51
|
Hekmatpanah DS, Young RA. Mutations in a conserved region of RNA polymerase II influence the accuracy of mRNA start site selection. Mol Cell Biol 1991; 11:5781-91. [PMID: 1922077 PMCID: PMC361949 DOI: 10.1128/mcb.11.11.5781-5791.1991] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
A sensitive phenotypic assay has been used to identify mutations affecting transcription initiation in the genes encoding the two large subunits of Saccharomyces cerevisiae RNA polymerase II (RPB1 and RPB2). The rpb1 and rpb2 mutations alter the ratio of transcripts initiated at two adjacent start sites of a delta-insertion promoter. Of a large number of rpb1 and rpb2 mutations screened, only a few affect transcription initiation patterns at delta-insertion promoters, and these mutations are in close proximity to each other within both RPB1 and RPB2. The two rpb1 mutations alter amino acid residues within homology block G, a region conserved in the large subunits of all RNA polymerases. The three strong rpb2 mutations alter adjacent amino acids. At a wild-type promoter, the rpb1 mutations affect the accuracy of mRNA start site selection by producing a small but detectable increase in the 5'-end heterogeneity of transcripts. These RNA polymerase II mutations implicate specific portions of the enzyme in aspects of transcription initiation.
Collapse
Affiliation(s)
- D S Hekmatpanah
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142-1479
| | | |
Collapse
|
52
|
Woychik N, Lane W, Young R. Yeast RNA polymerase II subunit RPB9 is essential for growth at temperature extremes. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)55171-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
53
|
Ranish J, Hahn S. The yeast general transcription factor TFIIA is composed of two polypeptide subunits. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)55000-6] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
54
|
Darst SA, Kubalek EW, Edwards AM, Kornberg RD. Two-dimensional and epitaxial crystallization of a mutant form of yeast RNA polymerase II. J Mol Biol 1991; 221:347-57. [PMID: 1920413 DOI: 10.1016/0022-2836(91)80223-h] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A mutant form of yeast RNA polymerase II that lacks the fourth and seventh largest subunits, referred to as pol II delta 4/7, crystallized on positively charged lipid layers. Both single-layered (two-dimensional) crystals and several multi-layered crystal forms were obtained. The two-dimensional crystals, preserved in negative stain, diffracted strongly to about 1/20 A-1 and more weakly to 1/13 A-1 resolution. A projection map computed from averaged Fourier transforms revealed four pol II delta 4/7 complexes per unit cell and further revealed a cleft on the surface of the complex similar to that previously observed in the structure of Escherichia coli RNA polymerase. One of the multi-layered crystal forms, preserved in negative stain, diffracted strongly beyond 1/15 A-1 resolution. Coherent diffraction from the multi-layered crystal is indicative of protein-protein interactions between layers and ordering in the third dimension.
Collapse
Affiliation(s)
- S A Darst
- Department of Cell Biology, Beckman Laboratories, Fairchild Center, Stanford University, California 94305
| | | | | | | |
Collapse
|
55
|
|
56
|
Seifarth W, Petersen G, Kontermann R, Riva M, Huet J, Bautz EK. Identification of the genes coding for the second-largest subunits of RNA polymerases I and III of Drosophila melanogaster. MOLECULAR & GENERAL GENETICS : MGG 1991; 228:424-32. [PMID: 1910149 DOI: 10.1007/bf00260636] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We have isolated cDNA and genomic clones of Drosophila melanogaster by cross-hybridization with a 658 bp fragment of the yeast gene coding for the second-largest subunit of RNA polymerase III (RET1). Determination of the sequence by comparison of genomic and cDNA regions reveals an ORF of 3405 nucleotides which is interrupted in the genomic sequence by an intron of 48 bp. The deduced polypeptide consists of 1135 amino acids with a calculated molecular weight of 128 kDa. The protein sequence shows the same conserved regions of homology as those observed for all the second-largest subunits of RNA polymerases cloned so far. The gene (DmRP128) obviously codes for a second-largest subunit of an RNA polymerase which is different from DmRP140 and DmRP135. We have purified three distinct RNA polymerase activities from D. melanogaster. By using specific RNA polymerase inhibitors in enzyme assays and by comparing their subunit composition we were able to distinguish between RNA polymerase I, II, and III. RNA polymerase preparations of D. melanogaster were blotted and the second-largest subunits were identified with antibodies raised against polypeptides expressed from DmRP128 and DmRP135. Anti-DmRP135 antibodies react strongly with the second-largest subunit of RNA polymerase I but do not react with the respective subunits of RNA polymerase II and III. The second-largest subunit of RNA polymerase III is only recognized by anti-DmRP128. Previously, we have claimed that DmRP135 codes for the second-largest subunit of RNA polymerase III.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- W Seifarth
- Institut für Molekulare Genetik, Universität Heidelberg, Federal Republic of Germany
| | | | | | | | | | | |
Collapse
|
57
|
|
58
|
Darst SA, Edwards AM, Kubalek EW, Kornberg RD. Three-dimensional structure of yeast RNA polymerase II at 16 A resolution. Cell 1991; 66:121-8. [PMID: 2070414 DOI: 10.1016/0092-8674(91)90144-n] [Citation(s) in RCA: 143] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The structure of yeast RNA polymerase II has been determined by three-dimensional reconstruction from electron micrographs of two-dimensional crystals at approximately 16 A resolution. The most prominent feature of the structure is an arm of protein density surrounding a channel about 25 A in diameter, similar to that found previously for E. coli RNA polymerase. The 25 A-diameter channel bifurcates on one face of the protein, connecting with a 25 A-wide groove and with a channel about half as wide. The 25 A channel and groove, and the narrow channel, may bind double- and single-stranded nucleic acids, respectively. A finger of protein density projecting from the molecule adjacent to the arm-like feature may represent the C-terminal domain of the largest subunit. These results provide a structural basis for analyses of the transcription process and its regulation.
Collapse
Affiliation(s)
- S A Darst
- Beckman Laboratories for Structural Biology, Department of Cell Biology, Stanford University, California 94305
| | | | | | | |
Collapse
|
59
|
Peterson CL, Kruger W, Herskowitz I. A functional interaction between the C-terminal domain of RNA polymerase II and the negative regulator SIN1. Cell 1991; 64:1135-43. [PMID: 2004420 DOI: 10.1016/0092-8674(91)90268-4] [Citation(s) in RCA: 155] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The C-terminal domain (CTD) of the largest subunit of yeast RNA polymerase II contains 26-27 tandem copies of a conserved heptapeptide of unknown function. Yeast strains whose CTD contains ten heptamers are viable but defective for transcription of the INO1 gene and cold sensitive for growth. Deletion of the SIN1 gene, which codes for a DNA-binding protein that negatively regulates HO transcription, restores INO1 transcription and reduces the cold sensitivity of such strains. A SIN1 deletion suppresses the lethality of a CTD with nine heptamer repeats but not with seven repeats. These observations indicate a functional relationship between SIN1 and the CTD: the CTD might remove SIN1 from DNA, or removal of SIN1 may be a prerequisite for function of the CTD. The SWI1, SWI2, and SWI3 genes, whose products activate HO transcription by antagonizing SIN1, are also required for INO1 transcription and may assist the CTD. In addition, an intact CTD binds nonspecifically to DNA in vitro.
Collapse
Affiliation(s)
- C L Peterson
- Department of Biochemistry and Biophysics, University of California, San Francisco 94143-0448
| | | | | |
Collapse
|
60
|
Suppressor analysis of temperature-sensitive mutations of the largest subunit of RNA polymerase I in Saccharomyces cerevisiae: a suppressor gene encodes the second-largest subunit of RNA polymerase I. Mol Cell Biol 1991. [PMID: 1990281 DOI: 10.1128/mcb.11.2.754] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The SRP3-1 mutation is an allele-specific suppressor of temperature-sensitive mutations in the largest subunit (A190) of RNA polymerase I from Saccharomyces cerevisiae. Two mutations known to be suppressed by SRP3-1 are in the putative zinc-binding domain of A190. We have cloned the SRP3 gene by using its suppressor activity and determined its complete nucleotide sequence. We conclude from the following evidence that the SRP3 gene encodes the second-largest subunit (A135) of RNA polymerase I. First, the deduced amino acid sequence of the gene product contains several regions with high homology to the corresponding regions of the second-largest subunits of RNA polymerases of various origins, including those of RNA polymerase II and III from S. cerevisiae. Second, the deduced amino acid sequence contains known amino acid sequences of two tryptic peptides from the A135 subunit of RNA polymerase I purified from S. cerevisiae. Finally, a strain was constructed in which transcription of the SRP3 gene was controlled by the inducible GAL7 promoter. When this strain, which can grow on galactose but not on glucose, was shifted from galactose medium to glucose medium, a large decrease in the cellular concentration of A135 was observed by Western blot analysis. We have also identified the specific amino acid alteration responsible for suppression by SRP3-1 and found that it is located within the putative zinc-binding domain conserved among the second-largest subunits of eucaryotic RNA polymerases. From these results, it is suggested that this putative zinc-binding domain is in physical proximity to and interacts with the putative zinc-binding domain of the A190 subunit.
Collapse
|
61
|
Azuma Y, Yamagishi M, Ueshima R, Ishihama A. Cloning and sequence determination of the Schizosaccharomyces pombe rpb1 gene encoding the largest subunit of RNA polymerase II. Nucleic Acids Res 1991; 19:461-8. [PMID: 2011520 PMCID: PMC333634 DOI: 10.1093/nar/19.3.461] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The gene, rpb1, encoding the largest subunit of RNA polymerase II has been cloned from Schizosaccharomyces pombe using the corresponding gene, RPB1, of Saccharomyces cerevisiae as a cross-hybridization probe. We have determined the complete sequence of this gene, and parts of PCR-amplified rpb1 cDNA. The predicted coding sequence, interrupted by six introns, encodes a polypeptide of 1,752 amino acid residues in length with a molecular weight of 194 kilodaltons. This polypeptide contains eight conserved structural domains characteristic of the largest subunit of RNA polymerases from other eukaryotes and, in addition, 29 repetitions of the C-terminal heptapeptide found in all the eukaryotic RNA polymerase II largest subunits so far examined.
Collapse
Affiliation(s)
- Y Azuma
- Department of Molecular Genetics, National Institute of Genetics, Shizuoka, Japan
| | | | | | | |
Collapse
|
62
|
Suppressor analysis of temperature-sensitive mutations of the largest subunit of RNA polymerase I in Saccharomyces cerevisiae: a suppressor gene encodes the second-largest subunit of RNA polymerase I. Mol Cell Biol 1991; 11:754-64. [PMID: 1990281 PMCID: PMC359727 DOI: 10.1128/mcb.11.2.754-764.1991] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The SRP3-1 mutation is an allele-specific suppressor of temperature-sensitive mutations in the largest subunit (A190) of RNA polymerase I from Saccharomyces cerevisiae. Two mutations known to be suppressed by SRP3-1 are in the putative zinc-binding domain of A190. We have cloned the SRP3 gene by using its suppressor activity and determined its complete nucleotide sequence. We conclude from the following evidence that the SRP3 gene encodes the second-largest subunit (A135) of RNA polymerase I. First, the deduced amino acid sequence of the gene product contains several regions with high homology to the corresponding regions of the second-largest subunits of RNA polymerases of various origins, including those of RNA polymerase II and III from S. cerevisiae. Second, the deduced amino acid sequence contains known amino acid sequences of two tryptic peptides from the A135 subunit of RNA polymerase I purified from S. cerevisiae. Finally, a strain was constructed in which transcription of the SRP3 gene was controlled by the inducible GAL7 promoter. When this strain, which can grow on galactose but not on glucose, was shifted from galactose medium to glucose medium, a large decrease in the cellular concentration of A135 was observed by Western blot analysis. We have also identified the specific amino acid alteration responsible for suppression by SRP3-1 and found that it is located within the putative zinc-binding domain conserved among the second-largest subunits of eucaryotic RNA polymerases. From these results, it is suggested that this putative zinc-binding domain is in physical proximity to and interacts with the putative zinc-binding domain of the A190 subunit.
Collapse
|
63
|
Zhang J, Corden JL. Phosphorylation causes a conformational change in the carboxyl-terminal domain of the mouse RNA polymerase II largest subunit. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)52243-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
64
|
Identification of phosphorylation sites in the repetitive carboxyl-terminal domain of the mouse RNA polymerase II largest subunit. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)52242-0] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
65
|
Edwards AM, Kane CM, Young RA, Kornberg RD. Two dissociable subunits of yeast RNA polymerase II stimulate the initiation of transcription at a promoter in vitro. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)52403-0] [Citation(s) in RCA: 181] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
66
|
Scafe C, Chao D, Lopes J, Hirsch JP, Henry S, Young RA. RNA polymerase II C-terminal repeat influences response to transcriptional enhancer signals. Nature 1990; 347:491-4. [PMID: 2215664 DOI: 10.1038/347491a0] [Citation(s) in RCA: 138] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The large subunit of RNA polymerase II contains a highly conserved and essential heptapeptide repeat (Pro-Thr-Ser-Pro-Ser-Tyr-Ser) at its carboxy terminus. Saccharomyces cerevisiae cells are inviable if their RNA polymerase II large subunit genes encode fewer than 10 complete heptapeptide repeats; if they encode 10 to 12 complete repeats cells are temperature-sensitive and cold-sensitive, but 13 or more complete repeats will allow wild-type growth at all temperatures. Cells containing C-terminal domains (CTDs) of 10 to 12 complete repeats are also inositol auxotrophs. The phenotypes associated with these CTD mutations are not a consequence of an instability of the large subunit; rather, they seem to reflect a functional deficiency of the mutant enzyme. We show here that partial deletion mutations in RNA polymerase II CTD affect the ability of the enzyme to respond to signals from upstream activating sequences in a subset of promoters in yeast. The number of heptapeptide repeats required for maximal response to signals from these sequences differs from one upstream activating sequence to another. One of the upstream elements that is sensitive to truncations of the CTD is the 17-base-pair site bound by the GAL4 transactivating factor.
Collapse
Affiliation(s)
- C Scafe
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Massachusetts 02142
| | | | | | | | | | | |
Collapse
|
67
|
Abstract
Eukaryotic RNA polymerase II contains two distinct structural domains: a catalytic core consisting of subunits that are homologous to other multisubunit RNA polymerases, and a unique extension of the carboxy-terminus of the largest subunit comprising tandem repeats of the seven amino acid sequence YSPTSPS. This repetitive 'tail' domain is essential for polymerase function in vivo. Although the nature of this essential function is unknown, actively transcribing RNA polymerase II is known to be multiphosphorylated on this repetitive domain.
Collapse
Affiliation(s)
- J L Corden
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|