Kabiersch A, del Rey A, Honegger CG, Besedovsky HO. Interleukin-1 induces changes in norepinephrine metabolism in the rat brain.
Brain Behav Immun 1988;
2:267-74. [PMID:
3266560 DOI:
10.1016/0889-1591(88)90028-1]
[Citation(s) in RCA: 126] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Interleukin-1 (IL-1) is a hormone that, apart from playing a key role in immune and inflammatory processes, can also affect mechanisms under brain control. To gain a better understanding of the action of this cytokine on the CNS, its effects on the contents of norepinephrine (NE), dopamine (DA) and serotonin (5-HT), and their main metabolites and precursors, were evaluated in different regions of the forebrain, brain stem, and spinal cord. Following administration of human recombinant IL-1 (beta form) to rats, a modest decrease in the content of NE was observed in the hypothalamus as well as in the dorsal posterior brain stem. However, the most relevant finding was that 3-methoxy-4-hydroxyphenylethylene glycol (MHPG), the main NE metabolite, and the relation MHPG/NE were increased in all the regions studied, revealing a stimulatory effect of IL-1 on NE metabolism in the CNS. This effect seems to be specific for NE since no comparable changes in the brain content of DA, 5-HT, or its metabolite, 5-hydroxyindole acetic acid, were detected after administration of the cytokine. However, tryptophan was significantly increased in all brain regions and in the cervical spinal cord. The capacity of IL-1 to affect the metabolism of NE, a neurotransmitter involved in the control of a variety of brain functions, provides further proof for the relevance of this cytokine in brain-immune interactions.
Collapse