51
|
Knoell DL, Wyatt TA. The adverse impact of cadmium on immune function and lung host defense. Semin Cell Dev Biol 2021; 115:70-76. [PMID: 33158728 PMCID: PMC10603789 DOI: 10.1016/j.semcdb.2020.10.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/09/2020] [Accepted: 10/16/2020] [Indexed: 01/08/2023]
Abstract
Cadmium (Cd) is a transition metal, also referred to as a heavy metal, that is naturally abundant in the earth's crust. It has no known benefit to humans. It is primarily released into our environment through mining and smelting in industrial processes and enters the food chain through uptake by plants from contaminated soil and water. In humans, Cd primarily enters the body through ingestion of foods and cigarette smoke and has an extremely long resident half-life in the body compared to other transition metals. Environmental workplace exposure is also a source through inhalation, although much less common. The principal organs adversely affected by Cd following acute and chronic exposure are the kidneys, bone, vasculature and lung. Cd adversely impacts cell function through changes in gene expression and signal transduction and is recognized as a carcinogen. Despite a substantial body of mechanistic studies in cells and animal models, the overall impact of Cd on innate immune function in humans remains poorly understood. The best evidence is perhaps alteration of reactive oxygen species balance and signaling in cells that regulate innate immunity causing alteration of the inflammatory response that is postulated to contribute to chronic diseases. Epidemiologic studies support this possibility since increased tissue levels in humans are strongly associated with leading chronic diseases including chronic obstructive pulmonary disease (COPD), which will be discussed in depth. Additional studies are required to understand how chronic exposure and accumulation of this leading environmental toxicant in vital organs negatively impact innate immune function and host defense leading to chronic disease in humans.
Collapse
Affiliation(s)
- Daren L Knoell
- The University of Nebraska Medical Center College of Pharmacy, Omaha, NE 68198, USA.
| | - Todd A Wyatt
- The University of Nebraska Medical Center College of Public Health, Omaha NE 68198, USA; VA Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA.
| |
Collapse
|
52
|
Turkyilmaz IB, Bayrak BB, Sacan O, Mutlu O, Akev N, Yanardag R. Zinc Supplementation Restores Altered Biochemical Parameters in Stomach Tissue of STZ Diabetic Rats. Biol Trace Elem Res 2021; 199:2259-2265. [PMID: 32820429 DOI: 10.1007/s12011-020-02352-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 08/17/2020] [Indexed: 12/13/2022]
Abstract
The stomach is among the organs grossly affected organ by diabetic complications. The present study was aimed at investigating the protective role of zinc on stomach of streptozotocin (STZ)-induced diabetes mellitus. Female Swiss albino rats were divided in four experimental groups: Group I, control; group II, control + zinc sulfate; group III, STZ-induced diabetic animals; and group IV, STZ-diabetic + zinc sulfate. Diabetes was induced by intraperitoneal injection of STZ, at a dose of 65 mg/kg body weight. Zinc sulfate (100 mg/kg body weight) was given daily by gavage for 60 days to groups II and IV. At the end of the experiment, the rats were sacrificed, and the tissues were taken. In the diabetic group, hexose, hexosamine, fucose, and sialic acid levels, as well as tissue factor, adenosine deaminase, carbonic anhydrase, xanthine oxidase, lactate dehydrogenase, prolidase activities, advanced oxidized protein products, homocysteine, and TNF-α levels were increased in the stomach tissue homogenates. Whereas, catalase, superoxide dismutase, glutathione-S-transferase, glutathione peroxidase, glutathione reductase, paraoxonase, and aryl esterase activities were decreased in the diabetic group. The administration of zinc reversed all the deformities. These findings suggest that zinc has protective role in ameliorating several mechanisms of STZ-induced diabetic stomach injury.
Collapse
Affiliation(s)
- Ismet Burcu Turkyilmaz
- Department of Chemistry, Faculty of Engineering, Biochemistry Division, Istanbul University-Cerrahpasa, Avcilar, 34320, Istanbul, Turkey.
| | - Bertan Boran Bayrak
- Department of Chemistry, Faculty of Engineering, Biochemistry Division, Istanbul University-Cerrahpasa, Avcilar, 34320, Istanbul, Turkey
| | - Ozlem Sacan
- Department of Chemistry, Faculty of Engineering, Biochemistry Division, Istanbul University-Cerrahpasa, Avcilar, 34320, Istanbul, Turkey
| | - Ozgur Mutlu
- Department of Chemistry, Faculty of Engineering, Biochemistry Division, Istanbul University-Cerrahpasa, Avcilar, 34320, Istanbul, Turkey
| | - Nuriye Akev
- Department of Biochemistry, Faculty of Pharmacy, Istanbul University, 34116, Istanbul, Turkey
| | - Refiye Yanardag
- Department of Chemistry, Faculty of Engineering, Biochemistry Division, Istanbul University-Cerrahpasa, Avcilar, 34320, Istanbul, Turkey
| |
Collapse
|
53
|
Torres-Arce E, Vizmanos B, Babio N, Márquez-Sandoval F, Salas-Huetos A. Dietary Antioxidants in the Treatment of Male Infertility: Counteracting Oxidative Stress. BIOLOGY 2021; 10:241. [PMID: 33804600 PMCID: PMC8003818 DOI: 10.3390/biology10030241] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 02/07/2023]
Abstract
Infertility affects about 15% of the population and male factors only are responsible for ~25-30% of cases of infertility. Currently, the etiology of suboptimal semen quality is poorly understood, and many environmental and genetic factors, including oxidative stress, have been implicated. Oxidative stress is an imbalance between the production of free radicals, or reactive oxygen species (ROS), and the capacity of the body to counteract their harmful effects through neutralization by antioxidants. The purpose of this review, by employing the joint expertise of international researchers specialized in nutrition and male fertility areas, is to update the knowledge about the reproductive consequences of excessive ROS concentrations and oxidative stress on the semen quality and Assisted Reproduction Techniques (ART) clinical outcomes, to discuss the role of antioxidants in fertility outcomes, and finally to discuss why foods and dietary patterns are more innocuous long term solution for ameliorating oxidative stress and therefore semen quality results and ART fertility outcomes. Since this is a narrative review and not a systematic/meta-analysis, the summarized information in the present study should be considered cautiously.
Collapse
Affiliation(s)
- Elizabeth Torres-Arce
- Center of Health Sciences, Institute of Translational Nutrigenetics and Nutrigenomics, Universidad de Guadalajara, 44340 Guadalajara, Mexico; (E.T.-A.); (B.V.)
- Andrology and IVF Laboratory, Division of Urology, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT 84108, USA
| | - Barbara Vizmanos
- Center of Health Sciences, Institute of Translational Nutrigenetics and Nutrigenomics, Universidad de Guadalajara, 44340 Guadalajara, Mexico; (E.T.-A.); (B.V.)
| | - Nancy Babio
- Human Nutrition Unit, Biochemistry and Biotechnology Department, Universitat Rovira i Virgili, 43201 Reus, Spain;
- Institut d’Investigació Sanitària Pere i Virgili, 43204 Reus, Spain
- Consorcio CIBER, M.P., Fisiopatología de la Obesidad y Nutrición (ciBeRobn), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Fabiola Márquez-Sandoval
- Center of Health Sciences, Institute of Translational Nutrigenetics and Nutrigenomics, Universidad de Guadalajara, 44340 Guadalajara, Mexico; (E.T.-A.); (B.V.)
| | - Albert Salas-Huetos
- Andrology and IVF Laboratory, Division of Urology, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT 84108, USA
- Consorcio CIBER, M.P., Fisiopatología de la Obesidad y Nutrición (ciBeRobn), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| |
Collapse
|
54
|
Huang L, Yao G, Huang G, Jiang C, Li L, Liao L, Yuan G, Shang L, Xu W. Association of Zinc deficiency, oxidative stress and increased double-stranded DNA breaks in globozoospermic infertile patients and its implication for the assisted reproductive technique. Transl Androl Urol 2021; 10:1088-1101. [PMID: 33850744 PMCID: PMC8039599 DOI: 10.21037/tau-20-1116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Background Sperm DNA fragmentation and its adverse impact on outcomes of assisted reproductive techniques (ART) in globozoospermic infertile patients has been previously reported. However, the association of Zinc element with DNA damage and intracytoplasmic sperm injection (ICSI) outcome in globozoospermic infertile patients remains unclear. Methods Using flame atomic absorption spectrophotometer and superoxide dismutase (SOD) assay, the levels of Cu, Fe, Mn, Zn and SOD activities in seminal plasma from both globozoospermic infertile patients and fertile volunteers were tested respectively. Using sperm chromatin dispersion (SCD) test and Comet assay, the DNA damages in their semen samples from the two groups was detected. In addition, using Aniline Blue staining, their sperm nucleus maturations were also examined. Results The levels of seminal Zinc and SOD activities were lower in the globozoospermic infertile patients and the double-stranded break DFI (DSB-DFI) were significantly higher than that in the fertile controls. Antioxidative insufficiency of SOD with a low Zn level might be responsible for oxidative stress, which may lead to DNA damage in globozoospermic spermatozoa. Zn deficiency might also have influence on the chromatin stabilization of globozoospermic spermatozoa during spermiogenesis, causing its more vulnerable to oxidative attack. Conclusions Serious DSBs in globozoospermia and antioxidative insufficiency due to Zinc element deficiency in spermatozoa might be responsible for the failure of ICSI in globozoospermia.
Collapse
Affiliation(s)
- Lin Huang
- Joint Laboratory of Reproductive Medicine, SCU-CUHK, Key Laboratory of Obstetric, Gynaecologic and Paediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China.,Reproductive Endocrinology and Regulation Laboratory, West China Second University Hospital, Sichuan University, Chengdu, China.,College of Life Science and Technology, Southwest Minzu University, Chengdu, China
| | - Guanping Yao
- Department of Reproductive Medicine Center, the Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Gelin Huang
- Joint Laboratory of Reproductive Medicine, SCU-CUHK, Key Laboratory of Obstetric, Gynaecologic and Paediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China.,Reproductive Endocrinology and Regulation Laboratory, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Chuan Jiang
- Joint Laboratory of Reproductive Medicine, SCU-CUHK, Key Laboratory of Obstetric, Gynaecologic and Paediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China.,Reproductive Endocrinology and Regulation Laboratory, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Li Li
- Chengdu PUHUA Technology Co., Ltd., Chengdu, China
| | - Lu Liao
- Chengdu PUHUA Technology Co., Ltd., Chengdu, China
| | - Guiping Yuan
- Analytical & Testing Center, Sichuan University, Chengdu, China
| | - Lijun Shang
- School of Human Sciences, London Metropolitan University, London, UK
| | - Wenming Xu
- Joint Laboratory of Reproductive Medicine, SCU-CUHK, Key Laboratory of Obstetric, Gynaecologic and Paediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China.,Reproductive Endocrinology and Regulation Laboratory, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
55
|
Wani AL, Hammad Ahmad Shadab GG, Afzal M. Lead and zinc interactions - An influence of zinc over lead related toxic manifestations. J Trace Elem Med Biol 2021; 64:126702. [PMID: 33285442 DOI: 10.1016/j.jtemb.2020.126702] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/30/2020] [Accepted: 11/23/2020] [Indexed: 01/19/2023]
Abstract
BACKGROUND Interaction between metals is known from earlier studies, in which one metal influences the absorption and functional role of other. Lead is known to cause debilitating effects in living organisms and also prevents several essential trace metals from functioning normally. METHODS The relevant literature using the key words lead toxicity, lead zinc interaction, zinc nutrition and the ability of zinc to act against lead has been reviewed. RESULTS Role of several nutrients in reducing the manifestations of toxic metals have been elucidated recently. Lead damages bio-membranes, causes cognitive disabilities and disturbs the normal process of DNA replication and transcription. Zinc on the other hand helps in proper maintenance of the cellular membranes and plays an important role as a metal cofactor in most of the proteins vital for membrane integrity. Zinc has essential role in cognitive functioning, zinc finger proteins and significantly neutralizes most toxic effects of lead. CONCLUSION Increased lead exposure and limited resources for tackling lead poisoning may cause an increased possibility of future environmental emergencies. Interactions between essential nutrient metals and non-essential toxic metals may act as important factor which can be used to target the metal toxicities. An assumption is made that the lead toxicity can be reduced by maintaining the status of essential trace metals like zinc.
Collapse
Affiliation(s)
- Ab Latif Wani
- Cytogenetics and Molecular Toxicological Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India.
| | - G G Hammad Ahmad Shadab
- Cytogenetics and Molecular Toxicological Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India.
| | - Mohammad Afzal
- Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| |
Collapse
|
56
|
Wang Y, Zhao H, Liu Y, Guo M, Tian Y, Huang P, Xing M. Arsenite induce neurotoxicity of common carp: Involvement of blood brain barrier, apoptosis and autophagy, and subsequently relieved by zinc (Ⅱ) supplementation. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 232:105765. [PMID: 33535132 DOI: 10.1016/j.aquatox.2021.105765] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/24/2020] [Accepted: 01/21/2021] [Indexed: 06/12/2023]
Abstract
Arsenic pollution is a common threat to aquatic ecosystems. The effects of chronic exposure to arsenite on the brains of aquatic organisms are unknown. This study was designed to evaluate arsenic-induced brain damage in common carp (Cyprinus carpio) and the ameliorating effects of divalent zinc ion (Zn2+) supplementation from the aspects of oxidative stress (OxS), tight junction (TJ), apoptosis and autophagy. After arsenite exposure (2.83 mg/L) for 30 days, oxidative damage to the brain was determined, as indicated by inhibited antioxidants system (catalase-superoxide dismutase system, and glutathione system) and elevated levels of biomacromolecule peroxidation (malondialdehyde and 8-hydroxydeoxyguanosine). Moreover, we also found functional damage to the brain as suggested by injuries to the blood-brain barrier (decreases in tight junction) and nerve conduction (depletion of AChE). Mechanisticly, apoptotic and autophagic cell death were indicated by typical morphologies including karyopyknosis and autophagosome, accompanying by key bio-indicators (Bcl-2, caspase and autophagy related gene family proteins). In contrast, the coadministration of Zn2+ (1 mg/L) with arsenite effectively alleviated this damage as suggested by the recovery of the aforementioned bioindicators. This study provides new insight into the brain toxicity caused by arsenite and suggests the application of zinc preparations in the aquatic pollution of arsenic.
Collapse
Affiliation(s)
- Yu Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Hongjing Zhao
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Yachen Liu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Menghao Guo
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Ye Tian
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Puyi Huang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China.
| | - Mingwei Xing
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China.
| |
Collapse
|
57
|
Checa J, Aran JM. Airway Redox Homeostasis and Inflammation Gone Awry: From Molecular Pathogenesis to Emerging Therapeutics in Respiratory Pathology. Int J Mol Sci 2020; 21:E9317. [PMID: 33297418 PMCID: PMC7731288 DOI: 10.3390/ijms21239317] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 12/05/2020] [Indexed: 02/06/2023] Open
Abstract
As aerobic organisms, we are continuously and throughout our lifetime subjected to an oxidizing atmosphere and, most often, to environmental threats. The lung is the internal organ most highly exposed to this milieu. Therefore, it has evolved to confront both oxidative stress induced by reactive oxygen species (ROS) and a variety of pollutants, pathogens, and allergens that promote inflammation and can harm the airways to different degrees. Indeed, an excess of ROS, generated intrinsically or from external sources, can imprint direct damage to key structural cell components (nucleic acids, sugars, lipids, and proteins) and indirectly perturb ROS-mediated signaling in lung epithelia, impairing its homeostasis. These early events complemented with efficient recognition of pathogen- or damage-associated recognition patterns by the airway resident cells alert the immune system, which mounts an inflammatory response to remove the hazards, including collateral dead cells and cellular debris, in an attempt to return to homeostatic conditions. Thus, any major or chronic dysregulation of the redox balance, the air-liquid interface, or defects in epithelial proteins impairing mucociliary clearance or other defense systems may lead to airway damage. Here, we review our understanding of the key role of oxidative stress and inflammation in respiratory pathology, and extensively report current and future trends in antioxidant and anti-inflammatory treatments focusing on the following major acute and chronic lung diseases: acute lung injury/respiratory distress syndrome, asthma, chronic obstructive pulmonary disease, pulmonary fibrosis, and cystic fibrosis.
Collapse
Affiliation(s)
| | - Josep M. Aran
- Immune-Inflammatory Processes and Gene Therapeutics Group, IDIBELL, L’Hospitalet de Llobregat, 08908 Barcelona, Spain;
| |
Collapse
|
58
|
The Role of Zinc in Male Fertility. Int J Mol Sci 2020; 21:ijms21207796. [PMID: 33096823 PMCID: PMC7589359 DOI: 10.3390/ijms21207796] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/14/2020] [Accepted: 10/20/2020] [Indexed: 12/18/2022] Open
Abstract
Several studies proposed the importance of zinc ion in male fertility. Here, we describe the properties, roles and cellular mechanisms of action of Zn2+ in spermatozoa, focusing on its involvement in sperm motility, capacitation and acrosomal exocytosis, three functions that are crucial for successful fertilization. The impact of zinc supplementation on assisted fertilization techniques is also described. The impact of zinc on sperm motility has been investigated in many vertebrate and invertebrate species. It has been reported that Zn2+ in human seminal plasma decreases sperm motility and that Zn2+ removal enhances motility. Reduction in the intracellular concentration of Zn2+ during epididymal transit allows the development of progressive motility and the subsequent hyper activated motility during sperm capacitation. Extracellular Zn2+ affects intracellular signaling pathways through its interaction with the Zn2+ sensing receptor (ZnR), also named GPR39. This receptor was found in the sperm tail and the acrosome, suggesting the possible involvement of Zn2+ in sperm motility and acrosomal exocytosis. Our studies showed that Zn2+ stimulates bovine sperm acrosomal exocytosis, as well as human sperm hyper-activated motility, were both mediated by GPR39. Zn2+ binds and activates GPR39, which activates the trans-membrane-adenylyl-cyclase (tmAC) to catalyze cAMP production. The NHE (Na+/H+-exchanger) is activated by cAMP, leading in increased pHi and activation of the sperm-specific Ca2+ channel CatSper, resulting in an increase in [Ca2+]i, which, together with HCO3−, activates the soluble adenylyl-cyclase (sAC). The increase in [cAMP]i activates protein kinase A (PKA), followed by activation of the Src-epidermal growth factor receptor-Pphospholipase C (Src-EGFR-PLC) cascade, resulting in inositol-triphosphate (IP3) production, which mobilizes Ca2+ from the acrosome, causing a further increase in [Ca2+]i and the development of hyper-activated motility. PKA also activates phospholipase D1 (PLD1), leading to F-actin formation during capacitation. Prior to the acrosomal exocytosis, PLC induces phosphadidylinositol-4,5-bisphosphate (PIP2) hydrolysis, leading to the release of the actin-severing protein gelsolin to the cytosol, which is activated by Ca2+, resulting in F-actin breakdown and the occurrence of acrosomal exocytosis.
Collapse
|
59
|
Das S, De A, Das B, Mukherjee B, Samanta A. Development of gum odina‐gelatin based antimicrobial loaded biodegradable spongy scaffold: A promising wound care tool. J Appl Polym Sci 2020. [DOI: 10.1002/app.50057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Shilpa Das
- Division of Microbiology & Biotechnology, Department of Pharmaceutical Technology Jadavpur University Kolkata India
| | - Arnab De
- Division of Microbiology & Biotechnology, Department of Pharmaceutical Technology Jadavpur University Kolkata India
| | - Bhaskar Das
- Division of Microbiology & Biotechnology, Department of Pharmaceutical Technology Jadavpur University Kolkata India
| | - Biswajit Mukherjee
- Division of Pharmaceutics, Department of Pharmaceutical Technology Jadavpur University Kolkata India
| | - Amalesh Samanta
- Division of Microbiology & Biotechnology, Department of Pharmaceutical Technology Jadavpur University Kolkata India
| |
Collapse
|
60
|
Elrasoul ASA, Mousa AA, Orabi SH, Mohamed MAEG, Gad-Allah SM, Almeer R, Abdel-Daim MM, Khalifa SAM, El-Seedi HR, Eldaim MAA. Antioxidant, Anti-Inflammatory, and Anti-Apoptotic Effects of Azolla pinnata Ethanolic Extract against Lead-Induced Hepatotoxicity in Rats. Antioxidants (Basel) 2020; 9:1014. [PMID: 33086604 PMCID: PMC7603163 DOI: 10.3390/antiox9101014] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 12/12/2022] Open
Abstract
The current study investigated the protective potential of Azolla pinnate ethanolic extract (APE) against lead-induced hepatotoxicity in rats. Sixty male Wistar albino rats were randomly allocated into six groups (n = 10). The control group was orally administrated with saline. The second group received lead acetate (100 mg/kg body weight (BW) orally for 60 days). The third group was fed with APE (10 mg/kg BW orally for 60 days). The fourth group was administrated with lead acetate like the second group and APE like the third group, concomitantly, for 60 days. The fifth group was administrated with APE like the third group for 30 days, then orally administrated with the lead acetate like the second group for another 30 days. The sixth group was administrated with lead acetate like the second group for 30 days, then with APE like the third group for a further 30 days. Phytochemical analysis of APE indicated the presence of peonidin 3-O-glucoside cation, vitexin, rutin, thiamine, choline, tamarixetin, hyperoside, astragalin, and quercetin. The latter has been elucidated using one- and two-dimensional nuclear magnetic resonance (1D and 2D NMR) and liquid chromatography-mass spectrometry (LC-MS-MS). Lead acetate increased the serum levels of alanine and aspartate aminotransferases and that of urea, creatinine, tumor necrosis factor alpha, and interleukin 1β, hepatic tissue malondialdehyde contents, and caspase 3 protein expression, as well as altering the hepatic tissue architecture. However, it decreased the serum levels of interleukin 10 and glutathione (GSH) contents, and the activities of catalase and superoxide dismutase in hepatic tissue. In contrast, the administration of APE ameliorated the lead-induced alterations in liver function and structure, exemplifying the benefits of Azolla's phytochemical contents. Collectively, A. pinnate extract is a protective and curative agent against lead-induced hepatotoxicity via its antioxidant, anti-inflammatory, and anti-apoptotic impacts.
Collapse
Affiliation(s)
- Ahmed Shaaban Abd Elrasoul
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Menoufia 32897, Egypt; (A.S.A.E.); (A.A.M.); (S.H.O.)
| | - Ahmed Abdelmoniem Mousa
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Menoufia 32897, Egypt; (A.S.A.E.); (A.A.M.); (S.H.O.)
| | - Sahar Hassan Orabi
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Menoufia 32897, Egypt; (A.S.A.E.); (A.A.M.); (S.H.O.)
| | | | - Shaban M. Gad-Allah
- Department of Surgery, Faculty of Veterinary Medicine, University of Sadat City, Sadat City 32958, Egypt;
| | - Rafa Almeer
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (R.A.); (M.M.A.-D.)
| | - Mohamed M. Abdel-Daim
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (R.A.); (M.M.A.-D.)
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Shaden A. M. Khalifa
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden;
| | - Hesham R. El-Seedi
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden;
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 32512, Egypt
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Mabrouk Attia Abd Eldaim
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Menoufia University, Shebin El-Kom, Menoufia 32512, Egypt
| |
Collapse
|
61
|
Emri E, Kortvely E, Dammeier S, Klose F, Simpson D, den Hollander AI, Ueffing M, Lengyel I. A Multi-Omics Approach Identifies Key Regulatory Pathways Induced by Long-Term Zinc Supplementation in Human Primary Retinal Pigment Epithelium. Nutrients 2020; 12:E3051. [PMID: 33036197 PMCID: PMC7601425 DOI: 10.3390/nu12103051] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/01/2020] [Accepted: 10/01/2020] [Indexed: 12/14/2022] Open
Abstract
In age-related macular degeneration (AMD), both systemic and local zinc levels decline. Elevation of zinc in clinical studies delayed the progression to end-stage AMD. However, the molecular pathways underpinning this beneficial effect are not yet identified. In this study, we used differentiated primary human fetal retinal pigment epithelium (RPE) cultures and long-term zinc supplementation to carry out a combined transcriptome, proteome and secretome analysis from three genetically different human donors. After combining significant differences, we identified the complex molecular networks using Database for Annotation, Visualization and Integrated Discovery (DAVID) and Ingenuity Pathway Analysis (IPA). The cell cultures from the three donors showed extensive pigmentation, development of microvilli and basal infoldings and responded to zinc supplementation with an increase in transepithelial electrical resistance (TEER) (apical supplementation: 443.2 ± 79.3%, basal supplementation: 424.9 ± 116.8%, compared to control: 317.5 ± 98.2%). Significant changes were observed in the expression of 1044 genes, 151 cellular proteins and 124 secreted proteins. Gene set enrichment analysis revealed changes in specific molecular pathways related to cell adhesion/polarity, extracellular matrix organization, protein processing/transport, and oxidative stress response by zinc and identified a key upstream regulator effect similar to that of TGFB1.
Collapse
Affiliation(s)
- Eszter Emri
- Wellcome Wolfson Institute for Experimental Medicine, Queen’s University of Belfast, Belfast BT97BL, Northern Ireland, UK; (E.E.); (D.S.)
- Roche Pharma Research and Early Development, Immunology, Infectious Diseases and Ophthalmology (I2O) Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland;
| | - Elod Kortvely
- Roche Pharma Research and Early Development, Immunology, Infectious Diseases and Ophthalmology (I2O) Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland;
- Institute for Ophthalmic Research, University of Tubingen, D-72076 Tubingen, Germany; (S.D.); (F.K.); (M.U.)
| | - Sascha Dammeier
- Institute for Ophthalmic Research, University of Tubingen, D-72076 Tubingen, Germany; (S.D.); (F.K.); (M.U.)
| | - Franziska Klose
- Institute for Ophthalmic Research, University of Tubingen, D-72076 Tubingen, Germany; (S.D.); (F.K.); (M.U.)
| | - David Simpson
- Wellcome Wolfson Institute for Experimental Medicine, Queen’s University of Belfast, Belfast BT97BL, Northern Ireland, UK; (E.E.); (D.S.)
| | | | - Anneke I. den Hollander
- Departments of Ophthalmology and Genetics, Radboud University Medical Center, 6525EX Nijmegen, The Netherlands;
| | - Marius Ueffing
- Institute for Ophthalmic Research, University of Tubingen, D-72076 Tubingen, Germany; (S.D.); (F.K.); (M.U.)
| | - Imre Lengyel
- Wellcome Wolfson Institute for Experimental Medicine, Queen’s University of Belfast, Belfast BT97BL, Northern Ireland, UK; (E.E.); (D.S.)
| |
Collapse
|
62
|
Dey Bhowmik A, Podder S, Mondal P, Shaw P, Bandyopadhyay A, Das A, Bhattacharjee P, Chakraborty A, Sudarshan M, Chattopadhyay A. Chronic exposure to environmentally relevant concentration of fluoride alters Ogg1 and Rad51 expressions in mice: Involvement of epigenetic regulation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 202:110962. [PMID: 32800233 DOI: 10.1016/j.ecoenv.2020.110962] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/26/2020] [Accepted: 06/28/2020] [Indexed: 06/11/2023]
Abstract
Chronic exposure to fluoride (F) beyond the permissible limit (1.5 ppm) is known to cause detrimental health effects by induction of oxidative stress-mediated DNA damage overpowering the DNA repair machinery. In the present study, we assessed F induced oxidative stress through monitoring biochemical parameters and looked into the effect of chronic F exposure on two crucial DNA repair genes Ogg1 and Rad51 having important role against ROS induced DNA damages. To address this issue, we exposed Swiss albino mice to an environmentally relevant concentration of fluoride (15 ppm NaF) for 8 months. Results revealed histoarchitectural damages in liver, brain, kidney and spleen. Depletion of GSH, increase in lipid peroxidation and catalase activity in liver and brain confirmed the generation of oxidative stress. qRT-PCR result showed that expressions of Ogg1 and Rad51 were altered after F exposure in the affected organs. Promoter hypermethylation was associated with the downregulation of Rad51. F-induced DNA damage and the compromised DNA repair machinery triggered intrinsic pathway of apoptosis in liver and brain. The present study indicates the possible association of epigenetic regulation with F induced neurotoxicity.
Collapse
Affiliation(s)
- Arpan Dey Bhowmik
- Department of Zoology, Visva-Bharati, Santiniketan, 731235, West Bengal, India
| | - Santosh Podder
- Department of Zoology, Visva-Bharati, Santiniketan, 731235, West Bengal, India; Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411 008, India
| | - Paritosh Mondal
- Department of Zoology, Visva-Bharati, Santiniketan, 731235, West Bengal, India
| | - Pallab Shaw
- Department of Zoology, Visva-Bharati, Santiniketan, 731235, West Bengal, India
| | | | - Ankita Das
- Department of Environmental Science, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Pritha Bhattacharjee
- Department of Environmental Science, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Anindita Chakraborty
- UGC-DAE Consortium for Scientific Research, Kolkata Centre, 3/LB-8, Bidhan Nagar, Kolkata, 700098, India
| | - Muthammal Sudarshan
- UGC-DAE Consortium for Scientific Research, Kolkata Centre, 3/LB-8, Bidhan Nagar, Kolkata, 700098, India
| | | |
Collapse
|
63
|
Pisoschi AM, Pop A, Iordache F, Stanca L, Predoi G, Serban AI. Oxidative stress mitigation by antioxidants - An overview on their chemistry and influences on health status. Eur J Med Chem 2020; 209:112891. [PMID: 33032084 DOI: 10.1016/j.ejmech.2020.112891] [Citation(s) in RCA: 325] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/30/2020] [Accepted: 09/24/2020] [Indexed: 12/11/2022]
Abstract
The present review paper focuses on the chemistry of oxidative stress mitigation by antioxidants. Oxidative stress is understood as a lack of balance between the pro-oxidant and the antioxidant species. Reactive oxygen species in limited amounts are necessary for cell homeostasis and redox signaling. Excessive reactive oxygenated/nitrogenated species production, which counteracts the organism's defense systems, is known as oxidative stress. Sustained attack of endogenous and exogenous ROS results in conformational and oxidative alterations in key biomolecules. Chronic oxidative stress is associated with oxidative modifications occurring in key biomolecules: lipid peroxidation, protein carbonylation, carbonyl (aldehyde/ketone) adduct formation, nitration, sulfoxidation, DNA impairment such strand breaks or nucleobase oxidation. Oxidative stress is tightly linked to the development of cancer, diabetes, neurodegeneration, cardiovascular diseases, rheumatoid arthritis, kidney disease, eye disease. The deleterious action of reactive oxygenated species and their role in the onset and progression of pathologies are discussed. The results of oxidative attack become themselves sources of oxidative stress, becoming part of a vicious cycle that amplifies oxidative impairment. The term antioxidant refers to a compound that is able to impede or retard oxidation, acting at a lower concentration compared to that of the protected substrate. Antioxidant intervention against the radicalic lipid peroxidation can involve different mechanisms. Chain breaking antioxidants are called primary antioxidants, acting by scavenging radical species, converting them into more stable radicals or non-radical species. Secondary antioxidants quench singlet oxygen, decompose peroxides, chelate prooxidative metal ions, inhibit oxidative enzymes. Moreover, four reactivity-based lines of defense have been identified: preventative antioxidants, radical scavengers, repair antioxidants, and those relying on adaptation mechanisms. The specific mechanism of a series of endogenous and exogenous antioxidants in particular aspects of oxidative stress, is detailed. The final section resumes critical conclusions regarding antioxidant supplementation.
Collapse
Affiliation(s)
- Aurelia Magdalena Pisoschi
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, 105 Splaiul Independentei, 050097, Bucharest, Romania.
| | - Aneta Pop
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, 105 Splaiul Independentei, 050097, Bucharest, Romania
| | - Florin Iordache
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, 105 Splaiul Independentei, 050097, Bucharest, Romania
| | - Loredana Stanca
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, 105 Splaiul Independentei, 050097, Bucharest, Romania
| | - Gabriel Predoi
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, 105 Splaiul Independentei, 050097, Bucharest, Romania
| | - Andreea Iren Serban
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, 105 Splaiul Independentei, 050097, Bucharest, Romania
| |
Collapse
|
64
|
Gatiatulina ER, Sheina EA, Nemereshina ON, Popova EV, Polyakova VS, Agletdinov EF, Sinitskii AI, Skalny AV, Nikonorov AA, Tinkov AA. Effect of Zn Supplementation on Trace Element Status in Rats with Diet-Induced Non-alcoholic Fatty Liver Disease. Biol Trace Elem Res 2020; 197:202-212. [PMID: 31832925 DOI: 10.1007/s12011-019-01985-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 11/13/2019] [Indexed: 12/19/2022]
Abstract
The present study aimed to assess the effect of Zn supplementation on trace element levels in the liver, serum, and hair of rats with dietary-induced non-alcoholic fatty liver disease (NAFLD). A total of 26 3-month-old female Wistar rats were divided into four groups: control, NAFLD, Zn-supplemented (227 mg/L zinc as Zn sulfate Zn(SO)4 dissolved in a drinking water), and NAFLD-Zn-supplemented. NAFLD was verified by histological assessment of liver samples. The serum was examined for routine biochemical parameters. Trace elements content was assessed using inductively coupled plasma mass spectrometry (ICP-MS). Zn treatment resulted in an improvement in liver weight and morphology. Dietary supplementation with Zn prevented NAFLD-induced decrease liver Co. The tendency to increase liver Fe in the Zn-treated group was observed. Zn treatment decreased hepatic Al and serum V levels. However, Zn administration did not affect NAFLD-induced I, Mn, and Se depletion in the liver. Hair Zn levels raised in Zn-supplemented groups. Conclusively, the results of the study indicate that Zn supplementation could have a beneficial effect in modulation of the altered trace element status and liver morphology. HIGHLIGHTS: •Zn treatment improved liver weight and morphology in rats with NAFLD. •Zn supplementation decreased liver Al in NAFLD. •Treatment by Zn prevented depletion of liver Co. •Zn decreased serum V and increased hair Zn levels. •No effect of Zn on NAFLD-induced hepatic I, Mn and Se depletion was observed.
Collapse
Affiliation(s)
- Eugenia R Gatiatulina
- All-Russian Research Institute of Medicinal and Aromatic Plants (VILAR), Grina St., 7, Moscow, 117216, Russia.
| | - Evgenia A Sheina
- Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St., 6, Moscow, 105064, Russia
| | - Olga N Nemereshina
- Orenburg State Medical University, Sovetskaya St., 6, Orenburg, 460000, Russia
| | - Elizaveta V Popova
- St. Joseph College of Health and Allied Sciences, St Joseph University in Tanzania, 11007, Dar es Salaam, Tanzania
| | | | | | - Anton I Sinitskii
- South Ural State Medical University, Vorovskogo St., 64, Chelyabinsk, 454092, Russia
| | - Anatoly V Skalny
- Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St., 6, Moscow, 105064, Russia
- Yaroslavl State University, Sovetskaya St., 14, Yaroslavl, 150000, Russia
- IM Sechenov First Moscow State Medical University, Trubetskaya St., 8-2, Moscow, 119991, Russia
| | - Alexandr A Nikonorov
- State Research Center of Dermatovenerology and Cosmetology, Korolenko St., 3-6, Moscow, 107076, Russia
| | - Alexey A Tinkov
- Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St., 6, Moscow, 105064, Russia
- Yaroslavl State University, Sovetskaya St., 14, Yaroslavl, 150000, Russia
- IM Sechenov First Moscow State Medical University, Trubetskaya St., 8-2, Moscow, 119991, Russia
| |
Collapse
|
65
|
Greene E, Cauble R, Dhamad AE, Kidd MT, Kong B, Howard SM, Castro HF, Campagna SR, Bedford M, Dridi S. Muscle Metabolome Profiles in Woody Breast-(un)Affected Broilers: Effects of Quantum Blue Phytase-Enriched Diet. Front Vet Sci 2020; 7:458. [PMID: 32851035 PMCID: PMC7417653 DOI: 10.3389/fvets.2020.00458] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/22/2020] [Indexed: 12/21/2022] Open
Abstract
Woody breast (WB) myopathy is significantly impacting modern broilers and is imposing a huge economic burden on the poultry industry worldwide. Yet, its etiology is not fully defined. In a previous study, we have shown that hypoxia and the activation of its upstream mediators (AKT/PI3K/mTOR) played a key role in WB myopathy, and supplementation of quantum blue (QB) can help to reduce WB severity via modulation of hypoxia-related pathways. To gain further insights, we undertook here a metabolomics approach to identify key metabolite signatures and outline their most enriched biological functions. Ultra performance liquid chromatography coupled with high resolution mass spectrometry (UPLC-HRMS) identified a total of 108 known metabolites. Of these, mean intensity differences at P < 0.05 were found in 60 metabolites with 42 higher and 18 lower in WB-affected compared to unaffected muscles. Multivariate analysis and Partial Least Squares Discriminant analysis (PLS-DA) scores plot displayed different clusters when comparing metabolites profile from affected and unaffected tissues and from moderate (MOD) and severe (SEV) WB muscles indicating that unique metabolite profiles are present for the WB-affected and unaffected muscles. To gain biologically related molecule networks, a stringent pathway analyses was conducted using IPA knowledge-base. The top 10 canonical pathways generated, using a fold-change -1.5 and 1.5 cutoff, with the 50 differentially abundant-metabolites were purine nucleotide degradation and de novo biosynthesis, sirtuin signaling pathway, citrulline-nitric oxide cycle, salvage pathways of pyrimidine DNA, IL-1 signaling, iNOS, Angiogenesis, PI3K/AKT signaling, and oxidative phosphorylation. The top altered bio-functions in term of molecular and cellular functions in WB-affected tissues included cellular development, cellular growth and proliferation, cellular death and survival, small molecular biochemistry, inflammatory response, free radical scavenging, cell signaling and cell-to-cell interaction, cell cycles, and lipid, carbohydrate, amino acid, and nucleic acid metabolisms. The top disorder functions identified were organismal injury and abnormalities, cancer, skeletal and muscular disorders, connective tissue disorders, and inflammatory diseases. Breast tissues from birds fed with high dose (2,000 FTU) of QB phytase exhibited 22 metabolites with significantly different levels compared to the control group with a clear cluster using PLS-DA analysis. Of these 22 metabolites, 9 were differentially abundant between WB-affected and unaffected muscles. Taken together, this study determined many metabolic signatures and disordered pathways, which could be regarded as new routes for discovering potential mechanisms of WB myopathy.
Collapse
Affiliation(s)
- Elizabeth Greene
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Reagan Cauble
- Department of Animal Sciences, University of Arkansas, Fayetteville, AR, United States
| | - Ahmed E Dhamad
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Michael T Kidd
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Byungwhi Kong
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Sara M Howard
- Biological and Small Molecule Mass Spectrometry Core, Department of Chemistry, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Hector F Castro
- Biological and Small Molecule Mass Spectrometry Core, Department of Chemistry, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Shawn R Campagna
- Biological and Small Molecule Mass Spectrometry Core, Department of Chemistry, University of Tennessee, Knoxville, Knoxville, TN, United States
| | | | - Sami Dridi
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
66
|
Puar P, Niyogi S, Kwong RWM. Regulation of metal homeostasis and zinc transporters in early-life stage zebrafish following sublethal waterborne zinc exposure. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 225:105524. [PMID: 32610223 DOI: 10.1016/j.aquatox.2020.105524] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 05/05/2020] [Accepted: 05/23/2020] [Indexed: 06/11/2023]
Abstract
In the present research, the effects of exposure to a sublethal concentration of zinc (Zn) on metal and ion homeostasis, and the regulation and the localization of various Zn transporters (i.e., the Zrt-Irt Like Protein (ZIP) family of Zn transporters), were investigated in zebrafish (Danio rerio) during early development. Exposure to an elevated level of Zn [4 μM (high) vs. 0.25 μM (control)] from 0 day post-fertilization (dpf) resulted in a significant increase in the whole body content of Zn at 5 dpf. A transient decrease in the whole body calcium (Ca) level was observed in 3 dpf larvae exposed to high Zn. Similarly, whole body nickel (Ni) and copper (Cu) contents were also reduced in 3 dpf larvae exposed to high Zn. Importantly, the magnitude of reduction in whole body Ni and Cu contents following Zn exposure was markedly higher than that in Ca content, suggesting that internal Ni and Cu balance were likely more sensitive to Zn exposure in developing zebrafish. Exposure to high Zn altered the mRNA expression levels of specific zip transporters, with an increase in zip1 (at 3 dpf) and zip8 (at 5 dpf), and a decrease in zip4 (at 5 dpf). The expression levels of most zip transporters tended to decrease from 3 dpf to 5 dpf with the exception of zip4 and zip8. Results from in situ hybridization revealed that several zip transporters exhibited distinct spatial distribution (e.g., zip8 in the intestinal tract, zip14 in the pronephric tubules). Overall, our findings suggested that exposure to sublethal concentrations of Zn disrupts the homeostasis of essential metals during early development and that different ZIP transporters may play unique roles in regulating Zn homeostasis in various organs in developing zebrafish.
Collapse
Affiliation(s)
- Pankaj Puar
- Department of Biology, York University, Toronto, ON, M3J 1P3, Canada.
| | - Som Niyogi
- Department of Biology, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada; Toxicology Centre, University of Saskatchewan, Saskatoon, SK, S7N 5B3, Canada
| | - Raymond W M Kwong
- Department of Biology, York University, Toronto, ON, M3J 1P3, Canada.
| |
Collapse
|
67
|
Haribabu J, Priyarega S, Bhuvanesh NSP, Karvembu R. Synthesis and Molecular Structure of the Zinc(II) Complex Bearing an N, S Donor Ligand. J STRUCT CHEM+ 2020. [DOI: 10.1134/s0022476620010072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
68
|
Said E, Mousa S, Fawzi M, Sabry NA, Farid S. Combined effect of high-dose vitamin A, vitamin E supplementation, and zinc on adult patients with diabetes: A randomized trial. J Adv Res 2020; 28:27-33. [PMID: 33364042 PMCID: PMC7753230 DOI: 10.1016/j.jare.2020.06.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 12/24/2022] Open
Abstract
In type 2 diabetes mellitus (T2DM), hyperglycemia leads to oxidative insult. Vitamins A and E have antioxidant potentials and may help in managing diabetes. The combined effect of high-dose vitamin A plus E supplementation with and without zinc on T2DM, has never been examined. Thus, this study aimed to evaluate and compare the effect of high-dose vitamin A plus E supplementation (AE) versus high-dose vitamin A plus E with zinc (AEZ), on different diabetic parameters. Ninety-eight patients with T2DM were randomized to receive either: 50,000 IU vitamin A and 100 mg vitamin E (AE group, N = 36), an equivalent dose of vitamin A and E combined with 25 mg zinc (AEZ group, N = 35), or no supplements (control group, N = 27) for three months. Compared to control, AEZ group showed significant reductions in fasting blood glucose, 2 h postprandial blood glucose, and glycated hemoglobin (HbA1c) with significant increases in homeostasis model assessment of beta-cell function and difference value of fasting insulin. Two hair loss cases were recorded in both treated groups. Although vitamin A needs dose moderation, these results suggest that, high-dose vitamin A plus E supplementation combined with zinc may improve glycemic control, β-cell function, and insulin secretion in adults with T2DM.
Collapse
Affiliation(s)
- Eman Said
- Department of Clinical Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Shrook Mousa
- Department of Internal Medicine, Kasr Alainy Faculty of Medicine, Cairo University, Cairo 11562, Egypt
| | - May Fawzi
- Department of Internal Medicine, Kasr Alainy Faculty of Medicine, Cairo University, Cairo 11562, Egypt
| | - Nirmeen A Sabry
- Department of Clinical Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Samar Farid
- Department of Clinical Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
69
|
Abstract
The joint attack on the body by metabolic acidosis and oxidative stress suggests that treatment in degenerative diseases, including Alzheimer's disease (AD), may require a normalizing of extracellular and intracellular pH with simultaneous supplementation of an antioxidant combination cocktail at a sufficiently high dose. Evidence is also accumulating that combinations of antioxidants may be more effective, taking advantage of synergistic effects of appropriate antioxidants as well as a nutrient-rich diet to prevent and reverse AD. This review focuses on nutritional, nutraceutical and antioxidant treatments of AD, although they can also be used in other chronic degenerative and neurodegenerative diseases.
Collapse
Affiliation(s)
- Gerald Veurink
- Naturels, Armadale, Western Australia, Australia.,Department of Surgery, University of Western Australia, Perth, Australia.,Indian Scientific Education and Technology Foundation, Lucknow 226002, India
| | - George Perry
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, USA
| | - Sandeep Kumar Singh
- Indian Scientific Education and Technology Foundation, Lucknow 226002, India.,Centre of Biomedical Research, SGPGI Campus, Lucknow 226014, India
| |
Collapse
|
70
|
Influence of dietary zinc on growth, zinc bioaccumulation and expression of genes involved in antioxidant and innate immune in juvenile mud crabs (Scylla paramamosain). Br J Nutr 2020; 124:681-692. [DOI: 10.1017/s0007114520001531] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractThe aim of the present study was to investigate the effects of dietary Zn level on growth performance, Zn bioaccumulation, antioxidant capacity and innate immunity in juvenile mud crabs (Scylla paramamosain). Six semi-purified diets were formulated to contain dietary Zn levels of 44·5, 56·9, 68·5, 97·3, 155·6 or 254·7 mg/kg. Dietary Zn level significantly influenced percentage weight gain (PWG), with the highest observed in crabs fed the diet containing 97·3 mg/kg Zn. Tissue Zn concentrations significantly increased as dietary Zn levels increased from 44·5 to 254·7 mg/kg. Retention of Zn in hepatopancreas increased with dietary Zn levels up to 68·5 mg/kg and then significantly decreased. Moreover, inadequate dietary Zn (44·5 and 56·9 mg/kg) reduced antioxidation markers including total superoxide dismutase (SOD) and Cu/Zn SOD activities and total antioxidant level. Crabs fed the diet with 44·5 mg/kg Zn also showed significantly lower expression of genes involved in antioxidant status, such as Cu/Zn SOD, glutathione peroxidase, catalase and thioredoxin than those fed diets containing 68·5 and 97·3 mg/kg Zn. The highest activities of phenoloxidase and alkaline phosphatase were recorded in crabs fed the diets containing 68·5 and 97·3 mg/kg Zn. Expression levels of prophenoloxidase and toll-like receptor 2 were higher in crabs fed the 97·3 mg/kg Zn diet compared with crabs fed the other diets. Based on PWG alone, the optimal dietary Zn level was estimated to be 82·9 mg/kg, with 68·5 to 97·3 mg/kg recommended for maintaining optimal Zn bioaccumulation, oxidation resistance and innate immune response of juvenile mud crabs.
Collapse
|
71
|
Shilpashree B, Arora S, Kapila S, Sharma V. Whey protein-iron or zinc complexation decreases pro-oxidant activity of iron and increases iron and zinc bioavailability. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109287] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
72
|
Ianni A, Martino C, Innosa D, Bennato F, Grotta L, Martino G. Zinc supplementation of lactating dairy cows: effects on chemical-nutritional quality and volatile profile of Caciocavallo cheese. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2020; 33:825-835. [PMID: 31480170 PMCID: PMC7206391 DOI: 10.5713/ajas.19.0155] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 07/06/2019] [Indexed: 11/27/2022]
Abstract
OBJECTIVE The aim of the present study was to investigate the effect of dietary zinc supplementation of Friesian cows on chemical-nutritional and aromatic properties of Caciocavallo cheese after 7 days (C7) and 120 days (C120) of ripening. METHODS Twenty eight Friesian cows, balanced for parity, milk production and days in milk, were randomly assigned to 2 groups. The control group (CG) was fed with a conventional complete diet, while the experimental group (zinc group, ZG) received a daily zinc supplementation of 60 mg for kg of dry complete feed. During the experimental period, the milk yield was monitored and samples of milk and caciocavallo cheese were collected and analyzed for chemical-nutritional composition and aromatic profile. RESULTS The enrichment of dairy cows diet with zinc, did not influence milk yield and composition, however a marked reduction of somatic cell count was evidenced. Both in milk and cheese the ZG samples were characterized by a lower concentration of satured fatty acids and an increase in oleic, vaccenic and rumenic acids. The aromatic profile of dairy products was also positively affected by dietary zinc intake, with an increase in concentration of carboxylic acids, esters and lactones. CONCLUSION The present results suggest a positive role of dietary zinc intake in improving the quality of bovine milk and related cheese, in particular for the increase in concentration of bioactive fatty acids such as rumenic acid. The changes evidenced in cheese through the analysis of the volatile profile, would be consistent with the development of interesting organoleptic properties, although further evaluations should be performed to confirm the consumer acceptability of these changes.
Collapse
Affiliation(s)
- Andrea Ianni
- Faculty of BioScience and Technology for Food, Agriculture and Environment, University of Teramo, Via Renato Balzarini 1, 64100 Teramo, Italy
| | - Camillo Martino
- Department of Veterinary Medicine, University of Perugia, Via S. Costanzo 4, 06126 Perugia, Italy
| | - Denise Innosa
- Faculty of BioScience and Technology for Food, Agriculture and Environment, University of Teramo, Via Renato Balzarini 1, 64100 Teramo, Italy
| | - Francesca Bennato
- Faculty of BioScience and Technology for Food, Agriculture and Environment, University of Teramo, Via Renato Balzarini 1, 64100 Teramo, Italy
| | - Lisa Grotta
- Faculty of BioScience and Technology for Food, Agriculture and Environment, University of Teramo, Via Renato Balzarini 1, 64100 Teramo, Italy
| | - Giuseppe Martino
- Faculty of BioScience and Technology for Food, Agriculture and Environment, University of Teramo, Via Renato Balzarini 1, 64100 Teramo, Italy
| |
Collapse
|
73
|
Wang X, Xie Y, Zhou W, Wang X, Cai Z, Xing Z, Li M, Pan K. The self-supported Zn-doped CoNiP microsphere/thorn hierarchical structures as efficient bifunctional catalysts for water splitting. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.135933] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
74
|
Adjuvant Therapies in Diabetic Retinopathy as an Early Approach to Delay Its Progression: The Importance of Oxidative Stress and Inflammation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3096470. [PMID: 32256949 PMCID: PMC7086452 DOI: 10.1155/2020/3096470] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/16/2020] [Accepted: 02/08/2020] [Indexed: 02/06/2023]
Abstract
Diabetes mellitus (DM) is a progressive disease induced by a sustained state of chronic hyperglycemia that can lead to several complications targeting highly metabolic cells. Diabetic retinopathy (DR) is a multifactorial microvascular complication of DM, with high prevalence, which can ultimately lead to visual impairment. The genesis of DR involves a complex variety of pathways such as oxidative stress, inflammation, apoptosis, neurodegeneration, angiogenesis, lipid peroxidation, and endoplasmic reticulum (ER) stress, each possessing potential therapeutic biomarkers. A specific treatment has yet to be developed for early stages of DR since no management is given other than glycemic control until the proliferative stage develops, offering a poor visual prognosis to the patient. In this narrative review article, we evaluate different dietary regimens, such as the Mediterranean diet, Dietary Pattern to Stop Hypertension (DASH) and their functional foods, and low-calorie diets (LCDs). Nutraceuticals have also been assessed in DR on account of their antioxidant, anti-inflammatory, and antiangiogenic properties, which may have an important impact on the physiopathology of DR. These nutraceuticals have shown to lower reactive oxygen species (ROS), important inflammatory factors, cytokines, and endothelial damage biomarkers either as monotherapies or combined therapies or concomitantly with established diabetes management or nonconventional adjuvant drugs like topical nonsteroidal anti-inflammatory drugs (NSAIDs).
Collapse
|
75
|
Ashraf A, Jeandriens J, Parkes HG, So PW. Iron dyshomeostasis, lipid peroxidation and perturbed expression of cystine/glutamate antiporter in Alzheimer's disease: Evidence of ferroptosis. Redox Biol 2020; 32:101494. [PMID: 32199332 PMCID: PMC7083890 DOI: 10.1016/j.redox.2020.101494] [Citation(s) in RCA: 207] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 02/26/2020] [Accepted: 03/04/2020] [Indexed: 12/13/2022] Open
Abstract
Iron dyshomeostasis is implicated in Alzheimer’s disease (AD) alongside β-amyloid and tau pathologies. Despite the recent discovery of ferroptosis, an iron-dependent form cell death, hitherto, in vivo evidence of ferroptosis in AD is lacking. The present study uniquely adopts an integrated multi-disciplinary approach, combining protein (Western blot) and elemental analysis (total reflection X-ray fluorescence) with metabolomics (1H nuclear magnetic resonance spectroscopy) to identify iron dyshomeostasis and ferroptosis, and possible novel interactions with metabolic dysfunction in age-matched male cognitively normal (CN) and AD post-mortem brain tissue (n = 7/group). Statistical analysis was used to compute differences between CN and AD, and to examine associations between proteins, elements and/or metabolites. Iron dyshomeostasis with elevated levels of ferritin, in the absence of increased elemental iron, was observed in AD. Moreover, AD was characterised by enhanced expression of the light-chain subunit of the cystine/glutamate transporter (xCT) and lipid peroxidation, reminiscent of ferroptosis, alongside an augmented excitatory glutamate to inhibitory GABA ratio. Protein, element and metabolite associations also greatly differed between CN and AD suggesting widespread metabolic dysregulation in AD. We demonstrate iron dyshomeostasis, upregulated xCT (impaired glutathione metabolism) and lipid peroxidation in AD, suggesting anti-ferroptotic therapies may be efficacious in AD.
Collapse
Affiliation(s)
- Azhaar Ashraf
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Jérôme Jeandriens
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; Department of Human Biology and Toxicology, Faculty of Medicine, University of Mons, Place du Parc 20, Mons, Belgium
| | - Harold G Parkes
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Po-Wah So
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.
| |
Collapse
|
76
|
Marchi R, Silva ES, Santos JJ, Guiloski IC, de Jesus HCR, de Aguiar I, Kock FVC, Venâncio T, da Silva MFGF, Fernandes JB, Vital MABF, Souza LC, Silva de Assis HC, Skibsted LH, Carlos RM. Synthesis, Characterization, and Low-Toxicity Study of a Magnesium(II) Complex Containing an Isovanillate Group. ACS OMEGA 2020; 5:3504-3512. [PMID: 32118165 PMCID: PMC7045549 DOI: 10.1021/acsomega.9b03804] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 01/28/2020] [Indexed: 06/10/2023]
Abstract
The beneficial effect of polyphenols and magnesium(II) against oxidative stress motivated our research group to explore the antioxidant activity of phenMgIso, an aqueous soluble magnesium(II) complex containing 1,10-phenanthroline (phen) and isovanillic acid (Iso) as ligands. Combined electrospray ionization-mass spectrometry and DOSY-NMR techniques identified two complexes in methanolic solution: hexacoordinated [Mg(phen)2(Iso)]+ and tetracoordinated [Mg(phen)(Iso)]+. The cyclic voltammogram of phenMgIso in the anodic region showed a cyclic process that interrupts the isovanillic acid degradation, probably by stabilization of the corresponding phenoxyl radical via complexation with Mg(II), which is interesting for antioxidant applications. phenMgIso competes with 2,2,6,6-tetramethylpiperidine by 1O2 with IC50(1O2) = 15 μg m-1 and with nitrotetrazolium blue chloride by superoxide ions (IC50(O2 •-) = 3.6 μg mL-1). Exposure of both zebrafish (2 mg L-1) and wistar male rats (3 mg kg-1 day-1 dose for 21 days) to phenMgIso does not cause mortality or visual changes compared with the respective control groups, thus phenMgIso could be considered safe under the conditions of this study. Moreover, no significant changes in comparison to both control groups were observed in the biochemical parameters on the brain-acetylcholinesterase activity, digestive tract enzyme catalase, and glutathione-S-transferase. Conversely, the performance of superoxide dismutase activity in wistar male rats increased in the presence of a complex, resulting in enhanced capacity of rats for superoxide radical enzymatic scavenging. The synergistic action of phenMgIso may be explained by the strong electrostatic interaction between Mg(II) and the O,O(phenolate) group, which makes the Iso ligand easier to oxidize and deprotonate, generating a cyclic stable species under oxidative conditions.
Collapse
Affiliation(s)
- Rafael
C. Marchi
- Departamento
de Química, Universidade Federal
de São Carlos, Rodovia Washington Luís, km 235 CP 676, CEP 13565-905 São Carlos, São Paulo, Brazil
| | - Eldevan S. Silva
- Departamento
de Química, Universidade Federal
de São Carlos, Rodovia Washington Luís, km 235 CP 676, CEP 13565-905 São Carlos, São Paulo, Brazil
| | - Josenilton J. Santos
- Departamento
de Química, Universidade Federal
de São Carlos, Rodovia Washington Luís, km 235 CP 676, CEP 13565-905 São Carlos, São Paulo, Brazil
| | - Izonete C. Guiloski
- Departamento
de Farmacologia, Universidade Federal do
Paraná, Setor de Ciências Biológicas, 81531-980 Curitiba, Paraná, Brazil
| | - Hugo Cesar R. de Jesus
- Departamento
de Química, Universidade Federal
de São Carlos, Rodovia Washington Luís, km 235 CP 676, CEP 13565-905 São Carlos, São Paulo, Brazil
| | - Inara de Aguiar
- Departamento
de Química, Universidade Federal
de São Carlos, Rodovia Washington Luís, km 235 CP 676, CEP 13565-905 São Carlos, São Paulo, Brazil
| | - Flavio V. C. Kock
- Departamento
de Química, Universidade Federal
de São Carlos, Rodovia Washington Luís, km 235 CP 676, CEP 13565-905 São Carlos, São Paulo, Brazil
| | - Tiago Venâncio
- Departamento
de Química, Universidade Federal
de São Carlos, Rodovia Washington Luís, km 235 CP 676, CEP 13565-905 São Carlos, São Paulo, Brazil
| | - Maria Fátima G. F. da Silva
- Departamento
de Química, Universidade Federal
de São Carlos, Rodovia Washington Luís, km 235 CP 676, CEP 13565-905 São Carlos, São Paulo, Brazil
| | - João Batista Fernandes
- Departamento
de Química, Universidade Federal
de São Carlos, Rodovia Washington Luís, km 235 CP 676, CEP 13565-905 São Carlos, São Paulo, Brazil
| | - Maria A. B. F. Vital
- Departamento
de Farmacologia, Universidade Federal do
Paraná, Setor de Ciências Biológicas, 81531-980 Curitiba, Paraná, Brazil
| | - Leonardo Castro Souza
- Departamento
de Farmacologia, Universidade Federal do
Paraná, Setor de Ciências Biológicas, 81531-980 Curitiba, Paraná, Brazil
| | - Helena C. Silva de Assis
- Departamento
de Farmacologia, Universidade Federal do
Paraná, Setor de Ciências Biológicas, 81531-980 Curitiba, Paraná, Brazil
| | - Leif H. Skibsted
- Department
of Food Science (UCPH FOOD), University
of Copenhagen, Rolighedsvej
26, DK-1958 Frederiksberg, Denmark
| | - Rose M. Carlos
- Departamento
de Química, Universidade Federal
de São Carlos, Rodovia Washington Luís, km 235 CP 676, CEP 13565-905 São Carlos, São Paulo, Brazil
| |
Collapse
|
77
|
Schisterman EF, Clemons T, Peterson CM, Johnstone E, Hammoud AO, Lamb D, Carrell DT, Perkins NJ, Sjaarda LA, Van Voorhis BJ, Ryan G, Summers K, Campbell B, Robins J, Chaney K, Mills JL, Mendola P, Chen Z, DeVilbiss EA, Mumford SL. A Randomized Trial to Evaluate the Effects of Folic Acid and Zinc Supplementation on Male Fertility and Livebirth: Design and Baseline Characteristics. Am J Epidemiol 2020; 189:8-26. [PMID: 31712803 DOI: 10.1093/aje/kwz217] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 09/12/2019] [Accepted: 09/12/2019] [Indexed: 01/08/2023] Open
Abstract
The Folic Acid and Zinc Supplementation Trial (FAZST) was a multicenter, double-blind, block-randomized, placebo-controlled trial to determine whether folic acid and zinc supplementation in men improves semen quality and increases livebirth rate among couples seeking infertility treatment (2013-2017). Eligible men were aged 18 years or older with female partners aged 18-45 years, seeking infertility treatment. Men were randomized (1:1) to 5 mg folic acid and 30 mg elemental zinc daily or matching placebo for 6 months. Randomization was stratified by site and intended infertility treatment (in vitro fertilization (IVF), non-IVF/study site, and non-IVF/outside clinic). Follow-up of men continued for 6 months, and female partners were passively followed for a minimum of 9 months. Women who conceived were followed throughout pregnancy. Overall, 2,370 men were randomized during 2013-2017 (1,185 folic acid and zinc, 1,185 placebo); they had a mean age of 33 years and body mass index (weight (kg)/height (m)2) of 29.8. Most participants were white (82%), well educated (83% with some college), and employed (72%). Participant characteristics were balanced across intervention arms. Study visits were completed by 89%, 77%, and 75% of men at months 2, 4, and 6, respectively. Here we describe the study design, recruitment, data collection, lessons learned, and baseline participant characteristics.
Collapse
Affiliation(s)
- Enrique F Schisterman
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | | | - C Matthew Peterson
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Utah, Salt Lake City, Utah
| | - Erica Johnstone
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Utah, Salt Lake City, Utah
| | | | - Denise Lamb
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Utah, Salt Lake City, Utah
| | - Douglas T Carrell
- Departments of Surgery (Urology) and Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah
| | - Neil J Perkins
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Lindsey A Sjaarda
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Bradley J Van Voorhis
- Department of Obstetrics and Gynecology, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Ginny Ryan
- Department of Obstetrics and Gynecology, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Karen Summers
- Department of Obstetrics and Gynecology, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Bruce Campbell
- Center for Reproductive Medicine, Minneapolis, Minnesota
| | - Jared Robins
- Division of Reproductive Endocrinology and Infertility, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | | | - James L Mills
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Pauline Mendola
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Zhen Chen
- Biostatistics and Bioinformatics Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Elizabeth A DeVilbiss
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Sunni L Mumford
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
78
|
Ianni A, Bennato F, Martino C, Grotta L, Martino G. Volatile Flavor Compounds in Cheese as Affected by Ruminant Diet. Molecules 2020; 25:E461. [PMID: 31979062 PMCID: PMC7037034 DOI: 10.3390/molecules25030461] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/19/2020] [Accepted: 01/21/2020] [Indexed: 11/16/2022] Open
Abstract
Extensive research has been conducted concerning the determination and characterization of volatile compounds contributing to aroma and flavor in cheese. Considerable knowledge has been accumulated on the understanding of the mechanisms through which these compounds are formed during ripening, as well as on the optimization of the methodological approaches which lead to their detection. More recently, particular attention has been given to the aromatic properties of milk and cheeses obtained from lactating dairy ruminants fed experimental diets, characterized, for instance, by the addition of trace elements, natural supplements, or agricultural by-products rich in bioactive compounds. The purpose of this review is to summarize the major families of volatile compounds most commonly found in these types of dairy products at various ripening stages, describing in greater detail the role of animal diet in influencing the synthesis mechanisms most commonly responsible for cheese flavor determination. A large number of volatile compounds, including carboxylic acids, lactones, ketones, alcohols, and aldehydes, can be detected in cheese. The relative percentage of each compound depends on the biochemical processes that occur during ripening, and these are mainly mediated by endogenous enzymes and factors of bacterial origin whose function can be strongly influenced by the bioactive compounds taken by animals with the diet and released in milk through the mammary gland. Further evaluations on the interactions between volatile compounds and cheese matrix would be necessary in order to improve the knowledge on the synthesis mechanisms of such compounds; in addition to this, more should be done with respect to the determination of synergistic effects of flavor compounds, correlating such compounds to the aroma of dairy products.
Collapse
Affiliation(s)
- Andrea Ianni
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy; (A.I.); (F.B.); (L.G.)
| | - Francesca Bennato
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy; (A.I.); (F.B.); (L.G.)
| | - Camillo Martino
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Via Campo Boario, 64100 Teramo, Italy;
| | - Lisa Grotta
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy; (A.I.); (F.B.); (L.G.)
| | - Giuseppe Martino
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy; (A.I.); (F.B.); (L.G.)
| |
Collapse
|
79
|
Zhong L, Dong A, Feng Y, Wang X, Gao Y, Xiao Y, Zhang J, He D, Cao J, Zhu W, Zhang S. Alteration of Metal Elements in Radiation Injury: Radiation-Induced Copper Accumulation Aggravates Intestinal Damage. Dose Response 2020. [PMID: 32110169 PMCID: PMC7000859 DOI: 10.1177/1559325820904547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Ionizing radiation causes damage to a variety of tissues, especially radiation-sensitive tissues, such as the small intestine. Radiation-induced damage is caused primarily by increased oxidative stress in the body. Studies have shown that trace metal elements play an irreplaceable role in oxidative stress in humans, which may be associated with radiation-induced tissue damage. However, the alteration and functional significance of trace metal elements in radiation-induced injury is not clear. In this study, we explored the association between radiation-induced damage and 7 trace metal elements in mouse models. We found that the concentration of zinc and copper in mice serum was decreased significantly after irradiation, whereas that of nickel, manganese, vanadium, cobalt, and stannum was not changed by inductively coupled plasma mass spectrometry. The role of copper in radiation-induced intestines was characterized in detail. The concentration of copper was increased in irradiated intestine but reduced in irradiated heart. Immunohistochemistry staining showed that copper transporter protein copper transport 1 expression was upregulated in irradiated mouse intestine, suggesting its potential involvement in radiation-induced copper accumulation. At the cellular level, the addition of CuCl2potentiated radiation-induced reactive oxygen species in intestine-derived human intestinal epithelial cell and IEC-6 cells. Moreover, the level of copper in damaged cells may be related to the severity of radiation-induced damage as evidenced by a cell viability assay. These results indicate that copper may be involved in the progression of radiation-induced tissue damage and may be a potential therapeutic target.
Collapse
Affiliation(s)
- Li Zhong
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
- State Key Lab of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Aijing Dong
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
- State Key Lab of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Yang Feng
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
- State Key Lab of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Xi Wang
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
- State Key Lab of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Yiying Gao
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
- State Key Lab of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
- Sichuan Center for Disease Control and Prevention, Sichuan, China
| | - Yuji Xiao
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
- State Key Lab of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Ji Zhang
- Soochow University Affiliated Second Hospital, Soochow University, Suzhou, China
| | - Dan He
- Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
| | - Jianping Cao
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
- State Key Lab of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Wei Zhu
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
- State Key Lab of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Shuyu Zhang
- Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| |
Collapse
|
80
|
Zhang YN, Wang S, Li KC, Ruan D, Chen W, Xia WG, Wang SL, Abouelezz KFM, Zheng CT. Estimation of dietary zinc requirement for laying duck breeders: effects on productive and reproductive performance, egg quality, tibial characteristics, plasma biochemical and antioxidant indices, and zinc deposition. Poult Sci 2019; 99:454-462. [PMID: 32416830 PMCID: PMC7587828 DOI: 10.3382/ps/pez530] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 08/31/2019] [Indexed: 01/05/2023] Open
Abstract
This study evaluated the effects of different dietary zinc (Zn) levels on productive and reproductive performance, egg quality, tibial characteristics, plasma biochemical and antioxidant indices, and zinc deposition in laying duck breeders. A total of 504 Longyan duck breeders aged 21 wk were randomly allocated to 6 treatments and fed a basal diet (Zn, 27.7 mg/kg) or that basal diet supplemented with Zn (as ZnSO4·H2 O) at 10, 20, 40, 80, or 160 mg Zn per kg of feed for 20 wk. Each group had 6 replicates of 14 ducks each. Dietary Zn supplementation affected (P < 0.05) the egg production, FCR, and shell thickness of laying duck breeders from 21 to 40 wk, and there was a quadratic (P < 0.05) effect between them. Dietary Zn supplementation affected (P < 0.05) and quadratically (P < 0.001) increased the breaking strength, density, and dry defatted weight of tibias. Alkaline phosphatase, calcium, phosphorus, total superoxide dismutase, glutathione peroxidase (GSH-Px), and malondialdehyde (MDA) activities or content in plasma were affected (P < 0.05), and quadratically (P < 0.01) changed by dietary Zn levels. Dietary Zn supplementation affected (P < 0.01) and increased the Zn deposition in egg yolk (linear, P < 0.05; quadratic, P < 0.001) and tibia (linear, P < 0.05). The dietary Zn requirements, in mg/kg for a basal diet containing 27.7 mg/kg Zn, for Longyan duck breeders from 21 to 40 wk of age were estimated to be 65.4 for optimizing egg production, 68.6 for FCR, 102 for hatchling BW, 94.7 for eggshell thickness, 77.2 for tibial breaking strength, 81.4 for tibial density, 78.9 for tibial dry defatted weight, 69.5 for plasma GSH-Px activity, 72.4 for plasma MDA content, and 94.6 for Zn content in tibia. Overall, dietary Zn supplementation, up to 160 mg/kg feed, affected the productive performance, eggshell thickness, tibial characteristics, plasma antioxidant status, and Zn deposition of layer duck breeders. Supplementing this basal diet (27.7 mg/kg Zn) with 70 to 80 mg/kg additional Zn was adequate for laying duck breeders during the laying period.
Collapse
Affiliation(s)
- Y N Zhang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, 510640, Guangzhou, China
| | - S Wang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, 510640, Guangzhou, China
| | - K C Li
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, 510640, Guangzhou, China
| | - D Ruan
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, 510640, Guangzhou, China
| | - W Chen
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, 510640, Guangzhou, China
| | - W G Xia
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, 510640, Guangzhou, China
| | - S L Wang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, 510640, Guangzhou, China
| | - K F M Abouelezz
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, 510640, Guangzhou, China; Department of Poultry Production, Faculty of Agriculture, Assiut University, Assiut 71526, Egypt
| | - C T Zheng
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, 510640, Guangzhou, China.
| |
Collapse
|
81
|
Pessanha de Carvalho L, Held J, de Melo EJT. Essential and nonessential metal effects on extracellular Leishmania amazonensis in vitro. Exp Parasitol 2019; 209:107826. [PMID: 31881207 DOI: 10.1016/j.exppara.2019.107826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 11/26/2019] [Accepted: 12/20/2019] [Indexed: 10/25/2022]
Abstract
Protozoan parasites like Leishmania amazonensis are excellent models to test the effects of new drugs against a functional molecular arsenal used to establish successfully an infection in the vertebrate host, where they invade the cells of the monocytic system. However, little is known about the influence of metal ions on the cellular functionality of the infective forms of L. amazonensis. In the present work, we show that ZnCl2 (an essential metal to cellular metabolism) did not induce drastic effects on the survival of the promastigote under the conditions tested. However, incubation of ZnCl2 prior to subsequent treatment with CdCl2 and HgCl2 led to a drastic toxic effect on parasite survival in vitro. Nonessential metals such as CdCl2 and HgCl2 promoted a drastic effect on parasite survival progressively with increasing dose and time of exposure. Notably, HgCl2 produced an effective elimination of the parasite in doses/time smaller than the CdCl2. This toxic action induced in the parasite a high condensation of the nuclear heterochromatin, besides the absence or de-structuring of functional organelles such as glycosomes, acidocalcisomes, and mitochondria in the cytoplasm. Our results suggest that promastigotes of L. amazonensis are sensitive to the toxic activity of nonessential metals, and that this activity increases when parasites are previously exposed to Zn. To summarize, toxic effects of the tested metals are dose and time dependent and can be used as a study model to better understand the functionality of the molecular arsenal responsible for the parasitism.
Collapse
Affiliation(s)
- Laís Pessanha de Carvalho
- Laboratory of Tissue and Cell Biology, Center for Bioscience and Biotechnology, State University of Northern Fluminense Darcy Ribeiro, Av. Alberto Lamego, 2000 - Parque California, Campos dos Goytacazes, Rio de Janeiro, 28013-602, Brazil; Institute of Tropical Medicine, University of Tübingen, Wilhelmstraße 27, 72074, Tübingen, Germany.
| | - Jana Held
- Institute of Tropical Medicine, University of Tübingen, Wilhelmstraße 27, 72074, Tübingen, Germany.
| | - Edésio José Tenório de Melo
- Laboratory of Tissue and Cell Biology, Center for Bioscience and Biotechnology, State University of Northern Fluminense Darcy Ribeiro, Av. Alberto Lamego, 2000 - Parque California, Campos dos Goytacazes, Rio de Janeiro, 28013-602, Brazil.
| |
Collapse
|
82
|
Wani AL, Ansari MO, Ahmad MF, Parveen N, Siddique HR, Shadab GGHA. Influence of zinc levels on the toxic manifestations of lead exposure among the occupationally exposed workers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:33541-33554. [PMID: 31583521 DOI: 10.1007/s11356-019-06443-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 09/05/2019] [Indexed: 06/10/2023]
Abstract
Lead and zinc are usually found at the same occupational places and occur as co-contaminants. Effects of lead toxicity are detrimental on human health as it is probable carcinogen and impairs normal growth and development. On the other hand, zinc is an important nutritional element, the deficiency of which causes debilitating effects on growth and development. The purpose of this study was to examine the possible association of blood lead and zinc levels and any influence of zinc over DNA damage, blood cell membrane aberration and oxidative stress among lead and zinc co-exposed workers. Atomic absorption spectroscopy was used for lead and zinc measurement and comet assay for DNA damage assessment. Haematological aberrations were studied using light and electron microscopy (LM and EM) followed by electron density X-ray spectroscopy (EDS) and elemental mapping. Occupational exposure was observed to cause significant elevation in blood lead levels among workers. This elevation in lead levels and associated DNA damage among workers was significantly high in comparison to controls. Further light and electron micrographs of red blood cells revealed significant morphological alterations associated with increased lead ions in workers. It was clear from SEM-based elemental maps and EDS graphs that elevated lead levels were associated with low levels of zinc. The results suggest that lead absorption is highly influenced due to zinc levels in body which has an impact over DNA damage, blood cell aberration and oxidative stress caused by lead exposure. Efforts are going on to understand the role of other trace metals on lead toxicity in order to develop a sustainably nutrition-based therapeutic intervention. Graphical abstract.
Collapse
Affiliation(s)
- Ab Latif Wani
- Cytogenetics and Molecular Toxicological Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
| | - Mohd Owais Ansari
- Cytogenetics and Molecular Toxicological Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
| | - Md Fahim Ahmad
- Cytogenetics and Molecular Toxicological Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
| | - Nuzhat Parveen
- Cytogenetics and Molecular Toxicological Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
| | - Hifzur R Siddique
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
| | - G G Hammad Ahmad Shadab
- Cytogenetics and Molecular Toxicological Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India.
| |
Collapse
|
83
|
Liu X, Wang J, Huang YW, Kong T. Algae (Raphidocelis) reduce combined toxicity of nano-TiO 2 and lead on C. dubia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 686:246-253. [PMID: 31181512 DOI: 10.1016/j.scitotenv.2019.06.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 06/02/2019] [Accepted: 06/03/2019] [Indexed: 06/09/2023]
Abstract
Nanoparticles (NPs) often serve as carriers of background toxins and enhance their toxicity on aquatic organisms such as Ceriodaphnia dubia (C. dubia). However, foods, especially algae, are also present in natural water and impacts this type of toxicity. This study investigated the effect of algae on the combined toxicity of nano-TiO2 and lead (Pb). A mixture of yeast-trout chow-cereal leaves (YTC) was also used as another model food. Results indicated that, both algae and YTC significantly reduce the combined toxicity of nano-TiO2 and Pb. Further investigation indicated that the ingestion of algae had minimal impacts on Pb uptake by, Pb depuration from, and Pb distribution within the C. dubia. Therefore, the toxicity reduction from algae ingestion should come from mechanisms other than the change in Pb mass and speciation in C. dubia, which will need future investigation. Nevertheless, the effect of food on the mitigation of combined toxicity of NPs and heavy metals must be considered when assessing the toxicity of nanoparticles in the natural environment because food always exists in natural waterbodies where aquatic organisms grow.
Collapse
Affiliation(s)
- Xuesong Liu
- Department of Civil, Architectural and Environmental Engineering, Missouri University of Science and Technology, Rolla, MO 65409, United States
| | - Jianmin Wang
- Department of Civil, Architectural and Environmental Engineering, Missouri University of Science and Technology, Rolla, MO 65409, United States.
| | - Yue-Wern Huang
- Department of Biological Sciences, Missouri University of Science and Technology, Rolla, MO 65409, United States
| | - Tao Kong
- College of Animal Science and Veterinary Medicine, Henan University of Science and Technology, Luoyang, Henan 471023, PR China
| |
Collapse
|
84
|
Yildiz A, Kaya Y, Tanriverdi O. Effect of the Interaction Between Selenium and Zinc on DNA Repair in Association With Cancer Prevention. J Cancer Prev 2019; 24:146-154. [PMID: 31624720 PMCID: PMC6786808 DOI: 10.15430/jcp.2019.24.3.146] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/26/2019] [Accepted: 06/04/2019] [Indexed: 12/13/2022] Open
Abstract
Cancer is the most common cause of death worldwide. Annually, more than ten million new cancer cases are diagnosed, and more than six million deaths occur due to cancer. Nonetheless, over 80% of human cancer may be preventable through proper nutrition. Numerous nutritional compounds are effective in preventing cancer. Selenium and zinc are essential micronutrients that have important roles in reducing oxidative stress and protecting DNA from the attack of reactive oxygen species. Selenium is an essential trace element that possesses several functions in many cellular processes for cancer prevention. Meanwhile, zinc may have protective effects on tumor initiation and progression, and it is an essential cofactor of several mammalian proteins. Results show that both selenium and zinc provide an effective progression of DNA repair system; thus, cancer development that originated from DNA damage is decreased. Results mostly focus on the separate effects of these two elements on different cell types, tissues, and organs, and their combined effects are largely unknown. This review aimed to emphasize the joint role of selenium and zinc specifically on DNA repair for cancer prevention.
Collapse
Affiliation(s)
- Aysegul Yildiz
- Department of Molecular Biology and Genetics, Faculty of Science, Mugla Sitki Kocman University, Mugla, Turkey
| | - Yesim Kaya
- Department of Molecular Biology and Genetics, Faculty of Science, Mugla Sitki Kocman University, Mugla, Turkey
| | - Ozgur Tanriverdi
- Department of Medical Oncology, Faculty of Medicine, Mugla Sitki Kocman University, Mugla, Turkey.,Department of Molecular Biology and Genetics, Graduate School of Natural and Applied Sciences, Mugla Sitki Kocman University, Mugla, Turkey
| |
Collapse
|
85
|
Bhai S, Ganguly B. Role of backbones on the interaction of metal ions with deoxyribonucleic acid and peptide nucleic acid: A DFT study. J Mol Graph Model 2019; 93:107445. [PMID: 31494536 DOI: 10.1016/j.jmgm.2019.107445] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 08/28/2019] [Accepted: 08/28/2019] [Indexed: 11/30/2022]
Abstract
Metal ion interaction with deoxyribonucleic acid and peptide nucleic acid were studied using B3LYP-D3/6-311++g(d,p)//B3LYP/6-31 + G(d) level of theory in aqueous phase employing polarized continuum (PCM) model. This study reports the role of backbones on deoxyribonucleic acid and peptide nucleic acid for complexation with different metal ions. The systematic study performed with DFT calculations reveals that central binding (Type-4) shows the strongest binding compared to the other binding modes because of the involvement of the backbone as well as the nitrogenous bases. The charged backbone of DNA nucleotides contributes significantly towards binding with the metal ions. The deoxyguanosine monophosphate (dGMP) clearly indicates the strongest binding upon complexation with Mg2+ (-49.6 kcal/mol), Zn2+ (-45.3 kcal/mol) and Cu2+ (-148.4 kcal/mol), respectively. The neutral backbone of PNA also assists to complex the metal ions with PNA nucleotides. The Mg2+ and Cu2+ prefer to bind with the PNA-Cytosine (-32.9 kcal/mol & -132.9 kcal/mol) in central binding mode (type-4). PNA-Adenine-Zn2+ (-29.1 kcal/mol) is the preferred binding mode (type-4) compared to other modes of interaction for this metal ion with PNA-Adenine nucleotide. The Cu2+ ion showed the superior complexation ability with deoxyribonucleic acid and peptide nucleic acid compared to Mg2+ and Zn2+ ions. The cation-π complexation with the bases of nucleotides was also obtained with Cu2+ ion. The AIM (atoms in molecule) theory has been applied to examine the nature of the interaction of Mg2+, Zn2+, and Cu2+ ion to the deoxyribonucleic acid and peptide nucleic acid. The alkaline earth metal, Mg2+ ion shows electrostatic nature while interaction with deoxyribonucleic acid and peptide nucleic acid, however, the transition metal ions (Zn2+, Cu2+) showed partly covalent nature as well with deoxyribonucleic acid and peptide nucleic acid. The optical properties calculated for the binding of metal ions with deoxyribonucleic acid and peptide nucleic acid showed a diagnostic signature to ascertain the interaction of metal ions with such nucleotides. Cu2+ ion showed larger red shifts in the absorption spectrum values upon complexation with the DNAs and PNAs. The calculated results suggest that such metal ions would prefer to bind with the DNA compared to PNA in DNA-PNA duplexes. The preference for the binding of metal ions with DNA nucleotides is largely attributed to the contribution of charged backbones compared to the neutral PNA backbones.
Collapse
Affiliation(s)
- Surjit Bhai
- Computation and Simulation Unit (Analytical and Environmental Science Division and Centralized Instrument Facility), CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, Gujarat, 364 002, India
| | - Bishwajit Ganguly
- Computation and Simulation Unit (Analytical and Environmental Science Division and Centralized Instrument Facility), CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, Gujarat, 364 002, India.
| |
Collapse
|
86
|
Cecilia OM, José Alberto CG, José NP, Ernesto Germán CM, Ana Karen LC, Luis Miguel RP, Ricardo Raúl RR, Adolfo Daniel RC. Oxidative Stress as the Main Target in Diabetic Retinopathy Pathophysiology. J Diabetes Res 2019; 2019:8562408. [PMID: 31511825 PMCID: PMC6710812 DOI: 10.1155/2019/8562408] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 06/17/2019] [Accepted: 07/15/2019] [Indexed: 12/12/2022] Open
Abstract
Diabetic retinopathy (DR) is one of the most common complications of diabetes mellitus (DM) causing vision impairment even at young ages. There are numerous mechanisms involved in its development such as inflammation and cellular degeneration leading to endothelial and neural damage. These mechanisms are interlinked thus worsening the diabetic retinopathy outcome. In this review, we propose oxidative stress as the focus point of this complication onset.
Collapse
Affiliation(s)
- Olvera-Montaño Cecilia
- Institute of Clinical and Experimental Therapeutics, Department of Physiology, Health Sciences University Center, University of Guadalajara, Mexico
| | - Castellanos-González José Alberto
- Department of Ophthalmology, Specialties Hospital of the National Occidental Medical Center, Mexican Institute of Social Security, Mexico
| | - Navarro-Partida José
- Tecnológico de Monterrey Institute, School of Medicine and Health Sciences, Campus Guadalajara, Mexico
| | - Cardona-Muñoz Ernesto Germán
- Institute of Clinical and Experimental Therapeutics, Department of Physiology, Health Sciences University Center, University of Guadalajara, Mexico
| | - López-Contreras Ana Karen
- Institute of Clinical and Experimental Therapeutics, Department of Physiology, Health Sciences University Center, University of Guadalajara, Mexico
| | | | - Robles-Rivera Ricardo Raúl
- Institute of Clinical and Experimental Therapeutics, Department of Physiology, Health Sciences University Center, University of Guadalajara, Mexico
| | - Rodríguez-Carrizalez Adolfo Daniel
- Institute of Clinical and Experimental Therapeutics, Department of Physiology, Health Sciences University Center, University of Guadalajara, Mexico
| |
Collapse
|
87
|
Wang Z, Cui S, Qiu S, Pu S. A dual-functional fluorescent sensor based on diarylethene for Zn2+ and Al3+ in different solvents. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2019.03.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
88
|
Gong P, Xiao X, Wang L, Yang W, Chang X. Caffeic acid phenethyl ester, a propolis polyphenolic, attenuates potentially cadmium-induced testicular dysfunction in mice. TOXIN REV 2019. [DOI: 10.1080/15569543.2018.1480497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Pin Gong
- College of Food and biotechnology, Shaanxi University of Science and Technology, Xi’an, China
| | - Xuyang Xiao
- College of Food and biotechnology, Shaanxi University of Science and Technology, Xi’an, China
| | - Lan Wang
- College of Food and biotechnology, Shaanxi University of Science and Technology, Xi’an, China
| | - Wenjuan Yang
- College of Food and biotechnology, Shaanxi University of Science and Technology, Xi’an, China
| | - Xiangna Chang
- College of Food and biotechnology, Shaanxi University of Science and Technology, Xi’an, China
| |
Collapse
|
89
|
Abstract
Zinc(II) ions are redox-inert in biology. Yet, their interaction with sulfur of cysteine in cellular proteins can confer ligand-centered redox activity on zinc coordination sites, control protein functions, and generate signalling zinc ions as potent effectors of many cellular processes. The specificity and relative high affinity of binding sites for zinc allow regulation in redox biology, free radical biology, and the biology of reactive species. Understanding the role of zinc in these areas of biology requires an understanding of how cellular Zn2+ is homeostatically controlled and can serve as a regulatory ion in addition to Ca2+, albeit at much lower concentrations. A rather complex system of dozens of transporters and metallothioneins buffer the relatively high (hundreds of micromolar) total cellular zinc concentrations in such a way that the available zinc ion concentrations are only picomolar but can fluctuate in signalling. The proteins targeted by Zn2+ transients include enzymes controlling phosphorylation and redox signalling pathways. Networks of regulatory functions of zinc integrate gene expression and metabolic and signalling pathways at several hierarchical levels. They affect enzymatic catalysis, protein structure and protein-protein/biomolecular interactions and add to the already impressive number of catalytic and structural functions of zinc in an estimated three thousand human zinc proteins. The effects of zinc on redox biology have adduced evidence that zinc is an antioxidant. Without further qualifications, this notion is misleading and prevents a true understanding of the roles of zinc in biology. Its antioxidant-like effects are indirect and expressed only in certain conditions because a lack of zinc and too much zinc have pro-oxidant effects. Teasing apart these functions based on quantitative considerations of homeostatic control of cellular zinc is critical because opposite consequences are observed depending on the concentrations of zinc: pro- or anti-apoptotic, pro- or anti-inflammatory and cytoprotective or cytotoxic. The article provides a biochemical basis for the links between redox and zinc biology and discusses why zinc has pleiotropic functions. Perturbation of zinc metabolism is a consequence of conditions of redox stress. Zinc deficiency, either nutritional or conditioned, and cellular zinc overload cause oxidative stress. Thus, there is causation in the relationship between zinc metabolism and the many diseases associated with oxidative stress.
Collapse
Affiliation(s)
- Wolfgang Maret
- Metal Metabolism Group, Department of Nutritional Sciences, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK.
| |
Collapse
|
90
|
Ajiboye T, Skiebe E, Wilharm G. Impact of zinc uptake regulator Zur on the susceptibility and oxidative stress response of Acinetobacter baumannii to antibiotics. Int J Antimicrob Agents 2019; 53:467-473. [DOI: 10.1016/j.ijantimicag.2018.11.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/16/2018] [Accepted: 11/24/2018] [Indexed: 01/17/2023]
|
91
|
Hassan MA, El-Nekeety AA, Abdel-Aziem SH, Hassan NS, Abdel-Wahhab MA. Zinc citrate incorporation with whey protein nanoparticles alleviate the oxidative stress complication and modulate gene expression in the liver of rats. Food Chem Toxicol 2019; 125:439-451. [PMID: 30711718 DOI: 10.1016/j.fct.2019.01.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/19/2019] [Accepted: 01/21/2019] [Indexed: 12/20/2022]
Abstract
This study aimed to evaluate the hepatoprotective effect of whey protein nanoparticles (WP-NPs) coated Zinc citrate (Zn) against oxidative stress complications and disturbances in gene expression in rats treated with CCl4. WP-NPs were used to coat Zn at three levels and amino acids content was determined in WP-NPs and the fabrications. Seven groups of male albino rats included the control group, CCl4-treated group (0.5 ml/100 g b.w) and the groups treated with CCl4 plus WP-NPs, Zn and the three Zn-WP-NPs fabrications. Blood and liver samples were collected for different analysis. Particles sizes were 95, 142, 196 and 228 nm and zeta potential values were -95, -114, -85 and -79 for WP-NPs and the three Zn-WP-NPs fabrications, respectively. Twelve amino acids were found in WP-NPs and this number was decreased by increasing Zn content. WP-NPs, Zn and the Zn coated WP-NPs counteracted the disturbances in biochemical, parameters, gene expression and histological changes in CCl4-treated rats and Zn-WP-NPs was more effective at the low dose. It could be concluded that WP-NPs enhance the effect of Zn and can be used for coating Zn in the preparation of Zn supplementation to enhance its effect and counteract the side effect of excess Zn.
Collapse
Affiliation(s)
- Mona A Hassan
- Food Evaluation and Food Science Department, National Organization for Drug Control and Research, Giza, Egypt
| | - Aziza A El-Nekeety
- Food Toxicology and Contaminants Department, National Research Center, Dokki, Cairo, Egypt
| | | | - Nabila S Hassan
- Pathology Department, National Research Center, Dokki, Cairo, Egypt
| | - Mosaad A Abdel-Wahhab
- Food Toxicology and Contaminants Department, National Research Center, Dokki, Cairo, Egypt.
| |
Collapse
|
92
|
Kandari D, Gopalani M, Gupta M, Joshi H, Bhatnagar S, Bhatnagar R. Identification, Functional Characterization, and Regulon Prediction of the Zinc Uptake Regulator ( zur) of Bacillus anthracis - An Insight Into the Zinc Homeostasis of the Pathogen. Front Microbiol 2019; 9:3314. [PMID: 30687290 PMCID: PMC6336718 DOI: 10.3389/fmicb.2018.03314] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 12/19/2018] [Indexed: 11/29/2022] Open
Abstract
Zinc has an abounding occurrence in the prokaryotes and plays paramount roles including catalytic, structural, and regulatory. Zinc uptake regulator (Zur), a Fur family transcriptional regulator, is connoted in maintaining zinc homeostasis in the pathogenic bacteria by binding to zinc and regulating the genes involved in zinc uptake and mobilization. Zinc homeostasis has been marginally scrutinized in Bacillus anthracis, the top-rated bio-terror agent, with no decipherment of the role of Zur. Of the three Fur family regulators in B. anthracis, BAS4181 is annotated as a zinc-specific transcriptional regulator. This annotation was further substantiated by our stringent computational and experimental analyses. The residues critical for zinc and DNA binding were delineated by homology modeling and sequence/structure analysis. ba zur existed as a part of a three-gene operon. Purified BaZur prodigiously existed in the dimeric form, indicated by size exclusion chromatography and blue native-polyacrylamide gel electrophoresis (PAGE). Computational and manual strategies were employed to decipher the putative regulon of ba zur, comprising of 11 genes, controlled by six promoters, each harboring at least one Zur box. The DNA binding capability of the purified BaZur to the upstream regions of the ba zur operon, yciC, rpmG, znuA, and genes encoding a GTPase cobalamine synthesis protein and a permease was ascertained by electrophoretic mobility shift assays. The regulon genes, implicated in zinc uptake and mobilization, were mostly negatively regulated by BaZur. The ba zur expression was downregulated upon exposure of cells to an excess of zinc. Conversely, it exhibited a marked upregulation under N, N, N', N'-Tetrakis (2-pyridylmethyl) ethylenediamine (TPEN) mediated zinc-depleted environment, adding credence to its negative autoregulation. Moreover, an increase in the transcript levels of the regulon genes znuA, rpmG, and yciC upon exposure of cells to TPEN connoted their role in combating hypo-zincemic conditions by bringing about zinc uptake and mobilization. Thus, this study functionally characterizes Zur of B. anthracis and elucidates its role in maintaining zinc homeostasis.
Collapse
Affiliation(s)
- Divya Kandari
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Monisha Gopalani
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Manish Gupta
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Hemant Joshi
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Sonika Bhatnagar
- Computational and Structural Biology Laboratory, Division of Biotechnology, Netaji Subhas Institute of Technology, University of Delhi, New Delhi, India
| | - Rakesh Bhatnagar
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
93
|
Zhou SH, Deng YF, Weng ZW, Weng HW, Liu ZD. Traditional Chinese Medicine as a Remedy for Male Infertility: A Review. World J Mens Health 2019; 37:175-185. [PMID: 30644235 PMCID: PMC6479084 DOI: 10.5534/wjmh.180069] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/13/2018] [Accepted: 10/17/2018] [Indexed: 12/18/2022] Open
Abstract
Male infertility (MI) is a complex multifactorial disease, and idiopathic infertility accounts for 30% of cases of MI. At present, the evidence for the effectiveness of empirical drugs is limited, and in vitro fertilization is costly and may increase the risk of birth defects and childhood cancers. Therefore, affected individuals may feel obliged to pursue natural remedies. Traditional Chinese medicine (TCM) may represent a useful option for infertile men. It has been demonstrated that TCM can regulate the hypothalamic-pituitary-testicular axis and boost the function of Sertoli cells and Leydig cells. TCM can also alleviate inflammation, prevent oxidative stress, reduce the DNA fragmentation index, and modulate the proliferation and apoptosis of germ cells. Furthermore, TCM can supply trace elements and vitamins, ameliorate the microcirculation of the testis, decrease the levels of serum anti-sperm antibody, and modify epigenetic markers. However, the evidence in favor of TCM is not compelling, which has hindered the development of TCM. This review attempts to elucidate the underlying therapeutic mechanisms of TCM. We also explore the advantages of TCM, differences between TCM and Western medicine, and problems in existing studies. Subsequently, we propose solutions to these problems and present perspectives for the future development of TCM.
Collapse
Affiliation(s)
- Shao Hu Zhou
- Department of Reproductive Medicine, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Yu Fei Deng
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhi Wei Weng
- Department of Reproductive Medicine, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hao Wei Weng
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhi Dan Liu
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
94
|
Kerns K, Zigo M, Sutovsky P. Zinc: A Necessary Ion for Mammalian Sperm Fertilization Competency. Int J Mol Sci 2018; 19:E4097. [PMID: 30567310 PMCID: PMC6321397 DOI: 10.3390/ijms19124097] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/10/2018] [Accepted: 12/14/2018] [Indexed: 12/11/2022] Open
Abstract
The importance of zinc for male fertility only emerged recently, being propelled in part by consumer interest in nutritional supplements containing ionic trace minerals. Here, we review the properties, biological roles and cellular mechanisms that are relevant to zinc function in the male reproductive system, survey available peer-reviewed data on nutritional zinc supplementation for fertility improvement in livestock animals and infertility therapy in men, and discuss the recently discovered signaling pathways involving zinc in sperm maturation and fertilization. Emphasis is on the zinc-interacting sperm proteome and its involvement in the regulation of sperm structure and function, from spermatogenesis and epididymal sperm maturation to sperm interactions with the female reproductive tract, capacitation, fertilization, and embryo development. Merits of dietary zinc supplementation and zinc inclusion into semen processing media are considered with livestock artificial insemination (AI) and human assisted reproductive therapy (ART) in mind. Collectively, the currently available data underline the importance of zinc ions for male fertility, which could be harnessed to improve human reproductive health and reproductive efficiency in agriculturally important livestock species. Further research will advance the field of sperm and fertilization biology, provide new research tools, and ultimately optimize semen processing procedures for human infertility therapy and livestock AI.
Collapse
Affiliation(s)
- Karl Kerns
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211-5300, USA.
| | - Michal Zigo
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211-5300, USA.
| | - Peter Sutovsky
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211-5300, USA.
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, MO 65211-5300, USA.
| |
Collapse
|
95
|
Stevens JL, McKenna H, Gurusamy KS, Van Schoor J, Grocott MPW, Jell G, Martin D. Perioperative antioxidants for adults undergoing elective non-cardiac surgery. Hippokratia 2018. [DOI: 10.1002/14651858.cd013174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jia Liu Stevens
- Royal Free NHS Trust Hospital, University College London; Division of Surgery & Interventional Science; Pond Street London UK NW3 2QG
| | - Helen McKenna
- Royal Free NHS Trust Hospital, University College London; Division of Surgery & Interventional Science; Pond Street London UK NW3 2QG
| | - Kurinchi Selvan Gurusamy
- Royal Free Campus, UCL Medical School; Department of Surgery; Royal Free Hospital Rowland Hill Street London UK NW3 2PF
| | - Jason Van Schoor
- Royal Free NHS Trust Hospital, University College London; Division of Surgery & Interventional Science; Pond Street London UK NW3 2QG
| | - Michael PW Grocott
- Faculty of Medicine, University of Southampton; Critical Care Group, Clinical and Experimental Sciences; Tremona Road Southampton Hampshire UK SO16 6YD
| | - Gavin Jell
- University College London; Division of Surgery & Interventional Science, Royal Free NHS Trust Hospital; Pond Street London UK NW3 2QG
| | - Daniel Martin
- University College London and Royal Free Hospital; Perioperative & Critical Care Medicine; London UK NW3 2QG
| |
Collapse
|
96
|
Xu Y, Qian LL, Yang J, Han RM, Zhang JP, Skibsted LH. Kaempferol Binding to Zinc(II), Efficient Radical Scavenging through Increased Phenol Acidity. J Phys Chem B 2018; 122:10108-10117. [PMID: 30295482 DOI: 10.1021/acs.jpcb.8b08284] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Zinc(II) enhances radical scavenging of the flavonoid kaempferol (Kaem) most significantly for the 1:1 Zn(II)-Kaem complex in equilibrium with the 1:2 Zn(II)-Kaem complex both with high affinity at 3-hydroxyl and 4-carboxyl coordination. In methanol/chloroform (7/3, v/v), 1:1 Zn(II)-Kaem complex reduces β-carotene radical cation, β-Car•+, with a second-order rate constant, 1.88 × 108 L·mol-1·s-1, while both Kaem and 1:2 Zn(II)-Kaem complex are nonreactive, as determined by laser flash photolysis. In ethanol, 1:1 Zn(II)-Kaem complex reduces the 2,2-diphenyl-1-picrylhydrazyl radical, DPPH•, with a second-order rate constant, 2.48 × 104 L·mol-1·s-1, 16 times and 2 times as efficient as Kaem and 1:2 Zn(II)-Kaem complex, respectively, as determined by stopped-flow spectroscopy. Density functional theory calculation results indicate significantly increased acidity of Kaem as ligand in 1:1 Zn(II)-Kaem complex other than in 1:2 Zn(II)-Kaem complex. Kaem in 1:1 Zn(II)-Kaem complex loses two protons (one from 3-hydroxyl and one from phenolic hydroxyl) forming 1:1 Zn(II)-(Kaem-2H) during binding with Zn(II), while Kaem in 1:2 Zn(II)-Kaem complex loses one proton in each ligand forming Zn(II)-(Kaem-H)2, as confirmed by UV-vis absorption spectroscopy. Zn(II)-(Kaem-2H) is a far stronger reductant than Kaem and Zn(II)-(Kaem-H)2 as determined by cyclic voltammetry. Significant rate increases for the 1:1 complex in both β-Car•+ scavenging by electron transfer and DPPH• scavenging by hydrogen atom transfer were ascribed to decreases of ionization potential and of bond dissociation energy of 4'-OH for deprotonated Zn(II)-(Kaem-2H), respectively. Increased phenol acidity of plant polyphenols by 1:1 coordination with Zn(II) may explain the unique function of Zn(II) as a biological antioxidant and may help to design nontoxic metal-based drugs derived from natural bioactive molecules.
Collapse
Affiliation(s)
- Yi Xu
- Department of Chemistry , Renmin University of China , Beijing 100872 , China
| | - Ling-Ling Qian
- Department of Chemistry , Renmin University of China , Beijing 100872 , China
| | - Jing Yang
- Department of Chemistry , Renmin University of China , Beijing 100872 , China
| | - Rui-Min Han
- Department of Chemistry , Renmin University of China , Beijing 100872 , China
| | - Jian-Ping Zhang
- Department of Chemistry , Renmin University of China , Beijing 100872 , China
| | - Leif H Skibsted
- Department of Food Science , University of Copenhagen , Rolighedsvej 30 , Frederiksberg C DK-1058 , Denmark
| |
Collapse
|
97
|
Sheth VG, Navik U, Maremanda KP, Jena G. Effect of diethyldithiocarbamate in cyclophosphamide-induced nephrotoxicity: Immunohistochemical study of superoxide dismutase 1 in rat. Indian J Pharmacol 2018; 50:4-11. [PMID: 29861522 PMCID: PMC5954632 DOI: 10.4103/ijp.ijp_850_16] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVES: To investigate the role of diethyldithiocarbamate (DEDTC) in cyclophosphamide (CP)-induced nephrotoxicity in Sprague–Dawley rat. DEDTC is a known chelating agent for copper and zinc. It is also used as a thiol protecting agent, as nuclear factor kappa-light-chain-enhancer of activated B-cells inhibitor and nitric oxide synthase inhibitor. It is also reported to inhibit superoxide dismutase (SOD) both in vitro and in vivo conditions. Considering this wide range of actions, current study investigated the role of DEDTC in CP-induced nephrotoxicity in experimental rat model. MATERIALS AND METHODS: Thirty-two male rats were randomized into four groups. Group 1, control received only saline ip; Group 2 and 4, received CP at the dose of 150 mg/kg body weight ip on the 4th day, while Group 3 and 4, received DEDTC at the dose of 250 mg/kg alternatively (fractionated dose of 1000 mg/kg). All the experimental animals were sacrificed on the 7th day and organs of interest were collected for biochemical, histopathological, DNA damage, and immunohistochemical assessments. RESULTS: DEDTC administration was found to further exacerbate the condition of CP-induced kidney damage as assessed by several biochemical and histological parameters. Further, the damage was also significantly reflected in the bladder in DEDTC-treated animals as compared to controls. SOD1 (Cu/Zn- dependent enzyme) expression was found to be decreased and this might be due to the action of DEDTC on SOD and other antioxidants. CONCLUSION: The present study indicates that DEDTC administration further exacerbated the CP-induced kidney damage in rat.
Collapse
Affiliation(s)
- Vaibhav G Sheth
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, India
| | - Umashanker Navik
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, India
| | - Krishna Prahlad Maremanda
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, India
| | - Gopabandhu Jena
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, India
| |
Collapse
|
98
|
Saibu Y, Kumar S, Jamwal A, Peak D, Niyogi S. A FTIRM study of the interactive effects of metals (zinc, copper and cadmium) in binary mixtures on the biochemical constituents of the gills in rainbow trout (Oncorhynchus mykiss). Comp Biochem Physiol C Toxicol Pharmacol 2018; 211:48-56. [PMID: 29803893 DOI: 10.1016/j.cbpc.2018.05.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 05/22/2018] [Accepted: 05/22/2018] [Indexed: 10/16/2022]
Abstract
We employed Fourier Transform Infrared Microspectroscopy to examine, in situ, the effects of waterborne Cu, Cd and Zn, alone and in binary mixtures, during acute exposure on the integrity of major lipid and protein constituents of the gill of a model teleost species, rainbow trout (Oncorhynchus mykiss). Our findings demonstrated that acute exposure to metals, both individually and in binary mixture, resulted in the degradations of various components of proteins and lipids in the gill tissue. Generally, when comparing the effects of individual metals, Cu was found to induce the maximum adverse effects followed by Cd and Zn, respectively. Among the binary metal-mixture combinations, Cu and Cd produced additive effects on the degradation of major proteins and lipid moieties, whereas the co-exposure of Zn with Cd or Cu elicited ameliorative effects, indicating antagonistic (less than additive) interactions between Zn and Cd or Cu in the rainbow trout gill. Overall, the present study demonstrates that FTIRM can be a useful tool to gain novel mechanistic insights into the biochemical changes induced by metals in the fish gill, which could influence the overall toxicity of metals to fish.
Collapse
Affiliation(s)
- Yusuf Saibu
- Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK, Canada.
| | - Saroj Kumar
- Dept. of Engineering Sciences, Uppsala University, Uppsala, Sweden; Dept. of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Ankur Jamwal
- Dept. of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK, Canada
| | - Derek Peak
- Dept. of Soil Science, University of Saskatchewan, 114 Science Place, Saskatoon, SK, Canada
| | - Som Niyogi
- Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK, Canada; Dept. of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK, Canada
| |
Collapse
|
99
|
Chen NN, Liu B, Xiong PW, Guo Y, He JN, Hou CC, Ma LX, Yu DY. Safety evaluation of zinc methionine in laying hens: Effects on laying performance, clinical blood parameters, organ development, and histopathology. Poult Sci 2018; 97:1120-1126. [PMID: 29325174 DOI: 10.3382/ps/pex400] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Indexed: 01/27/2023] Open
Abstract
The study was conducted to investigate whether high-dose zinc methionine (Zn-Met) affected the safety of laying hens, including laying performance, hematological parameters, serum chemical parameters, organ index, and histopathology. A total of 540 20-week-old Hy-Line White laying hens was randomly allocated to 6 groups with 6 replicates of 15 birds each. Birds were fed diets supplemented with 0 (control), 70, 140, 350, 700, or 1,400 mg Zn/kg diet as Zn-Met. The experiment lasted for 8 wk after a 2-week acclimation period. Results showed that dietary supplementation with 70 or 140 mg Zn/kg diet as Zn-Met significantly increased average daily egg mass (ADEM), laying rate (LR), and feed conversion ratio (FCR) (P < 0.05) and lowered broken and soft-shelled egg ratio (BSER) (P < 0.05) in comparison with the control group; no significant differences were detected among hens fed with 0, 350, or 700 mg Zn/kg as Zn-Met (P > 0.05); hens administered 1,400 mg Zn/kg showed a significant increase in BSER and remarkable decreases in ADEM, LR, and FCR (P < 0.001). There were no significant differences among hens receiving 0, 70, 140, 350, or 700 mg Zn/kg as Zn-Met in serum chemical parameters (P > 0.05); supplementation with 1,400 mg Zn/kg as Zn-Met remarkably elevated the concentrations of serum total bilirubin (TBILI), glucose (GLU), uric acid (UA), and creatinine (CRE) (P < 0.001), and enhanced activities of serum glutamic oxalacetic transaminase (GOP) and alkaline phosphatase (AKP) (P < 0.001) compared with the control group. No significant histopathological changes were found in hens administered 0, 70, 140, 350, or 700 mg Zn/kg as Zn-Met, while significant histological lesions were observed in the heart, liver, lung, and kidney tissues of hens receiving 1,400 mg Zn/kg as Zn-Met. No significant differences were detected in hematological parameters or organ index (P > 0.05). In conclusion, a nominal Zn concentration of 700 mg/kg as Zn-Met is considered to be no-observed-adverse-effect level following daily administration to hens for 56 days.
Collapse
Affiliation(s)
- N N Chen
- Key Laboratory of Animal Nutrition and Feed Science of Ministry of Agriculture, Feed Science Institute, Zhejiang University, Hangzhou 310058, China
| | - B Liu
- Key Laboratory of Animal Nutrition and Feed Science of Ministry of Agriculture, Feed Science Institute, Zhejiang University, Hangzhou 310058, China
| | - P W Xiong
- Key Laboratory of Animal Nutrition and Feed Science of Ministry of Agriculture, Feed Science Institute, Zhejiang University, Hangzhou 310058, China
| | - Y Guo
- Key Laboratory of Animal Nutrition and Feed Science of Ministry of Agriculture, Feed Science Institute, Zhejiang University, Hangzhou 310058, China
| | - J N He
- Key Laboratory of Animal Nutrition and Feed Science of Ministry of Agriculture, Feed Science Institute, Zhejiang University, Hangzhou 310058, China
| | - C C Hou
- Key Laboratory of Animal Nutrition and Feed Science of Ministry of Agriculture, Feed Science Institute, Zhejiang University, Hangzhou 310058, China
| | - L X Ma
- Key Laboratory of Animal Nutrition and Feed Science of Ministry of Agriculture, Feed Science Institute, Zhejiang University, Hangzhou 310058, China
| | - D Y Yu
- Key Laboratory of Animal Nutrition and Feed Science of Ministry of Agriculture, Feed Science Institute, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
100
|
Nikolic MV, Mijajlovic MZ, Tomovic DL, Bukonjic AM, Jevtic VV, Ratkovic ZR, Trifunovic SR, Radic GP. Synthesis and Characterization of Zinc(II)-Complexes with S-Alkyl Derivatives of Thiosalicylic Acid. SERBIAN JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2018. [DOI: 10.1515/sjecr-2017-0005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
New zinc(II)-complexes with S-alkyl derivatives of thiosalicylic acid (alkyl = benzyl-(L1), methyl-(L2), ethyl-(L3), propyl-(L4), butyl-(L5)) have been synthesized and characterized by elemental microanalysis, IR spectroscopy, and 1H and 13C NMR spectroscopy. The S-alkyl derivatives of thiosalicylic acid were prepared by alkylation of thiosalicylic acid by adding alkyl halides to an alkaline water-ethanol solution, while the corresponding zinc(II)-complexes were obtained via the direct reaction of ZnCl2 with S-alkyl derivatives of thiosalicylic acid in water. Based on the microanalysis results and the IR and NMR spectra of the S-alkyl derivatives of thiosalicylic acid and the corresponding zinc(II)-complexes, we concluded that the ligands are bidentately coordinated to the zinc(II)-ion.
Collapse
Affiliation(s)
- Milos V. Nikolic
- University of Kragujevac , Serbia , Faculty of Medical Sciences, Department of Pharmacy
| | - Marina Z. Mijajlovic
- University of Kragujevac , Serbia , Faculty of Medical Sciences, Department of Pharmacy
| | - Dusan Lj. Tomovic
- University of Kragujevac , Serbia , Faculty of Medical Sciences, Department of Pharmacy
| | - Andriana M. Bukonjic
- University of Kragujevac , Serbia , Faculty of Medical Sciences, Department of Pharmacy
| | - Verica V. Jevtic
- University of Kragujevac , Serbia , Faculty of Science, Department of Chemistry
| | - Zoran R. Ratkovic
- University of Kragujevac , Serbia , Faculty of Science, Department of Chemistry
| | | | - Gordana P. Radic
- University of Kragujevac , Serbia , Faculty of Medical Sciences, Department of Pharmacy
| |
Collapse
|