contributes to the coordinated removal of interommatidial cells via apoptosis in the Drosophila pupal retina. This is consistent with previous findings that JNK activity promotes apoptosis in other epithelia. However, we found that JNK activity is repressed by Cindr (the CIN85 and CD2AP ortholog) in order to promote cell survival. Reducing the amount of Cindr resulted in ectopic cell death. Increased expression of the Drosophila JNK basket in the setting of reduced cindr expression was found to result in even more severe apoptosis, whilst ectopic death was found to be reduced if retinas were heterozygous for basket. Hence Cindr is required to properly restrict JNK-mediated apoptosis in the pupal eye, resulting in the correct number of interommatidial cells. A lack of precise control over developmental apoptosis can lead to improper tissue morphogenesis.
Collapse
Affiliation(s)
- Henry L Bushnell
- Biology Department, Wesleyan University, 52 Lawn Avenue, Middletown, CT, USA
| | - Christina E Feiler
- Biology Department, Wesleyan University, 52 Lawn Avenue, Middletown, CT, USA
| | - Kwami F Ketosugbo
- Biology Department, Wesleyan University, 52 Lawn Avenue, Middletown, CT, USA
| | - Mark B Hellerman
- Biology Department, Wesleyan University, 52 Lawn Avenue, Middletown, CT, USA
| | - Valerie L Nazzaro
- Quantitative Analysis Center, Wesleyan University, 222 Church Street, Middletown, CT, USA
| | - Ruth I Johnson
- Biology Department, Wesleyan University, 52 Lawn Avenue, Middletown, CT, USA.
| |
Collapse
|
70
|
Wang Z, Xia X, Yang X, Zhang X, Liu Y, Wu D, Fang Y, Liu Y, Xu J, Qiu Y, Zhou X. A picorna-like virus suppresses the N-end rule pathway to inhibit apoptosis. eLife 2017; 6:30590. [PMID: 29231806 PMCID: PMC5739542 DOI: 10.7554/elife.30590] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 12/11/2017] [Indexed: 12/21/2022] Open
Abstract
The N-end rule pathway is an evolutionarily conserved proteolytic system that degrades proteins containing N-terminal degradation signals called N-degrons, and has emerged as a key regulator of various processes. Viruses manipulate diverse host pathways to facilitate viral replication and evade antiviral defenses. However, it remains unclear if viral infection has any impact on the N-end rule pathway. Here, using a picorna-like virus as a model, we found that viral infection promoted the accumulation of caspase-cleaved Drosophila inhibitor of apoptosis 1 (DIAP1) by inducing the degradation of N-terminal amidohydrolase 1 (NTAN1), a key N-end rule component that identifies N-degron to initiate the process. The virus-induced NTAN1 degradation is independent of polyubiquitylation but dependent on proteasome. Furthermore, the virus-induced N-end rule pathway suppression inhibits apoptosis and benefits viral replication. Thus, our findings demonstrate that a virus can suppress the N-end rule pathway, and uncover a new mechanism for virus to evade apoptosis.
Collapse
Affiliation(s)
- Zhaowei Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China.,State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Xiaoling Xia
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China.,State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Xueli Yang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xueyi Zhang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China.,State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Yongxiang Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China.,State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Di Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China.,State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Yuan Fang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China.,State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Yujie Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China.,State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Jiuyue Xu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Yang Qiu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Xi Zhou
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China.,State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
71
|
Powell M, Pyati P, Cao M, Bell H, Gatehouse JA, Fitches E. Insecticidal effects of dsRNA targeting the Diap1 gene in dipteran pests. Sci Rep 2017; 7:15147. [PMID: 29123201 PMCID: PMC5680328 DOI: 10.1038/s41598-017-15534-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 10/02/2017] [Indexed: 01/08/2023] Open
Abstract
The Drosophila melanogaster (fruit fly) gene Diap1 encodes a protein referred to as DIAP1 (D rosophila Inhibitor of Apoptosis Protein 1) that acts to supress apoptosis in "normal" cells in the fly. In this study we investigate the use of RNA interference (RNAi) to control two dipteran pests, Musca domestica and Delia radicum, by disrupting the control of apoptosis. Larval injections of 125-500 ng of Diap1 dsRNA resulted in dose-dependent mortality which was shown to be attributable to down-regulation of target mRNA. Insects injected with Diap1 dsRNA have approx. 1.5-2-fold higher levels of caspase activity than controls 24 hours post injection, providing biochemical evidence that inhibition of apoptotic activity by the Diap1 gene product has been decreased. By contrast adults were insensitive to injected dsRNA. Oral delivery failed to induce RNAi effects and we suggest this is attributable to degradation of ingested dsRNA by intra and extracellular RNAses. Non-target effects were demonstrated via mortality and down-regulation of Diap1 mRNA levels in M. domestica larvae injected with D. radicum Diap1 dsRNA, despite the absence of 21 bp identical sequence regions in the dsRNA. Here we show that identical 15 bp regions in dsRNA are sufficient to trigger non-target RNAi effects.
Collapse
Affiliation(s)
- Michelle Powell
- Fera Science Ltd., Sand Hutton, York, YO41 1LZ, United Kingdom
| | - Prashant Pyati
- School of Biosciences, Durham University, South Road, Durham, DH1 3LE, United Kingdom
| | - Min Cao
- School of Biosciences, Durham University, South Road, Durham, DH1 3LE, United Kingdom
| | - Howard Bell
- Fera Science Ltd., Sand Hutton, York, YO41 1LZ, United Kingdom
| | - John A Gatehouse
- School of Biosciences, Durham University, South Road, Durham, DH1 3LE, United Kingdom
| | - Elaine Fitches
- School of Biosciences, Durham University, South Road, Durham, DH1 3LE, United Kingdom.
- Fera Science Ltd., Sand Hutton, York, YO41 1LZ, United Kingdom.
| |
Collapse
|
72
|
Proapoptotic function of deubiquitinase DUSP31 in Drosophila. Oncotarget 2017; 8:70452-70462. [PMID: 29050293 PMCID: PMC5642568 DOI: 10.18632/oncotarget.19715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 06/26/2017] [Indexed: 11/25/2022] Open
Abstract
Drosophila have been used to identify new components in apoptosis regulation. The Drosophila protein Dark forms an octameric apoptosome complex that induces the initiator caspase Dronc to trigger the caspase cell death pathway and, therefore, plays an important role in controlling apoptosis. Caspases and Dark are constantly expressed in cells, but their activity is blocked by DIAP1 E3 ligase-mediated ubiquitination and subsequent inactivation or proteasomal degradation. One of the regulatory mechanisms that stabilize proapoptotic factors is the removal of ubiquitin chains by deubiquitinases. In this study performed a modified genetic screen for deubiquitinases (dsRNA lines) to identify those involved in stabilizing proapoptotic components. Loss-of-function alleles of deubiquitinase DUSP31 were identified as suppressors of the Dronc overexpression phenotype. DUSP31 deficiency also suppresses apoptosis induced by the RHG protein, Grim. Genetic analysis revealed for the first time that DUSP31 deficiency sufficiently suppresses the Dark phenotype, indicating its involvement in the control of Dark/Dronc apoptosome function in invertebrate apoptosis.
Collapse
|
73
|
Lu J, Wang D, Shen J. Hedgehog signalling is required for cell survival in Drosophila wing pouch cells. Sci Rep 2017; 7:11317. [PMID: 28900135 PMCID: PMC5595820 DOI: 10.1038/s41598-017-10550-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 08/10/2017] [Indexed: 11/09/2022] Open
Abstract
An appropriate balance between cell survival and cell death is essential for correct pattern formation in the animal tissues and organs. Previous studies have shown that the short-range signalling molecule Hedgehog (Hh) is required for cell proliferation and pattern formation in the Drosophila central wing discs. Signal transduction by one of the Hh targets, the morphogen Decapentaplegic (Dpp), is required for not only cell proliferation, but also cell survival in the pouch cells. However, Hh function in cell survival and cell death has not been revealed. Here, we found that loss of Hh signal activity induces considerable Caspase-dependent cell death in the wing pouch cells, and this process was independent of both Dpp signalling and Jun-N-terminal kinase (JNK) signalling. Loss of Hh induced activation of the pro-apoptotic gene hid and inhibition of diap1. Therefore, we identified an important role of Hh signalling in cell survival during Drosophila wing development.
Collapse
Affiliation(s)
- Juan Lu
- Department of Entomology, MOA Key Laboratory for monitoring and green management of crop pests, China Agricultural University, 100193, Beijing, China
| | - Dan Wang
- Department of Entomology, MOA Key Laboratory for monitoring and green management of crop pests, China Agricultural University, 100193, Beijing, China
| | - Jie Shen
- Department of Entomology, MOA Key Laboratory for monitoring and green management of crop pests, China Agricultural University, 100193, Beijing, China.
| |
Collapse
|
74
|
Schott S, Ambrosini A, Barbaste A, Benassayag C, Gracia M, Proag A, Rayer M, Monier B, Suzanne M. A fluorescent toolkit for spatiotemporal tracking of apoptotic cells in living Drosophila tissues. Development 2017; 144:3840-3846. [PMID: 28870988 DOI: 10.1242/dev.149807] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 08/29/2017] [Indexed: 02/01/2023]
Abstract
Far from being passive, apoptotic cells influence their environment. For example, they promote tissue folding, myoblast fusion and modulate tumor growth. Understanding the role of apoptotic cells necessitates their efficient tracking within living tissues, a task that is currently challenging. In order to easily spot apoptotic cells in developing Drosophila tissues, we generated a series of fly lines expressing different fluorescent sensors of caspase activity. We show that three of these reporters (GFP-, Cerulean- and Venus-derived molecules) are detected specifically in apoptotic cells and throughout the whole process of programmed cell death. These reporters allow the specific visualization of apoptotic cells directly within living tissues, without any post-acquisition processing. They overcome the limitations of other apoptosis detection methods developed so far and, notably, they can be combined with any kind of fluorophore.
Collapse
Affiliation(s)
- Sonia Schott
- LBCMCP, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS/UPS, 118 route de Narbonne, 31062 Toulouse, France
| | - Arnaud Ambrosini
- LBCMCP, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS/UPS, 118 route de Narbonne, 31062 Toulouse, France
| | - Audrey Barbaste
- LBCMCP, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS/UPS, 118 route de Narbonne, 31062 Toulouse, France
| | - Corinne Benassayag
- LBCMCP, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS/UPS, 118 route de Narbonne, 31062 Toulouse, France
| | - Mélanie Gracia
- LBCMCP, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS/UPS, 118 route de Narbonne, 31062 Toulouse, France
| | - Amsha Proag
- LBCMCP, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS/UPS, 118 route de Narbonne, 31062 Toulouse, France
| | - Mégane Rayer
- LBCMCP, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS/UPS, 118 route de Narbonne, 31062 Toulouse, France
| | - Bruno Monier
- LBCMCP, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS/UPS, 118 route de Narbonne, 31062 Toulouse, France
| | - Magali Suzanne
- LBCMCP, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS/UPS, 118 route de Narbonne, 31062 Toulouse, France
| |
Collapse
|
75
|
Simoes da Silva CJ, Fereres S, Simón R, Busturia A. Drosophila SCE/dRING E3-ligase inhibits apoptosis in a Dp53 dependent manner. Dev Biol 2017; 429:81-91. [DOI: 10.1016/j.ydbio.2017.07.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 06/22/2017] [Accepted: 07/09/2017] [Indexed: 10/19/2022]
|
76
|
IAPs protect host target tissues from graft-versus-host disease in mice. Blood Adv 2017; 1:1517-1532. [PMID: 29296793 DOI: 10.1182/bloodadvances.2017004242] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 07/01/2017] [Indexed: 12/13/2022] Open
Abstract
Inhibitors of apoptosis proteins (IAPs) regulate apoptosis, but little is known about the role of IAPs in the regulation of immunity. Development of IAP inhibition by second mitochondria-derived activator of caspase (SMAC) mimetics is emerging as a novel therapeutic strategy to treat malignancies. We explored the role of IAPs in allogeneic immunity with 2 distinct yet complementary strategies, namely, chemical and genetic approaches, in clinically relevant models of experimental bone marrow transplantation (BMT). The small-molecule pan-IAP inhibitor SMAC mimetic AT-406 aggravated gastrointestinal graft-versus-host disease (GVHD) in multiple models. The role of specific IAPs in various host and donor cellular compartments was explored by utilizing X-linked IAP (XIAP)- and cellular IAP (cIAP)-deficient animals as donors or recipients. Donor T cells from C57BL/6 cIAP1-/- or XIAP-/- animals demonstrated equivalent GVHD severity and allogeneic responses, both in vivo and in vitro, when compared with B6 wild-type (B6-WT) T cells. By contrast, when used as recipient animals, both XIAP-/- and cIAP1-/- animals demonstrated increased mortality from GVHD when compared with B6-WT animals. BM chimera studies revealed that cIAP and XIAP deficiency in host nonhematopoietic target cells, but not in host hematopoietic-derived cells, is critical for exacerbation of GVHD. Intestinal epithelial cells from IAP-deficient animals showed reduced levels of antiapoptotic proteins as well as autophagy-related protein LC3 after allogeneic BMT. Collectively, our data highlight a novel immune cell-independent but target tissue-intrinsic role for IAPs in the regulation of gastrointestinal damage from GVHD.
Collapse
|
77
|
Mills MK, Nayduch D, McVey DS, Michel K. Functional Validation of Apoptosis Genes IAP1 and DRONC in Midgut Tissue of the Biting Midge Culicoides sonorensis (Diptera: Ceratopogonidae) by RNAi. JOURNAL OF MEDICAL ENTOMOLOGY 2017; 54:559-567. [PMID: 28399198 PMCID: PMC5502902 DOI: 10.1093/jme/tjw225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Indexed: 05/02/2023]
Abstract
Culicoides biting midges transmit multiple ruminant viruses, including bluetongue virus and epizootic hemorrhagic disease virus, causing significant economic burden worldwide. To further enhance current control techniques, understanding vector-virus interactions within the midge is critical. We developed previously a double-stranded RNA (dsRNA) delivery method to induce RNA interference (RNAi) for targeted gene knockdown in adult Culicoides sonorensis Wirth & Jones. Here, we confirm the C. sonorensis inhibitor of apoptosis 1 (CsIAP1) as an anti-apoptotic functional ortholog of IAP1 in Drosophila, identify the ortholog of the Drosophila initiator caspase DRONC (CsDRONC), and demonstrate that injection of dsRNA into the hemocoel can be used for targeted knockdown in the midgut in C. sonorensis. We observed CsIAP1 transcript reduction in whole midges, with highest transcript reduction in midgut tissues. IAP1knockdown (kd) resulted in pro-apoptotic caspase activation in midgut tissues. In IAP1kd midges, midgut tissue integrity and size were severely compromised. This phenotype, as well as reduced longevity, was partially reverted by co-RNAi suppression of CsDRONC and CsIAP1. Therefore, RNAi can be directed to the midgut of C. sonorensis, the initial site of virus infection, using dsRNA injection into the hemocoel. In addition, we provide evidence that the core apoptosis pathway is conserved in C. sonorensis and can be experimentally activated in the midgut to reduce longevity in C. sonorensis. This study thus paves the way for future reverse genetic analyses of midgut-virus interactions in C. sonorensis, including the putative antiviral properties of RNAi and apoptosis pathways.
Collapse
Affiliation(s)
- M K Mills
- Division of Biology, Kansas State University, Manhattan, KS 66506 (; )
| | - D Nayduch
- United States Department of Agriculture, Agricultural Research Service Arthropod Borne Animal Disease Research Unit, Manhattan, KS 66502
| | - D S McVey
- United States Department of Agriculture, Agricultural Research Service Arthropod Borne Animal Disease Research Unit, Manhattan, KS 66502
| | - K Michel
- Division of Biology, Kansas State University, Manhattan, KS 66506 (; )
| |
Collapse
|
78
|
Finlay D, Teriete P, Vamos M, Cosford NDP, Vuori K. Inducing death in tumor cells: roles of the inhibitor of apoptosis proteins. F1000Res 2017; 6:587. [PMID: 28529715 PMCID: PMC5414821 DOI: 10.12688/f1000research.10625.1] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/24/2017] [Indexed: 12/17/2022] Open
Abstract
The heterogeneous group of diseases collectively termed cancer results not just from aberrant cellular proliferation but also from a lack of accompanying homeostatic cell death. Indeed, cancer cells regularly acquire resistance to programmed cell death, or apoptosis, which not only supports cancer progression but also leads to resistance to therapeutic agents. Thus, various approaches have been undertaken in order to induce apoptosis in tumor cells for therapeutic purposes. Here, we will focus our discussion on agents that directly affect the apoptotic machinery itself rather than on drugs that induce apoptosis in tumor cells indirectly, such as by DNA damage or kinase dependency inhibition. As the roles of the Bcl-2 family have been extensively studied and reviewed recently, we will focus in this review specifically on the inhibitor of apoptosis protein (IAP) family. IAPs are a disparate group of proteins that all contain a baculovirus IAP repeat domain, which is important for the inhibition of apoptosis in some, but not all, family members. We describe each of the family members with respect to their structural and functional similarities and differences and their respective roles in cancer. Finally, we also review the current state of IAPs as targets for anti-cancer therapeutics and discuss the current clinical state of IAP antagonists.
Collapse
Affiliation(s)
- Darren Finlay
- NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Peter Teriete
- NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Mitchell Vamos
- NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Nicholas D P Cosford
- NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Kristiina Vuori
- NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| |
Collapse
|
79
|
Ma X, Zhu X, Han Y, Story B, Do T, Song X, Wang S, Zhang Y, Blanchette M, Gogol M, Hall K, Peak A, Anoja P, Xie T. Aubergine Controls Germline Stem Cell Self-Renewal and Progeny Differentiation via Distinct Mechanisms. Dev Cell 2017; 41:157-169.e5. [DOI: 10.1016/j.devcel.2017.03.023] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 02/10/2017] [Accepted: 03/29/2017] [Indexed: 01/09/2023]
|
80
|
|
81
|
Zheng J, Mao Y, Su Y, Wang J. Effects of nitrite stress on mRNA expression of antioxidant enzymes, immune-related genes and apoptosis-related proteins in Marsupenaeus japonicus. FISH & SHELLFISH IMMUNOLOGY 2016; 58:239-252. [PMID: 27582290 DOI: 10.1016/j.fsi.2016.08.058] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 08/23/2016] [Accepted: 08/26/2016] [Indexed: 06/06/2023]
Abstract
Nitrite accumulation in aquaculture systems is a potential risk factor that may trigger stress responses in aquatic organisms. However, the mechanisms regulating the responses of shrimp to nitrite stress remain unclear. In this study, full-length cDNA sequences of two apoptosis-related genes, caspase-3 and defender against apoptotic death (DAD-1), were cloned from Marsupenaeus japonicus for the first time, and their expression levels and tissue distribution were analyzed by quantitative real-time PCR (qRT-PCR). The full lengths of Mjcaspase-3 and MjDAD-1 were 1203 bp and 640 bp respectively, with deduced amino acid (AA) sequences of 321 and 114 AA. Mjcaspase-3 was predominantly expressed in haemocytes and weakly expressed in the seven other tissues tested. MjDAD-1 was mainly expressed in the defense and digestive tissues, especially in the hepatopancreas and hemocytes. To explore the influence of nitrite stress on the genetic response of antioxidant enzymes, immune-related genes and apoptosis-related proteins, the mRNA expression profiles of MjCAT, MjMnSOD, Mj-ilys, Mj-sty, Mjcaspase-3 and MjDAD-1 in response to nitrite stress were analyzed by qRT-PCR. The mRNA levels of MjCAT, MjMnSOD, Mj-ilys, Mj-sty, Mjcaspase-3 and MjDAD-1 show both time- and dose-dependent changes in response to nitrite stress. The mRNA expression levels of MjCAT and MjSOD peaked at 6 h for all nitrite concentrations tested (p < 0.05) and the up-regulated of MjCAT and MjSOD exhibited a positive correlation with the nitrite concentration. The mRNA expression levels of Mj-ilys and Mj-sty gradually decreased during the experiment period. Mjcaspase-3 mRNA level reached a maximum at 6 h (p < 0.05), and MjDAD-1 reached its peak at 12 h and 48 h in 10 mg/L and 20 mg/L nitrite, respectively. In addition, CAT and SOD activity showed changes in response to nitrite stress that mirrored the induced expression of MjCAT and MjMnSOD, and prolonged nitrite exposure reduced the activity of CAT. This study provided basic data for further elucidating the responses of shrimp to nitrite stress at the molecular level.
Collapse
Affiliation(s)
- Jinbin Zheng
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Yong Mao
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China.
| | - Yongquan Su
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Jun Wang
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
82
|
Klepsatel P, Gáliková M, Xu Y, Kühnlein RP. Thermal stress depletes energy reserves in Drosophila. Sci Rep 2016; 6:33667. [PMID: 27641694 PMCID: PMC5027548 DOI: 10.1038/srep33667] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 08/30/2016] [Indexed: 01/03/2023] Open
Abstract
Understanding how environmental temperature affects metabolic and physiological functions is of crucial importance to assess the impacts of climate change on organisms. Here, we used different laboratory strains and a wild-caught population of the fruit fly Drosophila melanogaster to examine the effect of temperature on the body energy reserves of an ectothermic organism. We found that permanent ambient temperature elevation or transient thermal stress causes significant depletion of body fat stores. Surprisingly, transient thermal stress induces a lasting "memory effect" on body fat storage, which also reduces survivorship of the flies upon food deprivation later after stress exposure. Functional analyses revealed that an intact heat-shock response is essential to protect flies from temperature-dependent body fat decline. Moreover, we found that the temperature-dependent body fat reduction is caused at least in part by apoptosis of fat body cells, which might irreversibly compromise the fat storage capacity of the flies. Altogether, our results provide evidence that thermal stress has a significant negative impact on organismal energy reserves, which in turn might affect individual fitness.
Collapse
Affiliation(s)
- Peter Klepsatel
- Max-Planck-Institut für biophysikalische Chemie, Research Group Molecular Physiology, Am Faβberg 11, D-37077 Göttingen, Germany
| | - Martina Gáliková
- Max-Planck-Institut für biophysikalische Chemie, Research Group Molecular Physiology, Am Faβberg 11, D-37077 Göttingen, Germany
| | - Yanjun Xu
- Max-Planck-Institut für biophysikalische Chemie, Research Group Molecular Physiology, Am Faβberg 11, D-37077 Göttingen, Germany
| | - Ronald P. Kühnlein
- Max-Planck-Institut für biophysikalische Chemie, Research Group Molecular Physiology, Am Faβberg 11, D-37077 Göttingen, Germany
| |
Collapse
|
83
|
Drosophila Wnt and STAT Define Apoptosis-Resistant Epithelial Cells for Tissue Regeneration after Irradiation. PLoS Biol 2016; 14:e1002536. [PMID: 27584613 PMCID: PMC5008734 DOI: 10.1371/journal.pbio.1002536] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 07/27/2016] [Indexed: 01/05/2023] Open
Abstract
Drosophila melanogaster larvae irradiated with doses of ionizing radiation (IR) that kill about half of the cells in larval imaginal discs still develop into viable adults. How surviving cells compensate for IR-induced cell death to produce organs of normal size and appearance remains an active area of investigation. We have identified a subpopulation of cells within the continuous epithelium of Drosophila larval wing discs that shows intrinsic resistance to IR- and drug-induced apoptosis. These cells reside in domains of high Wingless (Wg, Drosophila Wnt-1) and STAT92E (sole Drosophila signal transducer and activator of transcription [STAT] homolog) activity and would normally form the hinge in the adult fly. Resistance to IR-induced apoptosis requires STAT and Wg and is mediated by transcriptional repression of the pro-apoptotic gene reaper. Lineage tracing experiments show that, following irradiation, apoptosis-resistant cells lose their identity and translocate to areas of the wing disc that suffered abundant cell death. Our findings provide a new paradigm for regeneration in which it is unnecessary to invoke special damage-resistant cell types such as stem cells. Instead, differences in gene expression within a population of genetically identical epithelial cells can create a subpopulation with greater resistance, which, following damage, survive, alter their fate, and help regenerate the tissue. After widespread radiation damage in the developing fruit fly, organs are formed by regeneration from an apoptosis-resistant subpopulation of cells marked by high levels of Wingless and STAT. Like other insects, Drosophila larvae have epithelial structures called imaginal discs that will give rise to most of the external adult structures, such as wings, limbs, or antennae; these organ precursors are formed by a single layer of epithelial cells that folds into a sac. Imaginal discs manage to regenerate efficiently if they are damaged. Previous studies have shown that dying cells produce signals that activate cell proliferation of some of their neighbors, allowing them to regenerate the disc and thereby enabling the flies to develop into normal adults. But a dedicated stem cell population that contributes to regeneration, if any, remained to be identified. Here, we report the identification of a subpopulation of cells in wing imaginal discs that is more resistant to the cytotoxic effects of radiation and drugs. We show that the protection of these cells depends on two signaling pathways—Wingless and STAT—that are conserved in humans. Following tissue damage by radiation, we observe that protected cells change their location and their identity, allowing them to fill in for dead cells in other parts of the same organ precursor. In sum, this work identified ways in which a subset of cells in Drosophila imaginal wing discs is preserved through radiation exposure so that they could participate in regeneration of the organ after radiation damage. We also discuss how this situation may resemble human cancers.
Collapse
|
84
|
Saleeart A, Mongkorntanyatip K, Sangsuriya P, Senapin S, Rattanarojpong T, Khunrae P. The interaction between PmHtrA2 and PmIAP and its effect on the activity of Pm caspase. FISH & SHELLFISH IMMUNOLOGY 2016; 55:393-400. [PMID: 27328308 DOI: 10.1016/j.fsi.2016.06.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 06/02/2016] [Accepted: 06/08/2016] [Indexed: 06/06/2023]
Abstract
Apoptosis is an essential mechanism in multicellular organisms which results in the induction of cell death. Important apoptotic proteins, including high temperature requirement A2 (PmHtrA2; also known as serine protease), inhibitor of apoptosis protein (PmIAP) and Pm caspase, have been previously identified in black tiger shrimp, Penaeus monodon. However, the relevance among these proteins in apoptosis regulation has not been established yet in shrimp. Here, we showed that PmHtrA2 was able to interact with PmIAP and the binding of the two proteins was mediated by the BIR2 domain of PmIAP. In addition, the BIR2 of PmIAP was shown to be able to inhibit Pm caspase activity. The inhibitory effect of the BIR2 domain on Pm caspase was impaired under the presence of the IBM peptide of PmHtrA2, implying a role for PmHtrA2 in apoptosis activation. Our combined results suggested that P. monodon possesses a conserved mechanism by which the caspase-3 activity is modulated by HtrA2 and IAP, as previously seen in insects and mammals.
Collapse
Affiliation(s)
- Anchulee Saleeart
- Department of Microbiology, Faculty of Science, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand
| | - Karntichar Mongkorntanyatip
- Department of Microbiology, Faculty of Science, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand
| | - Pakkakul Sangsuriya
- Aquatic Molecular Genetics and Biotechnology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Road, Klong 1, Klongluang, Pathumthani 12120, Thailand
| | - Saengchan Senapin
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani 12120, Thailand; Center of Excellence for Shrimp Molecular Biology and Biotechonology, Mahidol University, 272 Rama VI Road, Bangkok, 10400, Thailand
| | - Triwit Rattanarojpong
- Department of Microbiology, Faculty of Science, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand
| | - Pongsak Khunrae
- Department of Microbiology, Faculty of Science, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand.
| |
Collapse
|
85
|
Pinto-Teixeira F, Konstantinides N, Desplan C. Programmed cell death acts at different stages of Drosophila neurodevelopment to shape the central nervous system. FEBS Lett 2016; 590:2435-2453. [PMID: 27404003 DOI: 10.1002/1873-3468.12298] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 07/08/2016] [Accepted: 07/11/2016] [Indexed: 12/19/2022]
Abstract
Nervous system development is a process that integrates cell proliferation, differentiation, and programmed cell death (PCD). PCD is an evolutionary conserved mechanism and a fundamental developmental process by which the final cell number in a nervous system is established. In vertebrates and invertebrates, PCD can be determined intrinsically by cell lineage and age, as well as extrinsically by nutritional, metabolic, and hormonal states. Drosophila has been an instrumental model for understanding how this mechanism is regulated. We review the role of PCD in Drosophila central nervous system development from neural progenitors to neurons, its molecular mechanism and function, how it is regulated and implemented, and how it ultimately shapes the fly central nervous system from the embryo to the adult. Finally, we discuss ideas that emerged while integrating this information.
Collapse
Affiliation(s)
- Filipe Pinto-Teixeira
- Department of Biology, New York University 1009 Silver Center 100 Washington Square East, New York, NY 10003, USA.,Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi 129188, UAE
| | - Nikolaos Konstantinides
- Department of Biology, New York University 1009 Silver Center 100 Washington Square East, New York, NY 10003, USA
| | - Claude Desplan
- Department of Biology, New York University 1009 Silver Center 100 Washington Square East, New York, NY 10003, USA.,Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi 129188, UAE
| |
Collapse
|
86
|
Kraft KF, Massey EM, Kolb D, Walldorf U, Urbach R. Retinal homeobox promotes cell growth, proliferation and survival of mushroom body neuroblasts in the Drosophila brain. Mech Dev 2016; 142:50-61. [PMID: 27455861 DOI: 10.1016/j.mod.2016.07.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/14/2016] [Accepted: 07/18/2016] [Indexed: 12/29/2022]
Abstract
The Drosophila mushroom bodies, centers of olfactory learning and memory in the fly 'forebrain', develop from a set of neural stem cells (neuroblasts) that generate a large number of Kenyon cells (KCs) during sustained cell divisions from embryonic to late pupal stage. We show that retinal homeobox (rx), encoding for an evolutionarily conserved transcription factor, is required for proper development of the mushroom bodies. Throughout development rx is expressed in mushroom body neuroblasts (MBNBs), their ganglion mother cells (MB-GMCs) and young KCs. In the absence of rx function, MBNBs form correctly but exhibit a reduction in cell size and mitotic activity, whereas overexpression of rx increases growth of MBNBs. These data suggest that Rx is involved in the control of MBNB growth and proliferation. Rx also promotes cell cycling of MB-GMCs. Moreover, we show that Rx is important for the survival of MBNBs and Kenyon cells which undergo premature cell death in the absence of rx function. Simultaneous blocking of cell death restores the normal set of MBNBs and part of the KCs, demonstrating that both, impaired proliferation and premature cell death (of MBNBs and KCs) account for the observed defects in mushroom body development. We then show that Rx controls proliferation within the MBNB clones independently of Tailless (Tll) and Prospero (Pros), and does not regulate the expression of other key regulators of MB development, Eyeless (Ey) and Dachshund (Dac). Our data support that the role of Rx in forebrain development is conserved between vertebrates and fly.
Collapse
Affiliation(s)
- Karoline F Kraft
- Institute of Genetics, University of Mainz, D-55099 Mainz, Germany
| | - Eva M Massey
- Institute of Genetics, University of Mainz, D-55099 Mainz, Germany
| | - Dieter Kolb
- Institute of Developmental Biology, Saarland University, D-66421 Homburg/Saar, Germany
| | - Uwe Walldorf
- Institute of Developmental Biology, Saarland University, D-66421 Homburg/Saar, Germany
| | - Rolf Urbach
- Institute of Genetics, University of Mainz, D-55099 Mainz, Germany.
| |
Collapse
|
87
|
Barron DA, Moberg K. Inverse regulation of two classic Hippo pathway target genes in Drosophila by the dimerization hub protein Ctp. Sci Rep 2016; 6:22726. [PMID: 26972460 PMCID: PMC4789802 DOI: 10.1038/srep22726] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 02/17/2016] [Indexed: 12/21/2022] Open
Abstract
The LC8 family of small ~8 kD proteins are highly conserved and interact with multiple protein partners in eukaryotic cells. LC8-binding modulates target protein activity, often through induced dimerization via LC8:LC8 homodimers. Although many LC8-interactors have roles in signaling cascades, LC8’s role in developing epithelia is poorly understood. Using the Drosophila wing as a developmental model, we find that the LC8 family member Cut up (Ctp) is primarily required to promote epithelial growth, which correlates with effects on the pro-growth factor dMyc and two genes, diap1 and bantam, that are classic targets of the Hippo pathway coactivator Yorkie. Genetic tests confirm that Ctp supports Yorkie-driven tissue overgrowth and indicate that Ctp acts through Yorkie to control bantam (ban) and diap1 transcription. Quite unexpectedly however, Ctp loss has inverse effects on ban and diap1: it elevates ban expression but reduces diap1 expression. In both cases these transcriptional changes map to small segments of these promoters that recruit Yorkie. Although LC8 complexes with Yap1, a Yorkie homolog, in human cells, an orthologous interaction was not detected in Drosophila cells. Collectively these findings reveal that that Drosophila Ctp is a required regulator of Yorkie-target genes in vivo and suggest that Ctp may interact with a Hippo pathway protein(s) to exert inverse transcriptional effects on Yorkie-target genes.
Collapse
Affiliation(s)
- Daniel A Barron
- Department of Cell Biology, Graduate Program in Biochemistry, Cell and Developmental Biology, Emory University School of Medicine, Atlanta, GA 30322, USA.,Department of Cell Biology, Medical Scientist MD/PhD Training Program, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Kenneth Moberg
- Department of Cell Biology, Graduate Program in Biochemistry, Cell and Developmental Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
88
|
Abstract
Binary expression systems are flexible and versatile genetic tools in Drosophila. The Q-system is a recently developed repressible binary expression system that offers new possibilities for transgene expression and genetic manipulations. In this review chapter, we focus on current state-of-the-art Q-system tools and reagents. We also discuss in vivo applications of the Q-system, together with GAL4/UAS and LexA/LexAop systems, for simultaneous expression of multiple effectors, intersectional labeling, and clonal analysis.
Collapse
|
89
|
Abstract
Drosophila has served as a particularly attractive model to study cell death due to the vast array of tools for genetic manipulation under defined spatial and temporal conditions in vivo as well as in cultured cells. These genetic methods have been well supplemented by enzymatic assays and a panel of antibodies recognizing cell death markers. This chapter discusses reporters, mutants, and assays used by various laboratories to study cell death in the context of development and in response to external insults.
Collapse
Affiliation(s)
- Deepika Vasudevan
- Department of Cell Biology, New York University School of Medicine, 550 First Ave., New York, NY, 10016, USA
| | - Hyung Don Ryoo
- Department of Cell Biology, New York University School of Medicine, 550 First Ave., New York, NY, 10016, USA.
| |
Collapse
|
90
|
|
91
|
Matsuda R, Hosono C, Samakovlis C, Saigo K. Multipotent versus differentiated cell fate selection in the developing Drosophila airways. eLife 2015; 4. [PMID: 26633813 PMCID: PMC4775228 DOI: 10.7554/elife.09646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 12/02/2015] [Indexed: 12/03/2022] Open
Abstract
Developmental potentials of cells are tightly controlled at multiple levels. The embryonic Drosophila airway tree is roughly subdivided into two types of cells with distinct developmental potentials: a proximally located group of multipotent adult precursor cells (P-fate) and a distally located population of more differentiated cells (D-fate). We show that the GATA-family transcription factor (TF) Grain promotes the P-fate and the POU-homeobox TF Ventral veinless (Vvl/Drifter/U-turned) stimulates the D-fate. Hedgehog and receptor tyrosine kinase (RTK) signaling cooperate with Vvl to drive the D-fate at the expense of the P-fate while negative regulators of either of these signaling pathways ensure P-fate specification. Local concentrations of Decapentaplegic/BMP, Wingless/Wnt, and Hedgehog signals differentially regulate the expression of D-factors and P-factors to transform an equipotent primordial field into a concentric pattern of radially different morphogenetic potentials, which gradually gives rise to the distal-proximal organization of distinct cell types in the mature airway. DOI:http://dx.doi.org/10.7554/eLife.09646.001 Many organs are composed of tubes of different sizes, shapes and patterns that transport vital substances from one site to another. In the fruit fly species Drosophila melanogaster, oxygen is transported by a tubular network, which divides into finer tubes that allow the oxygen to reach every part of the body. Different parts of the fruit fly’s airways develop from different groups of tracheal precursor cells. P-fate cells form the most 'proximal' tubes (which are found next to the outer layer of the fly). These cells are 'multipotent' stem cells, and have the ability to specialize into many different types of cells during metamorphosis. The more 'distal' branches that emerge from the proximal tubes develop from D-fate cells. These are cells that generally acquire a narrower range of cell identities. By performing a genetic analysis of fruit fly embryos, Matsuda et al. have now identified several proteins and signaling molecules that control whether tracheal precursor cells become D-fate or P-fate cells. For example, several signaling pathways work with a protein called Ventral veinless to cause D-fate cells to develop instead of P-fate cells. However, molecules that prevent signaling occurring via these pathways help P-fate cells to form. Different amounts of the molecules that either promote or hinder these signaling processes are present in different parts of the fly embryo; this helps the airways of the fly to develop in the correct pattern. This work provides a comprehensive view of how cell types with different developmental potentials are positioned in a complex tubular network. This sets a basis for future studies addressing how the respiratory organs – and indeed the entire organism – are sustained. DOI:http://dx.doi.org/10.7554/eLife.09646.002
Collapse
Affiliation(s)
- Ryo Matsuda
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Chie Hosono
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Christos Samakovlis
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden.,Science for Life Laboratory, Solna, Sweden.,ECCPS, Justus Liebig University of Giessen, Giessen, Germany
| | - Kaoru Saigo
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, Tokyo, Japan
| |
Collapse
|
92
|
Park SY, Stultz BG, Hursh DA. Dual Role of Jun N-Terminal Kinase Activity in Bone Morphogenetic Protein-Mediated Drosophila Ventral Head Development. Genetics 2015; 201:1411-26. [PMID: 26500262 PMCID: PMC4676534 DOI: 10.1534/genetics.115.178376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 10/13/2015] [Indexed: 01/15/2023] Open
Abstract
The Drosophila bone morphogenetic protein encoded by decapentaplegic (dpp) controls ventral head morphogenesis by expression in the head primordia, eye-antennal imaginal discs. These are epithelial sacs made of two layers: columnar disc proper cells and squamous cells of the peripodial epithelium. dpp expression related to head formation occurs in the peripodial epithelium; cis-regulatory mutations disrupting this expression display defects in sensory vibrissae, rostral membrane, gena, and maxillary palps. Here we document that disruption of this dpp expression causes apoptosis in peripodial cells and underlying disc proper cells. We further show that peripodial Dpp acts directly on the disc proper, indicating that Dpp must cross the disc lumen to act. We demonstrate that palp defects are mechanistically separable from the other mutant phenotypes; both are affected by the c-Jun N-terminal kinase pathway but in opposite ways. Slight reduction of both Jun N-terminal kinase and Dpp activity in peripodial cells causes stronger vibrissae, rostral membrane, and gena defects than Dpp alone; additionally, strong reduction of Jun N-terminal kinase activity alone causes identical defects. A more severe reduction of dpp results in similar vibrissae, rostral membrane, and gena defects, but also causes mutant maxillary palps. This latter defect is correlated with increased peripodial Jun N-terminal kinase activity and can be caused solely by ectopic activation of Jun N-terminal kinase. We conclude that formation of sensory vibrissae, rostral membrane, and gena tissue in head morphogenesis requires the action of Jun N-terminal kinase in peripodial cells, while excessive Jun N-terminal kinase signaling in these same cells inhibits the formation of maxillary palps.
Collapse
Affiliation(s)
- Sung Yeon Park
- Division of Cell and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland 20993 BK21PLUS Biomedical Science Project, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea
| | - Brian G Stultz
- Division of Cell and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland 20993
| | - Deborah A Hursh
- Division of Cell and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland 20993
| |
Collapse
|
93
|
Louis M, Hofmann K, Broemer M. Evolutionary Loss of Activity in De-Ubiquitylating Enzymes of the OTU Family. PLoS One 2015; 10:e0143227. [PMID: 26588485 PMCID: PMC4654579 DOI: 10.1371/journal.pone.0143227] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 11/02/2015] [Indexed: 01/21/2023] Open
Abstract
Understanding function and specificity of de-ubiquitylating enzymes (DUBs) is a major goal of current research, since DUBs are key regulators of ubiquitylation events and have been shown to be mutated in human diseases. Most DUBs are cysteine proteases, relying on a catalytic triad of cysteine, histidine and aspartate to cleave the isopeptide bond between two ubiquitin units in a poly-ubiquitin chain. We have discovered that the two Drosophila melanogaster homologues of human OTUD4, CG3251 and Otu, contain a serine instead of a cysteine in the catalytic OTU (ovarian tumor) domain. DUBs that are serine proteases instead of cysteine- or metallo-proteases have not been described. In line with this, neither CG3251 nor Otu protein were active to cleave ubiquitin chains. Re-introduction of a cysteine in the catalytic center did not render the enzymes active, indicating that further critical features for ubiquitin binding or cleavage have been lost in these proteins. Sequence analysis of OTUD4 homologues from various other species showed that within this OTU subfamily, loss of the catalytic cysteine has occurred frequently in presumably independent events, as well as gene duplications or triplications, suggesting DUB-independent functions of OTUD4 proteins. Using an in vivo RNAi approach, we show that CG3251 might function in the regulation of Inhibitor of Apoptosis (IAP)-antagonist-induced apoptosis, presumably in a DUB-independent manner.
Collapse
Affiliation(s)
- Marcell Louis
- German Center for Neurodegenerative Diseases (DZNE), Bonn, c/o LiMeS, Carl-Troll-Str. 31, 53115, Bonn, Germany
| | - Kay Hofmann
- University of Cologne, Institute for Genetics, Zülpicher Str. 47a, 50674, Cologne, Germany
| | - Meike Broemer
- German Center for Neurodegenerative Diseases (DZNE), Bonn, c/o LiMeS, Carl-Troll-Str. 31, 53115, Bonn, Germany
- * E-mail:
| |
Collapse
|
94
|
Wu Y, Lindblad JL, Garnett J, Kamber Kaya HE, Xu D, Zhao Y, Flores ER, Hardy J, Bergmann A. Genetic characterization of two gain-of-function alleles of the effector caspase DrICE in Drosophila. Cell Death Differ 2015; 23:723-32. [PMID: 26542461 DOI: 10.1038/cdd.2015.144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 09/14/2015] [Accepted: 09/29/2015] [Indexed: 12/25/2022] Open
Abstract
Caspases are the executioners of apoptosis. Although much is known about their physiological roles and structures, detailed analyses of missense mutations of caspases are lacking. As mutations within caspases are identified in various human diseases, the study of caspase mutants will help to elucidate how caspases interact with other components of the apoptosis pathway and how they may contribute to disease. DrICE is the major effector caspase in Drosophila required for developmental and stress-induced cell death. Here, we report the isolation and characterization of six de novo drICE mutants, all of which carry point mutations affecting amino acids conserved among caspases in various species. These six mutants behave as recessive loss-of-function mutants in a homozygous condition. Surprisingly, however, two of the newly isolated drICE alleles are gain-of-function mutants in a heterozygous condition, although they are loss-of-function mutants homozygously. Interestingly, they only behave as gain-of-function mutants in the presence of an apoptotic signal. These two alleles carry missense mutations affecting conserved amino acids in close proximity to the catalytic cysteine residue. This is the first time that viable gain-of-function alleles of caspases are described in any intact organism and provides a significant exception to the expectation that mutations of conserved amino acids always abolish the pro-apoptotic activity of caspases. We discuss models about how these mutations cause the gain-of-function character of these alleles.
Collapse
Affiliation(s)
- Y Wu
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - J L Lindblad
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - J Garnett
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - H E Kamber Kaya
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - D Xu
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Y Zhao
- University of Massachusetts Amherst, Amherst, MA, USA
| | - E R Flores
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - J Hardy
- University of Massachusetts Amherst, Amherst, MA, USA
| | - A Bergmann
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
95
|
The elimination of an adult segment by the Hox gene Abdominal-B. Mech Dev 2015; 138 Pt 2:210-217. [DOI: 10.1016/j.mod.2015.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Revised: 07/31/2015] [Accepted: 08/01/2015] [Indexed: 11/19/2022]
|
96
|
Huu NT, Yoshida H, Yamaguchi M. Tumor suppressor gene OSCP1/NOR1 regulates apoptosis, proliferation, differentiation, and ROS generation during eye development of Drosophila melanogaster. FEBS J 2015; 282:4727-46. [PMID: 26411401 DOI: 10.1111/febs.13528] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 09/09/2015] [Accepted: 09/23/2015] [Indexed: 12/15/2022]
Abstract
OSCP1/NOR1 (organic solute carrier partner 1/oxidored nitrodomain-containing protein 1) is a known tumor suppressor protein. OSCP1 has been reported to mediate transport of various organic solutes into cells; however, its role during development has not yet been addressed. Here we report the results of studies on dOSCP1 (the Drosophila ortholog of hOSCP1) to elucidate the role of OSCP1/NOR1 during development. Knockdown of dOSCP1 in the eye imaginal discs induced a rough-eye phenotype in adult flies. This phenotype resulted from induction of caspase-dependent apoptosis followed by a compensatory cell proliferation and generation of reactive oxygen species in eye imaginal discs. The induction of apoptosis appears to be associated with down-regulation of the anti-apoptotic Buffy gene and up-regulation of the pro-apoptotic Debcl gene. These effects of knockdown of dOSCP1 lead to mitochondrial fragmentation, degradation, and a shortfall in ATP production. We also found that knockdown of dOSCP1 causes a defect in cone cell and pigment cell differentiation in pupal retinae. Moreover, mutations in epidermal growth factor receptor pathway-related genes, such as Spitz and Drk, enhanced the rough-eye phenotype induced by dOSCP1 knockdown. These results suggest that dOSCP1 positively regulates the epidermal growth factor receptor signaling pathway. Overall, our findings indicate that dOSCP1 plays multiple roles during eye development in Drosophila.
Collapse
Affiliation(s)
- Nguyen Tho Huu
- Department of Applied Biology and Insect Biomedical Research Center, Kyoto Institute of Technology, Japan
| | - Hideki Yoshida
- Department of Applied Biology and Insect Biomedical Research Center, Kyoto Institute of Technology, Japan
| | - Masamitsu Yamaguchi
- Department of Applied Biology and Insect Biomedical Research Center, Kyoto Institute of Technology, Japan
| |
Collapse
|
97
|
Baculovirus Inhibitor-of-Apoptosis Op-IAP3 Blocks Apoptosis by Interaction with and Stabilization of a Host Insect Cellular IAP. J Virol 2015; 90:533-44. [PMID: 26491164 DOI: 10.1128/jvi.02320-15] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 10/14/2015] [Indexed: 12/18/2022] Open
Abstract
UNLABELLED Baculovirus-encoded inhibitor of apoptosis (IAP) proteins likely evolved from their host cell IAP homologs, which function as critical regulators of cell death. Despite their striking relatedness to cellular IAPs, including the conservation of two baculovirus IAP repeat (BIR) domains and a C-terminal RING, viral IAPs use an unresolved mechanism to suppress apoptosis in insects. To define this mechanism, we investigated Op-IAP3, the prototypical IAP from baculovirus OpMNPV. We found that Op-IAP3 forms a stable complex with SfIAP, the native, short-lived IAP of host insect Spodoptera frugiperda. Long-lived Op-IAP3 prevented virus-induced SfIAP degradation, which normally causes caspase activation and apoptosis. In uninfected cells, Op-IAP3 also increased SfIAP steady-state levels and extended SfIAP's half-life. Conversely, SfIAP stabilization was lost or reversed in the presence of mutated Op-IAP3 that was engineered for reduced stability. Thus, Op-IAP3 stabilizes SfIAP and preserves its antiapoptotic function. In contrast to SfIAP, Op-IAP3 failed to bind or inhibit native Spodoptera caspases. Furthermore, BIR mutations that abrogate binding of well-conserved IAP antagonists did not affect Op-IAP3's capacity to prevent virus-induced apoptosis. Remarkably, Op-IAP3 also failed to prevent apoptosis when endogenous SfIAP was ablated by RNA silencing. Thus, Op-IAP3 requires SfIAP as a cofactor. Our findings suggest a new model wherein Op-IAP3 interacts directly with SfIAP to maintain its intracellular level, thereby suppressing virus-induced apoptosis indirectly. Consistent with this model, Op-IAP3 has evolved an intrinsic stability that may serve to repress signal-induced turnover and autoubiquitination when bound to its targeted cellular IAP. IMPORTANCE The IAPs were first discovered in baculoviruses because of their potency for preventing apoptosis. However, the antiapoptotic mechanism of viral IAPs in host insects has been elusive. We show here that the prototypical viral IAP, Op-IAP3, blocks apoptosis indirectly by associating with unstable, autoubiquitinating host IAP in such a way that cellular IAP levels and antiapoptotic activities are maintained. This mechanism explains Op-IAP3's requirement for native cellular IAP as a cofactor and the dispensability of caspase inhibition. Viral IAP-mediated preservation of the host IAP homolog capitalizes on normal IAP-IAP interactions and is likely the result of viral IAP evolution in which degron-mediated destabilization and ubiquitination potential have been reduced. This mechanism illustrates another novel means by which DNA viruses incorporate host death regulators that are modified for resistance to host regulatory controls for the purpose of suppressing host cell apoptosis and acquiring replication advantages.
Collapse
|
98
|
Shen J, Lu J, Sui L, Wang D, Yin M, Hoffmann I, Legler A, Pflugfelder GO. The orthologous Tbx transcription factors Omb and TBX2 induce epithelial cell migration and extrusion in vivo without involvement of matrix metalloproteinases. Oncotarget 2015; 5:11998-2015. [PMID: 25344916 PMCID: PMC4322970 DOI: 10.18632/oncotarget.2426] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 09/02/2014] [Indexed: 01/06/2023] Open
Abstract
The transcription factors TBX2 and TBX3 are overexpressed in various human cancers. Here, we investigated the effect of overexpressing the orthologous Tbx genes Drosophila optomotor-blind (omb) and human TBX2 in the epithelium of the Drosophila wing imaginal disc and observed two types of cell motility. Omb/TBX2 overexpressing cells could move within the plane of the epithelium. Invasive cells migrated long-distance as single cells retaining or regaining normal cell shape and apico-basal polarity in spite of attenuated apical DE-cadherin concentration. Inappropriate levels of DE-cadherin were sufficient to drive cell migration in the wing disc epithelium. Omb/TBX2 overexpression and reduced DE-cadherin-dependent adhesion caused the formation of actin-rich lateral cell protrusions. Omb/TBX2 overexpressing cells could also delaminate basally, penetratingthe basal lamina, however, without degradation of extracellular matrix. Expression of Timp, an inhibitor of matrix metalloproteases, blocked neither intraepithelial motility nor basal extrusion. Our results reveal an MMP-independent mechanism of cell invasion and suggest a conserved role of Tbx2-related proteins in cell invasion and metastasis-related processes.
Collapse
Affiliation(s)
- Jie Shen
- Department of Entomology, China Agricultural University, Beijing, China
| | - Juan Lu
- Department of Entomology, China Agricultural University, Beijing, China
| | - Liyuan Sui
- Department of Entomology, China Agricultural University, Beijing, China
| | - Dan Wang
- Department of Entomology, China Agricultural University, Beijing, China
| | - Meizhen Yin
- Key Laboratory of Carbon Fiber and Functional Polymers, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, China
| | - Inka Hoffmann
- Institute of Genetics, Johannes Gutenberg-University, Mainz, Germany
| | - Anne Legler
- Institute of Genetics, Johannes Gutenberg-University, Mainz, Germany
| | | |
Collapse
|
99
|
Abstract
Inhibitors of apoptosis (IAPs) family of genes encode baculovirus IAP-repeat domain-containing proteins with antiapoptotic function. These proteins also contain RING or UBC domains and act by binding to major proapoptotic factors and ubiquitylating them. High levels of IAPs inhibit caspase-mediated apoptosis. For these cells to undergo apoptosis, IAP function must be neutralized by IAP-antagonists. Mammalian IAP knockouts do not exhibit obvious developmental phenotypes, but the cells are more sensitized to apoptosis in response to injury. Loss of the mammalian IAP-antagonist ARTS results in reduced stem cell apoptosis. In addition to the antiapoptotic properties, IAPs regulate the innate immune response, and the loss of IAP function in humans is associated with immunodeficiency. The roles of IAPs in Drosophila apoptosis regulation are more apparent, where the loss of IAP1, or the expression of IAP-antagonists in Drosophila cells, is sufficient to trigger apoptosis. In this organism, apoptosis as a fate is conferred by the transcriptional induction of the IAP-antagonists. Many signaling pathways often converge on shared enhancer regions of IAP-antagonists. Cell death sensitivity is further regulated by posttranscriptional mechanisms, including those regulated by kinases, miRs, and ubiquitin ligases. These mechanisms are employed to eliminate damaged or virus-infected cells, limit neuroblast (neural stem cell) numbers, generate neuronal diversity, and sculpt tissue morphogenesis.
Collapse
Affiliation(s)
- Deepika Vasudevan
- Department of Cell Biology, New York University School of Medicine, New York, New York, USA
| | - Hyung Don Ryoo
- Department of Cell Biology, New York University School of Medicine, New York, New York, USA.
| |
Collapse
|
100
|
Abstract
Cell death is a common and important feature of animal development, and cell death defects underlie many human disease states. The nematode Caenorhabditis elegans has proven fertile ground for uncovering molecular and cellular processes controlling programmed cell death. A core pathway consisting of the conserved proteins EGL-1/BH3-only, CED-9/BCL2, CED-4/APAF1, and CED-3/caspase promotes most cell death in the nematode, and a conserved set of proteins ensures the engulfment and degradation of dying cells. Multiple regulatory pathways control cell death onset in C. elegans, and many reveal similarities with tumor formation pathways in mammals, supporting the idea that cell death plays key roles in malignant progression. Nonetheless, a number of observations suggest that our understanding of developmental cell death in C. elegans is incomplete. The interaction between dying and engulfing cells seems to be more complex than originally appreciated, and it appears that key aspects of cell death initiation are not fully understood. It has also become apparent that the conserved apoptotic pathway is dispensable for the demise of the C. elegans linker cell, leading to the discovery of a previously unexplored gene program promoting cell death. Here, we review studies that formed the foundation of cell death research in C. elegans and describe new observations that expand, and in some cases remodel, this edifice. We raise the possibility that, in some cells, more than one death program may be needed to ensure cell death fidelity.
Collapse
Affiliation(s)
| | - Shai Shaham
- Laboratory of Developmental Genetics, The Rockefeller University, New York, USA.
| |
Collapse
|