51
|
Fahnestock M, Shekari A. ProNGF and Neurodegeneration in Alzheimer's Disease. Front Neurosci 2019; 13:129. [PMID: 30853882 PMCID: PMC6395390 DOI: 10.3389/fnins.2019.00129] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 02/05/2019] [Indexed: 11/13/2022] Open
Abstract
Profound and early basal forebrain cholinergic neuron (BFCN) degeneration is a hallmark of Alzheimer's disease (AD). Loss of synapses between basal forebrain and hippocampal and cortical target tissue correlates highly with the degree of dementia and is thought to be a major contributor to memory loss. BFCNs depend for their survival, connectivity and function on the neurotrophin nerve growth factor (NGF) which is retrogradely transported from its sites of synthesis in the cortex and hippocampus. The form of NGF found in human brain is proNGF. ProNGF binds to the NGF receptors TrkA and p75NTR, but it binds more strongly to p75NTR and more weakly to TrkA than does mature NGF. This renders proNGF more sensitive to receptor balance than mature NGF. In the healthy brain, where BFCNs express both TrkA and p75NTR, proNGF is neurotrophic, activating TrkA-dependent signaling pathways such as MAPK and Akt-mTOR and eliciting cell survival and neurite outgrowth. However, if TrkA is lost or if p75NTR is increased, proNGF activates p75NTR-dependent apoptotic pathways such as JNK. This receptor sensitivity serves as a neurotrophic/apoptotic switch that eliminates BFCNs that cannot maintain TrkA/p75NTR balance and therefore synaptic connections with their targets. TrkA is increasingly lost in mild cognitive impairment (MCI) and AD. In addition, proNGF accumulates at BFCN terminals in cortex and hippocampus, reducing the amount of trophic factor that reaches BFCN cell bodies. The loss of TrkA and accumulation of proNGF occur early in MCI and correlate with cognitive impairment. Increased levels of proNGF and reduced levels of TrkA lead to BFCN neurodegeneration and eventual p75NTR-dependent apoptosis. In addition, in AD BFCNs suffer from reduced TrkA-dependent retrograde transport which reduces neurotrophic support. Thus, BFCNs are particularly vulnerable to AD due to their dependence upon retrograde trophic support from proNGF signaling and transport.
Collapse
Affiliation(s)
- Margaret Fahnestock
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Arman Shekari
- Neuroscience Graduate Program, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
52
|
Recalibrating the Relevance of Adult Neurogenesis. Trends Neurosci 2019; 42:164-178. [PMID: 30686490 DOI: 10.1016/j.tins.2018.12.001] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/28/2018] [Accepted: 12/10/2018] [Indexed: 10/27/2022]
Abstract
Conflicting reports about whether adult hippocampal neurogenesis occurs in humans raise questions about its significance for human health and the relevance of animal models. Drawing upon published data, I review species' neurogenesis rates across the lifespan and propose that accelerated neurodevelopmental timing is consistent with lower rates of neurogenesis in adult primates and humans. Nonetheless, protracted neurogenesis may produce populations of neurons that retain plastic properties for long intervals, and have distinct functions depending on when in the lifespan they were born. With some conceptual recalibration we may therefore be able to reconcile seemingly disparate findings and continue to ask how adult neurogenesis, as studied in animals, is relevant for human health.
Collapse
|
53
|
Hoshi M. Tracking down a missing trigger for Alzheimer's disease by mass spectrometric imaging based on brain network analysis. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 168:25-55. [DOI: 10.1016/bs.pmbts.2019.05.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
54
|
Swenson BL, Meyer CF, Bussian TJ, Baker DJ. Senescence in aging and disorders of the central nervous system. TRANSLATIONAL MEDICINE OF AGING 2019. [DOI: 10.1016/j.tma.2019.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
55
|
Maldonado JR. Delirium pathophysiology: An updated hypothesis of the etiology of acute brain failure. Int J Geriatr Psychiatry 2018; 33:1428-1457. [PMID: 29278283 DOI: 10.1002/gps.4823] [Citation(s) in RCA: 319] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 09/19/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND Delirium is the most common neuropsychiatric syndrome encountered by clinicians dealing with older adults and the medically ill and is best characterized by 5 core domains: cognitive deficits, attentional deficits, circadian rhythm dysregulation, emotional dysregulation, and alteration in psychomotor functioning. DESIGN An extensive literature review and consolidation of published data into a novel interpretation of known pathophysiological causes of delirium. RESULTS Available data suggest that numerous pathological factors may serve as precipitants for delirium, each having differential effects depending on patient-specific patient physiological characteristics (substrate). On the basis of an extensive literature search, a newly proposed theory, the systems integration failure hypothesis, was developed to bring together the most salient previously described theories, by describing the various contributions from each into a complex web of pathways-highlighting areas of intersection and commonalities and explaining how the variable contribution of these may lead to the development of various cognitive and behavioral dysfunctions characteristic of delirium. The specific cognitive and behavioral manifestations of the specific delirium picture result from a combination of neurotransmitter function and availability, variability in integration and processing of sensory information, motor responses to both external and internal cues, and the degree of breakdown in neuronal network connectivity, hence the term acute brain failure. CONCLUSIONS The systems integration failure hypothesis attempts to explain how the various proposed delirium pathophysiologic theories interact with each other, causing various clinically observed delirium phenotypes. A better understanding of the underlying pathophysiology of delirium may eventually assist in designing better prevention and management approaches.
Collapse
|
56
|
Astrocytes and the TGF-β1 Pathway in the Healthy and Diseased Brain: a Double-Edged Sword. Mol Neurobiol 2018; 56:4653-4679. [DOI: 10.1007/s12035-018-1396-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 10/14/2018] [Indexed: 12/14/2022]
|
57
|
Abstract
By 2050, the aging population is predicted to expand by over 100%. Considering this rapid growth, and the additional strain it will place on healthcare resources because of age-related impairments, it is vital that researchers gain a deeper understanding of the cellular interactions that occur with normal aging. A variety of mammalian cell types have been shown to become compromised with age, each with a unique potential to contribute to disease formation in the aging body. Astrocytes represent the largest group of glial cells and are responsible for a variety of essential functions in the healthy central nervous system (CNS). Like other cell types, aging can cause a loss of normal function in astrocytes which reduces their ability to properly maintain a healthy CNS environment, negatively alters their interactions with neighboring cells, and contribute to the heightened inflammatory state characteristic of aging. The goal of this review article is to consolidate the knowledge and research to date regarding the role of astrocytes in aging. In specific, this review article will focus on the morphology and molecular profile of aged astrocytes, the consequence of astrocyte dysfunction on homeostatic functions during aging, and the role of astrocytes in age-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Alexandra L Palmer
- Department of Neuroscience, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Shalina S Ousman
- Department of Neuroscience, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.,Departments of Clinical Neurosciences and Cell Biology & Anatomy, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
58
|
Duncan A, Klassen E, Srivastava A. Statistical shape analysis of simplified neuronal trees. Ann Appl Stat 2018. [DOI: 10.1214/17-aoas1107] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
59
|
Calì C, Wawrzyniak M, Becker C, Maco B, Cantoni M, Jorstad A, Nigro B, Grillo F, De Paola V, Fua P, Knott GW. The effects of aging on neuropil structure in mouse somatosensory cortex-A 3D electron microscopy analysis of layer 1. PLoS One 2018. [PMID: 29966021 DOI: 10.5061/dryad.bh78sn5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
This study has used dense reconstructions from serial EM images to compare the neuropil ultrastructure and connectivity of aged and adult mice. The analysis used models of axons, dendrites, and their synaptic connections, reconstructed from volumes of neuropil imaged in layer 1 of the somatosensory cortex. This shows the changes to neuropil structure that accompany a general loss of synapses in a well-defined brain region. The loss of excitatory synapses was balanced by an increase in their size such that the total amount of synaptic surface, per unit length of axon, and per unit volume of neuropil, stayed the same. There was also a greater reduction of inhibitory synapses than excitatory, particularly those found on dendritic spines, resulting in an increase in the excitatory/inhibitory balance. The close correlations, that exist in young and adult neurons, between spine volume, bouton volume, synaptic size, and docked vesicle numbers are all preserved during aging. These comparisons display features that indicate a reduced plasticity of cortical circuits, with fewer, more transient, connections, but nevertheless an enhancement of the remaining connectivity that compensates for a generalized synapse loss.
Collapse
Affiliation(s)
- Corrado Calì
- BioEM Facility, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Marta Wawrzyniak
- BioEPIX, XLI M, Faculty of Science and Technology, University of Limoges, Limoges, France
| | - Carlos Becker
- Computer Vision Laboratory, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Bohumil Maco
- BioEM Facility, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Marco Cantoni
- Centre for Electron Microscopy, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Anne Jorstad
- Computer Vision Laboratory, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Biagio Nigro
- BioEM Facility, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Federico Grillo
- MRC Centre for Developmental Neurobiology, King's College London, New Hunt's House Guy's Campus, London, United Kingdom
| | - Vincenzo De Paola
- MRC Clinical Science Centre, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Pascal Fua
- Computer Vision Laboratory, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Graham William Knott
- BioEM Facility, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
60
|
Calì C, Wawrzyniak M, Becker C, Maco B, Cantoni M, Jorstad A, Nigro B, Grillo F, De Paola V, Fua P, Knott GW. The effects of aging on neuropil structure in mouse somatosensory cortex-A 3D electron microscopy analysis of layer 1. PLoS One 2018; 13:e0198131. [PMID: 29966021 PMCID: PMC6028106 DOI: 10.1371/journal.pone.0198131] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 05/14/2018] [Indexed: 11/19/2022] Open
Abstract
This study has used dense reconstructions from serial EM images to compare the neuropil ultrastructure and connectivity of aged and adult mice. The analysis used models of axons, dendrites, and their synaptic connections, reconstructed from volumes of neuropil imaged in layer 1 of the somatosensory cortex. This shows the changes to neuropil structure that accompany a general loss of synapses in a well-defined brain region. The loss of excitatory synapses was balanced by an increase in their size such that the total amount of synaptic surface, per unit length of axon, and per unit volume of neuropil, stayed the same. There was also a greater reduction of inhibitory synapses than excitatory, particularly those found on dendritic spines, resulting in an increase in the excitatory/inhibitory balance. The close correlations, that exist in young and adult neurons, between spine volume, bouton volume, synaptic size, and docked vesicle numbers are all preserved during aging. These comparisons display features that indicate a reduced plasticity of cortical circuits, with fewer, more transient, connections, but nevertheless an enhancement of the remaining connectivity that compensates for a generalized synapse loss.
Collapse
Affiliation(s)
- Corrado Calì
- BioEM Facility, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Marta Wawrzyniak
- BioEPIX, XLI M, Faculty of Science and Technology, University of Limoges, Limoges, France
| | - Carlos Becker
- Computer Vision Laboratory, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Bohumil Maco
- BioEM Facility, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Marco Cantoni
- Centre for Electron Microscopy, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Anne Jorstad
- Computer Vision Laboratory, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Biagio Nigro
- BioEM Facility, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Federico Grillo
- MRC Centre for Developmental Neurobiology, King's College London, New Hunt's House Guy's Campus, London, United Kingdom
| | - Vincenzo De Paola
- MRC Clinical Science Centre, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Pascal Fua
- Computer Vision Laboratory, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Graham William Knott
- BioEM Facility, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
61
|
Liu D, Lu H, Stein E, Zhou Z, Yang Y, Mattson MP. Brain regional synchronous activity predicts tauopathy in 3×TgAD mice. Neurobiol Aging 2018; 70:160-169. [PMID: 30015035 DOI: 10.1016/j.neurobiolaging.2018.06.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 05/20/2018] [Accepted: 06/10/2018] [Indexed: 02/08/2023]
Abstract
Alzheimer's disease (AD) is characterized by progressive cognitive impairment and by extensive neuronal loss associated with extracellular amyloid β-peptide (Aβ) plaques and intraneuronal tau pathology in temporal and parietal lobes. AD patients are at increased risk for epileptic seizures, and data from experimental models of AD suggest that aberrant neuronal network activity occurs early in the disease process before cognitive deficits and neuronal degeneration. The contributions of Aβ and/or tau pathologies to dysregulation of neuronal network activity are unclear. Using a transgenic mouse model of AD (3×TgAD mice) in which there occurs differential age-dependent development of tau and Aβ plaque pathologies, we applied analysis of resting state functional magnetic resonance imaging regional homogeneity, a measure of local synchronous activity, to discriminate the effects of Aβ and tau on neuronal network activity throughout the brain. Compared to age-matched wild-type mice, 6- to 8-month-old 3×TgAD mice exhibited increased regional homogeneity in the hippocampus and parietal and temporal cortices, regions with tau pathology but not Aβ pathology at this age. By 18-24 months of age, 3×TgAD mice exhibited extensive tau and Aβ pathologies involving the hippocampus and multiple functionally related brain regions, with a spatial expansion of increased local synchronous activity to include those regions. Our findings demonstrate that age-related brain regional hypersynchronous activity is associated with early tau pathology in a mouse model, consistent with a role for early tau pathology in the neuronal circuit hyperexcitability that is believed to precede and contribute to neuronal degeneration in AD.
Collapse
Affiliation(s)
- Dong Liu
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD, USA
| | - Hanbing Lu
- Neuroimaging Research Branch, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD, USA
| | - Elliot Stein
- Neuroimaging Research Branch, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD, USA
| | - Zhujuan Zhou
- Department of Neurology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Yihong Yang
- Neuroimaging Research Branch, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD, USA
| | - Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore MD, USA.
| |
Collapse
|
62
|
Hoeijmakers L, Lesuis SL, Krugers H, Lucassen PJ, Korosi A. A preclinical perspective on the enhanced vulnerability to Alzheimer's disease after early-life stress. Neurobiol Stress 2018; 8:172-185. [PMID: 29888312 PMCID: PMC5991337 DOI: 10.1016/j.ynstr.2018.02.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 02/17/2018] [Accepted: 02/20/2018] [Indexed: 12/13/2022] Open
Abstract
Stress experienced early in life (ES), in the form of childhood maltreatment, maternal neglect or trauma, enhances the risk for cognitive decline in later life. Several epidemiological studies have now shown that environmental and adult life style factors influence AD incidence or age-of-onset and early-life environmental conditions have attracted attention in this respect. There is now emerging interest in understanding whether ES impacts the risk to develop age-related neurodegenerative disorders, and their severity, such as in Alzheimer's disease (AD), which is characterized by cognitive decline and extensive (hippocampal) neuropathology. While this might be relevant for the identification of individuals at risk and preventive strategies, this topic and its possible underlying mechanisms have been poorly studied to date. In this review, we discuss the role of ES in modulating AD risk and progression, primarily from a preclinical perspective. We focus on the possible involvement of stress-related, neuro-inflammatory and metabolic factors in mediating ES-induced effects on later neuropathology and the associated impairments in neuroplasticity. The available studies suggest that the age of onset and progression of AD-related neuropathology and cognitive decline can be affected by ES, and may aggravate the progression of AD neuropathology. These relevant changes in AD pathology after ES exposure in animal models call for future clinical studies to elucidate whether stress exposure during the early-life period in humans modulates later vulnerability for AD.
Collapse
Affiliation(s)
| | | | | | | | - Aniko Korosi
- Brain Plasticity Group, Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, The Netherlands
| |
Collapse
|
63
|
Jurado S. AMPA Receptor Trafficking in Natural and Pathological Aging. Front Mol Neurosci 2018; 10:446. [PMID: 29375307 PMCID: PMC5767248 DOI: 10.3389/fnmol.2017.00446] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 12/21/2017] [Indexed: 01/09/2023] Open
Abstract
α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) enable most excitatory transmission in the brain and are crucial for mediating basal synaptic strength and plasticity. Because of the importance of their function, AMPAR dynamics, activity and subunit composition undergo a tight regulation which begins as early as prenatal development and continues through adulthood. Accumulating evidence suggests that the precise regulatory mechanisms involved in orchestrating AMPAR trafficking are challenged in the aging brain. In turn dysregulation of AMPARs can be linked to most neurological and neurodegenerative disorders. Understanding the mechanisms that govern AMPAR signaling during natural and pathological cognitive decline will guide the efforts to develop most effective ways to tackle neurodegenerative diseases which are one of the primary burdens afflicting an increasingly aging population. In this review, I provide a brief overview of the molecular mechanisms involved in AMPAR trafficking highlighting what is currently known about how these processes change with age and disease. As a particularly well-studied example of AMPAR dysfunction in pathological aging I focus in Alzheimer’s disease (AD) with special emphasis in how the production of neurofibrillary tangles (NFTs) and amyloid-β plaques may contribute to disruption in AMPAR function.
Collapse
Affiliation(s)
- Sandra Jurado
- Instituto de Neurociencias CSIC-UMH, San Juan de Alicante, Spain
| |
Collapse
|
64
|
|
65
|
Abstract
Alzheimer’s disease (AD) is characterised by a progressive loss of cognitive functions. Histopathologically, AD is defined by the presence of extracellular amyloid plaques containing Aβ and intracellular neurofibrillary tangles composed of hyperphosphorylated tau proteins. According to the now well-accepted amyloid cascade hypothesis is the Aβ pathology the primary driving force of AD pathogenesis, which then induces changes in tau protein leading to a neurodegenerative cascade during the progression of disease. Since many earlier drug trials aiming at preventing Aβ pathology failed to demonstrate efficacy, tau and microtubules have come into focus as prominent downstream targets. The article aims to develop the current concept of the involvement of tau in the neurodegenerative triad of synaptic loss, cell death and dendritic simplification. The function of tau as a microtubule-associated protein and versatile interaction partner will then be introduced and the rationale and progress of current tau-directed therapy will be discussed in the biological context.
Collapse
Affiliation(s)
- Lidia Bakota
- Department of Neurobiology, University of Osnabrück, Barbarastrasse 11, 49076, Osnabrück, Germany
| | - Roland Brandt
- Department of Neurobiology, University of Osnabrück, Barbarastrasse 11, 49076, Osnabrück, Germany.
| |
Collapse
|
66
|
Adav SS, Sze SK. Insight of brain degenerative protein modifications in the pathology of neurodegeneration and dementia by proteomic profiling. Mol Brain 2016; 9:92. [PMID: 27809929 PMCID: PMC5094070 DOI: 10.1186/s13041-016-0272-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 10/16/2016] [Indexed: 02/06/2023] Open
Abstract
Dementia is a syndrome associated with a wide range of clinical features including progressive cognitive decline and patient inability to self-care. Due to rapidly increasing prevalence in aging society, dementia now confers a major economic, social, and healthcare burden throughout the world, and has therefore been identified as a public health priority by the World Health Organization. Previous studies have established dementia as a 'proteinopathy' caused by detrimental changes in brain protein structure and function that promote misfolding, aggregation, and deposition as insoluble amyloid plaques. Despite clear evidence that pathological cognitive decline is associated with degenerative protein modifications (DPMs) arising from spontaneous chemical modifications to amino acid side chains, the molecular mechanisms that promote brain DPMs formation remain poorly understood. However, the technical challenges associated with DPM analysis have recently become tractable due to powerful new proteomic techniques that facilitate detailed analysis of brain tissue damage over time. Recent studies have identified that neurodegenerative diseases are associated with the dysregulation of critical repair enzymes, as well as the misfolding, aggregation and accumulation of modified brain proteins. Future studies will further elucidate the mechanisms underlying dementia pathogenesis via the quantitative profiling of the human brain proteome and associated DPMs in distinct phases and subtypes of disease. This review summarizes recent developments in quantitative proteomic technologies, describes how these techniques have been applied to the study of dementia-linked changes in brain protein structure and function, and briefly outlines how these findings might be translated into novel clinical applications for dementia patients. In this review, only spontaneous protein modifications such as deamidation, oxidation, nitration glycation and carbamylation are reviewed and discussed.
Collapse
Affiliation(s)
- Sunil S. Adav
- Division of Structural Biology and Biochemistry, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551 Singapore
| | - Siu Kwan Sze
- Division of Structural Biology and Biochemistry, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551 Singapore
| |
Collapse
|
67
|
Giambra LM. Frequency and Intensity of Daydreaming: Age Changes and Age Differences from Late Adolescent to the Old-Old. ACTA ACUST UNITED AC 2016. [DOI: 10.2190/xn4w-1cre-b0mh-84xt] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Daydreaming likelihood and intensity were examined through responses to the Imaginal Processes Inventory. Giambra [1–8] and McCraven and Singer [9] have demonstrated adult age differences and seven-year changes. These earlier studies were expanded by increasing the size and diversity of the cross-sectional ( n = 2791, 17–95 yrs. old) and 5.45–9.54 year longitudinal samples ( n = 886) and by adding 11.45–16.67 year ( n = 628) and 17.40–23.44 year ( n = 290) longitudinal samples. Clear age differences and age changes occurred in daydream likelihood and intensity. Biological speed and efficiency of information-processing, current concern, attentional strategy, memory deficit, and age-related differences in response honesty explanations were evaluated.
Collapse
|
68
|
Arey RN, Murphy CT. Conserved regulators of cognitive aging: From worms to humans. Behav Brain Res 2016; 322:299-310. [PMID: 27329151 DOI: 10.1016/j.bbr.2016.06.035] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 05/27/2016] [Accepted: 06/17/2016] [Indexed: 01/25/2023]
Abstract
Cognitive decline is a major deficit that arises with age in humans. While some research on the underlying causes of these problems can be done in humans, harnessing the strengths of small model systems, particularly those with well-studied longevity mutants, such as the nematode C. elegans, will accelerate progress. Here we review the approaches being used to study cognitive decline in model organisms and show how simple model systems allow the rapid discovery of conserved molecular mechanisms, which will eventually enable the development of therapeutics to slow cognitive aging.
Collapse
Affiliation(s)
- Rachel N Arey
- Department of Molecular Biology & LSI Genomics, Princeton University, Princeton, NJ 08544, United States
| | - Coleen T Murphy
- Department of Molecular Biology & LSI Genomics, Princeton University, Princeton, NJ 08544, United States.
| |
Collapse
|
69
|
Zhao Y, Wen J, Cross AH, Yablonskiy DA. On the relationship between cellular and hemodynamic properties of the human brain cortex throughout adult lifespan. Neuroimage 2016; 133:417-429. [PMID: 26997360 PMCID: PMC4889562 DOI: 10.1016/j.neuroimage.2016.03.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 03/09/2016] [Accepted: 03/10/2016] [Indexed: 12/22/2022] Open
Abstract
Establishing baseline MRI biomarkers for normal brain aging is significant and valuable for separating normal changes in the brain structure and function from different neurological diseases. In this paper for the first time we have simultaneously measured a variety of tissue specific contributions defining R2* relaxation of the gradient recalled echo (GRE) MRI signal in human brains of healthy adults (ages 22 to 74years) and related these measurements to tissue structural and functional properties. This was accomplished by separating tissue (R2t(⁎)) and extravascular BOLD contributions to the total tissue specific GRE MRI signal decay (R2(⁎)) using an advanced version of previously developed Gradient Echo Plural Contrast Imaging (GEPCI) approach and the acquisition and post-processing methods that allowed the minimization of artifacts related to macroscopic magnetic field inhomogeneities, and physiological fluctuations. Our data (20 healthy subjects) show that in most cortical regions R2t(⁎) increases with age while tissue hemodynamic parameters, i.e. relative oxygen extraction fraction (OEFrel), deoxygenated cerebral blood volume (dCBV) and tissue concentration of deoxyhemoglobin (Cdeoxy) remain practically constant. We also found the important correlations characterizing the relationships between brain structural and hemodynamic properties in different brain regions. Specifically, thicker cortical regions have lower R2t(⁎) and these regions have lower OEF. The comparison between GEPCI-derived tissue specific structural and functional metrics and literature information suggests that (a) regions in a brain characterized by higher R2t(⁎) contain higher concentration of neurons with less developed cellular processes (dendrites, spines, etc.), (b) regions in a brain characterized by lower R2t(⁎) represent regions with lower concentration of neurons but more developed cellular processes, and (c) the age-related increases in the cortical R2t(⁎) mostly reflect the age-related increases in the cellular packing density. The baseline GEPCI-based biomarkers obtain herein could serve to help distinguish age-related changes in brain cellular and hemodynamic properties from changes which occur due to the neurodegenerative diseases.
Collapse
Affiliation(s)
- Yue Zhao
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, Saint Louis, MO 63130, USA
| | - Jie Wen
- Department of Radiology, Washington University in St. Louis, One Brookings Drive, Saint Louis, MO 63130, USA
| | - Anne H Cross
- Department of Neurology, Washington University in St. Louis, One Brookings Drive, Saint Louis, MO 63130, USA
| | - Dmitriy A Yablonskiy
- Department of Radiology, Washington University in St. Louis, One Brookings Drive, Saint Louis, MO 63130, USA.
| |
Collapse
|
70
|
Abstract
The complement system is part of the innate immune response responsible for removing pathogens and cellular debris, in addition to helping to refine CNS neuronal connections via microglia-mediated pruning of inappropriate synapses during brain development. However, less is known about the role of complement during normal aging. Here, we studied the role of the central complement component, C3, in synaptic health and aging. We examined behavior as well as electrophysiological, synaptic, and neuronal changes in the brains of C3-deficient male mice (C3 KO) compared with age-, strain-, and gender-matched C57BL/6J (wild-type, WT) control mice at postnatal day 30, 4 months, and 16 months of age. We found the following: (1) region-specific and age-dependent synapse loss in aged WT mice that was not observed in C3 KO mice; (2) age-dependent neuron loss in hippocampal CA3 (but not in CA1) that followed synapse loss in aged WT mice, neither of which were observed in aged C3 KO mice; and (3) significantly enhanced LTP and cognition and less anxiety in aged C3 KO mice compared with aged WT mice. Importantly, CA3 synaptic puncta were similar between WT and C3 KO mice at P30. Together, our results suggest a novel and prominent role for complement protein C3 in mediating aged-related and region-specific changes in synaptic function and plasticity in the aging brain. Significance statement: The complement cascade, part of the innate immune response to remove pathogens, also plays a role in synaptic refinement during brain development by the removal of weak synapses. We investigated whether complement C3, a central component, affects synapse loss during aging. Wild-type (WT) and C3 knock-out (C3 KO) mice were examined at different ages. The mice were similar at 1 month of age. However, with aging, WT mice lost synapses in specific brain regions, especially in hippocampus, an area important for memory, whereas C3 KO mice were protected. Aged C3 KO mice also performed better on learning and memory tests than aged WT mice. Our results suggest that complement C3, or its downstream signaling, is detrimental to synapses during aging.
Collapse
|
71
|
Penazzi L, Bakota L, Brandt R. Microtubule Dynamics in Neuronal Development, Plasticity, and Neurodegeneration. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 321:89-169. [PMID: 26811287 DOI: 10.1016/bs.ircmb.2015.09.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Neurons are the basic information-processing units of the nervous system. In fulfilling their task, they establish a structural polarity with an axon that can be over a meter long and dendrites with a complex arbor, which can harbor ten-thousands of spines. Microtubules and their associated proteins play important roles during the development of neuronal morphology, the plasticity of neurons, and neurodegenerative processes. They are dynamic structures, which can quickly adapt to changes in the environment and establish a structural scaffold with high local variations in composition and stability. This review presents a comprehensive overview about the role of microtubules and their dynamic behavior during the formation and maturation of processes and spines in the healthy brain, during aging and under neurodegenerative conditions. The review ends with a discussion of microtubule-targeted therapies as a perspective for the supportive treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Lorène Penazzi
- Department of Neurobiology, University of Osnabrück, Osnabrück, Germany
| | - Lidia Bakota
- Department of Neurobiology, University of Osnabrück, Osnabrück, Germany
| | - Roland Brandt
- Department of Neurobiology, University of Osnabrück, Osnabrück, Germany
| |
Collapse
|
72
|
Golovyashkina N, Penazzi L, Ballatore C, Smith AB, Bakota L, Brandt R. Region-specific dendritic simplification induced by Aβ, mediated by tau via dysregulation of microtubule dynamics: a mechanistic distinct event from other neurodegenerative processes. Mol Neurodegener 2015; 10:60. [PMID: 26541821 PMCID: PMC4634596 DOI: 10.1186/s13024-015-0049-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 09/28/2015] [Indexed: 12/30/2022] Open
Abstract
Background Dendritic simplification, a key feature of the neurodegenerative triad of Alzheimer’s disease (AD) in addition to spine changes and neuron loss, occurs in a region-specific manner. However, it is unknown how changes in dendritic complexity are mediated and how they relate to spine changes and neuron loss. Results To investigate the mechanisms of dendritic simplification in an authentic CNS environment we employed an ex vivo model, based on targeted expression of enhanced green fluorescent protein (EGFP)-tagged constructs in organotypic hippocampal slices of mice. Algorithm-based 3D reconstruction of whole neuron morphology in different hippocampal regions was performed on slices from APPSDL-transgenic and control animals. We demonstrate that induction of dendritic simplification requires the combined action of amyloid beta (Aβ) and human tau. Simplification is restricted to principal neurons of the CA1 region, recapitulating the region specificity in AD patients, and occurs at sites of Schaffer collateral input. We report that γ-secretase inhibition and treatment with the NMDA-receptor antagonist, CPP, counteract dendritic simplification. The microtubule-stabilizing drug epothilone D (EpoD) induces simplification in control cultures per se. Similar morphological changes were induced by a phosphoblocking tau construct, which also increases microtubule stability. In fact, low nanomolar concentrations of naturally secreted Aβ decreased phosphorylation at S262 in a cellular model, a site which is known to directly modulate tau-microtubule interactions. Conclusions The data provide evidence that dendritic simplification is mechanistically distinct from other neurodegenerative events and involves microtubule stabilization by dendritic tau, which becomes dephosphorylated at certain sites. They imply that treatments leading to an overall decrease of tau phosphorylation might have a negative impact on neuronal connectivity.
Collapse
Affiliation(s)
- Nataliya Golovyashkina
- Department of Neurobiology, University of Osnabrück, Barbarastrasse 11, 49076, Osnabrück, Germany.
| | - Lorène Penazzi
- Department of Neurobiology, University of Osnabrück, Barbarastrasse 11, 49076, Osnabrück, Germany.
| | - Carlo Ballatore
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, 19014, USA. .,Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Amos B Smith
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, 19014, USA.
| | - Lidia Bakota
- Department of Neurobiology, University of Osnabrück, Barbarastrasse 11, 49076, Osnabrück, Germany.
| | - Roland Brandt
- Department of Neurobiology, University of Osnabrück, Barbarastrasse 11, 49076, Osnabrück, Germany.
| |
Collapse
|
73
|
Tromp D, Dufour A, Lithfous S, Pebayle T, Després O. Episodic memory in normal aging and Alzheimer disease: Insights from imaging and behavioral studies. Ageing Res Rev 2015; 24:232-62. [PMID: 26318058 DOI: 10.1016/j.arr.2015.08.006] [Citation(s) in RCA: 231] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 08/20/2015] [Indexed: 12/30/2022]
Abstract
Age-related cognitive changes often include difficulties in retrieving memories, particularly those that rely on personal experiences within their temporal and spatial contexts (i.e., episodic memories). This decline may vary depending on the studied phase (i.e., encoding, storage or retrieval), according to inter-individual differences, and whether we are talking about normal or pathological (e.g., Alzheimer disease; AD) aging. Such cognitive changes are associated with different structural and functional alterations in the human neural network that underpins episodic memory. The prefrontal cortex is the first structure to be affected by age, followed by the medial temporal lobe (MTL), the parietal cortex and the cerebellum. In AD, however, the modifications occur mainly in the MTL (hippocampus and adjacent structures) before spreading to the neocortex. In this review, we will present results that attempt to characterize normal and pathological cognitive aging at multiple levels by integrating structural, behavioral, inter-individual and neuroimaging measures of episodic memory.
Collapse
Affiliation(s)
- D Tromp
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA - UMR 7364 - CNRS/UDS) - 21 rue Becquerel, 67087 Strasbourg, France.
| | - A Dufour
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA - UMR 7364 - CNRS/UDS) - 21 rue Becquerel, 67087 Strasbourg, France; Centre d'Investigations Neurocognitives et Neurophysiologiques (CI2N - UMS 3489 - CNRS/UDS) - 21 rue Becquerel, 67087 Strasbourg, France
| | - S Lithfous
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA - UMR 7364 - CNRS/UDS) - 21 rue Becquerel, 67087 Strasbourg, France
| | - T Pebayle
- Centre d'Investigations Neurocognitives et Neurophysiologiques (CI2N - UMS 3489 - CNRS/UDS) - 21 rue Becquerel, 67087 Strasbourg, France
| | - O Després
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA - UMR 7364 - CNRS/UDS) - 21 rue Becquerel, 67087 Strasbourg, France.
| |
Collapse
|
74
|
Braak H, Del Tredici K. The preclinical phase of the pathological process underlying sporadic Alzheimer’s disease. Brain 2015; 138:2814-33. [DOI: 10.1093/brain/awv236] [Citation(s) in RCA: 293] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 07/21/2015] [Indexed: 12/13/2022] Open
|
75
|
Rosa E, Fahnestock M. CREB expression mediates amyloid β-induced basal BDNF downregulation. Neurobiol Aging 2015; 36:2406-13. [PMID: 26025137 DOI: 10.1016/j.neurobiolaging.2015.04.014] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Revised: 04/18/2015] [Accepted: 04/24/2015] [Indexed: 12/31/2022]
Abstract
In Alzheimer's disease, accumulation of amyloid-β (Aβ) is associated with loss of brain-derived neurotrophic factor (BDNF), synapses, and memory. Previous work demonstrated that Aβ decreases activity-induced BDNF transcription by regulating cyclic adenosine monophosphate response element binding protein (CREB) phosphorylation. However, the specific mechanism by which Aβ reduces basal BDNF expression remains unclear. Differentiated, unstimulated human neuroblastoma (SH-SY5Y) cells treated with oligomeric Aβ exhibited significantly reduced CREB messenger RNA compared with controls. Phosphorylated and total CREB proteins were decreased in both the cytoplasm and nucleus of Aβ-treated cells. However, neither pCREB129 nor pCREB133 levels were altered relative to total CREB levels. The protein kinase A activator forskolin increased pCREB133 levels and prevented Aβ-induced basal BDNF loss when administered before Aβ but did not rescue BDNF expression when administered later. These data demonstrate a new mechanism for Aβ-induced BDNF downregulation: in the absence of cell stimulation, Aβ downregulates basal BDNF levels via Aβ-induced CREB transcriptional downregulation, not changes in CREB phosphorylation. Thus, Aβ reduces basal and activity-induced BDNF expression by different mechanisms.
Collapse
Affiliation(s)
- Elyse Rosa
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | - Margaret Fahnestock
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
76
|
Fu Y, Yu Y, Paxinos G, Watson C, Rusznák Z. Aging-dependent changes in the cellular composition of the mouse brain and spinal cord. Neuroscience 2015; 290:406-20. [DOI: 10.1016/j.neuroscience.2015.01.039] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 12/21/2014] [Accepted: 01/08/2015] [Indexed: 01/09/2023]
|
77
|
Rizzo V, Richman J, Puthanveettil SV. Dissecting mechanisms of brain aging by studying the intrinsic excitability of neurons. Front Aging Neurosci 2015; 6:337. [PMID: 25610394 PMCID: PMC4285138 DOI: 10.3389/fnagi.2014.00337] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 11/29/2014] [Indexed: 01/30/2023] Open
Abstract
Several studies using vertebrate and invertebrate animal models have shown aging associated changes in brain function. Importantly, changes in soma size, loss or regression of dendrites and dendritic spines and alterations in the expression of neurotransmitter receptors in specific neurons were described. Despite this understanding, how aging impacts intrinsic properties of individual neurons or circuits that govern a defined behavior is yet to be determined. Here we discuss current understanding of specific electrophysiological changes in individual neurons and circuits during aging.
Collapse
Affiliation(s)
- Valerio Rizzo
- Department of Neuroscience, The Scripps Research Institute Jupiter, FL, USA
| | - Jeffrey Richman
- Department of Neuroscience, The Scripps Research Institute Jupiter, FL, USA
| | | |
Collapse
|
78
|
Csete G, Bognár A, Csibri P, Kaposvári P, Sáry G. Aging alters visual processing of objects and shapes in inferotemporal cortex in monkeys. Brain Res Bull 2014; 110:76-83. [PMID: 25526896 DOI: 10.1016/j.brainresbull.2014.11.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 11/21/2014] [Accepted: 11/22/2014] [Indexed: 12/14/2022]
Abstract
Visual perception declines with age. Perceptual deficits may originate not only in the optical system serving vision but also in the neural machinery processing visual information. Since homologies between monkey and human vision permit extrapolation from monkeys to humans, data from young, middle aged and old monkeys were analyzed to show age-related changes in the neuronal activity in the inferotemporal cortex, which is critical for object and shape vision. We found an increased neuronal response latency, and a decrease in the stimulus selectivity in the older animals and suggest that these changes may underlie the perceptual uncertainties found frequently in the elderly.
Collapse
Affiliation(s)
- G Csete
- Department of Physiology, Faculty of Medicine, University of Szeged, Dóm tér 10, H-6720 Szeged, Hungary; Department of Neurology, Faculty of Medicine, Semmelweis u. 6, H-6725 Szeged, Hungary.
| | - A Bognár
- Department of Physiology, Faculty of Medicine, University of Szeged, Dóm tér 10, H-6720 Szeged, Hungary.
| | - P Csibri
- Department of Physiology, Faculty of Medicine, University of Szeged, Dóm tér 10, H-6720 Szeged, Hungary.
| | - P Kaposvári
- Department of Physiology, Faculty of Medicine, University of Szeged, Dóm tér 10, H-6720 Szeged, Hungary.
| | - Gy Sáry
- Department of Physiology, Faculty of Medicine, University of Szeged, Dóm tér 10, H-6720 Szeged, Hungary.
| |
Collapse
|
79
|
Ly M, Canu E, Xu G, Oh J, McLaren DG, Dowling NM, Alexander AL, Sager MA, Johnson SC, Bendlin BB. Midlife measurements of white matter microstructure predict subsequent regional white matter atrophy in healthy adults. Hum Brain Mapp 2014; 35:2044-54. [PMID: 23861348 PMCID: PMC3895105 DOI: 10.1002/hbm.22311] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 03/21/2013] [Accepted: 04/02/2013] [Indexed: 11/07/2022] Open
Abstract
OBJECTIVES Although age-related brain changes are becoming better understood, midlife patterns of change are still in need of characterization, and longitudinal studies are lacking. The aim of this study was to determine if baseline fractional anisotropy (FA), obtained from diffusion tensor imaging (DTI) predicts volume change over a 4-year interval. EXPERIMENTAL DESIGN Forty-four cognitively healthy middle-age adults underwent baseline DTI and longitudinal T1-weighted magnetic resonance imaging. Tensor-based morphometry methods were used to evaluate volume change over time. FA values were extracted from regions of interest that included the cingulum, entorhinal white matter, and the genu and splenium of the corpus callosum. Baseline FA was used as a predictor variable, whereas gray and white matter atrophy rates as indexed by Tensor-based morphometry were the dependent variables. PRINCIPAL OBSERVATIONS Over a 4-year period, participants showed significant contraction of white matter, especially in frontal, temporal, and cerebellar regions (P < 0.05, corrected for multiple comparisons). Baseline FA in entorhinal white matter, genu, and splenium was associated with longitudinal rates of atrophy in regions that included the superior longitudinal fasciculus, anterior corona radiata, temporal stem, and white matter of the inferior temporal gyrus (P < 0.001, uncorrected for multiple comparisons). CONCLUSIONS Brain change with aging is characterized by extensive shrinkage of white matter. Baseline white matter microstructure as indexed by DTI was associated with some of the observed regional volume loss. The findings suggest that both white matter volume loss and microstructural alterations should be considered more prominently in models of aging and neurodegenerative diseases.
Collapse
Affiliation(s)
- Martina Ly
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veteran's HospitalMadisonWisconsin
- Department of MedicineWisconsin Alzheimer's Disease Research Center, University of WisconsinMadisonWisconsin
- Neuroscience Training ProgramUniversity of WisconsinMadisonWisconsin
| | - Elisa Canu
- Laboratory of Epidemiology Neuroimaging and Telemedicine, IRCCS Centro San Giovanni di Dio FBF, The National Centre for Research and Care of Alzheimer's and Mental DiseasesBresciaItaly
| | - Guofan Xu
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veteran's HospitalMadisonWisconsin
- Department of MedicineWisconsin Alzheimer's Disease Research Center, University of WisconsinMadisonWisconsin
| | - Jennifer Oh
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veteran's HospitalMadisonWisconsin
- Department of MedicineWisconsin Alzheimer's Disease Research Center, University of WisconsinMadisonWisconsin
| | - Donald G. McLaren
- Harvard Medical SchoolBostonMassachusetts
- Department of NeurologyMassachusetts General HospitalBostonMassachusetts
- Department of RadiologyMartinos Center for Biomedical Imaging, Massachusetts General HospitalCharlestownMassachusetts
- Geriatric Research Education and Clinical Center, Edith Nourse Rogers Memorial Veterans HospitalBedfordMassachusetts
| | - N. Maritza Dowling
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veteran's HospitalMadisonWisconsin
- Department of MedicineWisconsin Alzheimer's Disease Research Center, University of WisconsinMadisonWisconsin
- Department of Biostatistics and Medical InformaticsUniversity of WisconsinMadisonWisconsin
| | - Andrew L. Alexander
- Department of Medical PhysicsUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsin
- Department of PsychiatryUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsin
- Waisman Laboratory for Brain Imaging and BehaviorMadisonWisconsin
| | - Mark A. Sager
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veteran's HospitalMadisonWisconsin
- Department of MedicineWisconsin Alzheimer's Disease Research Center, University of WisconsinMadisonWisconsin
| | - Sterling C. Johnson
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veteran's HospitalMadisonWisconsin
- Department of MedicineWisconsin Alzheimer's Disease Research Center, University of WisconsinMadisonWisconsin
| | - Barbara B. Bendlin
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veteran's HospitalMadisonWisconsin
- Department of MedicineWisconsin Alzheimer's Disease Research Center, University of WisconsinMadisonWisconsin
| |
Collapse
|
80
|
Oikawa S, Kobayashi H, Kitamura Y, Zhu H, Obata K, Minabe Y, Dazortsava M, Ohashi K, Tada-Oikawa S, Takahashi H, Yata K, Murata M, Yamashima T. Proteomic analysis of carbonylated proteins in the monkey substantia nigra after ischemia-reperfusion. Free Radic Res 2014; 48:694-705. [DOI: 10.3109/10715762.2014.901509] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Shinji Oikawa
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine,
Mie, Japan
| | - Hatasu Kobayashi
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine,
Mie, Japan
| | - Yuki Kitamura
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine,
Mie, Japan
| | - Hong Zhu
- Departments of Restorative Neurosurgery and Psychiatry, Kanazawa University Graduate School of Medical Science,
Kanazawa, Japan
| | - Kumi Obata
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine,
Mie, Japan
| | - Yoshio Minabe
- Departments of Restorative Neurosurgery and Psychiatry, Kanazawa University Graduate School of Medical Science,
Kanazawa, Japan
| | - Maryia Dazortsava
- Departments of Restorative Neurosurgery and Psychiatry, Kanazawa University Graduate School of Medical Science,
Kanazawa, Japan
| | - Kyoko Ohashi
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine,
Mie, Japan
| | - Saeko Tada-Oikawa
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine,
Mie, Japan
| | - Hitoshi Takahashi
- Department of Pathology, Brain Research Institute, University of Niigata,
Niigata, Japan
| | - Kenichiro Yata
- Department of Neurology, Mie University Graduate School of Medicine,
Mie, Japan
| | - Mariko Murata
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine,
Mie, Japan
| | - Tetsumori Yamashima
- Departments of Restorative Neurosurgery and Psychiatry, Kanazawa University Graduate School of Medical Science,
Kanazawa, Japan
| |
Collapse
|
81
|
Konsolaki E, Skaliora I. Premature Aging Phenotype in Mice Lacking High-Affinity Nicotinic Receptors: Region-Specific Changes in Layer V Pyramidal Cell Morphology. Cereb Cortex 2014; 25:2138-48. [PMID: 24554727 DOI: 10.1093/cercor/bhu019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The mechanisms by which aging leads to alterations in brain structure and cognitive deficits are unclear. Α deficient cholinergic system has been implicated as one of the main factors that could confer a heightened vulnerability to the aging process, and mice lacking high-affinity nicotinic receptors (β2(-/-)) have been proposed as an animal model of accelerated cognitive aging. To date, however, age-related changes in neuronal microanatomy have not been studied in these mice. In the present study, we examine the neuronal structure of yellow fluorescent protein (YFP(+)) layer V neurons in 2 cytoarchitectonically distinct cortical regions in wild-type (WT) and β2(-/-) animals. We find that (1) substantial morphological differences exist between YFP(+) cells of the anterior cingulate cortex (ACC) and primary visual cortex (V1), in both genotypes; (2) in WT animals, ACC cells are more susceptible to aging compared with cells in V1; and (3) β2 deletion is associated with a regionally and temporally specific increase in vulnerability to aging. ACC cells exhibit a prematurely aged phenotype already at 4-6 months, whereas V1 cells are spared in adulthood but strongly affected in old animals. Collectively, our data reveal region-specific synergistic effects of aging and genotype and suggest distinct vulnerabilities in V1 and ACC neurons.
Collapse
Affiliation(s)
- Eleni Konsolaki
- Neurophysiology Laboratory, Division of Developmental Biology, Biomedical Research Foundation of the Academy of Athens, Athens 115 27, Greece
| | - Irini Skaliora
- Neurophysiology Laboratory, Division of Developmental Biology, Biomedical Research Foundation of the Academy of Athens, Athens 115 27, Greece
| |
Collapse
|
82
|
Chiu PW, Mak HKF, Yau KKW, Chan Q, Chang RCC, Chu LW. Metabolic changes in the anterior and posterior cingulate cortices of the normal aging brain: proton magnetic resonance spectroscopy study at 3 T. AGE (DORDRECHT, NETHERLANDS) 2014; 36:251-64. [PMID: 23709317 PMCID: PMC3889884 DOI: 10.1007/s11357-013-9545-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 05/14/2013] [Indexed: 05/22/2023]
Abstract
Magnetic resonance spectroscopy (MRS) can explore aging at a molecular level. In this study, we investigated the relationships between regional concentrations of metabolites (such as choline, creatine, myo-inositol, and N-acetyl-aspartate) and normal aging in 30 cognitively normal subjects (15 women and 15 men, age range 22-82, mean = 49.9 ± 18.3 years) using quantitative proton magnetic resonance spectroscopy. All MR scans were performed using a 3 T scanner. Point resolved spectroscopy was used as the volume selection method for the region-of-interest and the excitation method for water suppression. Single voxel spectroscopy with short echo time of 39 ms and repetition time of 2,000 ms was employed. Single voxels were placed in the limbic regions, i.e., anterior cingulate cortex (ACC), posterior cingulate cortex (PCC), and left and right hippocampi. Cerebrospinal fluid normalization and T1 and T2 correction factors were implemented in the calculation of absolute metabolite concentrations. A standardized T1W 3D volumetric fast field echo and axial T2-weighted fast spin-echo images were also acquired. Our results showed significant positive correlation of choline (r = 0.545, p = 0.002), creatine (r = 0.571, p = 0.001), and N-acetyl-aspartate (r = 0.674, p < 0.001) in the ACC; choline (r = 0.614, p < 0.001), creatine (r = 0.670, p < 0.001), and N-acetyl-aspartate (r = 0.528, p = 0.003) in the PCC; and NAA (r = 0.409, p = 0.025) in the left hippocampus, with age. No significant gender effect on metabolite concentrations was found. In aging, increases in choline and creatine might suggest glial proliferation, and an increase in N-acetyl-aspartate might indicate neuronal hypertrophy. Such findings highlight the metabolic changes of ACC and PCC with age, which could be compensatory to an increased energy demand coupled with a lower cerebral blood flow.
Collapse
Affiliation(s)
- Pui-Wai Chiu
- />Department of Diagnostic Radiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Henry Ka-Fung Mak
- />Department of Diagnostic Radiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- />Alzheimer’s Disease Research Network, The University of Hong Kong, Hong Kong, China
- />Research Centre of Heart, Brain, Hormone and Healthy Aging, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- />Queen Mary Hospital, Room 406, Block K, 102 Pokfulam Road, Hong Kong, China
| | - Kelvin Kai-Wing Yau
- />Department of Management Sciences, City University of Hong Kong, Hong Kong, China
| | - Queenie Chan
- />Department of Diagnostic Radiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- />Philips Healthcare, Hong Kong, China
| | - Raymond Chuen-Chung Chang
- />Laboratory of Neurodegenerative Disease, Department of Anatomy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- />Alzheimer’s Disease Research Network, The University of Hong Kong, Hong Kong, China
- />Research Centre of Heart, Brain, Hormone and Healthy Aging, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Leung-Wing Chu
- />Division of Geriatric Medicine, Department of Medicine, Queen Mary Hospital, Hong Kong, China
- />Alzheimer’s Disease Research Network, The University of Hong Kong, Hong Kong, China
- />Research Centre of Heart, Brain, Hormone and Healthy Aging, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
83
|
Redox proteomics and the dynamic molecular landscape of the aging brain. Ageing Res Rev 2014; 13:75-89. [PMID: 24374232 DOI: 10.1016/j.arr.2013.12.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 12/04/2013] [Accepted: 12/16/2013] [Indexed: 12/13/2022]
Abstract
It is well established that the risk to develop neurodegenerative disorders increases with chronological aging. Accumulating studies contributed to characterize the age-dependent changes either at gene and protein expression level which, taken together, show that aging of the human brain results from the combination of the normal decline of multiple biological functions with environmental factors that contribute to defining disease risk of late-life brain disorders. Finding the "way out" of the labyrinth of such complex molecular interactions may help to fill the gap between "normal" brain aging and development of age-dependent diseases. To this purpose, proteomics studies are a powerful tool to better understand where to set the boundary line of healthy aging and age-related disease by analyzing the variation of protein expression levels and the major post translational modifications that determine "protein" physio/pathological fate. Increasing attention has been focused on oxidative modifications due to the crucial role of oxidative stress in aging, in addition to the fact that this type of modification is irreversible and may alter protein function. Redox proteomics studies contributed to decipher the complexity of brain aging by identifying the proteins that were increasingly oxidized and eventually dysfunctional as a function of age. The purpose of this review is to summarize the most important findings obtained by applying proteomics approaches to murine models of aging with also a brief overview of some human studies, in particular those related to dementia.
Collapse
|
84
|
Shahaduzzaman M, Golden JE, Green S, Gronda AE, Adrien E, Ahmed A, Sanberg PR, Bickford PC, Gemma C, Willing AE. A single administration of human umbilical cord blood T cells produces long-lasting effects in the aging hippocampus. AGE (DORDRECHT, NETHERLANDS) 2013; 35:2071-2087. [PMID: 23263793 PMCID: PMC3825009 DOI: 10.1007/s11357-012-9496-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 12/05/2012] [Indexed: 06/01/2023]
Abstract
Neurogenesis occurs throughout life but significantly decreases with age. Human umbilical cord blood mononuclear cells (HUCB MNCs) have been shown to increase the proliferation of neural stem cells (NSCs) in the dentate gyrus (DG) of the hippocampus and the subgranular zone of aging rats (Bachstetter et al., BMC Neurosci 9:22, 2008), but it is unclear which fraction or combination of the HUCB MNCs are responsible for neurogenesis. To address this issue, we examined the ability of HUCB MNCs, CD4+, CD8+, CD3+, CD14+, and CD133+ subpopulations to increase proliferation of NSCs both in vitro and in vivo. NSCs were first grown in conditioned media generated from HUCB cultures, and survival and proliferation of NSC were determined with the fluorescein diacetate/propidium iodide and 5-bromo-2'-deoxyuridine incorporation assays, respectively. In a second study, we injected HUCB cells intravenously in young and aged Fisher 344 rats and examined proliferation in the DG at 1 week (study 2.1) and 2 weeks (study 2.2) postinjection. The effects of the HUCB MNC fractions on dendritic spine density and microglial activation were also assessed. HUCB T cells (CD3+, CD4+, and CD8+ cells) induced proliferation of NSCs (p < 0.001) and increased cell survival. In vivo, HUCB-derived CD4+ cells increased NSC proliferation at both 1 and 2 weeks while also enhancing the density of dendritic spines at 1 week and decreasing inflammation at 2 weeks postinjection. Collectively, these data indicate that a single injection of HUCB-derived T cells induces long-lasting effects and may therefore have tremendous potential to improve aging neurogenesis.
Collapse
Affiliation(s)
- Md Shahaduzzaman
- Center for Excellence in Aging and Brain Repair, Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd, MDC78, Tampa, FL 33612 USA
| | - Jason E. Golden
- Center for Excellence in Aging and Brain Repair, Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd, MDC78, Tampa, FL 33612 USA
| | - Suzanne Green
- Center for Excellence in Aging and Brain Repair, Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd, MDC78, Tampa, FL 33612 USA
| | - Allisun E. Gronda
- Center for Excellence in Aging and Brain Repair, Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd, MDC78, Tampa, FL 33612 USA
| | - Emanuelle Adrien
- Center for Excellence in Aging and Brain Repair, Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd, MDC78, Tampa, FL 33612 USA
| | - Aysha Ahmed
- Center for Excellence in Aging and Brain Repair, Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd, MDC78, Tampa, FL 33612 USA
| | - Paul R. Sanberg
- Center for Excellence in Aging and Brain Repair, Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd, MDC78, Tampa, FL 33612 USA
| | - Paula C. Bickford
- Center for Excellence in Aging and Brain Repair, Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd, MDC78, Tampa, FL 33612 USA
- Research Service, James A Haley VA Hospital, 13000 Bruce B Downs Blvd, Tampa, FL 33620 USA
| | - Carmelina Gemma
- Center for Excellence in Aging and Brain Repair, Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd, MDC78, Tampa, FL 33612 USA
| | - Alison E. Willing
- Center for Excellence in Aging and Brain Repair, Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd, MDC78, Tampa, FL 33612 USA
| |
Collapse
|
85
|
Maldonado JR. Neuropathogenesis of delirium: review of current etiologic theories and common pathways. Am J Geriatr Psychiatry 2013; 21:1190-222. [PMID: 24206937 DOI: 10.1016/j.jagp.2013.09.005] [Citation(s) in RCA: 443] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 09/10/2013] [Accepted: 09/13/2013] [Indexed: 12/20/2022]
Abstract
Delirium is a neurobehavioral syndrome caused by dysregulation of neuronal activity secondary to systemic disturbances. Over time, a number of theories have been proposed in an attempt to explain the processes leading to the development of delirium. Each proposed theory has focused on a specific mechanism or pathologic process (e.g., dopamine excess or acetylcholine deficiency theories), observational and experiential evidence (e.g., sleep deprivation, aging), or empirical data (e.g., specific pharmacologic agents' association with postoperative delirium, intraoperative hypoxia). This article represents a review of published literature and summarizes the top seven proposed theories and their interrelation. This review includes the "neuroinflammatory," "neuronal aging," "oxidative stress," "neurotransmitter deficiency," "neuroendocrine," "diurnal dysregulation," and "network disconnectivity" hypotheses. Most of these theories are complementary, rather than competing, with many areas of intersection and reciprocal influence. The literature suggests that many factors or mechanisms included in these theories lead to a final common outcome associated with an alteration in neurotransmitter synthesis, function, and/or availability that mediates the complex behavioral and cognitive changes observed in delirium. In general, the most commonly described neurotransmitter changes associated with delirium include deficiencies in acetylcholine and/or melatonin availability; excess in dopamine, norepinephrine, and/or glutamate release; and variable alterations (e.g., either a decreased or increased activity, depending on delirium presentation and cause) in serotonin, histamine, and/or γ-aminobutyric acid. In the end, it is unlikely that any one of these theories is fully capable of explaining the etiology or phenomenologic manifestations of delirium but rather that two or more of these, if not all, act together to lead to the biochemical derangement and, ultimately, to the complex cognitive and behavioral changes characteristic of delirium.
Collapse
Affiliation(s)
- José R Maldonado
- Departments of Psychiatry, Internal Medicine & Surgery and the Psychosomatic Medicine Service, Stanford University School of Medicine, and Board of Directors, American Delirium Society, Stanford, CA.
| |
Collapse
|
86
|
Gendreau KL, Hall GF. Tangles, Toxicity, and Tau Secretion in AD - New Approaches to a Vexing Problem. Front Neurol 2013; 4:160. [PMID: 24151487 PMCID: PMC3801151 DOI: 10.3389/fneur.2013.00160] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 09/26/2013] [Indexed: 12/14/2022] Open
Abstract
When the microtubule (MT)-associated protein tau is not bound to axonal MTs, it becomes hyperphosphorylated and vulnerable to proteolytic cleavage and other changes typically seen in the hallmark tau deposits (neurofibrillary tangles) of tau-associated neurodegenerative diseases (tauopathies). Neurofibrillary tangle formation is preceded by tau oligomerization and accompanied by covalent crosslinking and cytotoxicity, making tangle cytopathogenesis a natural central focus of studies directed at understanding the role of tau in neurodegenerative disease. Recent studies suggest that the formation of tau oligomers may be more closely related to tau neurotoxicity than the presence of the tangles themselves. It has also become increasingly clear that tau pathobiology involves a wide variety of other cellular abnormalities including a disruption of autophagy, vesicle trafficking mechanisms, axoplasmic transport, neuronal polarity, and even the secretion of tau, which is normally a cytosolic protein, to the extracellular space. In this review, we discuss tau misprocessing, toxicity and secretion in the context of normal tau functions in developing and mature neurons. We also compare tau cytopathology to that of other aggregation-prone proteins involved in neurodegeneration (alpha synuclein, prion protein, and APP). Finally, we consider potential mechanisms of intra- and interneuronal tau lesion spreading, an area of particular recent interest.
Collapse
Affiliation(s)
- Kerry L Gendreau
- Department of Biological Sciences, University of Massachusetts Lowell , Lowell, MA , USA
| | | |
Collapse
|
87
|
Henley JM, Wilkinson KA. AMPA receptor trafficking and the mechanisms underlying synaptic plasticity and cognitive aging. DIALOGUES IN CLINICAL NEUROSCIENCE 2013. [PMID: 23576886 PMCID: PMC3622464 DOI: 10.31887/dcns.2013.15.1/jhenley] [Citation(s) in RCA: 161] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Even in healthy individuals there is an inexorable agerelated decline in cognitive function. This is due, in large part, to reduced synaptic plasticity caused by changes in the molecular composition of the postsynaptic membrane. AMPA receptors (AMPARs) are glutamate-gated cation channels that mediate the overwhelming majority of fast excitatory transmission in the brain. Changes in AMPAR number and/or function are a core feature of synaptic plasticity and age-related cognitive decline, AMPARs are highly dynamic proteins that are subject to highly controlled trafficking, recycling, and/or degradation and replacement. This active regulation of AMPAR synthesis, targeting, synaptic dwell time, and degradation is fundamentally important for memory formation and storage. Further, aberrant AMPAR trafficking and consequent detrimental changes in synapses are strongly implicated in many brain diseases, which represent a vast social and economic burden. The purpose of this article is to provide an overview of the molecular and cellular AMPA receptor trafficking events that control synaptic responsiveness and plasticity, and highlight what is known currently known about how these processes change with age and disease.
Collapse
Affiliation(s)
- Jeremy M Henley
- School of Biochemistry, MRC Centre for Synaptic Plasticity, University of Bristol, Bristol, UK.
| | | |
Collapse
|
88
|
Wetmore C, Olson L. Expression and regulation of neurotrophins and their receptors in hippocampal systems. Hippocampus 2013. [DOI: 10.1002/hipo.1993.4500030721] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Cynthia Wetmore
- Department of Cell Biology and Neuroanatomy, University of Minnesota, Minneapolis, Minnesota, U.S.A
| | - Lars Olson
- Department of Histology and Neurobiology, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
89
|
Arne Schousboe, Bachevalier J, Braak H, Heinemann U, Nitsch R, Schröder H, Wetmore C. Structural correlates and cellular mechanisms in entorhinal—hippocampal dysfunction. Hippocampus 2013. [DOI: 10.1002/hipo.1993.4500030732] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Arne Schousboe
- PharmaBiotec Research Center, the Neurobiology Unit, Department of Biological Sciences, Royal Danish School of Pharmacy, Copenhagen, Denmark
| | - Jocelyne Bachevalier
- Medical School, Department of Neurobiology and Anatomy, University of Texas, Houston, Texas, U.S.A
| | - Heiko Braak
- Center of Morphology, Goethe‐University, Frankfurt, Germany
| | - Uwe Heinemann
- Institute of Neurophysiology, University of Köln, Köln, Germany
| | - Robert Nitsch
- Institute of Anatomy, University of Köln, Köln, Germany
| | | | - Cynthia Wetmore
- Department of Cell Biology and Neuroanatomy, University of Minnesota, Minneapolis, Minnesota, U.S.A
| |
Collapse
|
90
|
Perioperative management of delirium and dementia in the geriatric surgical patient. Langenbecks Arch Surg 2013; 398:947-55. [DOI: 10.1007/s00423-013-1102-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Accepted: 07/19/2013] [Indexed: 01/10/2023]
|
91
|
Corbett NJ, Gabbott PL, Klementiev B, Davies HA, Colyer FM, Novikova T, Stewart MG. Amyloid-beta induced CA1 pyramidal cell loss in young adult rats is alleviated by systemic treatment with FGL, a neural cell adhesion molecule-derived mimetic peptide. PLoS One 2013; 8:e71479. [PMID: 23951173 PMCID: PMC3739720 DOI: 10.1371/journal.pone.0071479] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 06/29/2013] [Indexed: 12/24/2022] Open
Abstract
Increased levels of neurotoxic amyloid-beta in the brain are a prominent feature of Alzheimer's disease. FG-Loop (FGL), a neural cell adhesion molecule-derived peptide that corresponds to its second fibronectin type III module, has been shown to provide neuroprotection against a range of cellular insults. In the present study impairments in social recognition memory were seen 24 days after a 5 mg/15 µl amyloid-beta(25-35) injection into the right lateral ventricle of the young adult rat brain. This impairment was prevented if the animal was given a systemic treatment of FGL. Unbiased stereology was used to investigate the ability of FGL to alleviate the deleterious effects on CA1 pyramidal cells of the amyloid-beta(25-35) injection. NeuN, a neuronal marker (for nuclear staining) was used to identify pyramidal cells, and immunocytochemistry was also used to identify inactive glycogen synthase kinase 3beta (GSK3β) and to determine the effects of amyloid-beta(25-35) and FGL on the activation state of GSK3β, since active GSK3β has been shown to cause a range of AD pathologies. The cognitive deficits were not due to hippocampal atrophy as volume estimations of the entire hippocampus and its regions showed no significant loss, but amyloid-beta caused a 40% loss of pyramidal cells in the dorsal CA1 which was alleviated partially by FGL. However, FGL treatment without amyloid-beta was also found to cause a 40% decrease in CA1 pyramidal cells. The action of FGL may be due to inactivation of GSK3β, as an increased proportion of CA1 pyramidal neurons contained inactive GSK3β after FGL treatment. These data suggest that FGL, although potentially disruptive in non-pathological conditions, can be neuroprotective in disease-like conditions.
Collapse
Affiliation(s)
- Nicola J Corbett
- Open University, Department of Life, Health and Chemical Sciences, Milton Keynes, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
92
|
Differences in cerebrospinal fluid gangliosides between “probable Alzheimer’s disease” and normal aging. Aging Clin Exp Res 2013. [DOI: 10.1007/bf03324111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
93
|
Giannaris EL, Rosene DL. A stereological study of the numbers of neurons and glia in the primary visual cortex across the lifespan of male and female rhesus monkeys. J Comp Neurol 2013; 520:3492-508. [PMID: 22430145 DOI: 10.1002/cne.23101] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Mild age-related declines in visual function occur in humans and monkeys, independent of ocular pathology, suggesting involvement of central visual pathways (Spear [1993] Vision Res 33:2589-2609). Although many factors might account for this decline, a loss of neurons in primary visual cortex (V1) could be a contributing factor. Previous studies of neuron numbers in V1 reported stability across age, but were limited in the ages and genders studied and sampled only limited parts of V1 or limited cell types, allowing for the possibility of a subtle loss of neurons. We pursued this question in 26 behaviorally tested adult male and female rhesus monkeys ranging from 7.4 to 31.0 years of age by using design-based stereology to estimate numbers of NeuN-labeled neurons and thionin-stained glia within three laminar zones, supragranular (layers II-IVB), granular (IVC), and infragranular (V-VI), across the entirety of V1. There were no significant differences between males and females on any measures, except for total brain weight (P = 0.0038). There was an average of 416,000,000 neurons in V1, but no effect of age on this total or numbers within any laminar zone. Similarly, there was an average of 184,000,000 glia in V1 (44% of the number of neurons), but no effect of age on this total. However, there was a significant age-related increase in numbers of glia in the infragranular zone, perhaps reflecting a glial response to pathology in myelinated projection fibers. This study provides further evidence that in normal aging neurons are not lost and hence cannot account for age-related dysfunction.
Collapse
Affiliation(s)
- Eustathia Lela Giannaris
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts 02118, USA.
| | | |
Collapse
|
94
|
Preissmann D, Leuba G, Savary C, Vernay A, Kraftsik R, Riederer IM, Schenk F, Riederer BM, Savioz A. Increased postsynaptic density protein-95 expression in the frontal cortex of aged cognitively impaired rats. Exp Biol Med (Maywood) 2013; 237:1331-40. [PMID: 23239444 DOI: 10.1258/ebm.2012.012020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In the present work we studied synaptic protein concentrations in relation to behavioral performance. Long-Evans rats, aged 22-23 months, were classified for individual expression of place memory in the Morris water maze, in reference to young adults. Two main subgroups of aged rats were established: the Aged cognitively Unimpaired (AU) had search accuracy within the range (percent of time in training sector within mean ± 2 SEM) of young rats and the Aged cognitively Impaired (AI) rats had search accuracy below this range. Samples from the hippocampus and frontal cortex of all the AI, AU and young rats were analyzed for the expression of postsynaptic protein PSD-95 by Image J analysis of immunohistochemical data and by Western blots. PSD-95 expression was unchanged in the hippocampus, but, together with synaptophysin, was significantly increased in the frontal cortex of the AI rats. A significant correlation between individual accuracy (time spent in the training zone) and PSD-95 expression was observed in the aged group. No significant effect of age or PSD-95 expression was observed in the learning of a new position. All together, these data suggest that increased expression of PSD-95 in the frontal cortex of aged rats co-occurs with cognitive impairment that might be linked to functional alterations extending over frontal networks.
Collapse
|
95
|
Ros-Simó C, Moscoso-Castro M, Ruiz-Medina J, Ros J, Valverde O. Memory impairment and hippocampus specific protein oxidation induced by ethanol intake and 3, 4-Methylenedioxymethamphetamine (MDMA) in mice. J Neurochem 2013; 125:736-46. [DOI: 10.1111/jnc.12247] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 02/20/2013] [Accepted: 03/21/2013] [Indexed: 01/01/2023]
Affiliation(s)
- Clara Ros-Simó
- Grup de Recerca en Neurobiologia del Comportament (GReNeC), Departament de Ciències Experimentals i de la Salut; Universitat Pompeu Fabra; Parc de Recerca Biomèdica de Barcelona; Barcelona Spain
| | - Maria Moscoso-Castro
- Grup de Recerca en Neurobiologia del Comportament (GReNeC), Departament de Ciències Experimentals i de la Salut; Universitat Pompeu Fabra; Parc de Recerca Biomèdica de Barcelona; Barcelona Spain
| | - Jéssica Ruiz-Medina
- Grup de Recerca en Neurobiologia del Comportament (GReNeC), Departament de Ciències Experimentals i de la Salut; Universitat Pompeu Fabra; Parc de Recerca Biomèdica de Barcelona; Barcelona Spain
| | - Joaquim Ros
- Departament de Ciències Mèdiques Bàsiques; IRBLLEIDA; Universitat de Lleida; Lleida Spain
| | - Olga Valverde
- Grup de Recerca en Neurobiologia del Comportament (GReNeC), Departament de Ciències Experimentals i de la Salut; Universitat Pompeu Fabra; Parc de Recerca Biomèdica de Barcelona; Barcelona Spain
| |
Collapse
|
96
|
Dimitrova M, Petrova E, Gluhcheva Y, Kadiysky D, Dimitrova S, Kolyovska V, Deleva D. Neurodegenerative changes in rat produced by lithium treatment. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2013; 76:304-310. [PMID: 23514072 DOI: 10.1080/15287394.2013.757268] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Lithium is extensively used in psychiatric practice for the prevention and treatment of manic-depressive disorders. However, neurotoxicity attributed to lithium salts within therapeutic doses was also reported in patients, manifested by transient or persistent neurological deficits. In this study, morphological changes were examined in rats treated acutely and chronically with lithium. Pathological changes were observed in different brain regions including cerebral cortex, cerebellum, medulla oblongata, mesencephalon, thalamus, and pons, using a silver-copper impregnation technique for neurodegeneration. Vacuolization of brain tissue with subsequent formation of spongiosis was the prominent morphological feature following lithium administration. The zones of spongiosis were irregularly distributed throughout the brain. More intensive compact areas with spongiform changes were found in the cerebral cortex and medulla oblongata. Less pronounced vacuolization was noted in the pons and thalamic region. The cerebellum and mesencephalon appeared least affected. Vacuolization in the cerebellar cortex was found at loci with Purkinje cells, but the classical picture of spongiosis was not apparent. Data indicate that both acute and chronic lithium intoxication accelerated neurodegenerative changes normally seen with normal brain aging.
Collapse
Affiliation(s)
- Mashenka Dimitrova
- Department of Experimental Morphology, Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 25, Sofia, 1113, Bulgaria
| | | | | | | | | | | | | |
Collapse
|
97
|
Alves GS, O'Dwyer L, Jurcoane A, Oertel-Knöchel V, Knöchel C, Prvulovic D, Sudo F, Alves CE, Valente L, Moreira D, Fußer F, Karakaya T, Pantel J, Engelhardt E, Laks J. Different patterns of white matter degeneration using multiple diffusion indices and volumetric data in mild cognitive impairment and Alzheimer patients. PLoS One 2012; 7:e52859. [PMID: 23300797 PMCID: PMC3534120 DOI: 10.1371/journal.pone.0052859] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 11/23/2012] [Indexed: 01/15/2023] Open
Abstract
Alzheimeŕs disease (AD) represents the most prevalent neurodegenerative disorder that causes cognitive decline in old age. In its early stages, AD is associated with microstructural abnormalities in white matter (WM). In the current study, multiple indices of diffusion tensor imaging (DTI) and brain volumetric measurements were employed to comprehensively investigate the landscape of AD pathology. The sample comprised 58 individuals including cognitively normal subjects (controls), amnestic mild cognitive impairment (MCI) and AD patients. Relative to controls, both MCI and AD subjects showed widespread changes of anisotropic fraction (FA) in the corpus callosum, cingulate and uncinate fasciculus. Mean diffusivity and radial changes were also observed in AD patients in comparison with controls. After controlling for the gray matter atrophy the number of regions of significantly lower FA in AD patients relative to controls was decreased; nonetheless, unique areas of microstructural damage remained, e.g., the corpus callosum and uncinate fasciculus. Despite sample size limitations, the current results suggest that a combination of secondary and primary degeneration occurrs in MCI and AD, although the secondary degeneration appears to have a more critical role during the stages of disease involving dementia.
Collapse
Affiliation(s)
- Gilberto Sousa Alves
- Alzheimer's Disease Center-Institute of Psychiatry, Universidade Federal do Rio de Janeiro, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Butterfield DA, Perluigi M, Reed T, Muharib T, Hughes CP, Robinson RAS, Sultana R. Redox proteomics in selected neurodegenerative disorders: from its infancy to future applications. Antioxid Redox Signal 2012; 17:1610-55. [PMID: 22115501 PMCID: PMC3448942 DOI: 10.1089/ars.2011.4109] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 11/21/2011] [Accepted: 11/23/2011] [Indexed: 12/12/2022]
Abstract
Several studies demonstrated that oxidative damage is a characteristic feature of many neurodegenerative diseases. The accumulation of oxidatively modified proteins may disrupt cellular functions by affecting protein expression, protein turnover, cell signaling, and induction of apoptosis and necrosis, suggesting that protein oxidation could have both physiological and pathological significance. For nearly two decades, our laboratory focused particular attention on studying oxidative damage of proteins and how their chemical modifications induced by reactive oxygen species/reactive nitrogen species correlate with pathology, biochemical alterations, and clinical presentations of Alzheimer's disease. This comprehensive article outlines basic knowledge of oxidative modification of proteins and lipids, followed by the principles of redox proteomics analysis, which also involve recent advances of mass spectrometry technology, and its application to selected age-related neurodegenerative diseases. Redox proteomics results obtained in different diseases and animal models thereof may provide new insights into the main mechanisms involved in the pathogenesis and progression of oxidative-stress-related neurodegenerative disorders. Redox proteomics can be considered a multifaceted approach that has the potential to provide insights into the molecular mechanisms of a disease, to find disease markers, as well as to identify potential targets for drug therapy. Considering the importance of a better understanding of the cause/effect of protein dysfunction in the pathogenesis and progression of neurodegenerative disorders, this article provides an overview of the intrinsic power of the redox proteomics approach together with the most significant results obtained by our laboratory and others during almost 10 years of research on neurodegenerative disorders since we initiated the field of redox proteomics.
Collapse
Affiliation(s)
- D Allan Butterfield
- Department of Chemistry, Center of Membrane Sciences, Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506, USA.
| | | | | | | | | | | | | |
Collapse
|
99
|
Morterá P, Herculano-Houzel S. Age-related neuronal loss in the rat brain starts at the end of adolescence. Front Neuroanat 2012; 6:45. [PMID: 23112765 PMCID: PMC3481355 DOI: 10.3389/fnana.2012.00045] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 10/09/2012] [Indexed: 02/03/2023] Open
Abstract
Aging-related changes in the brain have been mostly studied through the comparison of young adult and very old animals. However, aging must be considered a lifelong process of cumulative changes that ultimately become evident at old age. To determine when this process of decline begins, we studied how the cellular composition of the rat brain changes from infancy to adolescence, early adulthood, and old age. Using the isotropic fractionator to determine total numbers of neuronal and non-neuronal cells in different brain areas, we find that a major increase in number of neurons occurs during adolescence, between 1 and 2-3 months of age, followed by a significant trend of widespread and progressive neuronal loss that begins as early as 3 months of age, when neuronal numbers are maximal in all structures, until decreases in numbers of neurons become evident at 12 or 22 months of age. Our findings indicate that age-related decline in the brain begins as soon as the end of adolescence, a novel finding has important clinical and social implications for public health and welfare.
Collapse
Affiliation(s)
- Priscilla Morterá
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil ; Instituto Nacional de Neurociência Translacional São Paulo, Brazil
| | | |
Collapse
|
100
|
Kohama SG, Rosene DL, Sherman LS. Age-related changes in human and non-human primate white matter: from myelination disturbances to cognitive decline. AGE (DORDRECHT, NETHERLANDS) 2012; 34:1093-110. [PMID: 22203458 PMCID: PMC3448998 DOI: 10.1007/s11357-011-9357-7] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2011] [Accepted: 12/01/2011] [Indexed: 05/04/2023]
Abstract
The cognitive decline associated with normal aging was long believed to be due primarily to decreased synaptic density and neuron loss. Recent studies in both humans and non-human primates have challenged this idea, pointing instead to disturbances in white matter (WM) including myelin damage. Here, we review both cross-sectional and longitudinal studies in humans and non-human primates that collectively support the hypothesis that WM disturbances increase with age starting at middle age in humans, that these disturbances contribute to age-related cognitive decline, and that age-related WM changes may occur as a result of free radical damage, degenerative changes in cells in the oligodendrocyte lineage, and changes in microenvironments within WM.
Collapse
Affiliation(s)
- Steven G. Kohama
- Oregon National Primate Research Center, Oregon Health and Science University, Portland, OR USA
| | | | - Larry S. Sherman
- Oregon National Primate Research Center, Oregon Health and Science University, Portland, OR USA
- Division of Neuroscience, Oregon National Primate Research Center, 505 NW 185th Ave, Beaverton, OR 97006 USA
| |
Collapse
|