51
|
Kapinos LE, Huang B, Rencurel C, Lim RYH. Karyopherins regulate nuclear pore complex barrier and transport function. J Cell Biol 2017; 216:3609-3624. [PMID: 28864541 PMCID: PMC5674887 DOI: 10.1083/jcb.201702092] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 06/16/2017] [Accepted: 08/08/2017] [Indexed: 01/01/2023] Open
Abstract
Kapinos et al. show that nuclear pore complex permeability and cargo release functionalities are concomitantly regulated by karyopherin occupancy and turnover in a systematic continuum. This highlights increasingly important roles for the soluble nucleocytoplasmic transport machinery that depart from established views of the nuclear pore complex selectivity mechanism. Nucleocytoplasmic transport is sustained by karyopherins (Kaps) and a Ran guanosine triphosphate (RanGTP) gradient that imports nuclear localization signal (NLS)–specific cargoes (NLS-cargoes) into the nucleus. However, how nuclear pore complex (NPC) barrier selectivity, Kap traffic, and NLS-cargo release are systematically linked and simultaneously regulated remains incoherent. In this study, we show that Kapα facilitates Kapβ1 turnover and occupancy at the NPC in a RanGTP-dependent manner that is directly coupled to NLS-cargo release and NPC barrier function. This is underpinned by the binding affinity of Kapβ1 to phenylalanine–glycine nucleoporins (FG Nups), which is comparable with RanGTP·Kapβ1, but stronger for Kapα·Kapβ1. On this basis, RanGTP is ineffective at releasing standalone Kapβ1 from NPCs. Depleting Kapα·Kapβ1 by RanGTP further abrogates NPC barrier function, whereas adding back Kapβ1 rescues it while Kapβ1 turnover softens it. Therefore, the FG Nups are necessary but insufficient for NPC barrier function. We conclude that Kaps constitute integral constituents of the NPC whose barrier, transport, and cargo release functionalities establish a continuum under a mechanism of Kap-centric control.
Collapse
Affiliation(s)
- Larisa E Kapinos
- Biozentrum and the Swiss Nanoscience Institute, University of Basel, Basel, Switzerland
| | - Binlu Huang
- Biozentrum and the Swiss Nanoscience Institute, University of Basel, Basel, Switzerland
| | - Chantal Rencurel
- Biozentrum and the Swiss Nanoscience Institute, University of Basel, Basel, Switzerland
| | - Roderick Y H Lim
- Biozentrum and the Swiss Nanoscience Institute, University of Basel, Basel, Switzerland
| |
Collapse
|
52
|
Das S, Suresh B, Kim HH, Ramakrishna S. RanBPM: a potential therapeutic target for modulating diverse physiological disorders. Drug Discov Today 2017; 22:1816-1824. [PMID: 28847759 DOI: 10.1016/j.drudis.2017.08.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 06/26/2017] [Accepted: 08/21/2017] [Indexed: 02/06/2023]
Abstract
The Ran-binding protein microtubule-organizing center (RanBPM) is a highly conserved nucleocytoplasmic protein involved in a variety of intracellular signaling pathways that control diverse cellular functions. RanBPM interacts with proteins that are linked to various diseases, including Alzheimer's disease (AD), schizophrenia (SCZ), and cancer. In this article, we define the characteristics of the scaffolding protein RanBPM and focus on its interaction partners in diverse physiological disorders, such as neurological diseases, fertility disorders, and cancer.
Collapse
Affiliation(s)
- Soumyadip Das
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Bharathi Suresh
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, 03722, South Korea.
| | - Hyongbum Henry Kim
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, 03722, South Korea; Brain Korea 21 Plus Project for Medical Sciences, Yonsei University College of Medicine, Seoul, 03722, South Korea; Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, 03722, South Korea; Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, 03722, South Korea.
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, South Korea; College of Medicine, Hanyang University, Seoul, 04763, South Korea.
| |
Collapse
|
53
|
Gagné B, Tremblay N, Park AY, Baril M, Lamarre D. Importin β1 targeting by hepatitis C virus NS3/4A protein restricts IRF3 and NF-κB signaling of IFNB1 antiviral response. Traffic 2017; 18:362-377. [PMID: 28295920 PMCID: PMC7169781 DOI: 10.1111/tra.12480] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 03/08/2017] [Accepted: 03/09/2017] [Indexed: 12/26/2022]
Abstract
In this study, newly identified host interactors of hepatitis C virus (HCV) proteins were assessed for a role in modulating the innate immune response. The analysis revealed enrichment for components of the nuclear transport machinery and the crucial interaction with NS3/4A protein in suppression of interferon-β (IFNB1) induction. Using a comprehensive microscopy-based high-content screening approach combined to the gene silencing of nuclear transport factors, we showed that NS3/4A-interacting proteins control the nucleocytoplasmic trafficking of IFN regulatory factor 3 (IRF3) and NF-κB p65 upon Sendai virus (SeV) infection. Notably, importin β1 (IMPβ1) knockdown-a hub protein highly targeted by several viruses-decreases the nuclear translocation of both transcription factors and prevents IFNB1 and IFIT1 induction, correlating with a rapid increased of viral proteins and virus-mediated apoptosis. Here we show that NS3/4A triggers the cleavage of IMPβ1 and inhibits nuclear transport to disrupt IFNB1 production. Importantly, mutated IMPβ1 resistant to cleavage completely restores signaling, similar to the treatment with BILN 2061 protease inhibitor, correlating with the disappearance of cleavage products. Overall, the data indicate that HCV NS3/4A targeting of IMPβ1 and related modulators of IRF3 and NF-κB nuclear transport constitute an important innate immune subversion strategy and inspire new avenues for broad-spectrum antiviral therapies.
Collapse
Affiliation(s)
- Bridget Gagné
- Centre de Recherche du CHUM (CRCHUM)MontréalCanada
- Département de MédecineFaculté de Médecine, Université de MontréalMontréalCanada
| | - Nicolas Tremblay
- Centre de Recherche du CHUM (CRCHUM)MontréalCanada
- Département de MédecineFaculté de Médecine, Université de MontréalMontréalCanada
| | - Alex Y. Park
- Centre de Recherche du CHUM (CRCHUM)MontréalCanada
- Département de Microbiologie et Immunologie, Faculté de MédecineUniversité de MontréalMontréalCanada
| | - Martin Baril
- Centre de Recherche du CHUM (CRCHUM)MontréalCanada
| | - Daniel Lamarre
- Centre de Recherche du CHUM (CRCHUM)MontréalCanada
- Département de MédecineFaculté de Médecine, Université de MontréalMontréalCanada
| |
Collapse
|
54
|
Reprint of: Importins in the maintenance and lineage commitment of ES cells. Neurochem Int 2017; 106:14-23. [PMID: 28550879 DOI: 10.1016/j.neuint.2017.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 01/25/2017] [Accepted: 01/30/2017] [Indexed: 11/23/2022]
Abstract
The nucleus of a eukaryotic cell is separated from the cytoplasm by a nuclear envelope, and nuclear pores within the envelope facilitate nucleocytoplasmic transport and the exchange of information. Gene regulation is a key component of biological activity regulation in the cell. Transcription factors control the expression levels of various genes that are necessary for the maintenance or conversion of cellular states during animal development. Because transcription factor activities determine the extent of transcription of target genes, the number of active transcription factors must be tightly regulated. In this regard, the nuclear translocation of a transcription factor is an important determinant of its activity. Therefore, it is becoming clear that the nucleocytoplasmic transport machinery is involved in cell differentiation and organism development. This review examines the regulation of transcription factors by the nucleocytoplasmic transport machinery in ES cells.
Collapse
|
55
|
Wang CH, Mehta P, Elbaum M. Thermodynamic Paradigm for Solution Demixing Inspired by Nuclear Transport in Living Cells. PHYSICAL REVIEW LETTERS 2017; 118:158101. [PMID: 28452496 PMCID: PMC5519409 DOI: 10.1103/physrevlett.118.158101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Indexed: 06/01/2023]
Abstract
Living cells display a remarkable capacity to compartmentalize their functional biochemistry. A particularly fascinating example is the cell nucleus. Exchange of macromolecules between the nucleus and the surrounding cytoplasm does not involve traversing a lipid bilayer membrane. Instead, large protein channels known as nuclear pores cross the nuclear envelope and regulate the passage of other proteins and RNA molecules. Beyond simply gating diffusion, the system of nuclear pores and associated transport receptors is able to generate substantial concentration gradients, at the energetic expense of guanosine triphosphate hydrolysis. In contrast to conventional approaches to demixing such as reverse osmosis and dialysis, the biological system operates continuously, without application of cyclic changes in pressure or solvent exchange. Abstracting the biological paradigm, we examine this transport system as a thermodynamic machine of solution demixing. Building on the construct of free energy transduction and biochemical kinetics, we find conditions for the stable operation and optimization of the concentration gradients as a function of dissipation in the form of entropy production.
Collapse
Affiliation(s)
- Ching-Hao Wang
- Department of Physics, Boston University, Boston, Massachusetts 02215, USA
| | - Pankaj Mehta
- Department of Physics, Boston University, Boston, Massachusetts 02215, USA
| | - Michael Elbaum
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot, 7600001 Israel
| |
Collapse
|
56
|
Lång A, Eriksson J, Schink KO, Lång E, Blicher P, Połeć A, Brech A, Dalhus B, Bøe SO. Visualization of PML nuclear import complexes reveals FG-repeat nucleoporins at cargo retrieval sites. Nucleus 2017; 8:404-420. [PMID: 28402725 DOI: 10.1080/19491034.2017.1306161] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Selective nuclear import in eukaryotic cells involves sequential interactions between nuclear import receptors and phenylalanine-glycine (FG)-repeat nucleoporins. Traditionally, binding of cargoes to import receptors is perceived as a nuclear pore complex independent event, while interactions between import complexes and nucleoporins are thought to take place at the nuclear pores. However, studies have shown that nucleoporins are mobile and not static within the nuclear pores, suggesting that they may become engaged in nuclear import before nuclear pore entry. Here we have studied post-mitotic nuclear import of the tumor suppressor protein PML. Since this protein forms nuclear compartments called PML bodies that persist during mitosis, the assembly of putative PML import complexes can be visualized on the surface of these protein aggregates as the cell progress from an import inactive state in mitosis to an import active state in G1. We show that these post-mitotic cytoplasmic PML bodies incorporate a multitude of peripheral nucleoporins, but not scaffold or nuclear basket nucleoporins, in a manner that depends on FG-repeats, the KPNB1 import receptor, and the PML nuclear localization signal. The study suggests that nucleoporins have the ability to target certain nuclear cargo proteins in a nuclear pore-uncoupled state, before nuclear pore entry.
Collapse
Affiliation(s)
- Anna Lång
- a Department of Medical Biochemistry , Oslo University Hospital , Oslo , Norway.,b Institute of Clinical Medicine , University of Oslo , Oslo , Norway
| | - Jens Eriksson
- a Department of Medical Biochemistry , Oslo University Hospital , Oslo , Norway
| | - Kay Oliver Schink
- c Department of Molecular Cell Biology, Institute for Cancer Research and Centre for Cancer Biomedicine , Oslo University Hospital , Oslo , Norway
| | - Emma Lång
- a Department of Medical Biochemistry , Oslo University Hospital , Oslo , Norway
| | - Pernille Blicher
- a Department of Medical Biochemistry , Oslo University Hospital , Oslo , Norway
| | - Anna Połeć
- a Department of Medical Biochemistry , Oslo University Hospital , Oslo , Norway
| | - Andreas Brech
- c Department of Molecular Cell Biology, Institute for Cancer Research and Centre for Cancer Biomedicine , Oslo University Hospital , Oslo , Norway
| | - Bjørn Dalhus
- a Department of Medical Biochemistry , Oslo University Hospital , Oslo , Norway
| | - Stig Ove Bøe
- a Department of Medical Biochemistry , Oslo University Hospital , Oslo , Norway
| |
Collapse
|
57
|
Chen M, Nowak DG, Narula N, Robinson B, Watrud K, Ambrico A, Herzka TM, Zeeman ME, Minderer M, Zheng W, Ebbesen SH, Plafker KS, Stahlhut C, Wang VMY, Wills L, Nasar A, Castillo-Martin M, Cordon-Cardo C, Wilkinson JE, Powers S, Sordella R, Altorki NK, Mittal V, Stiles BM, Plafker SM, Trotman LC. The nuclear transport receptor Importin-11 is a tumor suppressor that maintains PTEN protein. J Cell Biol 2017; 216:641-656. [PMID: 28193700 PMCID: PMC5350510 DOI: 10.1083/jcb.201604025] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 08/21/2016] [Accepted: 01/19/2017] [Indexed: 12/25/2022] Open
Abstract
Phosphatase and tensin homologue (PTEN) protein levels are critical for tumor suppression. However, the search for a recurrent cancer-associated gene alteration that causes PTEN degradation has remained futile. In this study, we show that Importin-11 (Ipo11) is a transport receptor for PTEN that is required to physically separate PTEN from elements of the PTEN degradation machinery. Mechanistically, we find that the E2 ubiquitin-conjugating enzyme and IPO11 cargo, UBE2E1, is a limiting factor for PTEN degradation. Using in vitro and in vivo gene-targeting methods, we show that Ipo11 loss results in degradation of Pten, lung adenocarcinoma, and neoplasia in mouse prostate with aberrantly high levels of Ube2e1 in the cytoplasm. These findings explain the correlation between loss of IPO11 and PTEN protein in human lung tumors. Furthermore, we find that IPO11 status predicts disease recurrence and progression to metastasis in patients choosing radical prostatectomy. Thus, our data introduce the IPO11 gene as a tumor-suppressor locus, which is of special importance in cancers that still retain at least one intact PTEN allele.
Collapse
Affiliation(s)
- Muhan Chen
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Dawid G Nowak
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Navneet Narula
- Department of Pathology, Neuberger Berman Lung Cancer Research Center, New York-Presbyterian Hospital, Weill Cornell Medical College, New York, NY 10065.,Department of Cell and Developmental Biology, Neuberger Berman Lung Cancer Research Center, New York-Presbyterian Hospital, Weill Cornell Medical College, New York, NY 10065
| | - Brian Robinson
- Department of Pathology, Neuberger Berman Lung Cancer Research Center, New York-Presbyterian Hospital, Weill Cornell Medical College, New York, NY 10065.,Department of Cell and Developmental Biology, Neuberger Berman Lung Cancer Research Center, New York-Presbyterian Hospital, Weill Cornell Medical College, New York, NY 10065
| | - Kaitlin Watrud
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | | | - Tali M Herzka
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | | | | | - Wu Zheng
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Saya H Ebbesen
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724.,The Watson School of Biological Sciences, Cold Spring Harbor, NY 11724
| | - Kendra S Plafker
- Free Radical Biology and Aging Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | | | | | - Lorna Wills
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Abu Nasar
- Department of Cardiothoracic Surgery, Neuberger Berman Lung Cancer Research Center, New York-Presbyterian Hospital, Weill Cornell Medical College, New York, NY 10065
| | | | | | - John E Wilkinson
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
| | - Scott Powers
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | | | - Nasser K Altorki
- Department of Cardiothoracic Surgery, Neuberger Berman Lung Cancer Research Center, New York-Presbyterian Hospital, Weill Cornell Medical College, New York, NY 10065
| | - Vivek Mittal
- Department of Cardiothoracic Surgery, Neuberger Berman Lung Cancer Research Center, New York-Presbyterian Hospital, Weill Cornell Medical College, New York, NY 10065
| | - Brendon M Stiles
- Department of Cardiothoracic Surgery, Neuberger Berman Lung Cancer Research Center, New York-Presbyterian Hospital, Weill Cornell Medical College, New York, NY 10065
| | - Scott M Plafker
- Free Radical Biology and Aging Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | | |
Collapse
|
58
|
Importins in the maintenance and lineage commitment of ES cells. Neurochem Int 2017; 105:32-41. [PMID: 28163061 DOI: 10.1016/j.neuint.2017.01.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 01/25/2017] [Accepted: 01/30/2017] [Indexed: 11/23/2022]
Abstract
The nucleus of a eukaryotic cell is separated from the cytoplasm by a nuclear envelope, and nuclear pores within the envelope facilitate nucleocytoplasmic transport and the exchange of information. Gene regulation is a key component of biological activity regulation in the cell. Transcription factors control the expression levels of various genes that are necessary for the maintenance or conversion of cellular states during animal development. Because transcription factor activities determine the extent of transcription of target genes, the number of active transcription factors must be tightly regulated. In this regard, the nuclear translocation of a transcription factor is an important determinant of its activity. Therefore, it is becoming clear that the nucleocytoplasmic transport machinery is involved in cell differentiation and organism development. This review examines the regulation of transcription factors by the nucleocytoplasmic transport machinery in ES cells.
Collapse
|
59
|
SUMO and Nucleocytoplasmic Transport. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 963:111-126. [DOI: 10.1007/978-3-319-50044-7_7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
60
|
Beck M, Hurt E. The nuclear pore complex: understanding its function through structural insight. Nat Rev Mol Cell Biol 2016; 18:73-89. [PMID: 27999437 DOI: 10.1038/nrm.2016.147] [Citation(s) in RCA: 459] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nuclear pore complexes (NPCs) fuse the inner and outer nuclear membranes to form channels across the nuclear envelope. They are large macromolecular assemblies with a complex composition and diverse functions. Apart from facilitating nucleocytoplasmic transport, NPCs are involved in chromatin organization, the regulation of gene expression and DNA repair. Understanding the molecular mechanisms underlying these functions has been hampered by a lack of structural knowledge about the NPC. The recent convergence of crystallographic and biochemical in vitro analysis of nucleoporins (NUPs), the components of the NPC, with cryo-electron microscopic imaging of the entire NPC in situ has provided first pseudo-atomic view of its central core and revealed that an unexpected network of short linear motifs is an important spatial organization principle. These breakthroughs have transformed the way we understand NPC structure, and they provide an important base for functional investigations, including the elucidation of the molecular mechanisms underlying clinically manifested mutations of the nucleocytoplasmic transport system.
Collapse
Affiliation(s)
- Martin Beck
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Meyerhofstrasse 1, Heidelberg D-69117, Germany
| | - Ed Hurt
- Biochemistry Center of Heidelberg University, INF328, Heidelberg D-69120, Germany
| |
Collapse
|
61
|
Friedman AK, Baker LA. Synthetic hydrogel mimics of the nuclear pore complex display selectivity dependent on FG-repeat concentration and electrostatics. SOFT MATTER 2016; 12:9477-9484. [PMID: 27849094 DOI: 10.1039/c6sm01689h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Synthetic hydrogels were utilized to explore influence of both charge and phenylalanine-glycine (FG) repeat concentration on translocation of select proteins. Hydrogels studied represent a biomimetic platform of the nuclear pore complex (NPC) found in eukaryotic cells. Polyacrylamide/phenylalanine-serine-phenylalanine-glycine (FSFG) peptide copolymers have previously demonstrated similar selectivity to native NPCs. Entry of a nuclear transport receptor (Impβ) into hydrogels was monitored with fluorescence microscopy and observed to be greater within gels that contained larger concentrations of FG peptide. Low-resolution structural studies of gels demonstrated changes in morphology and porous network dimensions as FG-repeat concentration was varied. Copolymerization of charged acrylates within the polyacrylamide/FSFG matrix was performed to produce charged hydrogels. Enhanced entry of Impβ, which is negatively charged, was observed in positively charged hydrogels, whereas entry was greatly diminished in negatively charged gels. Synthetic NPC mimics provide a useful testbed for further investigation of nucleocytoplasmic transport and may illuminate new routes for biomimetic separations.
Collapse
Affiliation(s)
- Alicia K Friedman
- Department of Chemistry, 800 E. Kirkwood Avenue, Bloomington, IN 47405, USA.
| | - Lane A Baker
- Department of Chemistry, 800 E. Kirkwood Avenue, Bloomington, IN 47405, USA.
| |
Collapse
|
62
|
Port SA, Mendes A, Valkova C, Spillner C, Fahrenkrog B, Kaether C, Kehlenbach RH. The Oncogenic Fusion Proteins SET-Nup214 and Sequestosome-1 (SQSTM1)-Nup214 Form Dynamic Nuclear Bodies and Differentially Affect Nuclear Protein and Poly(A)+ RNA Export. J Biol Chem 2016; 291:23068-23083. [PMID: 27613868 PMCID: PMC5087727 DOI: 10.1074/jbc.m116.735340] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 08/31/2016] [Indexed: 01/09/2023] Open
Abstract
Genetic rearrangements are a hallmark of several forms of leukemia and can lead to oncogenic fusion proteins. One example of an affected chromosomal region is the gene coding for Nup214, a nucleoporin that localizes to the cytoplasmic side of the nuclear pore complex (NPC). We investigated two such fusion proteins, SET-Nup214 and SQSTM1 (sequestosome)-Nup214, both containing C-terminal portions of Nup214. SET-Nup214 nuclear bodies containing the nuclear export receptor CRM1 were observed in the leukemia cell lines LOUCY and MEGAL. Overexpression of SET-Nup214 in HeLa cells leads to the formation of similar nuclear bodies that recruit CRM1, export cargo proteins, and certain nucleoporins and concomitantly affect nuclear protein and poly(A)+ RNA export. SQSTM1-Nup214, although mostly cytoplasmic, also forms nuclear bodies and inhibits nuclear protein but not poly(A)+ RNA export. The interaction of the fusion proteins with CRM1 is RanGTP-dependent, as shown in co-immunoprecipitation experiments and binding assays. Further analysis revealed that the Nup214 parts mediate the inhibition of nuclear export, whereas the SET or SQSTM1 part determines the localization of the fusion protein and therefore the extent of the effect. SET-Nup214 nuclear bodies are highly mobile structures, which are in equilibrium with the nucleoplasm in interphase and disassemble during mitosis or upon treatment of cells with the CRM1-inhibitor leptomycin B. Strikingly, we found that nucleoporins can be released from nuclear bodies and reintegrated into existing NPC. Our results point to nuclear bodies as a means of preventing the formation of potentially insoluble and harmful protein aggregates that also may serve as storage compartments for nuclear transport factors.
Collapse
Affiliation(s)
- Sarah A Port
- From the Department of Molecular Biology, Faculty of Medicine and the Göttingen Center for Molecular Biosciences (GZMB), Georg August University, Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | - Adélia Mendes
- the Institute of Molecular Biology and Medicine, Université Libre de Bruxelles, 6041 Charleroi, Belgium, and
| | - Christina Valkova
- the Leibniz Institute on Aging,Fritz Lipmann Institute, Beutenbergstrasse 11, 07745 Jena, Germany
| | - Christiane Spillner
- From the Department of Molecular Biology, Faculty of Medicine and the Göttingen Center for Molecular Biosciences (GZMB), Georg August University, Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | - Birthe Fahrenkrog
- the Institute of Molecular Biology and Medicine, Université Libre de Bruxelles, 6041 Charleroi, Belgium, and
| | - Christoph Kaether
- the Leibniz Institute on Aging,Fritz Lipmann Institute, Beutenbergstrasse 11, 07745 Jena, Germany
| | - Ralph H Kehlenbach
- From the Department of Molecular Biology, Faculty of Medicine and the Göttingen Center for Molecular Biosciences (GZMB), Georg August University, Göttingen, Humboldtallee 23, 37073 Göttingen, Germany,
| |
Collapse
|
63
|
Abstract
The nuclear pore complex (NPC) mediates the shuttle transport of macromolecules between the nucleus and cytoplasm in eukaryotic cells. The permeability barrier formed by intrinsically disordered phenylalanine-glycine-rich nucleoporins (FG-Nups) in the NPC functions as the critical selective control for nucleocytoplasmic transport. Signal-independent small molecules (< 40 kDa) passively diffuse through the pore, but passage of large cargo molecules is inhibited unless they are chaperoned by nuclear transport receptors (NTRs). NTRs are capable of interacting with FG-Nups and guide the cargos to cross the barrier by facilitated diffusion. The native conformation of the FG-Nups permeability barrier and the competition among multiple NTRs interacting with this barrier in the native NPCs are the 2 core questions still being highly debated in the field. Recently, we applied high-speed super-resolution fluorescence microscopy to map out the natural structure of the FG-Nups barrier and determined the competition among multiple NTRs as they interact with the barrier in the native NPCs. In this extra-view article, we will review the current understanding in the configuration and function of FG-Nups barrier and highlight the new evidence obtained recently to answer the core questions in nucleocytoplasmic transport.
Collapse
Affiliation(s)
- Christina Li
- a Department of Biology , Temple University , Philadelphia , PA , USA
| | | | - Weidong Yang
- a Department of Biology , Temple University , Philadelphia , PA , USA
| |
Collapse
|
64
|
Audsley MD, Jans DA, Moseley GW. Roles of nuclear trafficking in infection by cytoplasmic negative-strand RNA viruses: paramyxoviruses and beyond. J Gen Virol 2016; 97:2463-2481. [PMID: 27498841 DOI: 10.1099/jgv.0.000575] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Genome replication and virion production by most negative-sense RNA viruses (NSVs) occurs exclusively in the cytoplasm, but many NSV-expressed proteins undergo active nucleocytoplasmic trafficking via signals that exploit cellular nuclear transport pathways. Nuclear trafficking has been reported both for NSV accessory proteins (including isoforms of the rabies virus phosphoprotein, and V, W and C proteins of paramyxoviruses) and for structural proteins. Trafficking of the former is thought to enable accessory functions in viral modulation of antiviral responses including the type I IFN system, but the intranuclear roles of structural proteins such as nucleocapsid and matrix proteins, which have critical roles in extranuclear replication and viral assembly, are less clear. Nevertheless, nuclear trafficking of matrix protein has been reported to be critical for efficient production of Nipah virus and Respiratory syncytial virus, and nuclear localization of nucleocapsid protein of several morbilliviruses has been linked to mechanisms of immune evasion. Together, these data point to the nucleus as a significant host interface for viral proteins during infection by NSVs with otherwise cytoplasmic life cycles. Importantly, several lines of evidence now suggest that nuclear trafficking of these proteins may be critical to pathogenesis and thus could provide new targets for vaccine development and antiviral therapies.
Collapse
Affiliation(s)
- Michelle D Audsley
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - David A Jans
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Gregory W Moseley
- Department of Biochemistry and Molecular Biology, BIO21 Molecular Science and Biotechnology Institute, University of Melbourne, VIC 3000, Australia
| |
Collapse
|
65
|
Musser SM, Grünwald D. Deciphering the Structure and Function of Nuclear Pores Using Single-Molecule Fluorescence Approaches. J Mol Biol 2016; 428:2091-119. [PMID: 26944195 DOI: 10.1016/j.jmb.2016.02.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 01/05/2016] [Accepted: 02/17/2016] [Indexed: 01/06/2023]
Abstract
Due to its central role in macromolecular trafficking and nucleocytoplasmic information transfer, the nuclear pore complex (NPC) has been studied in great detail using a wide spectrum of methods. Consequently, many aspects of its architecture, general function, and role in the life cycle of a cell are well understood. Over the last decade, fluorescence microscopy methods have enabled the real-time visualization of single molecules interacting with and transiting through the NPC, allowing novel questions to be examined with nanometer precision. While initial single-molecule studies focused primarily on import pathways using permeabilized cells, it has recently proven feasible to investigate the export of mRNAs in living cells. Single-molecule assays can address questions that are difficult or impossible to answer by other means, yet the complexity of nucleocytoplasmic transport requires that interpretation be based on a firm genetic, biochemical, and structural foundation. Moreover, conceptually simple single-molecule experiments remain technically challenging, particularly with regard to signal intensity, signal-to-noise ratio, and the analysis of noise, stochasticity, and precision. We discuss nuclear transport issues recently addressed by single-molecule microscopy, evaluate the limits of existing assays and data, and identify open questions for future studies. We expect that single-molecule fluorescence approaches will continue to be applied to outstanding nucleocytoplasmic transport questions, and that the approaches developed for NPC studies are extendable to additional complex systems and pathways within cells.
Collapse
Affiliation(s)
- Siegfried M Musser
- Department of Molecular and Cellular Medicine, College of Medicine, The Texas A&M Health Science Center, 1114 TAMU, College Station, TX 77843, USA.
| | - David Grünwald
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
66
|
Barros ACD, Takeda AAS, Dreyer TR, Velazquez-Campoy A, Kobe B, Fontes MRM. Structural and Calorimetric Studies Demonstrate that Xeroderma Pigmentosum Type G (XPG) Can Be Imported to the Nucleus by a Classical Nuclear Import Pathway via a Monopartite NLS Sequence. J Mol Biol 2016; 428:2120-31. [PMID: 26812207 DOI: 10.1016/j.jmb.2016.01.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 01/08/2016] [Accepted: 01/14/2016] [Indexed: 11/16/2022]
Abstract
Xeroderma pigmentosum type G (XPG) proteins are involved in DNA lesion recognition and promotion of nucleotide excision repair. Specific mutations in these proteins may lead to Cockayne syndrome, in which the patients may display severe developmental retardation and neurological abnormalities. No structural information is available for their spacer region or the C-terminal domain, which are important, respectively, for specific nucleotide excision repair activity and substrate specificity, as well as nuclear translocation. Immunofluorescence studies suggested two specific regions of the XPG C-terminus as potential bipartite nuclear localization sequences, which would be responsible for its translocation to the nucleus by the classical nuclear import pathway mediated by the importin-α (Impα). Thus, in order to test these hypotheses and gain insight into the structural basis for the nuclear import process for the XPG protein, we solved the crystal structures of complexes formed by the Impα and peptides corresponding to both putative nuclear localization signal (NLS) sequences (XPG1 and XPG2) and performed isothermal titration calorimetry assays to determine their binding affinities. Structural experiments confirm the binding of both NLS peptides to Impα but, unexpectedly, they bind to the receptor as monopartite NLSs. The isothermal titration calorimetry assays demonstrated that XPG1 and XPG2 peptides bind to two separate binding sites, but with high affinity to the major NLS-binding site of the Impα, resembling classical monopartite SV40 TAg NLS. The results lead to insights about what distinguishes monopartite and bipartite NLSs, as well as the differential roles of XPG1 and XPG2 NLSs in the nuclear localization of XPG.
Collapse
Affiliation(s)
- Andrea C de Barros
- Departamento de Física e Biofísica, Instituto de Biociências, Universidade Estadual Paulista, Botucatu, SP, 18618-970 Brazil
| | - Agnes A S Takeda
- Departamento de Física e Biofísica, Instituto de Biociências, Universidade Estadual Paulista, Botucatu, SP, 18618-970 Brazil
| | - Thiago R Dreyer
- Departamento de Física e Biofísica, Instituto de Biociências, Universidade Estadual Paulista, Botucatu, SP, 18618-970 Brazil
| | - Adrian Velazquez-Campoy
- Institute of Biocomputation and Physics of Complex Systems, Joint-Unit Institute of Physical Chemistry "Rocasolano"-Consejo Superior de Investigaciones Científicas-Institute of Biocomputation and Physics of Complex Systems, University of Zaragoza, Zaragoza, 50018, Spain; Department of Biochemistry and Molecular and Cell Biology, University of Zaragoza, Zaragoza, 50018, Spain; Fundacion Agencia Aragonesa para la Investigación y el Desarrollo, Government of Aragon, Zaragoza, 50018, Spain
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Marcos R M Fontes
- Departamento de Física e Biofísica, Instituto de Biociências, Universidade Estadual Paulista, Botucatu, SP, 18618-970 Brazil.
| |
Collapse
|
67
|
Transport Selectivity of Nuclear Pores, Phase Separation, and Membraneless Organelles. Trends Biochem Sci 2015; 41:46-61. [PMID: 26705895 DOI: 10.1016/j.tibs.2015.11.001] [Citation(s) in RCA: 311] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 10/30/2015] [Accepted: 11/03/2015] [Indexed: 12/21/2022]
Abstract
Nuclear pore complexes (NPCs) provide a selective passageway for receptor-mediated active transport between nucleus and cytoplasm, while maintaining the distinct molecular compositions of both compartments at large. In this review we discuss how NPCs gain a remarkable sorting selectivity from non-globular FG domains and their phase separation into dense polymer meshworks. The resulting sieve-like FG hydrogels are effective barriers to normal macromolecules but are at the same time highly permeable to shuttling nuclear transport receptors, which bind to FG motifs as well as to their designated cargoes. Phase separation driven by disordered protein domains was recently also recognized as being pivotal to the formation of membraneless organelles, making it an important emerging principle in cell biology.
Collapse
|
68
|
Christie M, Chang CW, Róna G, Smith KM, Stewart AG, Takeda AAS, Fontes MRM, Stewart M, Vértessy BG, Forwood JK, Kobe B. Structural Biology and Regulation of Protein Import into the Nucleus. J Mol Biol 2015; 428:2060-90. [PMID: 26523678 DOI: 10.1016/j.jmb.2015.10.023] [Citation(s) in RCA: 188] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 10/16/2015] [Accepted: 10/24/2015] [Indexed: 11/28/2022]
Abstract
Proteins are translated in the cytoplasm, but many need to access the nucleus to perform their functions. Understanding how these nuclear proteins are transported through the nuclear envelope and how the import processes are regulated is therefore an important aspect of understanding cell function. Structural biology has played a key role in understanding the molecular events during the transport processes and their regulation, including the recognition of nuclear targeting signals by the corresponding receptors. Here, we review the structural basis of the principal nuclear import pathways and the molecular basis of their regulation. The pathways involve transport factors that are members of the β-karyopherin family, which can bind cargo directly (e.g., importin-β, transportin-1, transportin-3, importin-13) or through adaptor proteins (e.g., importin-α, snurportin-1, symportin-1), as well as unrelated transport factors such as Hikeshi, involved in the transport of heat-shock proteins, and NTF2, involved in the transport of RanGDP. Solenoid proteins feature prominently in these pathways. Nuclear transport factors recognize nuclear targeting signals on the cargo proteins, including the classical nuclear localization signals, recognized by the adaptor importin-α, and the PY nuclear localization signals, recognized by transportin-1. Post-translational modifications, particularly phosphorylation, constitute key regulatory mechanisms operating in these pathways.
Collapse
Affiliation(s)
- Mary Christie
- The Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW 2010, Australia; St Vincent's Clinical School, University of New South Wales Faculty of Medicine, Darlinghurst, NSW 2010, Australia
| | - Chiung-Wen Chang
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD 4072, Australia; Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Gergely Róna
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest H-1117, Hungary; Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and Economics, Budapest H-1111, Hungary
| | - Kate M Smith
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW 2650, Australia
| | - Alastair G Stewart
- School of Molecular Bioscience, The University of Sydney, Sydney, NSW 2006, Australia
| | - Agnes A S Takeda
- Department of Physics and Biophysics, Institute of Biosciences, Universidade Estadual Paulista, Botucatu, São Paulo 18618-000, Brazil
| | - Marcos R M Fontes
- Department of Physics and Biophysics, Institute of Biosciences, Universidade Estadual Paulista, Botucatu, São Paulo 18618-000, Brazil
| | - Murray Stewart
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD 4072, Australia; MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, United Kingdom
| | - Beáta G Vértessy
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest H-1117, Hungary; Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and Economics, Budapest H-1111, Hungary
| | - Jade K Forwood
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW 2650, Australia
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
69
|
Matsuura Y. Mechanistic Insights from Structural Analyses of Ran-GTPase-Driven Nuclear Export of Proteins and RNAs. J Mol Biol 2015; 428:2025-39. [PMID: 26519791 DOI: 10.1016/j.jmb.2015.09.025] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 09/28/2015] [Indexed: 12/13/2022]
Abstract
Understanding how macromolecules are rapidly exchanged between the nucleus and the cytoplasm through nuclear pore complexes is a fundamental problem in biology. Exportins are Ran-GTPase-dependent nuclear transport factors that belong to the karyopherin-β family and mediate nuclear export of a plethora of proteins and RNAs, except for bulk mRNA nuclear export. Exportins bind cargo macromolecules in a Ran-GTP-dependent manner in the nucleus, forming exportin-cargo-Ran-GTP complexes (nuclear export complexes). Transient weak interactions between exportins and nucleoporins containing characteristic FG (phenylalanine-glycine) repeat motifs facilitate nuclear pore complex passage of nuclear export complexes. In the cytoplasm, nuclear export complexes are disassembled, thereby releasing the cargo. GTP hydrolysis by Ran promoted in the cytoplasm makes the disassembly reaction virtually irreversible and provides thermodynamic driving force for the overall export reaction. In the past decade, X-ray crystallography of some of the exportins in various functional states coupled with functional analyses, single-particle electron microscopy, molecular dynamics simulations, and small-angle solution X-ray scattering has provided rich insights into the mechanism of cargo binding and release and also begins to elucidate how exportins interact with the FG repeat motifs. The knowledge gained from structural analyses of nuclear export is being translated into development of clinically useful inhibitors of nuclear export to treat human diseases such as cancer and influenza.
Collapse
Affiliation(s)
- Yoshiyuki Matsuura
- Division of Biological Science and Structural Biology Research Center, Graduate School of Science, Nagoya University, Nagoya 466-8550, Japan.
| |
Collapse
|
70
|
Port SA, Monecke T, Dickmanns A, Spillner C, Hofele R, Urlaub H, Ficner R, Kehlenbach RH. Structural and Functional Characterization of CRM1-Nup214 Interactions Reveals Multiple FG-Binding Sites Involved in Nuclear Export. Cell Rep 2015; 13:690-702. [PMID: 26489467 DOI: 10.1016/j.celrep.2015.09.042] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 08/11/2015] [Accepted: 09/14/2015] [Indexed: 12/11/2022] Open
Abstract
CRM1 is the major nuclear export receptor. During translocation through the nuclear pore, transport complexes transiently interact with phenylalanine-glycine (FG) repeats of multiple nucleoporins. On the cytoplasmic side of the nuclear pore, CRM1 tightly interacts with the nucleoporin Nup214. Here, we present the crystal structure of a 117-amino-acid FG-repeat-containing fragment of Nup214, in complex with CRM1, Snurportin 1, and RanGTP at 2.85 Å resolution. The structure reveals eight binding sites for Nup214 FG motifs on CRM1, with intervening stretches that are loosely attached to the transport receptor. Nup214 binds to N- and C-terminal regions of CRM1, thereby clamping CRM1 in a closed conformation and stabilizing the export complex. The role of conserved hydrophobic pockets for the recognition of FG motifs was analyzed in biochemical and cell-based assays. Comparative studies with RanBP3 and Nup62 shed light on specificities of CRM1-nucleoporin binding, which serves as a paradigm for transport receptor-nucleoporin interactions.
Collapse
Affiliation(s)
- Sarah A Port
- Department of Molecular Biology, Faculty of Medicine, GZMB, Georg-August-University Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | - Thomas Monecke
- Department of Molecular Structural Biology, Institute for Microbiology and Genetics, GZMB, Georg-August-University Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | - Achim Dickmanns
- Department of Molecular Structural Biology, Institute for Microbiology and Genetics, GZMB, Georg-August-University Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | - Christiane Spillner
- Department of Molecular Biology, Faculty of Medicine, GZMB, Georg-August-University Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | - Romina Hofele
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany; Bioanalytics, Institute for Clinical Chemistry, University Medical Center, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany; Bioanalytics, Institute for Clinical Chemistry, University Medical Center, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - Ralf Ficner
- Department of Molecular Structural Biology, Institute for Microbiology and Genetics, GZMB, Georg-August-University Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany.
| | - Ralph H Kehlenbach
- Department of Molecular Biology, Faculty of Medicine, GZMB, Georg-August-University Göttingen, Humboldtallee 23, 37073 Göttingen, Germany.
| |
Collapse
|
71
|
Linker Nups connect the nuclear pore complex inner ring with the outer ring and transport channel. Nat Struct Mol Biol 2015; 22:774-81. [DOI: 10.1038/nsmb.3084] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 08/10/2015] [Indexed: 11/08/2022]
|
72
|
Selective Removal of FG Repeat Domains from the Nuclear Pore Complex by Enterovirus 2A(pro). J Virol 2015; 89:11069-79. [PMID: 26311873 DOI: 10.1128/jvi.00956-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Accepted: 08/20/2015] [Indexed: 12/31/2022] Open
Abstract
UNLABELLED Enteroviruses proteolyze nuclear pore complex (NPC) proteins (Nups) during infection, leading to disruption of host nuclear transport pathways and alterations in nuclear permeability. To better understand how enteroviruses exert these effects on nuclear transport, the mechanisms and consequences of Nup98 proteolysis were examined. The results indicate that Nup98 is rapidly targeted for degradation following enterovirus infection and that this is mediated by the enterovirus 2A protease (2A(pro)). Incubation of bacterially expressed or in vitro-translated Nup98 with 2A(pro) results in proteolytic cleavage at multiple sites in vitro, indicating that 2A(pro) cleaves Nup98 directly. Site-directed mutagenesis of putative cleavage sites identified Gly374 and Gly552 as the sites of 2A(pro) proteolysis in Nup98 in vitro and in infected cells. Indirect immunofluorescence assays using an antibody that recognizes the N terminus of Nup98 revealed that proteolysis releases the N-terminal FG-rich region from the NPC. In contrast, similar analyses using an antibody to the C terminus indicated that this region is retained at the nuclear rim. Nup88, a core NPC component that serves as a docking site for Nup98, also remains at the NPC in infected cells. These findings support a model whereby the selective removal of Nup FG repeat domains leads to increased NPC permeability and inhibition of certain transport pathways, while retention of structural domains maintains the overall NPC structure and leaves other transport pathways unaffected. IMPORTANCE Enteroviruses are dependent upon host nuclear RNA binding proteins for efficient replication. This study examines the mechanisms responsible for alterations in nuclear transport in enterovirus-infected cells that lead to the cytoplasmic accumulation of these proteins. The results demonstrate that the enterovirus 2A protease directly cleaves the nuclear pore complex (NPC) protein, Nup98, at amino acid positions G374 and G552 both in vitro and in infected cells. Cleavage at these positions results in the selective removal of the FG-containing N terminus of Nup98 from the NPC, while the C terminus remains associated. Nup88, a core component of the NPC that serves as a docking site for the C terminus of Nup98, remains associated with the NPC in infected cells. These findings help to explain the alterations in permeability and nuclear transport in enterovirus-infected cells and how NPCs remain functional for certain trafficking pathways despite significant alterations to their compositions.
Collapse
|
73
|
Spatiotemporal Regulation of Nuclear Transport Machinery and Microtubule Organization. Cells 2015; 4:406-26. [PMID: 26308057 PMCID: PMC4588043 DOI: 10.3390/cells4030406] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 07/30/2015] [Accepted: 08/19/2015] [Indexed: 12/23/2022] Open
Abstract
Spindle microtubules capture and segregate chromosomes and, therefore, their assembly is an essential event in mitosis. To carry out their mission, many key players for microtubule formation need to be strictly orchestrated. Particularly, proteins that assemble the spindle need to be translocated at appropriate sites during mitosis. A small GTPase (hydrolase enzyme of guanosine triphosphate), Ran, controls this translocation. Ran plays many roles in many cellular events: nucleocytoplasmic shuttling through the nuclear envelope, assembly of the mitotic spindle, and reorganization of the nuclear envelope at the mitotic exit. Although these events are seemingly distinct, recent studies demonstrate that the mechanisms underlying these phenomena are substantially the same as explained by molecular interplay of the master regulator Ran, the transport factor importin, and its cargo proteins. Our review focuses on how the transport machinery regulates mitotic progression of cells. We summarize translocation mechanisms governed by Ran and its regulatory proteins, and particularly focus on Ran-GTP targets in fission yeast that promote spindle formation. We also discuss the coordination of the spatial and temporal regulation of proteins from the viewpoint of transport machinery. We propose that the transport machinery is an essential key that couples the spatial and temporal events in cells.
Collapse
|
74
|
Dickmanns A, Kehlenbach RH, Fahrenkrog B. Nuclear Pore Complexes and Nucleocytoplasmic Transport: From Structure to Function to Disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 320:171-233. [PMID: 26614874 DOI: 10.1016/bs.ircmb.2015.07.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nucleocytoplasmic transport is an essential cellular activity and occurs via nuclear pore complexes (NPCs) that reside in the double membrane of the nuclear envelope. Significant progress has been made during the past few years in unravelling the ultrastructural organization of NPCs and their constituents, the nucleoporins, by cryo-electron tomography and X-ray crystallography. Mass spectrometry and genomic approaches have provided deeper insight into the specific regulation and fine tuning of individual nuclear transport pathways. Recent research has also focused on the roles nucleoporins play in health and disease, some of which go beyond nucleocytoplasmic transport. Here we review emerging results aimed at understanding NPC architecture and nucleocytoplasmic transport at the atomic level, elucidating the specific function individual nucleoporins play in nuclear trafficking, and finally lighting up the contribution of nucleoporins and nuclear transport receptors in human diseases, such as cancer and certain genetic disorders.
Collapse
Affiliation(s)
- Achim Dickmanns
- Abteilung für Molekulare Strukturbiologie, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Ralph H Kehlenbach
- Department of Molecular Biology, Faculty of Medicine, Georg-August-University of Göttingen, Göttingen, Germany
| | - Birthe Fahrenkrog
- Institute of Molecular Biology and Medicine, Université Libre de Bruxelles, Charleroi, Belgium
| |
Collapse
|
75
|
Abstract
The ubiquitin-proteasome system is the major degradation pathway for short-lived proteins in eukaryotic cells. Targets of the ubiquitin-proteasome-system are proteins regulating a broad range of cellular processes including cell cycle progression, gene expression, the quality control of proteostasis and the response to geno- and proteotoxic stress. Prior to degradation, the proteasomal substrate is marked with a poly-ubiquitin chain. The key protease of the ubiquitin system is the proteasome. In dividing cells, proteasomes exist as holo-enzymes composed of regulatory and core particles. The regulatory complex confers ubiquitin-recognition and ATP dependence on proteasomal protein degradation. The catalytic sites are located in the proteasome core particle. Proteasome holo-enzymes are predominantly nuclear suggesting a major requirement for proteasomal proteolysis in the nucleus. In cell cycle arrested mammalian or quiescent yeast cells, proteasomes deplete from the nucleus and accumulate in granules at the nuclear envelope (NE) / endoplasmic reticulum ( ER) membranes. In prolonged quiescence, proteasome granules drop off the nuclear envelopeNE / ER membranes and migrate as droplet-like entitiesstable organelles throughout the cytoplasm, as thoroughly investigated in yeast. When quiescence yeast cells are allowed to resume growth, proteasome granules clear and proteasomes are rapidly imported into the nucleus. Here, we summarize our knowledge about the enigmatic structure of proteasome storage granules and the trafficking of proteasomes and their substrates between the cyto- and nucleoplasm. Most of our current knowledge is based on studies in yeast. Their translation to mammalian cells promises to provide keen insight into protein degradation in non-dividing cells, which comprise the majority of our body’s cells.
Collapse
Affiliation(s)
- Maisha Chowdhury
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Cordula Enenkel
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| |
Collapse
|
76
|
Abstract
The ubiquitin-proteasome system is the major degradation pathway for short-lived proteins in eukaryotic cells. Targets of the ubiquitin-proteasome-system are proteins regulating a broad range of cellular processes including cell cycle progression, gene expression, the quality control of proteostasis and the response to geno- and proteotoxic stress. Prior to degradation, the proteasomal substrate is marked with a poly-ubiquitin chain. The key protease of the ubiquitin system is the proteasome. In dividing cells, proteasomes exist as holo-enzymes composed of regulatory and core particles. The regulatory complex confers ubiquitin-recognition and ATP dependence on proteasomal protein degradation. The catalytic sites are located in the proteasome core particle. Proteasome holo-enzymes are predominantly nuclear suggesting a major requirement for proteasomal proteolysis in the nucleus. In cell cycle arrested mammalian or quiescent yeast cells, proteasomes deplete from the nucleus and accumulate in granules at the nuclear envelope (NE) / endoplasmic reticulum ( ER) membranes. In prolonged quiescence, proteasome granules drop off the nuclear envelopeNE / ER membranes and migrate as droplet-like entitiesstable organelles throughout the cytoplasm, as thoroughly investigated in yeast. When quiescence yeast cells are allowed to resume growth, proteasome granules clear and proteasomes are rapidly imported into the nucleus. Here, we summarize our knowledge about the enigmatic structure of proteasome storage granules and the trafficking of proteasomes and their substrates between the cyto- and nucleoplasm. Most of our current knowledge is based on studies in yeast. Their translation to mammalian cells promises to provide keen insight into protein degradation in non-dividing cells, which comprise the majority of our body's cells.
Collapse
Affiliation(s)
- Maisha Chowdhury
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Cordula Enenkel
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| |
Collapse
|
77
|
Abstract
Nuclear pore complexes (NPCs) perforate the nuclear envelope and allow the exchange of macromolecules between the nucleus and the cytoplasm. To acquire a deeper understanding of this transport mechanism, we analyse the structure of the NPC scaffold and permeability barrier, by reconstructing the Xenopus laevis oocyte NPC from native nuclear envelopes up to 20 Å resolution by cryo-electron tomography in conjunction with subtomogram averaging. In addition to resolving individual protein domains of the NPC constituents, we propose a model for the architecture of the molecular gate at its central channel. Furthermore, we compare and contrast this native NPC structure to one that exhibits reduced transport activity and unveil the spatial properties of the NPC gate. Nuclear pore complexes (NPCs) are large macromolecular assemblies that mediate the exchange of molecules between the nucleus and cytoplasm. Here the authors present a ∼20 Å cryo-EM structure of the X. laevis NPC in different states of transport to propose a model for the architecture of the NPC's molecular gate within its central channel.
Collapse
|
78
|
Bernardes NE, Takeda AAS, Dreyer TR, Freitas FZ, Bertolini MC, Fontes MRM. Structure of Importin-α from a Filamentous Fungus in Complex with a Classical Nuclear Localization Signal. PLoS One 2015; 10:e0128687. [PMID: 26091498 PMCID: PMC4474859 DOI: 10.1371/journal.pone.0128687] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 04/29/2015] [Indexed: 01/07/2023] Open
Abstract
Neurospora crassa is a filamentous fungus that has been extensively studied as a model organism for eukaryotic biology, providing fundamental insights into cellular processes such as cell signaling, growth and differentiation. To advance in the study of this multicellular organism, an understanding of the specific mechanisms for protein transport into the cell nucleus is essential. Importin-α (Imp-α) is the receptor for cargo proteins that contain specific nuclear localization signals (NLSs) that play a key role in the classical nuclear import pathway. Structures of Imp-α from different organisms (yeast, rice, mouse, and human) have been determined, revealing that this receptor possesses a conserved structural scaffold. However, recent studies have demonstrated that the Impα mechanism of action may vary significantly for different organisms or for different isoforms from the same organism. Therefore, structural, functional, and biophysical characterization of different Impα proteins is necessary to understand the selectivity of nuclear transport. Here, we determined the first crystal structure of an Impα from a filamentous fungus which is also the highest resolution Impα structure already solved to date (1.75 Å). In addition, we performed calorimetric analysis to determine the affinity and thermodynamic parameters of the interaction between Imp-α and the classical SV40 NLS peptide. The comparison of these data with previous studies on Impα proteins led us to demonstrate that N. crassa Imp-α possess specific features that are distinct from mammalian Imp-α but exhibit important similarities to rice Imp-α, particularly at the minor NLS binding site.
Collapse
Affiliation(s)
- Natalia E. Bernardes
- Departamento de Física e Biofísica, Instituto de Biociências, Universidade Estadual Paulista, UNESP, Botucatu, SP, Brazil
| | - Agnes A. S. Takeda
- Departamento de Física e Biofísica, Instituto de Biociências, Universidade Estadual Paulista, UNESP, Botucatu, SP, Brazil
| | - Thiago R. Dreyer
- Departamento de Física e Biofísica, Instituto de Biociências, Universidade Estadual Paulista, UNESP, Botucatu, SP, Brazil
| | - Fernanda Z. Freitas
- Departamento de Bioquímica e Tecnologia Química, Instituto de Química, Universidade Estadual Paulista, UNESP, Araraquara, SP, Brazil
| | - Maria Célia Bertolini
- Departamento de Bioquímica e Tecnologia Química, Instituto de Química, Universidade Estadual Paulista, UNESP, Araraquara, SP, Brazil
| | - Marcos R. M. Fontes
- Departamento de Física e Biofísica, Instituto de Biociências, Universidade Estadual Paulista, UNESP, Botucatu, SP, Brazil
- * E-mail:
| |
Collapse
|
79
|
Flather D, Semler BL. Picornaviruses and nuclear functions: targeting a cellular compartment distinct from the replication site of a positive-strand RNA virus. Front Microbiol 2015; 6:594. [PMID: 26150805 PMCID: PMC4471892 DOI: 10.3389/fmicb.2015.00594] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 05/29/2015] [Indexed: 11/13/2022] Open
Abstract
The compartmentalization of DNA replication and gene transcription in the nucleus and protein production in the cytoplasm is a defining feature of eukaryotic cells. The nucleus functions to maintain the integrity of the nuclear genome of the cell and to control gene expression based on intracellular and environmental signals received through the cytoplasm. The spatial separation of the major processes that lead to the expression of protein-coding genes establishes the necessity of a transport network to allow biomolecules to translocate between these two regions of the cell. The nucleocytoplasmic transport network is therefore essential for regulating normal cellular functioning. The Picornaviridae virus family is one of many viral families that disrupt the nucleocytoplasmic trafficking of cells to promote viral replication. Picornaviruses contain positive-sense, single-stranded RNA genomes and replicate in the cytoplasm of infected cells. As a result of the limited coding capacity of these viruses, cellular proteins are required by these intracellular parasites for both translation and genomic RNA replication. Being of messenger RNA polarity, a picornavirus genome can immediately be translated upon entering the cell cytoplasm. However, the replication of viral RNA requires the activity of RNA-binding proteins, many of which function in host gene expression, and are consequently localized to the nucleus. As a result, picornaviruses disrupt nucleocytoplasmic trafficking to exploit protein functions normally localized to a different cellular compartment from which they translate their genome to facilitate efficient replication. Furthermore, picornavirus proteins are also known to enter the nucleus of infected cells to limit host-cell transcription and down-regulate innate antiviral responses. The interactions of picornavirus proteins and host-cell nuclei are extensive, required for a productive infection, and are the focus of this review.
Collapse
Affiliation(s)
- Dylan Flather
- Department of Microbiology and Molecular Genetics, Center for Virus Research, School of Medicine, University of California, Irvine Irvine, CA, USA
| | - Bert L Semler
- Department of Microbiology and Molecular Genetics, Center for Virus Research, School of Medicine, University of California, Irvine Irvine, CA, USA
| |
Collapse
|
80
|
Lord CL, Timney BL, Rout MP, Wente SR. Altering nuclear pore complex function impacts longevity and mitochondrial function in S. cerevisiae. ACTA ACUST UNITED AC 2015; 208:729-44. [PMID: 25778920 PMCID: PMC4362458 DOI: 10.1083/jcb.201412024] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Specific nucleoporins and nuclear pore complex–dependent transport events directly influence aging in yeast. The eukaryotic nuclear permeability barrier and selective nucleocytoplasmic transport are maintained by nuclear pore complexes (NPCs), large structures composed of ∼30 proteins (nucleoporins [Nups]). NPC structure and function are disrupted in aged nondividing metazoan cells, although it is unclear whether these changes are a cause or consequence of aging. Using the replicative life span (RLS) of Saccharomyces cerevisiae as a model, we find that specific Nups and transport events regulate longevity independent of changes in NPC permeability. Mutants lacking the GLFG domain of Nup116 displayed decreased RLSs, whereas longevity was increased in nup100-null mutants. We show that Nup116 mediates nuclear import of the karyopherin Kap121, and each protein is required for mitochondrial function. Both Kap121-dependent transport and Nup116 levels decrease in replicatively aged yeast. Overexpression of GSP1, the small GTPase that powers karyopherin-mediated transport, rescued mitochondrial and RLS defects in nup116 mutants and increased longevity in wild-type cells. Together, these studies reveal that specific NPC nuclear transport events directly influence aging.
Collapse
Affiliation(s)
- Christopher L Lord
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Benjamin L Timney
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY 10021
| | - Michael P Rout
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY 10021
| | - Susan R Wente
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| |
Collapse
|
81
|
Fischer U, Schäuble N, Schütz S, Altvater M, Chang Y, Boulos Faza M, Panse VG. A non-canonical mechanism for Crm1-export cargo complex assembly. eLife 2015; 4:e05745. [PMID: 25895666 PMCID: PMC4402694 DOI: 10.7554/elife.05745] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 03/26/2015] [Indexed: 01/19/2023] Open
Abstract
The transport receptor Crm1 mediates the export of diverse cargos containing leucine-rich nuclear export signals (NESs) through complex formation with RanGTP. To ensure efficient cargo release in the cytoplasm, NESs have evolved to display low affinity for Crm1. However, mechanisms that overcome low affinity to assemble Crm1-export complexes in the nucleus remain poorly understood. In this study, we reveal a new type of RanGTP-binding protein, Slx9, which facilitates Crm1 recruitment to the 40S pre-ribosome-associated NES-containing adaptor Rio2. In vitro, Slx9 binds Rio2 and RanGTP, forming a complex. This complex directly loads Crm1, unveiling a non-canonical stepwise mechanism to assemble a Crm1-export complex. A mutation in Slx9 that impairs Crm1-export complex assembly inhibits 40S pre-ribosome export. Thus, Slx9 functions as a scaffold to optimally present RanGTP and the NES to Crm1, therefore, triggering 40S pre-ribosome export. This mechanism could represent one solution to the paradox of weak binding events underlying rapid Crm1-mediated export.
Collapse
Affiliation(s)
- Ute Fischer
- Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Nico Schäuble
- Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Sabina Schütz
- Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland
- Molecular Life Science, Graduate School, Zurich, Switzerland
| | - Martin Altvater
- Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland
- Molecular Life Science, Graduate School, Zurich, Switzerland
| | - Yiming Chang
- Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Marius Boulos Faza
- Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Vikram Govind Panse
- Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
82
|
Popken P, Ghavami A, Onck PR, Poolman B, Veenhoff LM. Size-dependent leak of soluble and membrane proteins through the yeast nuclear pore complex. Mol Biol Cell 2015; 26:1386-94. [PMID: 25631821 PMCID: PMC4454183 DOI: 10.1091/mbc.e14-07-1175] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The permeability of the baker's yeast nuclear pore complex for multidomain proteins of different sizes, both soluble and transmembrane, was measured. The permeability for soluble proteins correlated with models of the disordered phase of wild-type and mutant NPCs generated using a one bead per amino acid molecular dynamics model. Nuclear pore complexes (NPCs) allow selective import and export while forming a barrier for untargeted proteins. Using fluorescence microscopy, we measured in vivo the permeability of the Saccharomyces cerevisiae NPC for multidomain proteins of different sizes and found that soluble proteins of 150 kDa and membrane proteins with an extralumenal domain of 90 kDa were still partly localized in the nucleus on a time scale of hours. The NPCs thus form only a weak barrier for the majority of yeast proteins, given their monomeric size. Using FGΔ-mutant strains, we showed that specific combinations of Nups, especially with Nup100, but not the total mass of FG-nups per pore, were important for forming the barrier. Models of the disordered phase of wild-type and mutant NPCs were generated using a one bead per amino acid molecular dynamics model. The permeability measurements correlated with the density predictions from coarse-grained molecular dynamics simulations in the center of the NPC. The combined in vivo and computational approach provides a framework for elucidating the structural and functional properties of the permeability barrier of nuclear pore complexes.
Collapse
Affiliation(s)
- Petra Popken
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, Netherlands Zernike Institute for Advanced Materials and Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, Netherlands
| | - Ali Ghavami
- Zernike Institute for Advanced Materials and
| | | | - Bert Poolman
- Zernike Institute for Advanced Materials and Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, Netherlands
| | - Liesbeth M Veenhoff
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, Netherlands
| |
Collapse
|
83
|
Schmidt HB, Görlich D. Nup98 FG domains from diverse species spontaneously phase-separate into particles with nuclear pore-like permselectivity. eLife 2015; 4. [PMID: 25562883 PMCID: PMC4283134 DOI: 10.7554/elife.04251] [Citation(s) in RCA: 247] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 11/20/2014] [Indexed: 01/28/2023] Open
Abstract
Nuclear pore complexes (NPCs) conduct massive transport mediated by shuttling nuclear transport receptors (NTRs), while keeping nuclear and cytoplasmic contents separated. The NPC barrier in Xenopus relies primarily on the intrinsically disordered FG domain of Nup98. We now observed that Nup98 FG domains of mammals, lancelets, insects, nematodes, fungi, plants, amoebas, ciliates, and excavates spontaneously and rapidly phase-separate from dilute (submicromolar) aqueous solutions into characteristic 'FG particles'. This required neither sophisticated experimental conditions nor auxiliary eukaryotic factors. Instead, it occurred already during FG domain expression in bacteria. All Nup98 FG phases rejected inert macromolecules and yet allowed far larger NTR cargo complexes to rapidly enter. They even recapitulated the observations that large cargo-domains counteract NPC passage of NTR⋅cargo complexes, while cargo shielding and increased NTR⋅cargo surface-ratios override this inhibition. Their exquisite NPC-typical sorting selectivity and strong intrinsic assembly propensity suggest that Nup98 FG phases can form in authentic NPCs and indeed account for the permeability properties of the pore.
Collapse
Affiliation(s)
- Hermann Broder Schmidt
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Dirk Görlich
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
84
|
Cautain B, Hill R, de Pedro N, Link W. Components and regulation of nuclear transport processes. FEBS J 2014; 282:445-62. [PMID: 25429850 PMCID: PMC7163960 DOI: 10.1111/febs.13163] [Citation(s) in RCA: 177] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 11/11/2014] [Accepted: 11/12/2014] [Indexed: 12/27/2022]
Abstract
The spatial separation of DNA replication and gene transcription in the nucleus and protein translation in the cytoplasm is a uniform principle of eukaryotic cells. This compartmentalization imposes a requirement for a transport network of macromolecules to shuttle these components in and out of the nucleus. This nucleo‐cytoplasmic transport of macromolecules is critical for both cell physiology and pathology. Consequently, investigating its regulation and disease‐associated alterations can reveal novel therapeutic approaches to fight human diseases, such as cancer or viral infection. The characterization of the nuclear pore complex, the identification of transport signals and transport receptors, as well as the characterization of the Ran system (providing the energy source for efficient cargo transport) has greatly facilitated our understanding of the components, mechanisms and regulation of the nucleo‐cytoplasmic transport of proteins in our cells. Here we review this knowledge with a specific emphasis on the selection of disease‐relevant molecular targets for potential therapeutic intervention.
Collapse
Affiliation(s)
- Bastien Cautain
- Fundacion MEDINA Parque tecnológico ciencias de la salud, Granada, Spain
| | | | | | | |
Collapse
|
85
|
Gotoh T, Vila-Caballer M, Liu J, Schiffhauer S, Finkielstein CV. Association of the circadian factor Period 2 to p53 influences p53's function in DNA-damage signaling. Mol Biol Cell 2014; 26:359-72. [PMID: 25411341 PMCID: PMC4294682 DOI: 10.1091/mbc.e14-05-0994] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Association of the circadian Per2 factor to p53 results in cytosol–nuclear shuttling of the complex and further association to Mdm2. The trimeric complex remains in the nucleus until a genotoxic signal frees p53, allowing for a transcriptional checkpoint response. Circadian period proteins influence cell division and death by associating with checkpoint components, although their mode of regulation has not been firmly established. hPer2 forms a trimeric complex with hp53 and its negative regulator Mdm2. In unstressed cells, this association leads to increased hp53 stability by blocking Mdm2-dependent ubiquitination and transcription of hp53 target genes. Because of the relevance of hp53 in checkpoint signaling, we hypothesize that hPer2 association with hp53 acts as a regulatory module that influences hp53's downstream response to genotoxic stress. Unlike the trimeric complex, whose distribution was confined to the nuclear compartment, hPer2/hp53 was identified in both cytosol and nucleus. At the transcriptional level, a reporter containing the hp21WAF1/CIP1 promoter, a target of hp53, remained inactive in cells expressing a stable form of the hPer2/hp53 complex even when treated with γ-radiation. Finally, we established that hPer2 directly acts on the hp53 node, as checkpoint components upstream of hp53 remained active in response to DNA damage. Quantitative transcriptional analyses of hp53 target genes demonstrated that unbound hp53 was absolutely required for activation of the DNA-damage response. Our results provide evidence of the mode by which the circadian tumor suppressor hPer2 modulates hp53 signaling in response to genotoxic stress.
Collapse
Affiliation(s)
- Tetsuya Gotoh
- Integrated Cellular Responses Laboratory, Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| | - Marian Vila-Caballer
- Integrated Cellular Responses Laboratory, Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| | - Jingjing Liu
- Integrated Cellular Responses Laboratory, Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| | - Samuel Schiffhauer
- Integrated Cellular Responses Laboratory, Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| | - Carla V Finkielstein
- Integrated Cellular Responses Laboratory, Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| |
Collapse
|
86
|
Kerr ARW, Schirmer EC. FG repeats facilitate integral protein trafficking to the inner nuclear membrane. Commun Integr Biol 2014. [DOI: 10.4161/cib.16052] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
87
|
|
88
|
Monecke T, Dickmanns A, Ficner R. Allosteric control of the exportin CRM1 unraveled by crystal structure analysis. FEBS J 2014; 281:4179-94. [PMID: 24823279 PMCID: PMC4231977 DOI: 10.1111/febs.12842] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 05/02/2014] [Accepted: 05/12/2014] [Indexed: 01/07/2023]
Abstract
Nucleocytoplasmic trafficking in eukaryotic cells is a highly regulated and coordinated process which involves an increasing variety of soluble nuclear transport receptors. Generally, transport receptors specifically bind their cargo and facilitate its transition through nuclear pore complexes, aqueous channels connecting the two compartments. Directionality of such transport events by receptors of the importin β superfamily requires the interaction with the small GTPase Ras-related nuclear antigen (Ran). While importins need RanGTP to release their cargo in the nucleus and thus to terminate import, exportins recruit cargo in the RanGTP-bound state. The exportin chromosome region maintenance 1 (CRM1) is a highly versatile transport receptor that exports a plethora of different protein and RNP cargoes. Moreover, binding of RanGTP and of cargo to CRM1 are highly cooperative events despite the fact that cargo and RanGTP do not interact directly in crystal structures of assembled export complexes. Integrative approaches have recently unraveled the individual steps of the CRM1 transport cycle at a structural level and explained how the HEAT-repeat architecture of CRM1 provides a framework for the key elements to mediate allosteric interactions with RanGTP, Ran binding proteins and cargo. Moreover, during the last decade, CRM1 has become a more and more appreciated target for anti-cancer drugs. Hence, detailed understanding of the flexibility, the regulatory features and the positive binding cooperativity between CRM1, Ran and cargo is a prerequisite for the development of highly effective drugs. Here we review recent structural advances in the characterization of CRM1 and CRM1-containing complexes with a special emphasis on X-ray crystallographic studies.
Collapse
Affiliation(s)
- Thomas Monecke
- Abteilung für Molekulare Strukturbiologie, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften, Georg-August-Universität Göttingen, Germany
| | | | | |
Collapse
|
89
|
Osmanović D, Ford IJ, Hoogenboom BW. Model inspired by nuclear pore complex suggests possible roles for nuclear transport receptors in determining its structure. Biophys J 2014; 105:2781-9. [PMID: 24359750 DOI: 10.1016/j.bpj.2013.11.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 10/25/2013] [Accepted: 11/04/2013] [Indexed: 12/20/2022] Open
Abstract
Nuclear transport receptors (NTRs) mediate nucleocytoplasmic transport via their affinity for unstructured proteins (polymers) in the nuclear pore complex (NPC). Here, we have modeled the effect of NTRs on polymeric structure in the nanopore confinement of the NPC central conduit. The model explicitly takes into account inter- and intramolecular interactions, as well as the finite size of the NTRs (∼20% of the NPC channel diameter). It reproduces various proposed scenarios for the channel structure, ranging from a central polymer condensate (selective phase) to brushlike polymer arrangements localized at the channel wall (virtual gate, reduction of dimensionality), with the transport receptors lining the polymer surface. In addition, it predicts a new structure in which NTRs become an integral part of the transport barrier by forming a cross-linked network with the unstructured proteins stretching across the pore. The model provides specific and distinctive predictions for the equilibrium spatial distributions of NTRs for these different scenarios that can be experimentally verified by, e.g., superresolution fluorescence microscopy. Moreover, it suggests mechanisms by which globular macromolecules (colloidal particles) can cause polymer-coated nanopores to switch between open and closed configurations, a possible explanation of the biological function of the NPC, and suggests potential technological applications for filtration and single-molecule sensing.
Collapse
Affiliation(s)
- Dino Osmanović
- London Centre for Nanotechnology and Department of Physics and Astronomy, University College London, London, United Kingdom.
| | - Ian J Ford
- London Centre for Nanotechnology and Department of Physics and Astronomy, University College London, London, United Kingdom
| | - Bart W Hoogenboom
- London Centre for Nanotechnology and Department of Physics and Astronomy, University College London, London, United Kingdom
| |
Collapse
|
90
|
Fuxreiter M, Tóth-Petróczy Á, Kraut DA, Matouschek AT, Lim RYH, Xue B, Kurgan L, Uversky VN. Disordered proteinaceous machines. Chem Rev 2014; 114:6806-43. [PMID: 24702702 PMCID: PMC4350607 DOI: 10.1021/cr4007329] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Indexed: 12/18/2022]
Affiliation(s)
- Monika Fuxreiter
- MTA-DE
Momentum Laboratory of Protein Dynamics, Department of Biochemistry
and Molecular Biology, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary
| | - Ágnes Tóth-Petróczy
- Department
of Biological Chemistry, Weizmann Institute
of Science, Rehovot 7610001, Israel
| | - Daniel A. Kraut
- Department
of Chemistry, Villanova University, 800 East Lancaster Avenue, Villanova, Pennsylvania 19085, United States
| | - Andreas T. Matouschek
- Section
of Molecular Genetics and Microbiology, Institute for Cellular &
Molecular Biology, The University of Texas
at Austin, 2506 Speedway, Austin, Texas 78712, United States
| | - Roderick Y. H. Lim
- Biozentrum
and the Swiss Nanoscience Institute, University
of Basel, Klingelbergstrasse
70, CH-4056 Basel, Switzerland
| | - Bin Xue
- Department of Cell Biology,
Microbiology and Molecular Biology, College
of Fine Arts and Sciences, and Department of Molecular Medicine and USF Health
Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
| | - Lukasz Kurgan
- Department
of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Vladimir N. Uversky
- Department of Cell Biology,
Microbiology and Molecular Biology, College
of Fine Arts and Sciences, and Department of Molecular Medicine and USF Health
Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
- Institute
for Biological Instrumentation, Russian
Academy of Sciences, 142290 Pushchino, Moscow Region 119991, Russia
| |
Collapse
|
91
|
Bernardes NE, Takeda AAS, Freitas FZ, Bertolini MC, Fontes MRM. Crystallization and preliminary X-ray crystallographic analysis of importin-α from Neurospora crassa. Acta Crystallogr F Struct Biol Commun 2014; 70:501-4. [PMID: 24699749 PMCID: PMC3976073 DOI: 10.1107/s2053230x14005068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 03/05/2014] [Indexed: 01/18/2023] Open
Abstract
Importin-α recognizes cargo proteins that contain classical nuclear localization sequences (NLS) and, in complex with importin-β, is able to translocate nuclear proteins through the nuclear pore complex. The filamentous fungus Neurospora crassa is a well studied organism that has been widely used as a model organism for fundamental aspects of eukaryotic biology, and is important for understanding the specific mechanisms of protein transport to the cell nucleus. In this work, the crystallization and preliminary X-ray diffraction analysis of importin-α from N. crassa (IMPα-Nc) complexed with a classical NLS peptide (SV40 NLS) are reported. IMPα-Nc-SV40 NLS crystals diffracted X-rays to 2.0 Å resolution and the structure was solved by molecular-replacement techniques, leading to a monomeric structure. The observation of the electron-density map indicated the presence of SV40 NLSs interacting at both the minor and major NLS-binding sites of the protein.
Collapse
Affiliation(s)
- Natalia E. Bernardes
- Departamento de Física e Biofísica, Instituto de Biociências, UNESP – Universidade Estadual Paulista, Botucatu, SP, Brazil
| | - Agnes A. S. Takeda
- Departamento de Física e Biofísica, Instituto de Biociências, UNESP – Universidade Estadual Paulista, Botucatu, SP, Brazil
| | - Fernanda Z. Freitas
- Departamento de Bioquímica e Tecnologia Química, Instituto de Química, UNESP – Universidade Estadual Paulista, Araraquara, SP, Brazil
| | - Maria Célia Bertolini
- Departamento de Bioquímica e Tecnologia Química, Instituto de Química, UNESP – Universidade Estadual Paulista, Araraquara, SP, Brazil
| | - Marcos R. M. Fontes
- Departamento de Física e Biofísica, Instituto de Biociências, UNESP – Universidade Estadual Paulista, Botucatu, SP, Brazil
| |
Collapse
|
92
|
Goryaynov A, Yang W. Role of molecular charge in nucleocytoplasmic transport. PLoS One 2014; 9:e88792. [PMID: 24558427 PMCID: PMC3928296 DOI: 10.1371/journal.pone.0088792] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Accepted: 01/12/2014] [Indexed: 12/17/2022] Open
Abstract
Transport of genetic materials and proteins between the nucleus and cytoplasm of eukaryotic cells is mediated by nuclear pore complexes (NPCs). A selective barrier formed by phenylalanine-glycine (FG) nucleoporins (Nups) with net positive charges in the NPC allows for passive diffusion of signal-independent small molecules and transport-receptor facilitated translocation of signal-dependent cargo molecules. Recently, negative surface charge was postulated to be another essential criterion for selective passage through the NPC. However, the charge-driven mechanism in determining the transport kinetics and spatial transport route for either passive diffusion or facilitated translocation remains obscure. Here we employed high-speed single-molecule fluorescence microscopy with an unprecedented spatiotemporal resolution of 9 nm and 400 µs to uncover these mechanistic fundamentals for nuclear transport of charged substrates through native NPCs. We found that electrostatic interaction between negative surface charges on transiting molecules and the positively charged FG Nups, although enhancing their probability of binding to the NPC, never plays a dominant role in determining their nuclear transport mode or spatial transport route. A 3D reconstruction of transport routes revealed that small signal-dependent endogenous cargo protein constructs with high positive surface charges that are destined to the nucleus, rather than repelled from the NPC as suggested in previous models, passively diffused through an axial central channel of the NPC in the absence of transport receptors. Finally, we postulated a comprehensive map of interactions between transiting molecules and FG Nups during nucleocytoplasmic transport by combining the effects of molecular size, signal and surface charge.
Collapse
Affiliation(s)
- Alexander Goryaynov
- Department of Biology, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Weidong Yang
- Department of Biology, Temple University, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
93
|
Recombinant adeno-associated virus utilizes host cell nuclear import machinery to enter the nucleus. J Virol 2014; 88:4132-44. [PMID: 24478436 DOI: 10.1128/jvi.02660-13] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Recombinant adeno-associated viral (rAAV) vectors have garnered much promise in gene therapy applications. However, widespread clinical use has been limited by transduction efficiency. Previous studies suggested that the majority of rAAV accumulates in the perinuclear region of cells, presumably unable to traffic into the nucleus. rAAV nuclear translocation remains ill-defined; therefore, we performed microscopy, genetic, and biochemical analyses in vitro in order to understand this mechanism. Lectin blockade of the nuclear pore complex (NPC) resulted in inhibition of nuclear rAAV2. Visualization of fluorescently labeled particles revealed that rAAV2 localized to importin-β-dense regions of cells in late trafficking steps. Additionally, small interfering RNA (siRNA) knockdown of importin-β partially inhibited rAAV2 nuclear translocation and inhibited transduction by 50 to 70%. Furthermore, coimmunopreciptation (co-IP) analysis revealed that capsid proteins from rAAV2 could interact with importin-β and that this interaction was sensitive to the small GTPase Ran. More importantly, mutations to key basic regions in the rAAV2 capsid severely inhibited interactions with importin-β. We tested several other serotypes and found that the extent of importin-β interaction varied, suggesting that different serotypes may utilize alternative import proteins for nuclear translocation. Co-IP and siRNA analyses were used to investigate the role of other karyopherins, and the results suggested that rAAV2 may utilize multiple import proteins for nuclear entry. Taken together, our results suggest that rAAV2 interacts with importin-β alone or in complex with other karyopherins and enters the nucleus via the NPC. These results may lend insight into the design of novel AAV vectors that have an enhanced nuclear entry capability and transduction potential. IMPORTANCE Use of recombinant adeno-associated viral (rAAV) vectors for gene therapy applications is limited by relatively low transduction efficiency, in part due to cellular barriers that hinder successful subcellular trafficking to the nucleus, where uncoating and subsequent gene expression occur. Nuclear translocation of rAAV has been regarded as a limiting step for successful transduction but it remains ill-defined. We explored potential nuclear entry mechanisms for rAAV2 and found that rAAV2 can utilize the classical nuclear import pathway, involving the nuclear pore complex, the small GTPase Ran, and cellular karyopherins. These results could lend insight into the rational design of novel rAAV vectors that can more efficiently translocate to the nucleus, which may lead to more efficient transduction.
Collapse
|
94
|
Haffar O, Bukrinsky M. Nuclear translocation as a novel target for anti-HIV drugs. Expert Rev Anti Infect Ther 2014; 3:41-50. [PMID: 15757456 DOI: 10.1586/14787210.3.1.41] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
During recent years, remarkable progress has been achieved in the treatment of patients infected with HIV. This progress involves not only the improvement of previously known drugs but also the introduction of new classes of anti-HIV agents. Currently, drugs targeting virus entry, reverse transcription, integration and maturation are either in clinical use or in the late stages of clinical development. Nonetheless, the high mutation rate of the virus and toxicity of the drugs, which become problematic during prolonged treatment regimens characteristic of anti-HIV therapy, drive the necessity to produce new drugs that will allow physicians to keep the virus at bay in patients on lifelong anti-HIV therapy. Ideally, such drugs would target a new step in the HIV life cycle, thus avoiding crossresistance with older compounds. One such new target for anti-HIV therapy is nuclear translocation--a process critical for HIV replication. In this article, the authors will review recent literature on the mechanisms of HIV nuclear import and will describe compounds that inhibit this step of HIV replication.
Collapse
Affiliation(s)
- Omar Haffar
- International Therapeutics, Inc., 600 Broadway Medical Center, Suite 510, Seattle, WA 98122, USA.
| | | |
Collapse
|
95
|
Yao H, Wang G, Wang X. Nuclear translocation of proteins and the effect of phosphatidic acid. PLANT SIGNALING & BEHAVIOR 2014; 9:e977711. [PMID: 25482760 PMCID: PMC5155622 DOI: 10.4161/15592324.2014.977711] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 09/04/2014] [Accepted: 09/11/2014] [Indexed: 05/22/2023]
Abstract
Transport of proteins containing a nuclear localization signal (NLS) into the nucleus is mediated by nuclear transport receptors called importins, typically dimmers of a cargo-binding α-subunit and a β-subunit that mediates translocation through the nuclear pore complexes (NPCs). However, how proteins without canonical NLS move into the nucleus is not well understood. Recent results indicate that phospholipids, such as phosphatidic acid, play important roles in the intracellular translocation of proteins between the nucleus and cytoplasm.
Collapse
Affiliation(s)
- Hongyan Yao
- National Key Laboratory of Plant Molecular
Genetics; Institute of Plant Physiology and Ecology; Chinese Academy of
Sciences; Shanghai, China
- Correspondence to: Hongyan Yao;
| | - Geliang Wang
- Department of Biology; University of Missouri;
St. Louis, MO USA; Donald Danforth Plant Science Center; St. Louis, MO
USA
| | - Xuemin Wang
- Department of Biology; University of Missouri;
St. Louis, MO USA; Donald Danforth Plant Science Center; St. Louis, MO
USA
| |
Collapse
|
96
|
Floch AG, Palancade B, Doye V. Fifty years of nuclear pores and nucleocytoplasmic transport studies: multiple tools revealing complex rules. Methods Cell Biol 2014; 122:1-40. [PMID: 24857723 DOI: 10.1016/b978-0-12-417160-2.00001-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nuclear pore complexes (NPCs) are multiprotein assemblies embedded within the nuclear envelope and involved in the control of the bidirectional transport of proteins and ribonucleoparticles between the nucleus and the cytoplasm. Since their discovery more than 50 years ago, NPCs and nucleocytoplasmic transport have been the focus of intense research. Here, we review how the use of a multiplicity of structural, biochemical, genetic, and cell biology approaches have permitted the deciphering of the main features of this macromolecular complex, its mode of assembly as well as the rules governing nucleocytoplasmic exchanges. We first present the current knowledge of the ultrastructure of NPCs, which reveals that they are modular and repetitive assemblies of subunits referred to as nucleoporins, associated into stable subcomplexes and composed of a limited set of protein domains, including phenylalanine-glycine (FG) repeats and membrane-interacting domains. The outcome of investigations on nucleocytoplasmic trafficking will then be detailed, showing how it involves a limited number of molecular factors and common mechanisms, namely (i) indirect association of cargos with nuclear pores through receptors in the donor compartment, (ii) progression within the channel through dynamic hydrophobic interactions with FG-Nups, and (iii) NTPase-driven remodeling of transport complexes in the target compartment. Finally, we also discuss the outcome of more recent studies, which indicate that NPCs and the transport machinery are dynamic and versatile devices, whose biogenesis is tightly coordinated with the cell cycle, and which carry nonconventional duties, in particular, in mitosis, gene expression, and genetic stability.
Collapse
Affiliation(s)
- Aurélie G Floch
- Institut Jacques Monod, CNRS, UMR 7592, Univ. Paris Diderot, Sorbonne Paris Cité, F-75205 Paris, France; Ecole Doctorale Gènes Génomes Cellules, Université Paris Sud-11, Orsay, France
| | - Benoit Palancade
- Institut Jacques Monod, CNRS, UMR 7592, Univ. Paris Diderot, Sorbonne Paris Cité, F-75205 Paris, France
| | - Valérie Doye
- Institut Jacques Monod, CNRS, UMR 7592, Univ. Paris Diderot, Sorbonne Paris Cité, F-75205 Paris, France
| |
Collapse
|
97
|
Osmanović D, Fassati A, Ford IJ, Hoogenboom BW. Physical modelling of the nuclear pore complex. SOFT MATTER 2013; 9:10442. [PMCID: PMC4046875 DOI: 10.1039/c3sm50722j] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 07/18/2013] [Indexed: 05/24/2023]
Abstract
An in-depth discussion of nuclear pore complexes illustrates the importance of macromolecular confinement in biological systems.
Physically interesting behaviour can arise when soft matter is confined to nanoscale dimensions. A highly relevant biological example of such a phenomenon is the Nuclear Pore Complex (NPC) found perforating the nuclear envelope of eukaryotic cells. In the central conduit of the NPC, of ∼30–60 nm diameter, a disordered network of proteins regulates all macromolecular transport between the nucleus and the cytoplasm. In spite of a wealth of experimental data, the selectivity barrier of the NPC has yet to be explained fully. Experimental and theoretical approaches are complicated by the disordered and heterogeneous nature of the NPC conduit. Modelling approaches have focused on the behaviour of the partially unfolded protein domains in the confined geometry of the NPC conduit, and have demonstrated that within the range of parameters thought relevant for the NPC, widely varying behaviour can be observed. In this review, we summarise recent efforts to physically model the NPC barrier and function. We illustrate how attempts to understand NPC barrier function have employed many different modelling techniques, each of which have contributed to our understanding of the NPC.
Collapse
Affiliation(s)
- Dino Osmanović
- London Centre for Nanotechnology and Department of Physics and Astronomy , University College London , Gower Street , WC1E 6BT , UK .
| | - Ariberto Fassati
- Wohl Virion Centre and MRC Centre for Medical Molecular Virology , University College London , Gower Street , WC1E 6BT , UK
| | - Ian J. Ford
- London Centre for Nanotechnology and Department of Physics and Astronomy , University College London , Gower Street , WC1E 6BT , UK .
| | - Bart W. Hoogenboom
- London Centre for Nanotechnology and Department of Physics and Astronomy , University College London , Gower Street , WC1E 6BT , UK .
| |
Collapse
|
98
|
Yasuhara N, Yamagishi R, Arai Y, Mehmood R, Kimoto C, Fujita T, Touma K, Kaneko A, Kamikawa Y, Moriyama T, Yanagida T, Kaneko H, Yoneda Y. Importin alpha subtypes determine differential transcription factor localization in embryonic stem cells maintenance. Dev Cell 2013; 26:123-35. [PMID: 23906064 DOI: 10.1016/j.devcel.2013.06.022] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 04/15/2013] [Accepted: 06/22/2013] [Indexed: 11/25/2022]
Abstract
We recently demonstrated that the expression of the importin α subtype is switched from α2 to α1 during neural differentiation in mouse embryonic stem cells (ESCs) and that this switching has a major impact on cell differentiation. In this study, we report a cell-fate determination mechanism in which importin α2 negatively regulates the nuclear import of certain transcription factors to maintain ESC properties. The nuclear import of Oct6 and Brn2 was inhibited via the formation of a transport-incompetent complex of the cargo bound to a nuclear localization signal binding site in importin α2. Unless this dominant-negative effect was downregulated upon ESC differentiation, inappropriate cell death was induced. We propose that although certain transcription factors are necessary for differentiation in ESCs, these factors are retained in the cytoplasm by importin α2, thereby preventing transcription factor activity in the nucleus until the cells undergo differentiation.
Collapse
Affiliation(s)
- Noriko Yasuhara
- Department of Biochemistry, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Fiserova J, Spink M, Richards SA, Saunter C, Goldberg MW. Entry into the nuclear pore complex is controlled by a cytoplasmic exclusion zone containing dynamic GLFG-repeat nucleoporin domains. J Cell Sci 2013; 127:124-36. [PMID: 24144701 DOI: 10.1242/jcs.133272] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nuclear pore complexes (NPCs) mediate nucleocytoplasmic movement. The central channel contains proteins with phenylalanine-glycine (FG) repeats, or variations (GLFG, glycine-leucine-phenylalanine-glycine). These are 'intrinsically disordered' and often represent weak interaction sites that become ordered upon interaction. We investigated this possibility during nuclear transport. Using electron microscopy of S. cerevisiae, we show that NPC cytoplasmic filaments form a dome-shaped structure enclosing GLFG domains. GLFG domains extend out of this structure and are part of an 'exclusion zone' that might act as a partial barrier to entry of transport-inert proteins. The anchor domain of a GLFG nucleoporin locates exclusively to the central channel. By contrast, the localisation of the GLFG domains varied between NPCs and could be cytoplasmic, central or nucleoplasmic and could stretch up to 80 nm. These results suggest a dynamic exchange between ordered and disordered states. In contrast to diffusion through the NPC, transport cargoes passed through the exclusion zone and accumulated near the central plane. We also show that movement of cargo through the NPC is accompanied by relocation of GLFG domains, suggesting that binding, restructuring and movement of these domains could be part of the translocation mechanism.
Collapse
Affiliation(s)
- Jindriska Fiserova
- School of Biological and Biomedical Sciences, Durham University, Science Laboratories, South Road, Durham DH1 3LE, UK
| | | | | | | | | |
Collapse
|
100
|
Labokha AA, Fassati A. Viruses challenge selectivity barrier of nuclear pores. Viruses 2013; 5:2410-23. [PMID: 24084236 PMCID: PMC3814595 DOI: 10.3390/v5102410] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 09/24/2013] [Accepted: 09/25/2013] [Indexed: 01/04/2023] Open
Abstract
Exchange between the nucleus and the cytoplasm occurs through nuclear pore complexes (NPCs) embedded in the double membrane of the nuclear envelope. NPC permeability barrier restricts the entry of inert molecules larger than 5 nm in diameter but allows facilitated entry of selected cargos, whose size can reach up to 39 nm. The translocation of large molecules is facilitated by nuclear transport receptors (NTRs) that have affinity to proteins of NPC permeability barrier. Viruses that enter the nucleus replicate evolved strategies to overcome this barrier. In this review, we will discuss the functional principles of NPC barrier and nuclear transport machinery, as well as the various strategies viruses use to cross the selective barrier of NPCs.
Collapse
Affiliation(s)
- Aksana A. Labokha
- Authors to whom correspondence should be addressed; E-Mails: (A.A.L.); (A.F.); Tel.: (+44(0)2031082141); Fax: (+44(0)2031082123); Tel.: (+44(0)2031082138); Fax: (+44(0)2031082123)
| | - Ariberto Fassati
- Authors to whom correspondence should be addressed; E-Mails: (A.A.L.); (A.F.); Tel.: (+44(0)2031082141); Fax: (+44(0)2031082123); Tel.: (+44(0)2031082138); Fax: (+44(0)2031082123)
| |
Collapse
|