51
|
Abstract
Most people think of a skeleton as a solid and static framework upon which complex structures are elaborated. From what we have learned in the past decade about the cytoskeleton, it seems certain that the 'skeleton' part of the term is a bit misleading. It is clear now that the polymers that constitute the cytoskeleton, actin filaments, microtubules, and intermediate filaments, are all in fact ever-changing dynamic infrastructures of cells. Recently, advances have been made in the study of the cellular dynamics of one of the prominent components of the cytoskeleton, the microtubules. Observations in the past year have revealed some fundamental in vivo behaviors of these polymers, during interphase, during mitosis, and during the elaboration of postmitotic axonal microtubule arrays. These observations are important for the understanding of cytoplasmic organization in many types of cells.
Collapse
Affiliation(s)
- H C Joshi
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
52
|
Abstract
The transport of mRNAs into developing dendrites and axons may be a basic mechanism to localize cytoskeletal proteins to growth cones and influence microfilament organization. Using isoform-specific antibodies and probes for in situ hybridization, we observed distinct localization patterns for beta- and gamma-actin within cultured cerebrocortical neurons. beta-Actin protein was highly enriched within growth cones and filopodia, in contrast to gamma-actin protein, which was distributed uniformly throughout the cell. beta-Actin protein also was shown to be peripherally localized after transfection of beta-actin cDNA bearing an epitope tag. beta-Actin mRNAs were localized more frequently to neuronal processes and growth cones, unlike gamma-actin mRNAs, which were restricted to the cell body. The rapid localization of beta-actin mRNA, but not gamma-actin mRNA, into processes and growth cones could be induced by dibutyryl cAMP treatment. Using high-resolution in situ hybridization and image-processing methods, we showed that the distribution of beta-actin mRNA within growth cones was statistically nonrandom and demonstrated an association with microtubules. beta-Actin mRNAs were detected within minor neurites, axonal processes, and growth cones in the form of spatially distinct granules that colocalized with translational components. Ultrastructural analysis revealed polyribosomes within growth cones that colocalized with cytoskeletal filaments. The transport of beta-actin mRNA into developing neurites may be a sequence-specific mechanism to synthesize cytoskeletal proteins directly within processes and growth cones and would provide an additional means to deliver cytoskeletal proteins over long distances.
Collapse
|
53
|
Abstract
Axon formation in multipolar neurons is believed to depend on the existence of precise sorting mechanisms for axonal membrane and membrane-associated proteins. Conclusive evidence in living neurons, however, is lacking. In the present study, we use light and video microscopy to address this issue directly. We show that axon formation is preceded by the appearance in one of the multiple neurites of (1) a larger growth cone, (2) a higher amount and greater transport of membrane organelles, (3) polarized delivery of TGN-derived vesicles, (4) a higher concentration of mitochondria and peroxisomes, (5) a higher concentration of a cytosolic protein, and (6) a higher concentration of ribosomes. These results provide evidence for the involvement of bulk cytoplasmic flow as an early determinant of neuronal morphological polarization. Molecular sorting events would later trigger the establishment of functional polarity.
Collapse
Affiliation(s)
- F Bradke
- Cell Biology Program, European Molecular Biology Laboratory, Heidelburg, Federal Republic of Germany
| | | |
Collapse
|
54
|
Abstract
The present studies test the hypothesis that microtubules (MTs) are transported from the cell body into the axons of growing neurons. Dissociated sympathetic neurons were cultured using conditions that allow us to control the initiation of axon outgrowth. Neurons were injected with biotin-labeled tubulin (Bt-tub) and then stimulated to extend axons. The newly formed axons were then examined using immunofluorescence procedures for MTs with or without Bt-tub. Because the Bt-tub is fully assembly competent, all MTs that assemble after injection will contain Bt-tub. However, MTs that exist in the neuron at the time of injection and persist during the subsequent incubation will not contain Bt-tub. Because the neurons were injected before extending axons, MTs without Bt-tub are initially localized to the cell body. We specifically determined whether these MTs appeared in the newly formed axon. Such a result can only be explained by the transport of these MTs from their initial location in the cell body into the axon. The newly formed axons of many neurons contained MTs both with and without Bt-tub. MTs without Bt-tub were detected all along the axon and in some neurons represented a substantial portion of the total polymer in the proximal and middle regions of the axon. These results show that MTs are transported from the cell body into growing axons and that this transport is robust, delivering MTs to all regions of the newly formed axon.
Collapse
|
55
|
Abstract
A central problem concerning slow transport of cytoskeletal proteins along nerve axons is where they are assembled and the form in which they are transported. The polymer and subunit transport models are the two major hypotheses. Recent developments using molecular and cellular biophysics, molecular cell biology and gene technology have enabled visualization of moving forms of cytoskeletal proteins during their transport. Here, we argue that these studies support the subunit transport theory.
Collapse
|
56
|
Hirokawa N. The mechanisms of fast and slow transport in neurons: identification and characterization of the new kinesin superfamily motors. Curr Opin Neurobiol 1997; 7:605-14. [PMID: 9384541 DOI: 10.1016/s0959-4388(97)80079-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Progress in the identification and characterization of new carboxy-terminal motor domain type kinesin superfamily proteins (KIFs)-KIFC2, 16 new KIFs and KIF-associated protein 3 (KAP3)-has provided further insight into the molecular mechanisms of organelle transport in neurons. Developments in molecular and cellular biophysics and recombinant adenovirus infection techniques combined with transgenic mice technology have enhanced the visualization of moving forms of cytoskeletal proteins during slow transport. The results of these studies strongly support the subunit transport theory.
Collapse
Affiliation(s)
- N Hirokawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, University of Tokyo, Japan 113.
| |
Collapse
|
57
|
Affiliation(s)
- P W Baas
- Dept of Anatomy, The University of Wisconsin Medical School, Madison, WI, USA
| | | |
Collapse
|
58
|
Abstract
Microtubule assembly is a complex process with individual microtubules alternating stochastically between extended periods of assembly and disassembly, a phenomenon known as dynamic instability. Since the discovery of dynamic instability, molecular models of assembly have generally assumed that tubulin incorporation into the microtubule lattice is primarily reaction-limited. Recently this assumption has been challenged and the importance of diffusion in microtubule assembly dynamics asserted on the basis of scaling arguments, with tubulin gradients predicted to extend over length scales exceeding a cell diameter, approximately 50 microns. To assess whether individual microtubules in vivo assemble at diffusion-limited rates and to predict the theoretical upper limit on the assembly rate, a steady-state mean-field model for the concentration of tubulin about a growing microtubule tip was developed. Using published parameter values for microtubule assembly in vivo (growth rate = 7 microns/min, diffusivity = 6 x 10(-12) m2/s, tubulin concentration = 10 microM), the model predicted that the tubulin concentration at the microtubule tip was approximately 89% of the concentration far from the tip, indicating that microtubule self-assembly is not diffusion-limited. Furthermore, the gradients extended less than approximately 50 nm (the equivalent of about two microtubule diameters) from the microtubule tip, a distance much less than a cell diameter. In addition, a general relation was developed to predict the diffusion-limited assembly rate from the diffusivity and bulk tubulin concentration. Using this relation, it was estimated that the maximum theoretical assembly rate is approximately 65 microns/min, above which tubulin can no longer diffuse rapidly enough to support faster growth.
Collapse
Affiliation(s)
- D J Odde
- Department of Chemical Engineering, Michigan Technological University, Houghton 49931, USA.
| |
Collapse
|
59
|
Abstract
The neuron moves protein and membrane from the cell body to the synapse and back via fast and slow axonal transport. Little is known about the mechanism of microtubule movement in slow axonal transport, although cytoplasmic dynein, the motor for retrograde fast axonal transport of membranous organelles, has been proposed to also slide microtubules down the axon. We previously showed that most of the cytoplasmic dynein moving in the anterograde direction in the axon is associated with the microfilaments and other proteins of the slow component b (SCb) transport complex. The dynactin complex binds dynein, and it has been suggested that dynactin also associates with microfilaments. We therefore examined the role of dynein and dynactin in slow axonal transport. We find that most of the dynactin is also transported in SCb, including dynactin, which contains the neuron-specific splice variant p135(Glued), which binds dynein but not microtubules. Furthermore, SCb dynein binds dynactin in vitro. SCb dynein, like dynein from brain, binds microtubules in an ATP-sensitive manner, whereas brain dynactin binds microtubules in a salt-dependent manner. Dynactin from SCb does not bind microtubules, indicating that the binding of dynactin to microtubules is regulated and suggesting that the role of SCb dynactin is to bind dynein, not microtubules. These data support a model in which dynactin links the cytoplasmic dynein to the SCb transport complex. Dynein then may interact transiently with microtubules to slide them down the axon at the slower rate of SCa.
Collapse
|
60
|
Campenot B, Lund K, Senger DL. Delivery of newly synthesized tubulin to rapidly growing distal axons of sympathetic neurons in compartmented cultures. J Cell Biol 1996; 135:701-9. [PMID: 8909544 PMCID: PMC2121067 DOI: 10.1083/jcb.135.3.701] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Growing axons receive a substantial supply of tubulin and other proteins delivered from sites of synthesis in the cell body by slow axonal transport. To investigate the mechanism of tubulin transport most previous studies have used in vitro models in which the transport of microtubules can be visualized during brief periods of growth. To investigate total tubulin transport in neurons displaying substantial growth over longer periods, we used rat sympathetic neurons in compartmented cultures. Tubulin synthesized during pulses of [35S]methionine was separated from other proteins by immunoprecipitation with monoclonal antibodies to alpha and beta tubulin, further separated on SDS-PAGE, and quantified by phosphorimaging. Results showed that 90% of newly synthesized tubulin moved into the distal axons within 2 d. Furthermore, the leading edge of tubulin was transported at a velocity faster than 4 mm/d, more than four times the rate of axon elongation. This velocity did not diminish with distance from the cell body, suggesting that the transport system is capable of distributing newly synthesized tubulin to growth cones throughout the axonal tree. Neither diffusion nor the an mass transport of axonal microtubules can account for the velocity and magnitude of tubulin transport that was observed. Thus, it is likely that most of the newly synthesized tubulin was supplied to the growing axonal tree in subunit form such as a heterodimer or an oligomer considerably smaller than a microtubule.
Collapse
Affiliation(s)
- B Campenot
- Department of Anatomy and Cell Biology, Faculty of Medicine, University of Alberta, Edmonton, Canada
| | | | | |
Collapse
|
61
|
Abstract
A question of broad importance in cellular neurobiology has been, how is microtubule cytoskeleton of the axon organized? It is of particular interest because of the history of conflicting results concerning the form in which tubulin is transported in the axon. While many studies indicate a stationary nature of axonal microtubules, a recent series of experiments reports that microtubules are recruited into axons of neurons grown in the presence of a microtubule-inhibitor, vinblastine (Baas, P.W., and F.J. Ahmad. 1993.J. Cell Biol. 120:1427-1437: Ahmad F.J., and P.W. Baas. 1995. J. Cell Sci, 108:2761-2769; Sharp, D.J., W. Yu, and P.W. Baas. 1995. J. Cell Biol, 130:93-103; Yu, W., and P.W. Baas. 1995. J. Neurosci. 15:6827-6833.). Since vinblastine stabilizes bulk microtubule-dynamics in vitro, it was concluded that preformed microtubules moved into newly grown axons. By visualizing the polymerization of injected fluorescent tubulin, we show that substantial microtubule polymerization occurs in neurons grown at reported vinblastine concentrations. Vinblastine inhibits, in a concentration-dependent manner, both neurite outgrowth and microtubule assembly. More importantly, the neuron growth conditions of low vinblastine concentration allowed us to visualize the footprints of the tubulin wave as it polymerized and depolymerized during its slow axonal transport. In contrast, depolymerization resistant fluorescent microtubules did not move when injected in neurons. We show that tubulin subunits, not microtubules, are the primary form of tubulin transport in neurons.
Collapse
Affiliation(s)
- K E Miller
- Department of Anatomy and Cell Biology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | |
Collapse
|
62
|
Funakoshi T, Takeda S, Hirokawa N. Active transport of photoactivated tubulin molecules in growing axons revealed by a new electron microscopic analysis. J Cell Biol 1996; 133:1347-53. [PMID: 8682869 PMCID: PMC2120890 DOI: 10.1083/jcb.133.6.1347] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
To determine whether tubulin molecules transported in axons are polymers or oligomers, we carried out electron microscopic analysis of the movement of the tubulin molecules after photoactivation. Although previous optical microscopic analyses after photobleaching or photoactivation had suggested that most of the axonal microtubules were stationary, they were not sufficiently sensitive to allow detection of actively transported tubulin molecules which were expected to be only a small fraction of total tubulin molecules in axons. In addition, some recent studies using indirect approaches suggested active polymer transport as a mechanism for tubulin transport (Baas, P.W., F.J. Ahmad. 1993. J. Cell Biol. 120:1427-1437; Yu, W., V.E. Centonze, F.J. Ahmad, and P.W. Bass, 1993, J. Cell Biol. 122:349-359; Ahmad, F.J., and P.W. Bass. 1995. J. Cell Sci. 108:2761-2769). So, whether transported tubulin molecules are polymers or not remain to be determined. To clear up this issue, we made fluorescent marks on the tubulin molecules in the axons using a photoactivation technique and performed electron microscopic immunocytochemistry using anti-fluorescein antibody. Using this new method we achieved high resolution and high sensitivity for detecting the transported tubulin molecules. In cells fixed after permeabilization, we found no translocated microtubules. In those fixed without permeabilization, in which oligomers and heterodimers in addition to polymers were preserved, we found much more label in the regions distal to the photoactivated regions than in the proximal regions. These data indicated that tubulin molecules are transported not as polymers but as heterodimers or oligomers by an active mechanism rather than by diffusion.
Collapse
Affiliation(s)
- T Funakoshi
- Department of Anatomy and Cell Biology, Faculty of Medicine, University of Tokyo, Japan
| | | | | |
Collapse
|
63
|
Abstract
There is controversy concerning the mechanisms by which the axonal microtubule (MT) array is elaborated, with some models focusing on MT assembly and other models focusing on MT transport. We have proposed a composite model in which MT assembly and transport are both important (Joshi, H.C., and P.W. Baas. 1993. J. Cell Biol. 121:1191-1196). In the present study, we have taken a novel approach to evaluate the merits of this proposal. Biotinylated tubulin was microinjected into cultured neurons that had already grown short axons. The axons were then permitted to grow longer, after which the cells were prepared for immunoelectron microscopic analyses. We reasoned that any polymer that assembled or turned over subunits after the introduction of the probe should label for biotin, while any polymer that was already assembled but did not turnover should not label. Therefore, the presence in the newly grown region of the axon of any unlabeled MT polymer is indicative of MT transport. In sampled regions, the majority of the polymer was labeled, indicating that MT assembly events are active during axon growth. Varying amounts of unlabeled polymer were also present in the newly grown regions, indicating that MT transport also occurs. Together these findings demonstrate that MT assembly and transport both contribute to the elaboration of the axonal MT array.
Collapse
Affiliation(s)
- W Yu
- Department of Anatomy, University of Wisconsin Medical School, Madison, 53706, USA
| | | | | |
Collapse
|
64
|
Abstract
Neurons generate two distinct types of processes, termed axons and dendrites, both of which rely on a highly organized array of microtubules for their growth and maintenance. Axonal microtubules are uniformly oriented with their plus ends distal to the cell body, whereas dendritic microtubules are nonuniformly oriented. In neither case are the microtubules attached to the centrosome or any detectable structure that could establish their distinct patterns of polarity orientation. Studies from our laboratory over the past few years have led us to propose the following model for the establishment of the axonal and dendritic microtubule arrays. Microtubules destined for these processes are nucleated at the centrosome within the cell body of the neuron and rapidly released. The released microtubules are then transported into developing axons and dendrites to support their growth. Early in neuronal development, the microtubules are transported with their plus ends leading into immature processes that are the common progenitors of both axons and dendrites. This sets up a uniformly plus-end distal pattern of polarity orientation, which is preserved in the developing axon. In the case of the dendrite, the plus-end-distal microtubules are joined by another population of microtubules that are transported into these processes with their minus-ends leading. Implicit in this model is that neurons have specialized machinery for regulating the release of microtubules from the centrosome and for transporting them with great specificity.
Collapse
Affiliation(s)
- P W Baas
- Department of Anatomy, University of Wisconsin Medical School, Madison 53706, USA
| | | |
Collapse
|
65
|
Hirokawa N, Funakoshi T, Sato-Harada R, Kanai Y. Selective stabilization of tau in axons and microtubule-associated protein 2C in cell bodies and dendrites contributes to polarized localization of cytoskeletal proteins in mature neurons. J Biophys Biochem Cytol 1996; 132:667-79. [PMID: 8647897 PMCID: PMC2199865 DOI: 10.1083/jcb.132.4.667] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
In mature neurons, tau is abundant in axons, whereas microtubule-associated protein 2 (MAP2) and MAP2C are specifically localized in dendrites. Known mechanisms involved in the compartmentalization of these cytoskeletal proteins include the differential localization of mRNA (MAP2 mRNA in dendrites, MAP2C mRNA in cell body, and Tau mRNA in proximal axon revealed by in situ hybridization) (Garner, C.C., R.P. Tucker, and A. Matus. 1988. Nature (Lond.). 336:674-677; Litman, P., J. Barg, L. Rindzooski, and I. Ginzburg. 1993. Neuron. 10:627-638), suppressed transit of MAP2 into axons (revealed by cDNA transfection into neurons) (Kanai, Y., and N. Hirokawa. 1995. Neuron. 14:421-432), and differential turnover of MAP2 in axons vs dendrites (Okabe, S., and N. Hirokawa. 1989. Proc. Natl. Acad. Sci. USA. 86:4127-4131). To investigate whether differential turnover of MAPs contributes to localization of other major MAPs in general, we microinjected biotinylated tau, MAP2C, or MAP2 into mature spinal cord neurons in culture (approximately 3 wk) and then analyzed their fates by antibiotin immunocytochemistry. Initially, each was detected in axons and dendrites, although tau persisted only in axons, whereas MAP2C and MAP2 were restricted to cell bodies and dendrites. Injected MAP2C and MAP2 bound to dendritic microtubules more firmly than to microtubules in axons, while injected tau bound to axonal microtubules more firmly than to microtubules in dendrites. Thus, beyond contributions from mRNA localization and selective axonal transport, compartmentalization of each of the three major MAPs occurs through local differential turnover.
Collapse
Affiliation(s)
- N Hirokawa
- Department of Anatomy and Cell Biology, School of Medicine, University of Tokyo, Japan
| | | | | | | |
Collapse
|
66
|
Heidemann SR. Cytoplasmic mechanisms of axonal and dendritic growth in neurons. INTERNATIONAL REVIEW OF CYTOLOGY 1996; 165:235-96. [PMID: 8900961 DOI: 10.1016/s0074-7696(08)62224-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The structural mechanisms responsible for the gradual elaboration of the cytoplasmic elongation of neurons are reviewed. In addition to discussing recent work, important older work is included to inform newcomers to the field how the current perspective arose. The highly specialized axon and the less exaggerated dendrite both result from the advance of the motile growth cone. In the area of physiology, studies in the last decade have directly confirmed the classic model of the growth cone pulling forward and the axon elongating from this tension. Particularly in the case of the axon, cytoplasmic elongation is closely linked to the formation of an axial microtubule bundle from behind the advancing growth cone. Substantial progress has been made in understanding the expression of microtubule-associated proteins during neuronal differentiation to stiffen and stabilize axonal microtubules, providing specialized structural support. Studies of membrane organelle transport along the axonal microtubules produced an explosion of knowledge about ATPase molecules serving as motors driving material along microtubule rails. However, most aspects of the cytoplasmic mechanisms responsible for neurogenesis remain poorly understood. There is little agreement on mechanisms for the addition of new plasma membrane or the addition of new cytoskeletal filaments in the growing axon. Also poorly understood are the mechanisms that couple the promiscuous motility of the growth cone to the addition of cytoplasmic elements.
Collapse
Affiliation(s)
- S R Heidemann
- Department of Physiology, Michigan State University, East Lansing 48824-1101, USA
| |
Collapse
|