51
|
Wu YT, Xie LP, Hua Y, Xu HL, Chen GH, Han X, Tan ZB, Fan HJ, Chen HM, Li J, Liu B, Zhou YC. Tanshinone I Inhibits Oxidative Stress-Induced Cardiomyocyte Injury by Modulating Nrf2 Signaling. Front Pharmacol 2021; 12:644116. [PMID: 34084132 PMCID: PMC8167655 DOI: 10.3389/fphar.2021.644116] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/22/2021] [Indexed: 12/29/2022] Open
Abstract
Cardiovascular disease, a disease caused by many pathogenic factors, is one of the most common causes of death worldwide, and oxidative stress plays a major role in its pathophysiology. Tanshinone I (Tan I), a natural compound with cardiovascular protective effects, is one of the main active compounds extracted from Salvia miltiorrhiza. Here, we investigated whether Tan I could attenuate oxidative stress and oxidative stress–induced cardiomyocyte apoptosis through Nrf2/MAPK signaling in vivo and in vitro. We found that Tan I treatment protected cardiomyocytes against oxidative stress and oxidative stress–induced apoptosis, based on the detection of relevant oxidation indexes such as reactive oxygen species, superoxide dismutase, malondialdehyde, and apoptosis, including cell viability and apoptosis-related protein expression. We further examined the mechanisms underlying these effects, determining that Tan I activated nuclear factor erythroid 2 (NFE2)–related factor 2 (Nrf2) transcription into the nucleus and dose-dependently promoted the expression of Nrf2, while inhibiting MAPK signaling activation, including P38 MAPK, SAPK/JNK, and ERK1/2. Nrf2 inhibitors in H9C2 cells and Nrf2 knockout mice demonstrated aggravated oxidative stress and oxidative stress–induced cardiomyocyte injury; Tan I treatment suppressed these effects in H9C2 cells; however, its protective effect was inhibited in Nrf2 knockout mice. Additionally, the analysis of surface plasmon resonance demonstrated that Tan I could directly target Nrf2 and act as a potential Nrf2 agonist. Collectively, these data strongly indicated that Tan I might inhibit oxidative stress and oxidative stress–induced cardiomyocyte injury through modulation of Nrf2 signaling, thus supporting the potential therapeutic application of Tan I for oxidative stress–induced CVDs.
Collapse
Affiliation(s)
- Yu-Ting Wu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Department of Traditional Chinese Medicine, Binzhou Medical University Hospital, Binzhou, China
| | - Ling-Peng Xie
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Department of Traditional Chinese Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Traditional Chinese Medicine, Nanfang Hospital (Zengcheng Branch), Southern Medical University, Guangzhou, China
| | - Yue Hua
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Department of Traditional Chinese Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Traditional Chinese Medicine, Nanfang Hospital (Zengcheng Branch), Southern Medical University, Guangzhou, China
| | - Hong-Lin Xu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Department of Traditional Chinese Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Traditional Chinese Medicine, Nanfang Hospital (Zengcheng Branch), Southern Medical University, Guangzhou, China
| | - Guang-Hong Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Department of Traditional Chinese Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Traditional Chinese Medicine, Nanfang Hospital (Zengcheng Branch), Southern Medical University, Guangzhou, China
| | - Xin Han
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Department of Traditional Chinese Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Traditional Chinese Medicine, Nanfang Hospital (Zengcheng Branch), Southern Medical University, Guangzhou, China
| | - Zhang-Bin Tan
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hui-Jie Fan
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,TCM Health Construction Department of Yangjiang People's Hospital, Yangjiang, China
| | - Hong-Mei Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Department of Traditional Chinese Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Traditional Chinese Medicine, Nanfang Hospital (Zengcheng Branch), Southern Medical University, Guangzhou, China
| | - Jun Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Department of Traditional Chinese Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Bin Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ying-Chun Zhou
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Department of Traditional Chinese Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Traditional Chinese Medicine, Nanfang Hospital (Zengcheng Branch), Southern Medical University, Guangzhou, China
| |
Collapse
|
52
|
Huang Y, Yu SH, Zhen WX, Cheng T, Wang D, Lin JB, Wu YH, Wang YF, Chen Y, Shu LP, Wang Y, Sun XJ, Zhou Y, Yang F, Hsu CH, Xu PF. Tanshinone I, a new EZH2 inhibitor restricts normal and malignant hematopoiesis through upregulation of MMP9 and ABCG2. Theranostics 2021; 11:6891-6904. [PMID: 34093860 PMCID: PMC8171091 DOI: 10.7150/thno.53170] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 04/19/2021] [Indexed: 12/11/2022] Open
Abstract
Rationale: Tanshinone, a type of diterpenes derived from salvia miltiorrhiza, is a particularly promising herbal medicine compound for the treatment of cancers including acute myeloid leukemia (AML). However, the therapeutic function and the underlying mechanism of Tanshinone in AML are not clear, and the toxic effect of Tanshinone limits its clinical application. Methods: Our work utilizes human leukemia cell lines, zebrafish transgenics and xenograft models to study the cellular and molecular mechanisms of how Tanshinone affects normal and abnormal hematopoiesis. WISH, Sudan Black and O-Dianisidine Staining were used to determine the expression of hematopoietic genes on zebrafish embryos. RNA-seq analysis showed that differential expression genes and enrichment gene signature with Tan I treatment. The surface plasmon resonance (SPR) method was used with a BIAcore T200 (GE Healthcare) to measure the binding affinities of Tan I. In vitro methyltransferase assay was performed to verify Tan I inhibits the histone enzymatic activity of the PRC2 complex. ChIP-qPCR assay was used to determine the H3K27me3 level of EZH2 target genes. Results: We found that Tanshinone I (Tan I), one of the Tanshinones, can inhibit the proliferation of human leukemia cells in vitro and in the xenograft zebrafish model, as well as the normal and malignant definitive hematopoiesis in zebrafish. Mechanistic studies illustrate that Tan I regulates normal and malignant hematopoiesis through direct binding to EZH2, a well-known histone H3K27 methyltransferase, and inhibiting PRC2 enzymatic activity. Furthermore, we identified MMP9 and ABCG2 as two possible downstream genes of Tan I's effects on EZH2. Conclusions: Together, this study confirmed that Tan I is a novel EZH2 inhibitor and suggested MMP9 and ABCG2 as two potential therapeutic targets for myeloid malignant diseases.
Collapse
Affiliation(s)
- Ying Huang
- Women's Hospital, and Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shan-He Yu
- State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine at Shanghai, Shanghai Institute of Hematology, Rui-Jin Hospital affiliated to Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Wen-Xuan Zhen
- Department of biophysics and Kidney Disease Center of the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Tao Cheng
- Women's Hospital, and Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Dan Wang
- Women's Hospital, and Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jie-Bo Lin
- Women's Hospital, and Institute of Genetics, and Department of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Yu-Han Wu
- College of Pharmaceutical Sciences, Zhejiang University
| | - Yi-Fan Wang
- Zhejiang University-University of Edinburgh united Institute
| | - Yi Chen
- State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine at Shanghai, Shanghai Institute of Hematology, Rui-Jin Hospital affiliated to Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Li-Ping Shu
- Key Laboratory of Adult Stem Cell Translational Research, Chinese Academy of Medical Sciences, National & Guizhou Joint Engineering Laboratory for Cell Engineering and Biomedicine Technique, Guizhou Province Key Laboratory of Regenerative Medicine, Guizhou Medical University, Guiyang, Guizhou, China, 550004
| | - Yi Wang
- College of Pharmaceutical Sciences, Zhejiang University
| | - Xiao-Jian Sun
- State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine at Shanghai, Shanghai Institute of Hematology, Rui-Jin Hospital affiliated to Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Yi Zhou
- Harvard Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Pediatric Hematology/Oncology at Dana Farber Cancer Institute, Harvard Stem Cell Institute, Harvard Medical School and Howard Hughes Medical Institute, Boston, MA 02115, USA
| | - Fan Yang
- Department of biophysics and Kidney Disease Center of the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chih-Hung Hsu
- Women's Hospital, and Institute of Genetics, and Department of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Peng-Fei Xu
- Women's Hospital, and Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
53
|
Subedi L, Gaire BP. Tanshinone IIA: A phytochemical as a promising drug candidate for neurodegenerative diseases. Pharmacol Res 2021; 169:105661. [PMID: 33971269 DOI: 10.1016/j.phrs.2021.105661] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/02/2021] [Accepted: 04/30/2021] [Indexed: 02/07/2023]
Abstract
Tanshinones, lipophilic diterpenes isolated from the rhizome of Salvia miltiorrhiza, have diverse pharmacological activities against human ailments including neurological diseases. In fact, tanshinones have been used to treat heart diseases, stroke, and vascular diseases in traditional Chinese medicine. During the last decade, tanshinones have been the most widely studied phytochemicals for their neuroprotective effects against experimental models of cerebral ischemia and Alzheimer's diseases. Importantly, tanshinone IIA, mostly studied tanshinone for biological activities, is recently reported to attenuate blood-brain barrier permeability among stroke patients, suggesting tanshinone IIA as an appealing therapeutic candidate for neurological diseases. Tanshinone I and IIA are also effective in experimental models of Parkinson's disease, Multiple sclerosis, and other neuroinflammatory diseases. In addition, several experimental studies suggested the pleiotropic neuroprotective effects of tanshinones such as anti-inflammatory, antioxidant, anti-apoptotic, and BBB protectant further value aiding to tanshinone as an appealing therapeutic strategy in neurological diseases. Therefore, in this review, we aimed to compile the recent updates and cellular and molecular mechanisms of neuroprotection of tanshinone IIA in diverse neurological diseases.
Collapse
Affiliation(s)
- Lalita Subedi
- Department of Anesthesiology and Neurology, Shock Trauma and Anesthesiology Research Center, University of Maryland, School of Medicine, Baltimore, MD, USA
| | - Bhakta Prasad Gaire
- Department of Anesthesiology and Neurology, Shock Trauma and Anesthesiology Research Center, University of Maryland, School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
54
|
Bi Z, Wang Y, Zhang W. A comprehensive review of tanshinone IIA and its derivatives in fibrosis treatment. Biomed Pharmacother 2021; 137:111404. [PMID: 33761617 DOI: 10.1016/j.biopha.2021.111404] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/07/2021] [Accepted: 02/10/2021] [Indexed: 02/06/2023] Open
Abstract
Tanshinone IIA (Tan IIA) is the most abundant lipid-soluble component in Salvia miltiorrhiza. Both Tan IIA and its derivatives including Sodium tanshinone IIA sulfonate (STS) have been widely used in clinic due to their proved anti-inflammation, anti-oxidation, and anti-fibrosis functions. Recently, combinations containing Tan IIA and active components have attracted intensive interest in fibrosis. Multiple studies have been conducted to attempt to decipher the mechanisms of this traditional Chinese medicine and found that Tan IIA can attenuate fibrosis through different pathways such as Smad2/3, NF-κB, Nrf2, E2F and snail/twist axis. However, some of the studies were contradictory and confusing. Therefore, it was important to develop an easy-to-access reference for clinic use. In this study, we reviewed the pharmacological mechanisms, pharmacokinetics, and toxicology of Tan IIA and its derivatives in the treatment of fibrosis and introduced the cutting-edge new formulation of Tan IIA compound.
Collapse
Affiliation(s)
- Zhangyang Bi
- Traditional Chinese Medicine College of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yayun Wang
- The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wei Zhang
- Department of Pneumology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
55
|
Fu DJ, Li J, Yu B. Annual review of LSD1/KDM1A inhibitors in 2020. Eur J Med Chem 2021; 214:113254. [PMID: 33581557 DOI: 10.1016/j.ejmech.2021.113254] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/24/2021] [Accepted: 01/30/2021] [Indexed: 02/07/2023]
Abstract
Lysine-specific demethylase 1 (LSD1/KDM1A) has emerged as a promising target for the discovery of specific inhibitors as antitumor drugs. Based on the source of compounds, all LSD1 inhibitors in this review are divided into two categories: natural LSD1 inhibitors and synthetic LSD1 inhibitors. This review highlights the research progress of LSD1 inhibitors with the potential to treat cancer covering articles published in 2020. Design strategies, structure-activity relationships, co-crystal structure analysis and action mechanisms are also highlighted.
Collapse
Affiliation(s)
- Dong-Jun Fu
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jun Li
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Bin Yu
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
56
|
Wang Y, Hu R, Guo Y, Qin W, Zhang X, Hua L, Yang Y. Preparation, evaluation, and in vitro release of chitosan-alginate tanshinone self-microemulsifying sustained-release microcapsules. Technol Health Care 2021; 29:687-695. [PMID: 33386833 DOI: 10.3233/thc-202529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
OBJECTIVE In this study we explore the method to prepare tanshinone self-microemulsifying sustained-release microcapsules using tanshinone self-microemulsion as the core material, and chitosan and alginate as capsule materials. METHODS The optimal preparation technology of chitosan-alginate tanshinone self-microemulsifying sustained-release microcapsules was determined by using the orthogonal design experiment and single-factor analysis. The drug loading and entrapment rate were used as evaluation indexes to assess the quality of the drug, and the in vitro release rate was used to evaluate the drug release performance. RESULTS The best technology of chitosan-alginate tanshinone self-microemulsifying sustained-release microcapsules is as follows: the concentration of alginate is 1.5%, the ratio of tanshinone self-microemulsion volume to alginate volume to chitosan mass is 1:1:0.5 (ml: ml: g), and the best concentration of calcium chloride is 2.0%. To prepare the microcapsules using this technology, the drug loading will be 0.046%, the entrapment rate will be 80.23%, and the 24-hour in vitro cumulative release rate will be 97.4%. CONCLUSION The release of the microcapsules conforms to the Higuchi equation and the first-order drug release model and has a good sustained-release performance.
Collapse
Affiliation(s)
- Yunhong Wang
- Chongqing Academy of Chinese Materia Medica, Chongqing, China.,Chongqing Academy of Chinese Materia Medica, Chongqing, China
| | - Rong Hu
- Chongqing Centre for Drug Evaluation and Certification, Chongqing, China.,Chongqing Academy of Chinese Materia Medica, Chongqing, China
| | - Yanlei Guo
- Chongqing Academy of Chinese Materia Medica, Chongqing, China
| | - Weihan Qin
- Chongqing Academy of Chinese Materia Medica, Chongqing, China
| | - Xiaomei Zhang
- Chongqing Academy of Chinese Materia Medica, Chongqing, China
| | - Lei Hua
- Chongqing Academy of Chinese Materia Medica, Chongqing, China
| | - Yong Yang
- Chongqing Academy of Chinese Materia Medica, Chongqing, China
| |
Collapse
|
57
|
Wang L, Wang R, Wei GY, Zhang RP, Zhu Y, Wang Z, Wang SM, Du GH. Cryptotanshinone alleviates chemotherapy-induced colitis in mice with colon cancer via regulating fecal-bacteria-related lipid metabolism. Pharmacol Res 2021; 163:105232. [PMID: 33027716 DOI: 10.1016/j.phrs.2020.105232] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/29/2020] [Accepted: 09/29/2020] [Indexed: 12/12/2022]
Abstract
Patients with colorectal cancer treated with 5-fluorouracil (5-FU) and irinotecan (CPT-11) exhibit a risk for chemotherapy-induced colitis (CIC) that may lead to fatal consequences. Cryptotanshinone (CTS) is a natural compound extracted from the root of Salvia miltiorrhiza Bunge that shows potent antitumor activities. We previously reported CTS relieved 5-FU/ CPT-11 induced colitis in tumor-free mice. In this study, we studied the effect of CTS on 5-FU/ CPT-11 induced colitis in mice with colitis associated colon cancer (CAC). The effects of CTS on CIC were evaluated by disease activity index (DAI) and histological assessment via hematoxylin-and-eosin staining. Serum lipids and lipid-metabolic enzymes were detected by commercial kits. Fecal microbial diversity was detected by 16S ribosomal RNA gene sequencing. To find the role of fecal bacteria in CAC mice with 5-FU/ CPT-11 induced colitis, pseudo-germ-free mice were established by intragastric administration of mixed antibiotics. Except for decreasing tumor number (3 ± 1 vs 6 ± 1, p < 0.05), CTS significantly alleviated DAI (1.9 ± 0.6 vs 2.6 ± 0.5, p < 0.05) and regulated serum lipids in CAC mice with 5-FU/ CPT-11induced colitis. Compared with model group, CTS significantly increased serum triglycerides (TG) (1.13 ± 0.26 mM vs 0.79 ± 0.03 mM, p < 0.05), high density lipoprotein (HDL) (3.88 ± 0.1 mM vs 3.28 ± 0.05 mM, p < 0.001) and oxidized low-density lipoprotein (oxLDL) (288.12 ± 65.92 ng/mL vs 150.72 ± 42.13 ng/mL, p < 0.05) level but decreased serum adiponectin level (1177.47 ± 179.2 pg/mL vs 1523.43 ± 91.8 pg/mL, p < 0.05). Among fecal bacteria significantly correlated with lipid metabolism, CTS significantly decreased the abundance of g__norank_f__Muribaculaceae (21.15 % ± 5.7 % vs 41.84 ± 12.0 %, p < 0.01) but increased that of g_Lactobacillus (11.13 % ± 6.6 % vs 5.7 % ± 4.6 %, p < 0.05), g__Alistipes (3.66 % ± 0.7 % vs 1.47 % ± 1,0%, p < 0.01) and g__Odoribacter (1.31 % ± 0.7 % vs 0.30 % ± 0.2 %, p < 0.01). In addition, the development of CIC and abnormal lipid metabolism were significantly prevented in pseudo-germ-free mice. Therefore, we concluded CTS alleviated 5FU/CPT-11 induced colitis in CAC mice via regulating fecal flora associated lipid metabolism.
Collapse
Affiliation(s)
- Lin Wang
- Beijing Key Laboratory of Drug Targets Identification and Research and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nongtan Street, Beijing, 100050, China
| | - Rui Wang
- Beijing Key Laboratory of Drug Targets Identification and Research and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nongtan Street, Beijing, 100050, China; Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Guang-Yi Wei
- Beijing Key Laboratory of Drug Targets Identification and Research and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nongtan Street, Beijing, 100050, China; Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Rui-Ping Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Ying Zhu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Zhe Wang
- Beijing Key Laboratory of Drug Targets Identification and Research and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nongtan Street, Beijing, 100050, China
| | - Shu-Mei Wang
- Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Guan-Hua Du
- Beijing Key Laboratory of Drug Targets Identification and Research and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nongtan Street, Beijing, 100050, China.
| |
Collapse
|
58
|
Pharmacological basis of tanshinone and new insights into tanshinone as a multitarget natural product for multifaceted diseases. Biomed Pharmacother 2020; 130:110599. [PMID: 33236719 DOI: 10.1016/j.biopha.2020.110599] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 07/18/2020] [Accepted: 07/31/2020] [Indexed: 12/14/2022] Open
Abstract
Drug development has long included the systematic exploration of various resources. Among these, natural products are one of the most important resources from which novel agents are developed due to the multiple pharmacologic effects of these natural products on diseases. Tanshinone, a representative natural product, is the main compound extracted from the dried root and rhizome of Salvia miltiorrhiza Bge. Research on tanshinone began in the early 1930s. With the in-depth investigation of an increasing number of identified analogs, tanshinone has demonstrated a wide variety of bioactivities and contradicted the saying, 'You can't teach an old dog new tricks'. This review is focused on the pharmacological action of tanshinone and status of research on tanshinone in recent years. The mechanism of tanshinone has also drawn much attention, with the findings of representative targets and pathways of tanshinone. The most recent studies have comprehensively shown that tanshinone can be used to treat leukemia and solid carcinoma, protect against cardiovascular and cerebrovascular diseases, and alleviate liver- and kidney-related diseases, among its other effects. Multiple signaling pathways, including antiproliferative, antiapoptotic, anti-inflammatory, and antioxidative stress pathways, are involved in its actions.
Collapse
|
59
|
Wang X, Wang Q, Li W, Zhang Q, Jiang Y, Guo D, Sun X, Lu W, Li C, Wang Y. TFEB-NF-κB inflammatory signaling axis: a novel therapeutic pathway of Dihydrotanshinone I in doxorubicin-induced cardiotoxicity. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:93. [PMID: 32448281 PMCID: PMC7245789 DOI: 10.1186/s13046-020-01595-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/11/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Doxorubicin is effective in a variety of solid and hematological malignancies. Unfortunately, clinical application of doxorubicin is limited due to a cumulative dose-dependent cardiotoxicity. Dihydrotanshinone I (DHT) is a natural product from Salvia miltiorrhiza Bunge with multiple anti-tumor activity and anti-inflammation effects. However, its anti-doxorubicin-induced cardiotoxicity (DIC) effect, either in vivo or in vitro, has not been elucidated yet. This study aims to explore the anti-inflammation effects of DHT against DIC, and to elucidate the potential regulatory mechanism. METHODS Effects of DHT on DIC were assessed in zebrafish, C57BL/6 mice and H9C2 cardiomyocytes. Echocardiography, histological examination, flow cytometry, immunochemistry and immunofluorescence were utilized to evaluate cardio-protective effects and anti-inflammation effects. mTOR agonist and lentivirus vector carrying GFP-TFEB were applied to explore the regulatory signaling pathway. RESULTS DHT improved cardiac function via inhibiting the activation of M1 macrophages and the excessive release of pro-inflammatory cytokines both in vivo and in vitro. The activation and nuclear localization of NF-κB were suppressed by DHT, and the effect was abolished by mTOR agonist with concomitant reduced expression of nuclear TFEB. Furthermore, reduced expression of nuclear TFEB is accompanied by up-regulated phosphorylation of IKKα/β and NF-κB, while TFEB overexpression reversed these changes. Intriguingly, DHT could upregulate nuclear expression of TFEB and reduce expressions of p-IKKα/β and p-NF-κB. CONCLUSIONS Our results demonstrated that DHT can be applied as a novel cardioprotective compound in the anti-inflammation management of DIC via mTOR-TFEB-NF-κB signaling pathway. The current study implicates TFEB-IKK-NF-κB signaling axis as a previously undescribed, druggable pathway for DIC.
Collapse
Affiliation(s)
- Xiaoping Wang
- grid.24695.3c0000 0001 1431 9176School of Life Science, Beijing University of Chinese Medicine, Beijing, 100029 China
| | - Qiyan Wang
- grid.24695.3c0000 0001 1431 9176School of Life Science, Beijing University of Chinese Medicine, Beijing, 100029 China
| | - Weili Li
- grid.24695.3c0000 0001 1431 9176School of Life Science, Beijing University of Chinese Medicine, Beijing, 100029 China
| | - Qian Zhang
- grid.24695.3c0000 0001 1431 9176School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029 China
| | - Yanyan Jiang
- grid.24695.3c0000 0001 1431 9176School of Life Science, Beijing University of Chinese Medicine, Beijing, 100029 China
| | - Dongqing Guo
- grid.24695.3c0000 0001 1431 9176School of Life Science, Beijing University of Chinese Medicine, Beijing, 100029 China
| | - Xiaoqian Sun
- grid.24695.3c0000 0001 1431 9176School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029 China
| | - Wenji Lu
- grid.24695.3c0000 0001 1431 9176School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029 China
| | - Chun Li
- grid.24695.3c0000 0001 1431 9176Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029 China
| | - Yong Wang
- grid.24695.3c0000 0001 1431 9176School of Life Science, Beijing University of Chinese Medicine, Beijing, 100029 China ,grid.24695.3c0000 0001 1431 9176School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029 China
| |
Collapse
|
60
|
Wang L, Wang R, Wei GY, Wang SM, Du GH. Dihydrotanshinone attenuates chemotherapy-induced intestinal mucositis and alters fecal microbiota in mice. Biomed Pharmacother 2020; 128:110262. [PMID: 32447214 DOI: 10.1016/j.biopha.2020.110262] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/04/2020] [Accepted: 05/10/2020] [Indexed: 02/07/2023] Open
Abstract
Chemotherapy-induced intestinal mucositis (CIM) is a principal reason for reduced living quality of patients undergoing chemotherapy. Growing evidence showed gut microbiota played an important role in the development of intestinal mucositis. Dihydrotanshinone I (DHTS) is a liposoluble extract of Salvia miltiorrhiza Bunge with many bioactivities. Here we investigated the effect of DHTS on intestinal mucositis induced by 5-fluorouracil and irinotecan in mice. We detected the degree of intestinal mucosal damage and inflammatory response in CIM mice with or without DHTS administration. The body weight and disease activity index (DAI) of mice were monitored each day. H&E staining was used to evaluate pathological damage. The contents of interleukin 6 (IL-6), tumor necrosis factor (TNFα), diacylglycerol (DAO) and triglyceride (TG) in serum were determined by commercial kits. We also investigated the changes of fecal microbiota by 16S rRNA high-throughput sequencing. Spearman correlation analysis was used to evaluate the correlation between fecal microbiota and inflammatory factors. Tax4Funwas performed to infer the potential function of the microbial community. Results showed DHTS significantly reduced DAI, intestinal mucosal damage and inflammatory response in CIM mice by decreasing serum IL-6 and TNFα. In addition, there is an intense correlation between fecal microbiota and inflammatory factors. DHTS efficiently reversed disordered fecal microflora close to normal and increased the abundance of g__Akkermansia. DHTS also enriched bacterial species which promote butyric acid metabolism or negatively correlated with inflammatory factors. Besides, species enriched by DHTS in fecal microbiota were probably involved in glutamine production and ammonia oxidation. In conclusion, our study provides evidence that DHTS effectively attenuates CIM induced by 5-fluorouracil and irinotecan in mice. Regulation of the composition and function of fecal microbiota probably plays a critical role in the therapeutic effect of DHTS in CIM mice.
Collapse
Affiliation(s)
- Lin Wang
- Beijing Key Laboratory of Drug Targets Research and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nongtan Street, Beijing, 100050, China
| | - Rui Wang
- Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Guang-Yi Wei
- Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Shu-Me Wang
- Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Guan-Hua Du
- Beijing Key Laboratory of Drug Targets Research and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nongtan Street, Beijing, 100050, China.
| |
Collapse
|