51
|
Skov L, Holm KMD, Johansen SS, Linnet K. Postmortem Brain and Blood Reference Concentrations of Alprazolam, Bromazepam, Chlordiazepoxide, Diazepam, and their Metabolites and a Review of the Literature. J Anal Toxicol 2016; 40:529-36. [DOI: 10.1093/jat/bkw059] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 04/24/2016] [Indexed: 12/20/2022] Open
|
52
|
Abstract
The next-generation sequencing revolution has substantially increased our understanding of the mutated genes that underlie complex neurodevelopmental disease. Exome sequencing has enabled us to estimate the number of genes involved in the etiology of neurodevelopmental disease, whereas targeted sequencing approaches have provided the means for quick and cost-effective sequencing of thousands of patient samples to assess the significance of individual genes. By leveraging such technologies and clinical exome sequencing, a genotype-first approach has emerged in which patients with a common genotype are first identified and then clinically reassessed as a group. This approach has proven a powerful methodology for refining disease subtypes. We propose that the molecular characterization of these genetic subtypes has important implications for diagnostics and also for future drug development. Classifying patients into subgroups with a common genetic etiology and applying treatments tailored to the specific molecular defect they carry is likely to improve management of neurodevelopmental disease in the future.
Collapse
|
53
|
Srivastava A, Samanta S. Double π-Bond Isomerization/Friedel-Crafts Reaction Involving γ-Amidocronates: Access to γ-Aryl/Heteroaryl GABA Scaffolds and Dihydropyrido[1,2-a]indoles. European J Org Chem 2016. [DOI: 10.1002/ejoc.201501388] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
54
|
Payghan PV, Bera I, Bhattacharyya D, Ghoshal N. Capturing state-dependent dynamic events of GABAA-receptors: a microscopic look into the structural and functional insights. J Biomol Struct Dyn 2016; 34:1818-37. [DOI: 10.1080/07391102.2015.1094410] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Pavan V. Payghan
- Structural Biology and Bioinformatics Division, CSIR – Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Indrani Bera
- Structural Biology and Bioinformatics Division, CSIR – Indian Institute of Chemical Biology, Kolkata 700032, India
| | | | - Nanda Ghoshal
- Structural Biology and Bioinformatics Division, CSIR – Indian Institute of Chemical Biology, Kolkata 700032, India
| |
Collapse
|
55
|
Tahara YK, Michino M, Ito M, Kanyiva KS, Shibata T. Enantioselective sp(3) C-H alkylation of γ-butyrolactam by a chiral Ir(I) catalyst for the synthesis of 4-substituted γ-amino acids. Chem Commun (Camb) 2015; 51:16660-3. [PMID: 26426546 DOI: 10.1039/c5cc07102j] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Ir-catalyzed sp(3) C-H alkylation of γ-butyrolactam with alkenes was used for the highly enantioselective synthesis of 5-substituted γ-lactams, which were readily converted into chiral 4-substituted γ-amino acids. A broad scope of alkenes was amenable as coupling partners, and the alkylated product using acrylate could be transformed into the key intermediate of pyrrolam A synthesis.
Collapse
Affiliation(s)
- Yu-ki Tahara
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan.
| | | | | | | | | |
Collapse
|
56
|
Johnston GAR. Flavonoid nutraceuticals and ionotropic receptors for the inhibitory neurotransmitter GABA. Neurochem Int 2015; 89:120-5. [PMID: 26190180 DOI: 10.1016/j.neuint.2015.07.013] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/12/2015] [Accepted: 07/14/2015] [Indexed: 01/07/2023]
Abstract
Flavonoids that are found in nutraceuticals have many and varied effects on the activation of ionotropic receptors for GABA, the major inhibitory neurotransmitter in our brains. They can act as positive or negative modulators enhancing or reducing the effect of GABA. They can act as allosteric agonists. They can act to modulate the action of other modulators. There is considerable evidence that these flavonoids are able to enter the brain to influence brain function. They may have a range of effects including relief of anxiety, improvement in cognition, acting as neuroprotectants and as sedatives. All of these effects are sought after in nutraceuticals. A number of studies have likened flavonoids to the widely prescribed benzodiazepines as 'a new family of benzodiazepine receptor ligands'. They are much more than that with many flavonoid actions on ionotropic GABA receptors being insensitive to the classic benzodiazepine antagonist flumazenil and thus independent of the classic benzodiazepine actions. It is time to consider flavonoids in their own right as important modulators of these vital receptors in brain function. Flavonoids are rarely consumed as a single flavonoid except as dietary supplements. The effects of mixtures of flavonoids and other modulators on GABAA receptors need to be more thoroughly investigated.
Collapse
Affiliation(s)
- Graham A R Johnston
- Pharmacology, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
57
|
Raftery TD, Volz DC. Abamectin induces rapid and reversible hypoactivity within early zebrafish embryos. Neurotoxicol Teratol 2015; 49:10-8. [DOI: 10.1016/j.ntt.2015.02.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 01/14/2015] [Accepted: 02/19/2015] [Indexed: 11/16/2022]
|
58
|
Sachidanandan D, Bera AK. Inhibition of the GABAA Receptor by Sulfated Neurosteroids: A Mechanistic Comparison Study between Pregnenolone Sulfate and Dehydroepiandrosterone Sulfate. J Mol Neurosci 2015; 56:868-877. [PMID: 25725785 DOI: 10.1007/s12031-015-0527-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 02/16/2015] [Indexed: 01/07/2023]
Abstract
The γ-aminobutyric acid type A receptor (GABAAR) is negatively modulated by two structurally similar neurosteroids, pregnenolone sulfate (PS) and dehydroepiandrosterone sulfate (DHEAS). This study attempted to ascertain the molecular mechanisms of inhibition of the GABA-ergic current by neurosteroids. We demonstrated that the presence of the γ subunit in GABAAR enhances the efficacy of DHEAS without altering its binding affinity. A saturating concentration of DHEAS blocked approximately 75 % of currents mediated by GABAAR, which is composed of human α1, β1, and γ2S subunits, whereas the inhibition was only 35 % in GABAAR containing only α1 and β1 subunits. The IC50 values of DHEAS with and without the γ subunit were almost identical. In contrast to DHEAS, neither the affinity nor the efficacy of PS was altered by the γ subunit. When Val256 of α1 subunit was mutated to Ser, the mutant channel became resistant to inhibition by both DHEAS and PS. PS exerted its inhibitory effect by enhancing the desensitization kinetics of GABAAR possibly through promoting the interaction between the M2-M3 linker and extracellular loop 7/loop 2. Mutant α1, containing double Cys in loop 2/loop 7 and the M2-M3 linker, formed disulfide bonds three times as much fast, when treated with saturating GABA+PS, compared with GABA alone or with GABA+DHEAS. We demonstrated that PS, but not DHEAS, mediates GABA-ergic inhibition by promoting collisions between the structural elements involved in receptor desensitization, i.e., loop 2, loop 7, and the M2-M3 linker, thus following different inhibitory mechanisms.
Collapse
Affiliation(s)
- Divya Sachidanandan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Sardar Patel Road, Chennai, 600036, Tamil Nadu, India
| | - Amal Kanti Bera
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Sardar Patel Road, Chennai, 600036, Tamil Nadu, India.
| |
Collapse
|
59
|
Shoemaker PA. Neuronal networks with NMDARs and lateral inhibition implement winner-takes-all. Front Comput Neurosci 2015; 9:12. [PMID: 25741276 PMCID: PMC4332340 DOI: 10.3389/fncom.2015.00012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 01/23/2015] [Indexed: 11/13/2022] Open
Abstract
A neural circuit that relies on the electrical properties of NMDA synaptic receptors is shown by numerical and theoretical analysis to be capable of realizing the winner-takes-all function, a powerful computational primitive that is often attributed to biological nervous systems. This biophysically-plausible model employs global lateral inhibition in a simple feedback arrangement. As its inputs increase, high-gain and then bi- or multi-stable equilibrium states may be assumed in which there is significant depolarization of a single neuron and hyperpolarization or very weak depolarization of other neurons in the network. The state of the winning neuron conveys analog information about its input. The winner-takes-all characteristic depends on the nonmonotonic current-voltage relation of NMDA receptor ion channels, as well as neural thresholding, and the gain and nature of the inhibitory feedback. Dynamical regimes vary with input strength. Fixed points may become unstable as the network enters a winner-takes-all regime, which can lead to entrained oscillations. Under some conditions, oscillatory behavior can be interpreted as winner-takes-all in nature. Stable winner-takes-all behavior is typically recovered as inputs increase further, but with still larger inputs, the winner-takes-all characteristic is ultimately lost. Network stability may be enhanced by biologically plausible mechanisms.
Collapse
|
60
|
Maric HM, Kasaragod VB, Haugaard-Kedström L, Hausrat TJ, Kneussel M, Schindelin H, Strømgaard K. Design and Synthesis of High-Affinity Dimeric Inhibitors Targeting the Interactions between Gephyrin and Inhibitory Neurotransmitter Receptors. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201409043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
61
|
Maric HM, Kasaragod VB, Haugaard-Kedström L, Hausrat TJ, Kneussel M, Schindelin H, Strømgaard K. Design and synthesis of high-affinity dimeric inhibitors targeting the interactions between gephyrin and inhibitory neurotransmitter receptors. Angew Chem Int Ed Engl 2014; 54:490-4. [PMID: 25413248 DOI: 10.1002/anie.201409043] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Indexed: 12/22/2022]
Abstract
Gephyrin is the central scaffolding protein for inhibitory neurotransmitter receptors in the brain. Here we describe the development of dimeric peptides that inhibit the interaction between gephyrin and these receptors, a process which is fundamental to numerous synaptic functions and diseases of the brain. We first identified receptor-derived minimal gephyrin-binding peptides that displayed exclusive binding towards native gephyrin from brain lysates. We then designed and synthesized a series of dimeric ligands, which led to a remarkable 1220-fold enhancement of the gephyrin affinity (KD=6.8 nM). In X-ray crystal structures we visualized the simultaneous dimer-to-dimer binding in atomic detail, revealing compound-specific binding modes. Thus, we defined the molecular basis of the affinity-enhancing effect of multivalent gephyrin inhibitors and provide conceptually novel compounds with therapeutic potential, which will allow further elucidation of the gephyrin-receptor interplay.
Collapse
Affiliation(s)
- Hans Michael Maric
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen (Denmark)
| | | | | | | | | | | | | |
Collapse
|
62
|
de Oliveira DR, Zamberlam CR, Gaiardo RB, Rêgo GM, Cerutti JM, Cavalheiro AJ, Cerutti SM. Flavones from Erythrina falcata are modulators of fear memory. Altern Ther Health Med 2014; 14:288. [PMID: 25096710 PMCID: PMC4141959 DOI: 10.1186/1472-6882-14-288] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 07/24/2014] [Indexed: 12/02/2022]
Abstract
Background Flavonoids, which have been identified in a variety of plants, have been demonstrated to elicit beneficial effects on memory. Some studies have reported that flavonoids derived from Erythrina plants can provide such beneficial effects on memory. The aim of this study was to identify the flavonoids present in the stem bark crude extract of Erythrina falcata (CE) and to perform a bioactivity-guided study on conditioned fear memory. Methods The secondary metabolites of CE were identified by high performance liquid chromatography combined with a diode array detector, electrospray ionization tandem mass spectrometry (HPLC-DAD-ESI/MSn) and nuclear magnetic resonance (NMR). The buthanolic fraction (BuF) was obtained by partitioning. Subfractions from BuF (BuF1 – BuF6) and fraction flavonoidic (FfA and FfB) were obtained by flash chromatography. The BuF3 and BuF4 fractions were used for the isolation of flavonoids, which was performed using HPLC-PAD. The isolated substances were quantified by HPLC-DAD and their structures were confirmed by nuclear magnetic resonance (NMR). The activities of CE and the subfractions were monitored using a one-trial, step-down inhibitory avoidance (IA) task to identify the effects of these substances on the acquisition and extinction of conditioned fear in rats. Results Six subclasses of flavonoids were identified for the first time in CE. According to our behavioral data, CE, BuF, BuF3 and BuF4, the flavonoidic fractions, vitexin, isovitexin and 6-C-glycoside-diosmetin improved the acquisition of fear memory. Rats treated with BuF, BuF3 and BuF4 were particularly resistant to extinction. Nevertheless, rats treated with FfA and FfB, vitexin, isovitexin and 6-C-glycoside-diosmetin exhibited gradual reduction in conditioned fear response during the extinction retest session, which was measured at 48 to 480 h after conditioning. Conclusions Our results demonstrate that vitexin, isovitexin and diosmetin-6-C-glucoside and flavonoidic fractions resulted in a significant retention of fear memory but did not prevent the extinction of fear memory. These results further substantiate that the treatment with pure flavonoids or flavanoid-rich fractions might represent potential therapeutic approaches for the treatment of neurocognitive disorders, improvement of memory acquisition and spontaneous recovery of fear.
Collapse
|
63
|
Woo J, Cho S, Lee CJ. Isoliquiritigenin, a chalcone compound, enhances spontaneous inhibitory postsynaptic response. Exp Neurobiol 2014; 23:163-8. [PMID: 24963281 PMCID: PMC4065830 DOI: 10.5607/en.2014.23.2.163] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 05/26/2014] [Accepted: 05/28/2014] [Indexed: 01/19/2023] Open
Abstract
Isoliquiritigenin (ILTG) is a chalcone compound and shows various pharmacological properties, including antioxidant and anti-inflammatory activities. In recent study, we have reported a novel role of ILTG in sleep through a positive allosteric modulation of gamma-aminobutyric acid type A (GABAA)-benzodiazepine (BZD) receptors. However, the effect of ILTG in GABAAR-mediated synaptic response in brain has not been tested yet. Here we report that ILTG significantly prolonged the decay of spontaneous inhibitory postsynaptic currents (sIPSCs) mediated by GABAAR in mouse hippocampal CA1 pyramidal neurons without affecting amplitude and frequency of sIPSCs. This enhancement was fully inhibited by flumazenil (FLU), a specific GABAA-BZD receptor antagonist. These results suggest a potential role of ILTG as a modulator of GABAergic synaptic transmission.
Collapse
Affiliation(s)
- Junsung Woo
- Center for Neural Science and Functional Connectomics, Korea Institute of Science and Technology (KIST), Seoul 136-791, Korea. ; Neuroscience Program, University of Science and Technology (UST), Daejeon 305-350, Korea
| | - Suengmok Cho
- Korea Food Research Institute, Seongnam 463-746, Korea
| | - C Justin Lee
- Center for Neural Science and Functional Connectomics, Korea Institute of Science and Technology (KIST), Seoul 136-791, Korea. ; Neuroscience Program, University of Science and Technology (UST), Daejeon 305-350, Korea
| |
Collapse
|
64
|
GABAergic pharmacological activity of propofol related compounds as possible enhancers of general anesthetics and interaction with membranes. Cell Biochem Biophys 2014; 67:515-25. [PMID: 23456454 DOI: 10.1007/s12013-013-9537-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Phenol compounds, such as propofol and thymol, have been shown to act on the GABAA receptor through interaction with specific sites of this receptor. In addition, considering the high lipophilicity of phenols, it is possible that their pharmacological activity may also be the result of the interaction of phenol molecules with the surrounding lipid molecules, modulating the supramolecular organization of the receptor environment. Thus, in the present study, we study the pharmacological activity of some propofol- and thymol-related phenols on the native GABAA receptor using primary cultures of cortical neurons and investigate the effects of these compounds on the micro viscosity of artificial membranes by means of fluorescence anisotropy. The phenol compounds analyzed in this article are carvacrol, chlorothymol, and eugenol. All compounds were able to enhance the binding of [(3)H]flunitrazepam with EC50 values in the micromolar range and to increase the GABA-evoked Cl(-) influx in a concentration-dependent manner, both effects being inhibited by the competitive GABAA antagonist bicuculline. These results strongly suggest that the phenols studied are positive allosteric modulators of this receptor. Chlorothymol showed a bell-type effect, reducing its positive effect at concentrations >100 μM. The concentrations necessary to induce positive allosteric modulation of GABAA receptor were not cytotoxic. Although all compounds were able to decrease the micro viscosity of artificial membranes, chlorothymol displayed a larger effect which could explain its effects on [(3)H]flunitrazepam binding and on cell viability at high concentrations. Finally, it is suggested that these compounds may exert depressant activity on the central nervous system and potentiate the effects of general anesthetics.
Collapse
|
65
|
Detweiler CJ, Mambo NC. Suicide with Vecuronium and Etomidate: A Case Report and Review of the Literature. Acad Forensic Pathol 2014. [DOI: 10.23907/2014.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A case of suicidal death due to intravenous self-administration of vecuronium and etomidate by a registered nurse is being reported. Toxicologic blood analysis showed a vecuronium concentration of 0.023 mg/L, an etomidate concentration of 0.041 μg/mL, and an ethanol concentration of 113 mg/dL. The autopsy, toxicologic analysis, and crime scene investigation findings indicated that this was suicidal death caused by respiratory failure secondary to vecuronium administration exacerbated by sedation secondary to etomidate and ethanol use. Review of the medical literature and popular press media has identified several instances in which vecuronium has been used in homicidal deaths, but it has identified few cases in which vecuronium or etomidate, alone or in conjunction with another drug, have been used to commit suicide.
Collapse
Affiliation(s)
| | - Nobby C. Mambo
- University of Texas Medical Branch - Pathology, Galveston, TX
| |
Collapse
|
66
|
Tritsch NX, Oh WJ, Gu C, Sabatini BL. Midbrain dopamine neurons sustain inhibitory transmission using plasma membrane uptake of GABA, not synthesis. eLife 2014; 3:e01936. [PMID: 24843012 PMCID: PMC4001323 DOI: 10.7554/elife.01936] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Synaptic transmission between midbrain dopamine neurons and target neurons in the striatum is essential for the selection and reinforcement of movements. Recent evidence indicates that nigrostriatal dopamine neurons inhibit striatal projection neurons by releasing a neurotransmitter that activates GABAA receptors. Here, we demonstrate that this phenomenon extends to mesolimbic afferents, and confirm that the released neurotransmitter is GABA. However, the GABA synthetic enzymes GAD65 and GAD67 are not detected in midbrain dopamine neurons. Instead, these cells express the membrane GABA transporters mGAT1 (Slc6a1) and mGAT4 (Slc6a11) and inhibition of these transporters prevents GABA co-release. These findings therefore indicate that GABA co-release is a general feature of midbrain dopaminergic neurons that relies on GABA uptake from the extracellular milieu as opposed to de novo synthesis. This atypical mechanism may confer dopaminergic neurons the flexibility to differentially control GABAergic transmission in a target-dependent manner across their extensive axonal arbors. DOI:http://dx.doi.org/10.7554/eLife.01936.001 The electrical signals that are fired along neurons cannot be transmitted across the small gaps, called synapses that are found between neurons. Instead, the neuron sending the signal releases chemicals called neurotransmitters into the synapse. These neurotransmitters bind to receptor proteins on the surface of the second neuron and control how it fires. A neurotransmitter called dopamine plays a key role in the circuits of the brain that control how we learn certain tasks involving movement. In particular, two populations of neurons from the midbrain that release dopamine target the striatum, an area of the brain that is responsible for motor control. These neurons also release other neurotransmitters, but the identity of these other chemicals is not known, and the details of the interaction between the neurons and the striatum are poorly understood. Previous research showed that some of the midbrain neurons activate receptors that normally respond to a neurotransmitter called gamma-aminobutyric acid (GABA). However, several different chemicals can trigger this receptor. Using a range of techniques, Tritsch et al. now confirm that dopamine neurons release GABA alongside dopamine, and that this applies to both sets of the dopamine-producing neurons that feed into the striatum. Some neurons can manufacture GABA from amino acids found in their internal fluid. However, Tritsch et al. could not detect the enzymes needed for this reaction in dopamine-producing neurons. Instead, these neurons contain proteins that can transport GABA across the cell membrane, which suggests that the neurons collect GABA from the extracellular fluid that surrounds them. DOI:http://dx.doi.org/10.7554/eLife.01936.002
Collapse
Affiliation(s)
- Nicolas X Tritsch
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
| | - Won-Jong Oh
- Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Chenghua Gu
- Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Bernardo L Sabatini
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
| |
Collapse
|
67
|
Donato V, Pisani GB, Trumper L, Monasterolo LA. Effects of "in vivo" administration of baclofen on rat renal tubular function. Eur J Pharmacol 2013; 715:117-22. [PMID: 23791849 DOI: 10.1016/j.ejphar.2013.05.042] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 05/21/2013] [Accepted: 05/29/2013] [Indexed: 11/26/2022]
Abstract
The effects of the in vivo administration of baclofen on renal tubular transport and aquaporin-2 (AQP2) expression were evaluated. In conscious animals kept in metabolic cages, baclofen (0.01-1mg/kg, s.c.) induced a dose-dependent increment in the urine flow rate (UFR) and in sodium and potassium excretion, associated with an increased osmolal clearance (Closm), a diminished urine to plasma osmolality ratio (Uosm/Posm) and a decrease in AQP2 expression. The above mentioned baclofen effects on functional parameters were corroborated by using conventional renal clearance techniques. Additionally, this model allowed the detection of a diminution in glucose reabsorption. Some experiments were performed with water-deprived or desmopressin-treated rats kept in metabolic cages. Either water deprivation or desmopressin treatment decreased the UFR and increased the Uosm/Posm. Baclofen did not change the Uosm/Posm or AQP2 expression in desmopressin-treated rats; but it increased the UFR and diminished the Uosm/Posm and AQP2 expression in water-deprived animals. These results indicate that in vivo administration of baclofen promotes alterations in proximal tubular transport, since glucose reabsorption was decreased. The distal tubular function was also affected. The increased Closm indicates an alteration in solute reabsorption at the ascending limb of the Henle's loop. The decreased Uosm/Posm and AQP2 expression in controls and in water-deprived, but not in desmopressin-treated rats, lead us to speculate that some effect of baclofen on endogenous vasopressin availability could be responsible for the impaired urine concentrating ability, more than any disturbance in the responsiveness of the renal cells to the hormone.
Collapse
Affiliation(s)
- Verónica Donato
- Área Farmacología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, (2000) Rosario, Santa Fe, Argentina
| | | | | | | |
Collapse
|
68
|
de Nanteuil F, Loup J, Waser J. Catalytic Friedel-Crafts reaction of aminocyclopropanes. Org Lett 2013; 15:3738-41. [PMID: 23815365 DOI: 10.1021/ol401616a] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A Lewis acid catalyzed Friedel-Crafts reaction between donor-acceptor aminocyclopropanes and indoles and other electron-rich aromatic compounds is reported. Indole alkylation at the C3 position was generally obtained for a broad range of functional groups and substitution patterns. In the case of C3-substituted indoles, C2 alkylation was observed. The reaction gives a rapid access to gamma amino acid derivatives present in numerous bioactive molecules.
Collapse
Affiliation(s)
- Florian de Nanteuil
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCSO, BCH 4306, 1015 Lausanne, Switzerland
| | | | | |
Collapse
|
69
|
Lee BH, Choi SH, Shin TJ, Hwang SH, Kang J, Kim HJ, Kim BJ, Nah SY. Effects of Ginsenoside Metabolites on GABAA Receptor-Mediated Ion Currents. J Ginseng Res 2013; 36:55-60. [PMID: 23717104 PMCID: PMC3659565 DOI: 10.5142/jgr.2012.36.1.55] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 12/05/2011] [Accepted: 12/05/2011] [Indexed: 11/29/2022] Open
Abstract
In a previous report, we demonstrated that ginsenoside Rc, one of major ginsenosides from Panax ginseng, enhances γ-aminobutyric acid (GABA) receptorA (GABAA)-mediated ion channel currents. However, little is known about the effects of ginsenoside metabolites on GABAA receptor channel activity. The present study investigated the effects of ginsenoside metabolites on human recombinant GABAA receptor (α1β1γ2s) channel activity expressed in Xenopus oocytes using a two-electrode voltage clamp technique. M4, a metabolite of protopanaxatriol ginsenosides, more potently inhibited the GABA-induced inward peak current (IGABA) than protopanaxadiol (PPD), a metabolite of PPD ginsenosides. The effect of M4 and PPD on IGABA was both concentration-dependent and reversible. The half-inhibitory concentration (IC50) values of M4 and PPD were 17.1±2.2 and 23.1±8.6 μM, respectively. The inhibition of IGABA by M4 and PPD was voltage-independent and non-competitive. This study implies that the regulation of GABAA receptor channel activity by ginsenoside metabolites differs from that of ginsenosides.
Collapse
Affiliation(s)
- Byung-Hwan Lee
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University, Seoul 143-701, Korea
| | | | | | | | | | | | | | | |
Collapse
|
70
|
Chen ZA, Bao MY, Xu YF, Zha RP, Shi HB, Chen TY, He XH. Suppression of Human Liver Cancer Cell Migration and Invasion via the GABAA Receptor. Cancer Biol Med 2013; 9:90-8. [PMID: 23691461 PMCID: PMC3643652 DOI: 10.3969/j.issn.2095-3941.2012.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 06/10/2012] [Indexed: 12/14/2022] Open
Abstract
Objective To investigate the roles of the γ-aminobutyric acid (GABA) in the metastasis of hepatocellular carcinoma (HCC) and to explore the potential of a novel therapeutic approach for the treatment of HCC. Methods The expression levels of GABA receptor subunit genes in various HCC cell lines and patients‘ tissues were detected by quantitative real-time polymerase chain reaction and Western blot analysis. Transwell cell migration and invasion assays were carried out for functional analysis. The effects of GABA on liver cancer cell cytoskeletal were determined by immunofluorescence staining. And the effects of GABA on HCC metastasis in nude mice were evaluated using an in vivo orthotopic model of liver cancer. Results The mRNA level of GABA receptor subunits varied between the primary hepatocellular carcinoma tissue and the adjacent non-tumor liver tissue. GABA inhibited human liver cancer cell migration and invasion via the ionotropic GABAA receptor as a result of the induction of liver cancer cell cytoskeletal reorganization. Pretreatment with GABA also significantly reduced intrahepatic liver metastasis and primary tumor formation in vivo. Conclusions These findings introduce a potential and novel therapeutic approach for the treatment of cancer patients based on the modulation of the GABAergic system.
Collapse
Affiliation(s)
- Zhi-Ao Chen
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | | | | | | | | | | | | |
Collapse
|
71
|
Andersson JD, Halldin C. PET radioligands targeting the brain GABAA/benzodiazepine receptor complex. J Labelled Comp Radiopharm 2013; 56:196-206. [DOI: 10.1002/jlcr.3008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 11/15/2012] [Accepted: 11/16/2012] [Indexed: 11/09/2022]
Affiliation(s)
- Jan D. Andersson
- Department of Clinical Neuroscience; Center for Psychiatric Research and Education, Karolinska Institutet; Stockholm; Sweden
| | - Christer Halldin
- Department of Clinical Neuroscience; Center for Psychiatric Research and Education, Karolinska Institutet; Stockholm; Sweden
| |
Collapse
|
72
|
Chen J, Geng ZC, Li N, Huang XF, Pan FF, Wang XW. Organocatalytic Asymmetric Michael Addition of Aliphatic Aldehydes to Indolylnitroalkenes: Access to Contiguous Stereogenic Tryptamine Precursors. J Org Chem 2013; 78:2362-72. [DOI: 10.1021/jo3024945] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jian Chen
- Key Laboratory
of Organic Synthesis of Jiangsu Province,
College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People’s
Republic of China
| | - Zhi-Cong Geng
- Key Laboratory
of Organic Synthesis of Jiangsu Province,
College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People’s
Republic of China
| | - Ning Li
- Key Laboratory
of Organic Synthesis of Jiangsu Province,
College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People’s
Republic of China
| | - Xiao-Fei Huang
- Key Laboratory
of Organic Synthesis of Jiangsu Province,
College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People’s
Republic of China
| | - Feng-Feng Pan
- Key Laboratory
of Organic Synthesis of Jiangsu Province,
College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People’s
Republic of China
| | - Xing-Wang Wang
- Key Laboratory
of Organic Synthesis of Jiangsu Province,
College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People’s
Republic of China
| |
Collapse
|
73
|
Inoue T, Kawawaki H, Kuki I, Nabatame S, Tomonoh Y, Sukigara S, Horino A, Nukui M, Okazaki S, Tomiwa K, Kimura-Ohba S, Inoue T, Hirose S, Shiomi M, Itoh M. A case of severe progressive early-onset epileptic encephalopathy: unique GABAergic interneuron distribution and imaging. J Neurol Sci 2013; 327:65-72. [PMID: 23422026 DOI: 10.1016/j.jns.2013.01.038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 12/26/2012] [Accepted: 01/29/2013] [Indexed: 11/17/2022]
Abstract
Early-onset epileptic encephalopathies include various diseases such as early-infantile epileptic encephalopathy with suppression burst. We experimentally investigated the unique clinicopathological features of a 28-month-old girl with early-onset epileptic encephalopathy. Her initial symptom was intractable epilepsy with a suppression-burst pattern of electroencephalography (EEG) from 7 days of age. The suppression-burst pattern was novel, appearing during sleep, but disappearing upon waking and after becoming 2 months old. The EEG showed multifocal spikes and altered with age. Her seizures demonstrated various clinical features and continued until death. She did not show any developmental features, including no social smiling or head control. Head MRI revealed progressive atrophy of the cerebral cortex and white matter after 1 month of age. (123)IMZ-SPECT demonstrated hypo-perfusion of the cerebral cortex, but normo-perfusion of the diencephalon and cerebellum. Such imaging information indicated GABA-A receptor dysfunction of the cerebral cortex. The genetic analyses of major neonatal epilepsies showed no mutation. The neuropathology revealed atrophy and severe edema of the cerebral cortex and white matter. GAD-immunohistochemistry exhibited imbalanced distribution of GABAergic interneurons between the striatum and cerebral cortex. The results were similar to those of focal cortical dysplasia with transmantle sign and X-linked lissencephaly with ARX mutation. We performed various metabolic examinations, detailed pathological investigations and genetic analyses, but could not identify the cause. To our knowledge, her clinical and pathological courses have never been described in the literature.
Collapse
Affiliation(s)
- T Inoue
- Department of Child Neurology, Osaka City General Hospital, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Kawasoko CY, Foletto P, Rodrigues OED, Dornelles L, Schwab RS, Braga AL. Straightforward synthesis of non-natural l-chalcogen and l-diselenide N-Boc-protected-γ-amino acid derivatives. Org Biomol Chem 2013; 11:5173-83. [DOI: 10.1039/c3ob40879e] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
75
|
Decher N, Netter MF, Streit AK. Putative Impact of RNA Editing on Drug Discovery. Chem Biol Drug Des 2012; 81:13-21. [DOI: 10.1111/cbdd.12045] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
76
|
Ting-A-Kee R, van der Kooy D. The neurobiology of opiate motivation. Cold Spring Harb Perspect Med 2012; 2:2/10/a012096. [PMID: 23028134 DOI: 10.1101/cshperspect.a012096] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Opiates are a highly addictive class of drugs that have been reported to possess both dopamine-dependent and dopamine-independent rewarding properties. The search for how, if at all, these distinct mechanisms of motivation are related is of great interest in drug addiction research. Recent electrophysiological, molecular, and behavioral work has greatly improved our understanding of this process. In particular, the signaling properties of GABA(A) receptors located on GABA neurons in the ventral tegmental area (VTA) appear to be crucial to understanding the interplay between dopamine-dependent and dopamine-independent mechanisms of opiate motivation.
Collapse
Affiliation(s)
- Ryan Ting-A-Kee
- Institute of Medical Science, University of Toronto, Terrence Donnelly Centre for Cellular and Biomolecular Research, Toronto, Ontario M5S 3E1, Canada.
| | | |
Collapse
|
77
|
Li X, Li X, Peng F, Shao Z. Mutually Complementary Metal- and Organocatalysis with Collective Synthesis: Asymmetric Conjugate Addition of 1,3-Carbonyl Compounds to Nitroenynes and Further Reactions of the Products. Adv Synth Catal 2012. [DOI: 10.1002/adsc.201200226] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
78
|
Yamamoto I, Absalom N, Carland JE, Doddareddy M, Gavande N, Johnston GAR, Hanrahan JR, Chebib M. Differentiating enantioselective actions of GABOB: a possible role for threonine 244 in the binding site of GABA(C) ρ(1) receptors. ACS Chem Neurosci 2012; 3:665-73. [PMID: 23019493 PMCID: PMC3447397 DOI: 10.1021/cn3000229] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 04/26/2012] [Indexed: 01/20/2023] Open
Abstract
Designing potent and subtype-selective ligands with therapeutic value requires knowledge about how endogenous ligands interact with their binding site. 4-Amino-3-hydroxybutanoic acid (GABOB) is an endogenous ligand found in the central nervous system in mammals. It is a metabolic product of GABA, the major inhibitory neurotransmitter. Homology modeling of the GABA(C) ρ(1) receptor revealed a potential H-bond interaction between the hydroxyl group of GABOB and threonine 244 (T244) located on loop C of the ligand binding site of the ρ(1) subunit. Using site-directed mutagenesis, we examined the effect of mutating T244 on the efficacy and pharmacology of GABOB and various ligands. It was found that mutating T244 to amino acids that lacked a hydroxyl group in their side chains produced GABA insensitive receptors. Only by mutating ρ(1)T244 to serine (ρ(1)T244S) produced a GABA responsive receptor, albeit 39-fold less sensitive to GABA than ρ(1)wild-type. We also observed changes in the activities of the GABA(C) receptor partial agonists, muscimol and imidazole-4-acetic acid (I4AA). At the concentrations we tested, the partial agonists antagonized GABA-induced currents at ρ(1)T244S mutant receptors (Muscimol: ρ(1)wild-type, EC(50) = 1.4 μM; ρ(1)T244S, IC(50) = 32.8 μM. I4AA: ρ(1)wild-type, EC(50) = 8.6 μM; ρ(1)T244S, IC(50) = 21.4 μM). This indicates that T244 is predominantly involved in channel gating. R-(-)-GABOB and S-(+)-GABOB are full agonists at ρ(1)wild-type receptors. In contrast, R-(-)-GABOB was a weak partial agonist at ρ(1)T244S (1 mM activates 26% of the current produced by GABA EC(50) versus ρ(1)wild-type, EC(50) = 19 μM; I(max) 100%), and S-(+)-GABOB was a competitive antagonist at ρ(1)T244S receptors (ρ(1)wild-type, EC(50) = 45 μM versus ρ(1)T244S, IC(50) = 417.4 μM, K(B) = 204 μM). This highlights that the interaction of GABOB with T244 is enantioselective. In contrast, the potencies of a range of antagonists tested, 3-aminopropyl(methyl)phosphinic acid (3-APMPA), 3-aminopropylphosphonic acid (3-APA), S- and R-(3-amino-2-hydroxypropyl)methylphosphinic acid (S-(-)-CGP44532 and R-(+)-CGP44533), were not altered. This suggests that T244 is not critical for antagonist binding. Receptor gating is dynamic, and this study highlights the role of loop C in agonist-evoked receptor activation, coupling agonist binding to channel gating.
Collapse
Affiliation(s)
- Izumi Yamamoto
- Faculty of
Pharmacy, The University of Sydney, Sydney,
NSW 2006, Australia
| | - Nathan Absalom
- Faculty of
Pharmacy, The University of Sydney, Sydney,
NSW 2006, Australia
| | - Jane E. Carland
- Department
of Pharmacology, The University of Sydney, Sydney, NSW 2006, Australia
| | | | - Navnath Gavande
- Faculty of
Pharmacy, The University of Sydney, Sydney,
NSW 2006, Australia
| | | | - Jane R. Hanrahan
- Faculty of
Pharmacy, The University of Sydney, Sydney,
NSW 2006, Australia
| | - Mary Chebib
- Faculty of
Pharmacy, The University of Sydney, Sydney,
NSW 2006, Australia
| |
Collapse
|
79
|
Cao Z, Hammock BD, McCoy M, Rogawski MA, Lein PJ, Pessah IN. Tetramethylenedisulfotetramine alters Ca²⁺ dynamics in cultured hippocampal neurons: mitigation by NMDA receptor blockade and GABA(A) receptor-positive modulation. Toxicol Sci 2012; 130:362-72. [PMID: 22889812 DOI: 10.1093/toxsci/kfs244] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Tetramethylenedisulfotetramine (TETS) is a potent convulsant that is considered a chemical threat agent. We characterized TETS as an activator of spontaneous Ca²⁺ oscillations and electrical burst discharges in mouse hippocampal neuronal cultures at 13-17 days in vitro using FLIPR Fluo-4 fluorescence measurements and extracellular microelectrode array recording. Acute exposure to TETS (≥ 2 µM) reversibly altered the pattern of spontaneous neuronal discharges, producing clustered burst firing and an overall increase in discharge frequency. TETS also dramatically affected Ca²⁺ dynamics causing an immediate but transient elevation of neuronal intracellular Ca²⁺ followed by decreased frequency of Ca²⁺ oscillations but greater peak amplitude. The effect on Ca²⁺ dynamics was similar to that elicited by picrotoxin and bicuculline, supporting the view that TETS acts by inhibiting type A gamma-aminobutyric acid (GABA(A)) receptor function. The effect of TETS on Ca²⁺ dynamics requires activation of N-methyl-D-aspartic acid (NMDA) receptors, because the changes induced by TETS were prevented by MK-801 block of NMDA receptors, but not nifedipine block of L-type Ca²⁺ channels. Pretreatment with the GABA(A) receptor-positive modulators diazepam and allopregnanolone partially mitigated TETS-induced changes in Ca²⁺ dynamics. Moreover, low, minimally effective concentrations of diazepam (0.1 µM) and allopregnanolone (0.1 µM), when administered together, were highly effective in suppressing TETS-induced alterations in Ca²⁺ dynamics, suggesting that the combination of positive modulators of synaptic and extrasynaptic GABA(A) receptors may have therapeutic potential. These rapid throughput in vitro assays may assist in the identification of single agents or combinations that have utility in the treatment of TETS intoxication.
Collapse
Affiliation(s)
- Zhengyu Cao
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, California 95616, USA
| | | | | | | | | | | |
Collapse
|
80
|
Rahman MM, Akiyoshi Y, Furutani S, Matsuda K, Furuta K, Ikeda I, Ozoe Y. Competitive antagonism of insect GABA receptors by iminopyridazine derivatives of GABA. Bioorg Med Chem 2012; 20:5957-64. [PMID: 22925448 DOI: 10.1016/j.bmc.2012.07.049] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 07/23/2012] [Accepted: 07/23/2012] [Indexed: 12/01/2022]
Abstract
A series of 4-(6-imino-3-aryl/heteroarylpyridazin-1-yl)butanoic acids were synthesized and examined for antagonism of GABA receptors from three insect species. When tested against small brown planthopper GABA receptors, the 3,4-methylenedioxyphenyl and the 2-naphthyl analogues showed complete inhibition of GABA-induced fluorescence changes at 100 μM in assays using a membrane potential probe. Against common cutworm GABA receptors, these analogues displayed approximately 86% and complete inhibition of GABA-induced fluorescence changes at 100 μM, respectively. The 4-biphenyl and 4-phenoxyphenyl analogues showed moderate inhibition at 10 μM in these receptors, although the inhibition at 100 μM was not complete. Against American cockroach GABA receptors, the 4-biphenyl analogue exhibited the greatest inhibition (approximately 92%) of GABA-induced currents, when tested at 500 μM using a patch-clamp technique. The second most active analogue was the 2-naphthyl analogue with approximately 85% inhibition. The 3-thienyl analogue demonstrated competitive inhibition of cockroach GABA receptors. Homology modeling and ligand docking studies predicted that hydrophobic 3-substituents could interact with an accessory binding site at the orthosteric binding site.
Collapse
Affiliation(s)
- Mohammad Mostafizur Rahman
- Division of Bioscience and Biotechnology, United Graduate School of Agricultural Sciences, Tottori University, Tottori 680-8553, Japan
| | | | | | | | | | | | | |
Collapse
|
81
|
Kim YJ, Lee H, Kim CH, Lee GY, Baik HJ, Han JI. Effect of flumazenil on recovery from anesthesia and the bispectral index after sevoflurane/fentanyl general anesthesia in unpremedicated patients. Korean J Anesthesiol 2012; 62:19-23. [PMID: 22323949 PMCID: PMC3272523 DOI: 10.4097/kjae.2012.62.1.19] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Revised: 06/13/2011] [Accepted: 06/14/2011] [Indexed: 12/02/2022] Open
Abstract
Background Benzodiazepines have a hypnotic/sedative effect through the inhibitory action of γ-aminobutyric acid type A receptor. Flumazenil antagonizes these effects via competitive inhibition, so it has been used to reverse the effect of benzodiazepines. Recently, flumazenil has been reported to expedite recovery from propofol/remifentanil and sevoflurane/remifentanil anesthesia without benzodiazepines. Endogenous benzodiazepine ligands (endozepines) were isolated in several tissues of individuals who had not received benzodiazepines. Methods Forty-five healthy unpremedicated patients were randomly allocated to either flumazenil or a control groups. Each patient received either a single dose of 0.3 mg of flumazenil (n = 24) or placebo (n = 21). After drug administration, various recovery parameters and bispectral index (BIS) values in the flumazenil and control groups were compared. Results Mean time to spontaneous respiration, eye opening on verbal command, hand squeezing on verbal command, extubation and time to date of birth recollection were significantly shorter in the flumazenil group than in the control group (P = 0.004, 0.007, 0.005, 0.042, and 0.016, respectively). The BIS value was significantly higher in flumazenil group than in the control group beginning 6 min after flumazenil administration. Conclusions Administration of a single dose of 0.3 mg of flumazenil to healthy, unpremedicated patients at the end of sevoflurane/fentanyl anesthesia without benzodiazepines resulted in earlier emergence from anesthesia and an increase in the BIS value. This may indicate that flumazenil could have an antagonistic effect on sevoflurane or an analeptic effect through endozepine-dependent mechanisms.
Collapse
Affiliation(s)
- Yi Jeong Kim
- Department of Anesthesiology and Pain Medicine, School of Medicine, Ewha Womans University, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
82
|
Alves R, Carvalho JGBD, Venditti MAC. High- and Low-Rearing Rats Differ in the Brain Excitability Controlled by the Allosteric Benzodiazepine Site in the GABA<sub>A</sub> Receptor. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/jbbs.2012.23036] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
83
|
Noorbakhsh F, Ellestad KK, Maingat F, Warren KG, Han MH, Steinman L, Baker GB, Power C. Impaired neurosteroid synthesis in multiple sclerosis. ACTA ACUST UNITED AC 2011; 134:2703-21. [PMID: 21908875 DOI: 10.1093/brain/awr200] [Citation(s) in RCA: 178] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
High-throughput technologies have led to advances in the recognition of disease pathways and their underlying mechanisms. To investigate the impact of micro-RNAs on the disease process in multiple sclerosis, a prototypic inflammatory neurological disorder, we examined cerebral white matter from patients with or without the disease by micro-RNA profiling, together with confirmatory reverse transcription-polymerase chain reaction analysis, immunoblotting and gas chromatography-mass spectrometry. These observations were verified using the in vivo multiple sclerosis model, experimental autoimmune encephalomyelitis. Brains of patients with or without multiple sclerosis demonstrated differential expression of multiple micro-RNAs, but expression of three neurosteroid synthesis enzyme-specific micro-RNAs (miR-338, miR-155 and miR-491) showed a bias towards induction in patients with multiple sclerosis (P < 0.05). Analysis of the neurosteroidogenic pathways targeted by micro-RNAs revealed suppression of enzyme transcript and protein levels in the white matter of patients with multiple sclerosis (P < 0.05). This was confirmed by firefly/Renilla luciferase micro-RNA target knockdown experiments (P < 0.05) and detection of specific micro-RNAs by in situ hybridization in the brains of patients with or without multiple sclerosis. Levels of important neurosteroids, including allopregnanolone, were suppressed in the white matter of patients with multiple sclerosis (P < 0.05). Induction of the murine micro-RNAs, miR-338 and miR-155, accompanied by diminished expression of neurosteroidogenic enzymes and allopregnanolone, was also observed in the brains of mice with experimental autoimmune encephalomyelitis (P < 0.05). Allopregnanolone treatment of the experimental autoimmune encephalomyelitis mouse model limited the associated neuropathology, including neuroinflammation, myelin and axonal injury and reduced neurobehavioral deficits (P < 0.05). These multi-platform studies point to impaired neurosteroidogenesis in both multiple sclerosis and experimental autoimmune encephalomyelitis. The findings also indicate that allopregnanolone and perhaps other neurosteroid-like compounds might represent potential biomarkers or therapies for multiple sclerosis.
Collapse
Affiliation(s)
- Farshid Noorbakhsh
- Department of Medicine (Neurology), 6-11 Heritage Medical Research Centre, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | | | | | | | | | | | | | | |
Collapse
|
84
|
Contó MB, Hipólide DC, de Carvalho JGB, Venditti MAC. Rats with different thresholds for DMCM-induced clonic convulsions differ in the sleep-time of diazepam and [(3)H]-Ro 15-4513 binding. Epilepsy Res 2011; 98:216-22. [PMID: 22005005 DOI: 10.1016/j.eplepsyres.2011.09.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 08/23/2011] [Accepted: 09/24/2011] [Indexed: 11/28/2022]
Abstract
The current study investigated the possible inherent relationship between convulsions and sleep involving the GABA(A)/benzodiazepine site complex. The aim of this study was to determine if rats with high (HTR) and low (LTR) thresholds for clonic convulsions induced by DMCM, a benzodiazepine inverse agonist, differ in the following aspects: (1) sensitivity to the hypnotic effects of the GABA(A) positive allosteric modulators diazepam, pentobarbital and ethanol and (2) in the binding of [(3)H]-flunitrazepam, a benzodiazepine agonist, measured by autoradiography, and [(3)H]-Ro 15-4513, a benzodiazepine partial inverse agonist, to membranes from discrete brain regions. The LTR subgroup presented a shorter diazepam-induced sleeping time compared to that of the HTR subgroup. Biochemical assays revealed that the LTR subgroup did not differ in [(3)H]-flunitrazepam binding compared to the HTR subgroup. With respect to the binding of [(3)H]-Ro 15-4513, the LTR subgroup had higher binding in the brainstem and lower binding in the striatum compared to the HTR subgroup. These results suggest that differences in the benzodiazepine site on the GABA(A) receptor may underlie the susceptibility to DMCM-induced convulsions and sensitivity to the hypnotic effect of diazepam.
Collapse
Affiliation(s)
- Marcos Brandão Contó
- Departamento de Psicobiologia, Universidade Federal de São Paulo, Escola Paulista de Medicina, Rua Botucatu 862, 1 Andar, Vila Clementino, São Paulo, SP 04023-900, Brazil.
| | | | | | | |
Collapse
|
85
|
Girgis AS, Farag H, Ismail NS, George RF. Synthesis, hypnotic properties and molecular modeling studies of 1,2,7,9-tetraaza-spiro[4.5]dec-2-ene-6,8,10-triones. Eur J Med Chem 2011; 46:4964-9. [DOI: 10.1016/j.ejmech.2011.07.058] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 07/26/2011] [Accepted: 07/30/2011] [Indexed: 10/17/2022]
|
86
|
Jiang R, Miyamoto A, Martz A, Specht A, Ishibashi H, Kueny-Stotz M, Chassaing S, Brouillard R, de Carvalho LP, Goeldner M, Nabekura J, Nielsen M, Grutter T. Retrochalcone derivatives are positive allosteric modulators at synaptic and extrasynaptic GABA(A) receptors in vitro. Br J Pharmacol 2011; 162:1326-39. [PMID: 21133889 DOI: 10.1111/j.1476-5381.2010.01142.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND AND PURPOSE Flavonoids, important plant pigments, have been shown to allosterically modulate brain GABA(A) receptors (GABA(A)Rs). We previously reported that trans-6,4'-dimethoxyretrochalcone (Rc-OMe), a hydrolytic derivative of the corresponding flavylium salt, displayed nanomolar affinity for the benzodiazepine binding site of GABA(A)Rs. Here, we evaluate the functional modulations of Rc-OMe, along with two other synthetic derivatives trans-6-bromo-4'-methoxyretrochalcone (Rc-Br) and 4,3'-dimethoxychalcone (Ch-OMe) on GABA(A)Rs. EXPERIMENTAL APPROACH Whole-cell patch-clamp recordings were made to determine the effects of these derivatives on GABA(A)Rs expressed in HEK-293 cells and in hippocampal CA1 pyramidal and thalamic neurones from rat brain. KEY RESULTS Rc-OMe strongly potentiated GABA-evoked currents at recombinant α(1-4)β(2)γ(2s) and α(4)β(3)δ receptors but much less at α(1)β(2) and α(4)β(3). Rc-Br and Ch-OMe potentiated GABA-evoked currents at α(1)β(2)γ(2s). The potentiation by Rc-OMe was only reduced at α(1)H101Rβ(2)γ(2s) and α(1)β(2)N265Sγ(2s), mutations known to abolish the potentiation by diazepam and loreclezole respectively. The modulation of Rc-OMe and pentobarbital as well as by Rc-OMe and the neurosteroid 3α,21-dihydroxy-5α-pregnan-20-one was supra-additive. Rc-OMe modulation exhibited no apparent voltage-dependence, but was markedly dependent on GABA concentration. In neurones, Rc-Br slowed the decay of spontaneous inhibitory postsynaptic currents and both Rc-OMe and Rc-Br positively modulated synaptic and extrasynaptic diazepam-insensitive GABA(A)Rs. CONCLUSIONS AND IMPLICATIONS The trans-retrochalcones are powerful positive allosteric modulators of synaptic and extrasynaptic GABA(A)Rs. These novel modulators act through an original mode, thus making them putative drug candidates in the treatment of GABA(A)-related disorders in vivo.
Collapse
Affiliation(s)
- Ruotian Jiang
- Laboratoire de Biophysicochimie des Récepteurs Canaux, UMR 7199 CNRS, Conception et Application de Molécules Bioactives, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Zhu Y, Khumsubdee S, Schaefer A, Burgess K. Asymmetric Syntheses of α-Methyl γ-Amino Acid Derivatives. J Org Chem 2011; 76:7449-57. [DOI: 10.1021/jo201215c] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ye Zhu
- Department of Chemistry, Texas A & M University, Box 30012, College Station, Texas 77841, United States
| | - Sakunchai Khumsubdee
- Department of Chemistry, Texas A & M University, Box 30012, College Station, Texas 77841, United States
| | - Amber Schaefer
- Department of Chemistry, Texas A & M University, Box 30012, College Station, Texas 77841, United States
| | - Kevin Burgess
- Department of Chemistry, Texas A & M University, Box 30012, College Station, Texas 77841, United States
| |
Collapse
|
88
|
Berezhnov AV, Kononov AV, Fedotova EI, Zinchenko VP. A method for detection and characterization of GABA(A) receptor ligands using calcium-sensitive fluorescent probes. Biophysics (Nagoya-shi) 2011. [DOI: 10.1134/s0006350911040038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
89
|
Lee M, McGeer EG, McGeer PL. Mechanisms of GABA release from human astrocytes. Glia 2011; 59:1600-11. [PMID: 21748804 DOI: 10.1002/glia.21202] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 05/25/2011] [Indexed: 11/05/2022]
Abstract
We have previously demonstrated that human astrocytes are GABAergic cells. Throughout the adult human brain, they express the GABA synthesizing enzyme GAD 67, the GABA metabolizing enzyme GABA-T, and the GABA(A) and GABA(B) receptors. GABA modulates the actions of microglia, indicating an important role for astrocytes beyond that of influencing neurotransmitter function. Here we report on the mechanisms by which astrocytes release GABA. Astrocytes were found to express the mRNA and protein for multiple GABA transporters, and multiple receptors for glutamate, GABA, and glycine. In culture, untreated human astrocytes maintained an intracellular GABA level of 2.32 mM. They exported GABA into the culture medium so that an intracellular-extracellular gradient of 3.64 fold was reached. Inhibitors of the GABA transporters GAT1, GAT2, and GAT3, significantly reduced this export in a Ca(2+)-independent fashion. Intracellular GABA levels were enhanced by treatment with the GABA-T inhibitors gabaculine or vigabatrin. Treatment with glutamate increased GABA release in a concentration-dependent fashion. This was partially inhibited by blockers of N-methyl-D-aspartate and kainate receptors. Conversely, glycine and D-serine, co-agonists of NMDA receptors, enhanced the GABA release. GABA release was accompanied by an increase in intracellular Ca(2+) concentration ([Ca(2+)](i)) and was reduced by adding the Ca(2+) chelator, BAPTA-AM to the medium. These data indicate that astrocytes continuously synthesize GABA and that there are multiple mechanisms which can mediate its release. Each of these may play a role in the physiological functioning of astrocytes.
Collapse
Affiliation(s)
- Moonhee Lee
- Kinsmen Laboratory of Neurological Research, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| | | | | |
Collapse
|
90
|
Yin H, Park SA, Park SJ, Han SK. Korean Red Ginseng Extract Activates Non-NMDA Glutamate and GABAA Receptors on the Substantia Gelatinosa Neurons of the Trigeminal Subnucleus Caudalis in Mice. J Ginseng Res 2011; 35:219-25. [PMID: 23717064 PMCID: PMC3659517 DOI: 10.5142/jgr.2011.35.2.219] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 05/19/2011] [Accepted: 05/19/2011] [Indexed: 11/18/2022] Open
Abstract
Korean red ginseng (KRG) is a valuable and important traditional medicine in East Asian countries and is currently used extensively for botanical products in the world. KRG has both stimulatory and inhibitory effects on the central nervous system (CNS) suggesting its complicated action mechanisms. The substantia gelatinosa (SG) neurons of the trigeminal subnucleus caudalis (Vc) are involved in orofacial nociceptive processing. Some studies reported that KRG has antinociceptive effects, but there are few reports of the functional studies of KRG on the SG neurons of the Vc. In this study, a whole cell patch clamp study was performed to examine the action mechanism of a KRG extract on the SG neurons of the Vc from juvenile mice. KRG induced short-lived and repeatable inward currents on all the SG neurons tested in the high chloride pipette solution. The KRG-induced inward currents were concentration dependent and were maintained in the presence of tetrodotoxin, a voltage gated Na channel blocker. The KRG-induced inward currents were suppressed by 6-cyano-7-nitroquinoxaline-2,3-dione, a non-N-methyl-D-aspartate (NMDA) glutamate receptor antagonist and/or picrotoxin, a gamma-aminobutyric acid (GABA)A receptor antagonist. However, the inward currents were not suppressed by d,l-2-amino-5-phosphonopentanoic acid, an NMDA receptor antagonist. These results show that KRG has excitatory effects on the SG neurons of the Vc via the activation of non-NMDA glutamate receptor as well as an inhibitory effect by activation of the GABAA receptor, indicating the KRG has both stimulatory and inhibitory effects on the CNS. In addition, KRG may be a potential target for modulating orofacial pain processing.
Collapse
Affiliation(s)
- Hua Yin
- Department of Oral Physiology, School of Dentistry and Institute of Oral Bioscience, Chonbuk National University, Jeonju 561-756, Korea
| | | | | | | |
Collapse
|
91
|
Synthesis and evaluation of highly potent GABA(A) receptor antagonists based on gabazine (SR-95531). Bioorg Med Chem Lett 2011; 21:4252-4. [PMID: 21664131 DOI: 10.1016/j.bmcl.2011.05.067] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 05/16/2011] [Accepted: 05/18/2011] [Indexed: 01/24/2023]
Abstract
A selection of highly potent analogues based on the gabazine structure is described. Their syntheses are carried out in just four steps, and their potencies for antagonism at the GABA(A) receptor were measured. All antagonists showed significantly higher potencies compared to the parent competitive antagonist, gabazine.
Collapse
|
92
|
Hong DM, Kim CS, Eom W, Choi K, Oh YJ, Jung SJ, Kim HS. Interactions of Midazolam and Propofol on α1β2γ2L and α1β2γ2S Gamma Aminobutyric Acid Type A Receptors Expressed in Human Embryonic Kidney Cells. Anesth Analg 2011; 112:1096-102. [DOI: 10.1213/ane.0b013e31820fcc3e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
93
|
Mohabatkar H, Mohammad Beigi M, Esmaeili A. Prediction of GABAA receptor proteins using the concept of Chou's pseudo-amino acid composition and support vector machine. J Theor Biol 2011; 281:18-23. [PMID: 21536049 DOI: 10.1016/j.jtbi.2011.04.017] [Citation(s) in RCA: 170] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2011] [Revised: 04/13/2011] [Accepted: 04/15/2011] [Indexed: 10/18/2022]
Abstract
The amino acid gamma-aminobutyric-acid receptors (GABA(A)Rs) belong to the ligand-gated ion channels (LGICs) superfamily. GABA(A)Rs are highly diverse in the central nervous system. These channels play a key role in regulating behavior. As a result, the prediction of GABA(A)Rs from the amino acid sequence would be helpful for research on these receptors. We have developed a method to predict these proteins using the features obtained from Chou's pseudo-amino acid composition concept and support vector machine as a powerful machine learning approach. The predictor efficiency was assessed by five-fold cross-validation. This method achieved an overall accuracy and Matthew's correlation coefficient (MCC) of 94.12% and 0.88, respectively. Furthermore, to evaluate the effect and power of each feature, the minimum Redundancy and Maximum Relevance (mRMR) feature selection method was implemented. An interesting finding in this study is the presence of all six characters (hydrophobicity, hydrophilicity, side chain mass, pK1, pK2 and pI) or combination of the characters among the 5 higher ranked features (pk2 and pI, hydrophobicity and mass, pk1, hydrophilicity and mass) obtained from the mRMR feature selection method. The results show a biologically justifiable ranked attributes of pk2 and pI; hydrophobicity, hydrophilicity and mass; mass and pk1; pk2 and mass. Based on our results, using the concept of Chou's pseudo-amino acid composition and support vector machine is an effective approach for the prediction of GABA(A)Rs.
Collapse
Affiliation(s)
- Hassan Mohabatkar
- Department of Biotechnology, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan, Iran.
| | | | | |
Collapse
|
94
|
Flumazenil expedites recovery from sevoflurane/remifentanil anaesthesia when administered to healthy unpremedicated patients. Eur J Anaesthesiol 2011; 27:955-9. [PMID: 20864893 DOI: 10.1097/eja.0b013e3283398ef9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND AND OBJECTIVE To investigate the hypothesis that 0.3 mg flumazenil administered to healthy unpremedicated patients at the end of deep surgical sevoflurane/remifentanil anaesthesia would expedite recovery. Flumazenil, an imidazobenzodiazepine derivative, antagonizes the hypnotic/sedative effects of benzodiazepines on γ-aminobutyric acid receptors. However, endogenous benzodiazepine ligands (endozepines) were isolated in mammalian tissues of individuals who had not received benzodiazepines. METHODS Twenty-four healthy unpremedicated patients, scheduled to undergo elective surgery requiring general anaesthesia, were randomly allocated to receive either a single dose of 0.3 mg flumazenil (n = 14) or placebo (n = 10) intravenously at the end of the surgical procedure just before the discontinuation of the volatile anaesthetic. After study drug administration, the authors compared various recovery parameters in the flumazenil and control groups. RESULTS Median time to spontaneous respiration, eye opening on verbal command, extubation and time to date of birth recollection was significantly shorter in the flumazenil group than in the control group [2.5 min (2.0-3.0) vs. 7.0 min (6.8-8.3), 3.4 min (3.0-4.0) vs. 8.1 min (6.9-10.2), 4.0 min (3.0-5.0) vs. 9.0 min (7.0-10.8) and 4.7 min (4.0-5.0) vs. 10.3 min (8.0-12.0), respectively]. CONCLUSION Administration of a single dose of 0.3 mg flumazenil to healthy unpremedicated patients at the end of sevoflurane/remifentanil anaesthesia results in earlier emergence from anaesthesia and significantly expedites recovery. This could redefine the role of flumazenil in general anaesthesia, implicating endozepine-dependent mechanisms.
Collapse
|
95
|
Liu XF, Chang HF, Schmiesing RJ, Wesolowski SS, Knappenberger KS, Arriza JL, Chapdelaine MJ. Developing dual functional allosteric modulators of GABAA receptors. Bioorg Med Chem 2010; 18:8374-82. [DOI: 10.1016/j.bmc.2010.09.058] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 09/16/2010] [Accepted: 09/22/2010] [Indexed: 11/30/2022]
|
96
|
Johnston GAR, Chebib M, Hanrahan JR, Mewett KN. Neurochemicals for the investigation of GABA(C) receptors. Neurochem Res 2010; 35:1970-7. [PMID: 20963487 DOI: 10.1007/s11064-010-0271-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2010] [Indexed: 01/23/2023]
Abstract
GABA(C) receptors are being investigated for their role in many aspects of nervous system function including memory, myopia, pain and sleep. There is evidence for functional GABA(C) receptors in many tissues such as retina, hippocampus, spinal cord, superior colliculus, pituitary and the gut. This review describes a variety of neurochemicals that have been shown to be useful in distinguishing GABA(C) receptors from other receptors for the major inhibitory neurotransmitter GABA. Some selective agonists (including (+)-CAMP and 5-methyl-IAA), competitive antagonists (such as TPMPA, (±)-cis-3-ACPBPA and aza-THIP), positive (allopregnanolone) and negative modulators (epipregnanolone, loreclezole) are described. Neurochemicals that may assist in distinguishing between homomeric ρ1 and ρ2 GABA(C) receptors (2-methyl-TACA and cyclothiazide) are also covered. Given their less widespread distribution, lower abundance and relative structural simplicity compared to GABA(A) and GABA(B) receptors, GABA(C) receptors are attractive drug targets.
Collapse
Affiliation(s)
- Graham A R Johnston
- Adrien Albert Laboratory of Medicinal Chemistry, Department of Pharmacology D06, The University of Sydney, Sydney, NSW 2006, Australia.
| | | | | | | |
Collapse
|
97
|
Thomas Cheng H. Spinal cord mechanisms of chronic pain and clinical implications. Curr Pain Headache Rep 2010; 14:213-20. [PMID: 20461476 DOI: 10.1007/s11916-010-0111-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Chronic pain is a prevalent and challenging problem for most medical practitioners. Because of the complex pathologic mechanisms involved in chronic pain, optimal treatment is still under development. The spinal cord is an important gateway for peripheral pain signals transmitted to the brain. In chronic pain states, painful stimuli trigger afferent fibers in the dorsal horn to release neuropeptides and neurotransmitters. These events induce multiple inflammatory and neuropathic processes in the spinal cord dorsal horn, and trigger modification and plasticity of local neural circuits. As a result, ongoing noxious signals to the brain are amplified and prolonged, a phenomenon known as central sensitization. In this review, the molecular events associated with central sensitization, as well as their clinical implications, are discussed.
Collapse
Affiliation(s)
- Hsinlin Thomas Cheng
- Department of Neurology, University of Michigan, 109 Zina Pitcher Place, 5015 BSRB, Ann Arbor, MI 48109, USA.
| |
Collapse
|
98
|
Kohlmeier KA, Kristiansen U. GABAergic actions on cholinergic laterodorsal tegmental neurons: implications for control of behavioral state. Neuroscience 2010; 171:812-29. [PMID: 20884335 DOI: 10.1016/j.neuroscience.2010.09.034] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 09/17/2010] [Accepted: 09/17/2010] [Indexed: 11/30/2022]
Abstract
Cholinergic neurons of the pontine laterodorsal tegmentum (LDT) play a critical role in regulation of behavioral state. Therefore, elucidation of mechanisms that control their activity is vital for understanding of how switching between wakefulness, sleep and anesthetic states is effectuated. In vivo studies suggest that GABAergic mechanisms within the pons play a critical role in behavioral state switching. However, the postsynaptic, electrophysiological actions of GABA on LDT neurons, as well as the identity of GABA receptors present in the LDT mediating these actions is virtually unexplored. Therefore, we studied the actions of GABA agonists and antagonists on cholinergic LDT cells by performing patch clamp recordings in mouse brain slices. Under conditions where detection of Cl(-) -mediated events was optimized, GABA induced gabazine (GZ)-sensitive inward currents in the majority of LDT neurons. Post-synaptic location of GABA(A) receptors was demonstrated by persistence of muscimol-induced inward currents in TTX and low Ca(2+) solutions. THIP, a selective GABA(A) receptor agonist with a preference for δ-subunit containing GABA(A) receptors, induced inward currents, suggesting the existence of extrasynaptic GABA(A) receptors. LDT cells also possess GABA(B) receptors as baclofen-activated a TTX- and low Ca(2+)-resistant outward current that was attenuated by the GABA(B) antagonists CGP 55845 and saclofen. The tertiapin sensitivity of baclofen-induced outward currents suggests that a G(IRK) mediated this effect. Further, outward currents were never additive with those induced by application of carbachol, suggesting that they were mediated by activation of GABA(B) receptors linked to the same G(IRK) activated in these cells by muscarinic receptor stimulation. Activation of GABA(B) receptors inhibited Ca(2+) increases induced by a depolarizing voltage step shown previously to activate VOCCs in cholinergic LDT neurons. Baclofen-mediated reductions in depolarization-induced Ca(2+) were unaltered by prior emptying of intracellular Ca(2+) stores, but were abolished by low extracellular Ca(2+) and pre-application of nifedipine, indicating that activation of GABA(B) receptors inhibits influx of Ca(2+) involving L-type Ca(2+) channels. Presence of GABA(C) receptors is suggested by the induction of inward current by (E)-4- amino-2-butenoic acid (TACA) and its inhibition by 1,2,5,6-tetrahydropyridine-4-ylmethylphosphinic (TPMPA), a relatively selective agonist and antagonist, respectively, of GABA(C) receptors. All of these GABA-mediated actions were found to occur in histochemically-identified cholinergic neurons. Taken together, these data indicate for the first time that cholinergic neurons of the LDT exhibit functional GABA(A, B and C) receptors, including extrasynaptically located GABA(A) receptors, which may be tonically activated by synaptic overflow of GABA. Accordingly, the activity of cholinergic LDT neurons is likely to be significantly affected by GABAergic tone within the nucleus, and so, demonstrated effects of GABA on behavioral state may be mediated, in part, via direct actions on cholinergic neurons in the LDT.
Collapse
Affiliation(s)
- K A Kohlmeier
- Department of Pharmacology and Pharmacotherapy, The Pharmaceutical Faculty, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark.
| | | |
Collapse
|
99
|
Lewis RW, Mabry J, Polisar JG, Eagen KP, Ganem B, Hess GP. Dihydropyrimidinone positive modulation of delta-subunit-containing gamma-aminobutyric acid type A receptors, including an epilepsy-linked mutant variant. Biochemistry 2010; 49:4841-51. [PMID: 20450160 DOI: 10.1021/bi100119t] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Gamma-aminobutyric acid type A receptors (GABA(A) receptors) are ligand-gated chloride channels that play a central role in signal transmission within the mammalian central nervous system. Compounds that modulate specific GABA(A) receptor subtypes containing the delta-subunit are scarce but would be valuable research tools and starting points for potential therapeutic agents. Here we report a class of dihydropyrimidinone (DHPM) heterocycles that preferentially potentiate peak currents of recombinant GABA(A) receptor subtypes containing the delta-subunit expressed in HEK293T cells. Using the three-component Biginelli reaction, 13 DHPMs with structural features similar to those of the barbiturate phenobarbital were synthesized; one DHPM used (monastrol) is commercially available. An up to approximately 3-fold increase in the current from recombinant alpha1beta2delta receptors was observed with the DHPM compound JM-II-43A or monastrol when co-applied with saturating GABA concentrations, similar to the current potentiation observed with the nonselective potentiating compounds phenobarbital and tracazolate. No agonist activity was observed for the DHPMs at the concentrations tested. A kinetic model was used in conjunction with dose-dependent measurements to calculate apparent dissociation constant values for JM-II-43A (400 muM) and monastrol (200 microM) at saturating GABA concentrations. We examined recombinant receptors composed of combinations of subunits alpha1, alpha4, alpha5, alpha6, beta2, beta3, gamma2L, and delta with JM-II-43A to demonstrate the preference for potentiation of delta-subunit-containing receptors. Lastly, reduced currents from receptors containing the mutated delta(E177A) subunit, described by Dibbens et al. [(2004) Hum. Mol. Genet. 13, 1315-1319] as a heritable susceptibility allele for generalized epilepsy with febrile seizures plus, are also potentiated by these DHPMs.
Collapse
Affiliation(s)
- Ryan W Lewis
- Department of Molecular Biology and Genetics, Biotechnology Building, Cornell University, Ithaca, New York 14853-2703, USA
| | | | | | | | | | | |
Collapse
|
100
|
Prabakaran K, Manivel P, Nawaz Khan F. An effective BINAP and microwave accelerated palladium-catalyzed amination of 1-chloroisoquinolines in the synthesis of new 1,3-disubstituted isoquinolines. Tetrahedron Lett 2010. [DOI: 10.1016/j.tetlet.2010.06.045] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|